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1. INTRODUCTION

A well known theorem in the theory of Lie algebras due to Ado asserts
that every real Lie algebra g of dimension n has a faithful representation
as a subalgebra of gl(p,R) for some p. The theorem does not give much
information about the value of p but the leads one to believe that p may
be very large in relation to the size of n and consequently it seems to be of
limited practical value. In this paper we shall take a different approach and
construct representations for all the Lie algebras of dimension five and less.
In fact in the interests of simplicity we give a matrix representation of a Lie
group corresponding to each Lie algebra. The algebra representation is of
course obtained by differentiating and evaluating at the identity. It should be
appreciated that the construction of these representations is non-trivial and far
from an algorithmic business, even though after the fact the representations
may seem to be obvious.

If the Lie algebra g is semi-simple there are well known representations
that are associated to the standard Aj,Bj, C) and Dy, series that are of the
order of /n, where n is the dimension of g. On the other hand it is clear
that semi-simple algebras are very much the exception rather than the rule:
for example there are only two semi-simples in dimension five or less. More
generally if g has a trivial center then the adjoint representation furnishes a
faithful representation of g and in the notation used above p = n. Many of
our representations are constructed in this way. We also develop in Section 3
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some theorems that explain how to obtain representations in the case where
the algebra has a non-trivial center. In particular we shall show that if g has
a codimension one abelian nilradical then it has a faithful representation as
a subalgebra of gl(n,R). We refer to the 1976 list given by Patera et al. [6]
for a comprehensive list of the indecomposable algebras of dimension five and
less, which in turn was based on [4] and [5]. We have followed the list given
in [6] and made allowance for slight typographical changes. The non-abelian
two-dimensional algebra has trivial center and only one three-dimensional al-
gebra, named for Heisenberg, has a non-trivial center. In dimension four there
are four algebras that have a non-trivial center, none of which involves a para-
meter. As the dimension of g increases the algebras form moduli; that is to say
there are families of inequivalent algebras depending on several parameters.
Of the 40 five-dimensional algebras listed in [6] the following have a non-trivial
center and therefore the adjoint representation is not faithful:

1,2,3,4,5,6, 8, 9bc(b=0), 10, 1dpq, 15(a = 0), 19b(a = 0), 20(a = 0),
22, 25b(p = 0), 26(c = £1,p = 0), 28(a = 0), 29, 30(a = —1), 38, 39.

Thus we have 22 cases to consider of which four depend on one parameter and
one of which depends on two.

In Section 2 we state a few results about the matrices that can occur in a
faithful representation of a Lie algebra and examine the role played by non-
derogatory matrices. The main conclusion of Section 2 is that it is not possible
to “lift” the adjoint representation of algebra 4.12 to algebra 5.39. In fact 5.39
caused us a great deal of trouble until we realized that algebra 4.12 can be
represented in gl(3,R). In Section 3 we give a few general results about
representations of Lie algebras. In Section 4 we list all the representations
corresponding to indecomposable Lie algebras of dimension five and less. In
fact rather than giving representations for the Lie algebras we give in each
case a matrix group whose Lie algebra coincides with a given algebra. It is
straightforward then to construct the matrix representation of the algebra by
differentiation. We have also given a representation of the algebra in terms
of vector fields, in the vast majority of cases the right-invariant vector fields,
that can also be obtained from the representation. A point to bear in mind
here that there is a trade-off between complexity of the group matrix denoted
by S and the form of the right-invariant vector fields. It is not possible in
general to have both of them in the simplest possible form. Consider for
example algebra 5.36 listed in Section 4. We have given the S-matrix with
exponentials in the 12, 13 and 23 entries: as a result the vector fields do not
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contain exponentials. On the other hand the exponentials in the 12, 13 and 23
entries can be dropped but one obtains much more complicated vector fields.

In Section 5 we have singled out several algebras that extend to arbit-
ary dimensions and constitute particularly nice examples. For standard facts
about Lie algebras and Lie groups we refer the reader to [2] and [3]. We
use (e1,€e9,...,e5) to denote the s-dimensional subspace of g generated by
€1,€2,5...,€5.

In the future we plan to apply our techniques to the six and higher di-
mensional algebras though some new methods will be required. The six-
dimensional case will be a mammoth undertaking, comprising as it does, ap-
proximately 160 classes of algebra. GT wishes to thank the Mathematics De-
partment of Utah State University for their hospitality and particularly Ian
Anderson for help in using his Vessiot routines. Most of the calculations were
done with the MAPLE symbolic manipulation program. The authors would
also like to thank the referee for a conscientious and extremely constructive
report.

2. NON-DEROGATORY MATRICES

In this section we shall give some results about matrices that are use-
ful in finding Lie algebra representations. We say that a matrix M is non-
derogatory if, when put into Jordan canonical form, corresponding to each
eigenvalue, there is just one Jordan block. An elegant characterization of
a non-derogatory matrix is that its characteristic polynomial coincides with
its minimal polynomial. An important property of a non-derogatory matrix
is that its commuting algebra is commutative and a necessary and sufficient
condition for the commuting algebra to be commutative is that M should be
non-derogatory. In fact any matrix A that commutes with M must have the
same block structure as does M and the commuting algebra is generated by
powers of matrices with just one non-zero block taken from M. We shall call
an n X n matrix that is upper triangular with zeroes on the main diagonal
and 1’s on each entry above the main diagonal, the standard non-derogatory
nilpotent matrix.

Now let us consider the matrix equation

E =[A, B

where A and B belong to the commuting algebra of E. Such equations occur
frequently in the study of Lie algebras.
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LEMMA 2.1. E is nilpotent.

Proof. Since FE is a commutator, it has trace zero. Moreover, since F
commutes with A and B we have

E? = E(AB— BA) = EAB — BEA

and more generally,
E* = (EFA)B — B(E*A)

for £ = 0,1,2,.... Hence all powers of ¥ are commutators and hence have
trace zero. It follows that F is nilpotent. N

Notice that in Lemma 2.1 it is necessary to know only that £ commutes
with either A or B. Also the rank of E is at least two less than n because if it
had rank n — 1 it would be non-derogatory and its commuting algebra would
be abelian.

Next we give a companion Lemma that is likely to be useful for Lie algebras
that are not nilpotent. Indeed if the reader consults the list of Lie algebras
given in Section 4 it will be seen that most of the brackets are of the type
occurring in either Lemma 2.1 or Lemma 2.2.

LEMMA 2.2. If [E,F| = F, then [E,F"] = nF" for n = 0,1,2,... and
hence F' is nilpotent.

Proof. Assume by induction that [E, F"] = nF™. Then we have

[E,F"T] = EF"t! — "YU B = [E, F|F" 4 F[E, F"]
— FTL+1 +’leFn — (’fl+ 1)F’n+1

and hence the formula holds for all n. It follows that all powers of F' have
trace zero and hence F' is nilpotent. [

Let us see now what can be said when the matrix £ has some non-
derogatory properties.

LEMMA 2.3. Consider in R¥ the matrix equation

[A,B] = E
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where A and B commute with E which is nilpotent. Then if E has a Jordan
decomposition of the following form

[Ny 0
5= )

where Np is a standard non-derogatory nilpotent of rank m — 1, then

k41
< —.
m=y

Proof. Suppose that E has the given decomposition and let N; and Ns be
of size m x m and n x n, respectively, where m +n = k. Consider a block

al bl
a1 dp

that commutes with E. It follows that

matrix of the form

[a1, N1] =0, [b1,N2] =0, bNy—Niby =0, ¢ N3 — Nac; =0.

az by

oo d ] is another matrix that commutes with £. Then
2 a9

Suppose that [

blcgNl - blNQCQ == blcgNl - N1b102 =0

and hence
[blcg, Nl] =0.

Since N; is standard non-derogatory a1, as, bica and bacy are polynomials

in Ni. The m x m upper left block in the commutator of [al bl] and [a2 62]
c dq co do

is given by [a1, as] + bicg — bacy. Again, since N; is non-derogatory it follows
that [a1,a9] = 0. Now the rank of bjcy is not more than n and the same is
true of bycy. Since both are upper triangular and of the special form coming
from the fact that they commute with the /Nq, the same is true of bico — baocy.
Hence m — 1 < n and since kK = m + n we have m < % |

LEMMA 2.4. Consider in R¥ the matrix equation

[A,B]=E
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where A and B commute with E which is nilpotent. Then if & has a decom-
position of the following form

[Ny 0
E‘[o NQ]’

where N1 and Ns are standard non-derogatory nilpotent of size m X m and
n X n, respectively and m 4+ n = k, then m=n.

Proof. According to Lemma 2.3 m < % Since both N7 and N, are
both non-derogatory nilpotent, there are, up to change of basis, just two
possibilities, namely, m = n = g or m = % and n = % We suppose

that we are in the second of these cases and we show that it is impossible. We

suppose that A = [al bl} and B = [a2 bﬂ are as in Lemma 2.3 and commute
C1 d1 Co d2

with E. A straightforward calculation shows that the (1,2) and (k — 1,k)
entries are given by 51(11)02(12) - b2(11)01(12) and —51(11)02(12) + 52(11)01(12)a
respectively, and hence contradicts the assumption that N; and N, are non-
derogatory standard nilpotent. [

To illustrate these results consider a nilpotent 5 x 5 matrix E which is in
the center of some 5 x 5 Lie algebra representation. There are, up to change of
basis, five possible normal forms for a 5 x 5 nilpotent matrix. It follows from
the remark in the first paragraph of this section that £ cannot have rank 4.
It follows from Lemma 2.4 that F cannot have rank 3. For rank two we have
the following two canonical forms:

&

Il
coococo
cooc o~
coo~=o
coococo
coocoo

and

&

Il
oo oo o
cocoocoo
cocoocoo
oo oo
cocoo RO

LEMMA 2.5. The matrix E cannot be of the first form above.
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Proof. A matrix that commutes with £ has the form

Quu Q12 Q13 Qu Qs

Quu Q12 O 0
0 Qu O 0
0 Qi Qu Qs
0 Qs3 Q54 Qss

0
Q=10
0
0

However, the commutator of two such matrices has its (1,2) entry zero and
hence cannot be E. |

With a lot more work it is possible to show that the second of the ca-
nonical forms for a rank two nilpotent matrix also leads to a contradiction.
Many of the results above were inspired by algebra 5.39 which is one of the
few five-dimensional algebra that is not nilpotent, for which we do not have a
mechanism for obtaining a representation. Clearly the results will be applic-
able to higher dimensional algebras. The upshot of the preceding analysis,
whose details we shall forgo, is that one cannot construct a representation for
algebra 5.39 by lifting the adjoint representation of algebra 4.12, which is the
quotient algebra obtained from 5.39 by dividing by its center.

3. SOME REPRESENTATION RESULTS FOR LIE ALGEBRAS

In this section we give some results which explain how to obtain faithful
representations for n-dimensional Lie algebras as subalgebras of gl(n,R). We
begin with a simple result that gives a bound on the dimension of the center
of an algebra.

PROPOSITION 3.1. Suppose that g is an indecomposable Lie algebra of

dimension n and that z is the dimension of its center Z(g). Then z <
2n+1—+/8n-+1
S Eant

Proof. Since g is indecomposable we must have that Z(g) C [g,g], where
[9, 9] denotes the derived algebra of g. Furthermore the dimension of [g, g] is
equal at most to the number of non-zero brackets relative to some basis. How-
ever, the latter number is clearly bounded above by (", *). Hence z < (",7).
If we solve this quadratic inequality we find that z satisfies the inequality as
stated. |

As far as we aware from examples the bound given above is sharp.
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Next we shall consider Lie algebras that have a codimension one abelian
nilradical ideal and for such algebras we are able to obtain representations
directly.

THEOREM 3.1. Suppose that the n-dimensional Lie algebra g has a codi-
mension one abelian ideal. Then g has a faithful representation as a subalgebra
of gl(n,R).

Proof. If g is not itself nilpotent the abelian ideal in question will neces-
sarily be the nilradical of g. On the other hand g itself may be nilpotent.
If {e1,e9,...,e,_1} is a basis for the codimension one abelian ideal we can
extend it to a basis for g by means of the vector e,. Define the endomorphism
A to be ad(e,) and let its matrix be az-. The non-zero brackets of g are given
by [en, €] = Zz;% a¥ey. To obtain the representation, map e, to A; for each
vector e; (1 < n—1) map it to the n x n matrix E; whose only non-zero entry
is a 1 in the (i,n)" position. Clearly the E!s commute. Then note that the
matrix product E; A is zero and so

n—1
[A, Ez] = Z afEk
k=1

and we have the required representation. [

COROLLARY 3.1. An n-dimensional Lie algebra g that has a codimension
one abelian ideal is isomorphic to the Lie algebra of a subgroup of GL(n,R),
that can be described explicitly.

Proof. We resume from the previous Corollary. The subgroup of GL(n,R)
that we seek is given by
-]

0 1

where = denotes the column (n — 1)-vector, with entries z1, o, ..., Tp_1.
Clearly it is a group since the first n—1 entries in the last column are arbitrary
and its Lie algebra is isomorphic to g as can be seen by differentiating with
respect to each of the parameters and setting them equal to zero. [

We continue now in a different direction. The next result explains how
under favorable circumstances the two-dimensional non-abelian Lie algebra
can be used to obtain to a representation starting from a codimension one
representation.
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THEOREM 3.2. (i) Suppose that h is an (n + 1)-dimensional Lie algebra,
that there exists an n-dimensional subalgebra g and that there exists a basis
{e1,...,en,ent1} of h such that {ey,...,e,_1,e,} is a basis for g and that

[en+1; 611] = ben+1
for some non-zero b and that
[en+1,€] =0, for 1 <i<n-—1.

Then the subspaces spanned by {e,;+1} and {ej,es,...e,_1} are ideals in h
and g, respectively.

(ii) Given the data of (i) suppose that g has a faithful representation as an
n-dimensional subalgebra of gl(n,R) in which each matrix has a zero bottom
row. Then h has a faithful representation as an (n+1)-dimensional subalgebra
of gl(n +1,R).

Proof. (i) Tt is clear that the one-dimensional subspace spanned by e, 1
is an ideal in h. Let us write the nonzero Lie brackets as

n—1
[ei, ej] = Z ijek + C’ijen
k=1

and

n—1
[ei, en] = Z Ffek + ey
k=1
Then considering the Jacobi identity

[en_|_1, [ei,ej]] + [ej, [en+1,ei]] + [ei, [ej,en+1]] = 0.

where 1 < 4,5 <n —1 we find that bC;; = 0 and hence C;; = 0 since b # 0. It
follows that the subspace spanned by ey, es, ..., e, 1 is a subalgebra of g.
Next considering the Jacobi identity

[ens [€is ent1]] + [ent1, [en, €i]] + [€:, [ent1,en]] =0,

where 1 <7 < n—1 we find that bI'; = 0 and hence I'; = 0. Thus the subspace
spanned by {ej,es,...,e,_1} is actually an ideal in g.
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(ii) Suppose that for 1 < i < n the basis vector e; is represented by the
matrix F; which has a zero bottom row. For 1 <4 < n —1 map ¢; to the

(n+1) x (n+ 1) matrix
0 0
0 E

b 0
0 E,|’
Finally map e, to the (n + 1) x (n + 1) matrix whose only non-zero entry

is 1 in the (1,n + 1) position. We obtain thereby a representation of A in
glin+1,R). 1

and map e, to the matrix

Let us take stock of the situation and see how our results can be applied
to obtain representations for indecomposable Lie algebras of dimension five
and less. For dimension two a representation of the non-abelian algebra is

given by [‘g g] for arbitrary real z and y, as follows from Corollary 2.1. In

dimension three only one, the Heisenberg algebra has a non-trival center and
its representation too can be obtained from Theorem 3.1. In dimension four
only four, namely, 4.1, 4.3, 4.8 and 4.10 have non-trival centers. The repres-
entations for 4.1 and 4.3 can be obtained from Theorem 3.1. For dimension
five the first six algebras are nilpotent and at the moment we are able to
obtain representations only for 5.1 and 5.2 by invoking Theorem 3.1. The
algebras 5.7 — 18 have a four-dimensional nilradical and their representations
follow from Theorem 3.1. The algebras 5.19 — 32 have a four-dimensional
non-abelian nilradical and their representations are obtained from Theorem
3.1. Of the remaining algebras, 5.33 — 39 have three-dimensional nilradicals
but only 5.38 and 5.39 have non-trivial centers. Furthermore Theorem 3.2 can
be applied to 5.38. As for algebra 5.40 it is peculiar in being the only five-
dimensional algebra that is not solvable; however it has a trivial center as well
as being known to be the Lie algebra of the special affine group and so even
has a three-dimensional representation. In conclusion only the cases 5.3, 5.4,
5.5, 5.6, 5.30(a = —1) and 5.39 are not yet amenable to some sort of theory
that yields a representation. It should be mentioned too that representations
for several of the algebras can be obtained by applying more than one of the
representation results given above.
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4. THE REPRESENTATIONS

Dimension 2:

Right-invariant vector fields Dy, D, + yD,.

Dimension 3:

Of the three-dimensional algebras only 3.8 has a representation as a subal-
gebra of gl(2,R).

3.1 [e2, e3] = e1: center (e7)

S =

O O =
O~ 8
_ QW

Right-invariant vector fields D,, Dy, D, + yD,.

3.2 [e1,e3] = e1, [ea,e3] = €1 + eq: trivial center

et ze?
S=10 € y
0O 0 1

Right-invariant vector fields D,, Dy, D, + (z + y) Dy + yD,.

3.3 [e1,e3] = e1, [e2, €3] = eq: trivial center

e? 0
S=1|0 ¢€*
0 0

< 8

Right-invariant vector fields D, Dy, D, + xD, + yD,,.
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3.4 [e1,e3] = e1, [ea, €3] = —eq: trivial center
e 0 =z
S=10 e7% y
0 0 1

Right-invariant vector fields D, Dy, D, + xD, — yD,,.

3.5a (a # £1) [e1,e3] = e1, [e2, e3] = aey: trivial center

e 0 =z
S=10 e* y
0 0 1

Right-invariant vector fields D, Dy, D, + xD, + ayD,.

3.6 [e1, e3] = —ea, [e2, €3] = e1: trivial center

cos(z) sin(z) =z
S = |—sin(z) cos(z) vy
0 0 1

Right-invariant vector fields D, Dy, D, +yD, — xD,,.

3.7a (a #0) [e1,e3] = aep — eg, [e2, e3] = €1 + aey: trivial center

e cos(z) e%sin(z) =
S = |—esin(z) e*cos(z) y
0 0 1

Right-invariant vector fields D,, Dy, D, + (az + y) Dy + (—z + ay) D,,.
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3.8 (semi-simple sl(2,R)) [e1,e3] = —2eq, [e1,€2] = €1, [e2,e3] = €3
cosh (x) + sinh (z) cosh (y) —sinh (z) sinh (y) e *
a sinh () sinh (y) €* cosh (z) — sinh (z) cosh (y)

Right-invariant vector fields:

{3 (sinh(y)e" D, — sobllcoblpsitte) oy, _ nbialeoblocobta) e )

1 ( cosh(y)Dm __ cosh(z) sinh(y) Dy _ Dz),

2 sinh(z)
%( — sinh(y)e Dy + cosh(z) csoii};l((gi))—l—sinh(:v) eisz

inh(x h h(z) —
+ snhla)coss(y) oshie) =2, ) }.

3.9 (semi-simple so(3)) [e1, e2] = es, [e2,e3] = €1, [e3,e1] = €2

cos(z) cos(y) cos(z) sin(z) cos(y) cos(z) . i
— sin(z) sin(z) + cos(z) sin(z) — sin(y) cos(2)
S = —cos(z) cos(y) sin(z) —sin(z) sin(z) cos(y) . .
—sin(z) cos(z) + cos(z) cos(z) sin(y) sin(z)
cos(z) sin(y) sin(z) sin(y) cos(y) i

Right-invariant vector fields:

(D2, S53 D, +cos(2) Dy — WM ., E D, —sin() D, — =Wt p, 1,
(We refer the reader to [1] for a complete discussion of so(3), su(2) and the

Euler angles.)

Dimension 4:

We remark that the first six algebras have 3-dimensional abelian nilradical;
4.7 — 4.11 have the 3-dimensional Heisenberg algebra as their nilradical and
4.12 has a 2-dimensional abelian nilradical. Clearly the four-dimensional al-
gebras cannot have representations as subalgebras of gl(2,R). As far as we
are aware only 4.12 has a representation as a subalgebra of gl(3,R).
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4.1 [eq, e4] = €1, [e3, e4] = e9: center (e1)

1 w “’TZ T
01 w vy
S =

00 1 =z

00 0 1

Right-invariant vector fields: Dy, Dy, D, Dy, +

yDy + 2D,y.

4.2a (a #0) [e1,e4] = aeq, [ea, e4] = ea, [e3, 4] = ea + e3: trivial center

e 0 0 =z
10 e we” y
S=10 0 e -

0o 0 o0 1

Right-invariant vector fields: Dy, Dy, D,, D,, + axDy + (y + 2)Dy + zD,.

4.3 [e1,e4] = e1, [e3, e4] = eg: center (ey)

ew

0 0 =z
10 1T w oy

5= 0 0 1 =z|°
0 0 0 1

Right-invariant vector fields: D, Dy, D, Dy, + 2D, + zD,,.

Z w

4.4 [e1,eq4] = €1, [ea,e4] = €1 + €9, [e3,e4] = €9 + e3: trivial center

w

e’ we” Fev x
0 €Y we" y
S =
0 0 e’ =z
0 0 0 1

Right-invariant vector fields: Dy, Dy, D, Dy, + (z + y) Dy + (y + 2) Dy + 2D,.

4.5ab (0 < ab, —1 < a < b < 1) [e1,e4] = €1, [e2,e4] = aeqy, [e3,e4] = bes:
trivial center

e’ 0 0 =z
10 e™ 0 oy
5= 0 0 e 2

0 0 0 1

Right-invariant vector fields: D, Dy, D,, D,, + D, + ayD, + bzD,.
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4.6ab (a # 0, b > 0) [e1,eq] = ae1, [e2,e4] = bea — e3, [e3,e4] = ez + bes :
trivial center

e 0 0 T

g 0 e cos(w) e sin(w) y
Tl 0 —etsin(w) € cos(w) z

0 0 0 1

Right-invariant vector fields: D,, Dy, D,, Dy, +ax D+ (by+z)Dy+(bz—y)D.,.

4.7 leg, e3] = e1, [e1, eq4] = 2eq, [ea, e4] = €9, [e3, e4] = eg + e3: trivial center

eV —ze¥  yeV T

g— 0 e’  we" y+z2w
0 0 e? z
0 0 0 1

Right-invariant vector fields: —%Dm, 2Dy + Dy, D, — (y+2w) Dy —wDy, Dy, +
22Dy +yDy + 2D,.

4.8 [e2, e3] = e1, [ea, e4] = e, [e3,e4] = —e3: center (eq)
1 0 ze¥ y
0 e 0 =z
§= 0 0 ev 2z
0 O 0 1

Right-invariant vector fields: Dy, D,, D, + 2Dy, Dy, — 2Dy + 2D,,.

4.9 (—1 <b< 1) [62,63] =eq, [61,64] = (b-l— 1)61, [62,64] = eq, [63,64] = bes:
trivial center
elb+w  _ pow yebw Py

o 0 e¥ 0 Y
5= 0 0 e bx
0 0 0 1

Right-invariant vector fields: (b+1)D,, Dy —bzD,,D,+yD,,(b+1)D,, D, +
brDy +yDy + (b+ 1)zD,.
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4.10 [e2, e3] = e1, [e2, e4] = —e3, [e3, ea] = eg: center (eq)
1 —ycos(w) + xsin(w) ysin(w) + zcos(w) =z
g 0 cos (w) — sin(w) x
~|o sin(w) cos(w) y
0 0 0 1

Right-invariant vector fields: %Dz, D, +yD,,—Dy+xD,, Dy —yDy + xD,.

4.11a (a > 0) [e2, e3] = ex, [e1, e4] = 2aeq, [e2, e4] = aea—es, [e3,€4] = ea+aes:
trivial center

e? e (g sin(w) + ycos(w)) e (x cos(w) — ysin(w)) z
g 0 e cos(w) e sin(w) ar+vy
|10 —e™ sin(w) e cos(w) ay — T

0 0 0 1

Right-invariant vector fields: — a}r—lDz, Dy+(ay—2x)D,, Dy—(azx+y)D,, Dy +
(ax +y) Dy + (ay — ) Dy + 2a2D,.

4.12 [eq, e3] = eq, [e2, e3] = eq, [e1, e4] = —ea, [e2,e4] = €1: trivial center

e“cos(w) e*sin(w) x y

g —e*sin(w) e*cos(w) y —zx
0 0 1 0

0

0 0 1
Right-invariant vector fields: D, 4+ 2D, + yD,, Dy, + yDy — 2Dy, Dy, D,,.
Alternative representation:

1 T Y
S=10 e“cos(z) e"sin(z)
0 —e¥sin(z) e"cos(z)

Left-invariant vector fields: D, Dy, —D,, + 2D, +yDy, D, +yD, — xD,,.
Dimension 5:

The first six algebras are nilpotent. We give in each case a nilpotent Lie
group whose algebra is isomorphic to the given algebra. The six algebras are
distinguished by their index of nilpotence and the dimension of the derived
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algebra except for the filiforms 5.2 and 5.6. However, 5.2 has a codimension
one abelian ideal whereas 5.6 does not so the six algebras are mutually non-
isomorphic. Remark that the algebras 5.7 — 18 have 4-dimensional abelian
nilradical; 5.19 — 32 have 4-dimensional non-abelian nilradical and 5.33 — 39
have a 3-dimensional nilradical. 5.40 is the only algebra that is not solvable
and it has a 2-dimensional abelian nilradical. Clearly the five-dimensional
algebras cannot have representations as subalgebras of g/(2,R). Since all but
algebra 5.40 is solvable, by Lie’s theorem, if any of them have representations
as subalgebras of gl(3,R) they would have upper triangular representations.
(Strictly speaking, Lie’s theorem applies only over C rather than R.) The
algebra of 3 x 3 upper triangular matrices is a decomposable six-dimensional
algebra: in fact it is isomorphic to the direct sum of algebra 5.36 and R. Thus
only 5.36 and 5.40 have representations as subalgebras of g/(3,R). Algebra
5.4, the five-dimensional Heisenberg algebra has a representation as a subal-
gebra of gl(4,R) and in fact the 2n + 1-dimensional Heisenberg algebra has
a representation as a subalgebra of gl(n 4+ 2,R): see Section 5. We cannot
definitively exclude the possibility that some of the other algebras might have
representations as subalgebras of gl(4,R).

5.1 [es, e5] = e, [es, 5] = ea: center (ey,es), nilpotent of index 2

1 0 w 0 ¢
01 0 w =z
S=10 0 1 0 y
00 0 1 =z
00 0 01

Right-invariant vector fields: —D,, —Dy, Dy, D,, Dy, — yDy — 2D,

5.2 [eg,e5] = e1, [e3,e5] = ea, [es,e5] = e3: center (e1), nilpotent of index 4
(filiform)

w

n

Il
OO OO =
co o~ 8
oo»—xgmﬁu
O»—t@w|gmos|g
N e 8 K

Right-invariant vector fields: Dy, Dy, Dy, D,, Dy, + xDg + yDy + 2D,
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5.3 [e3, e4] = €9, [e3,e5] = €1, [eq, €5] = e3: center (e, e2), nilpotent of index 3

1 0 —2 y—2z2zw ¢
01 w ¥
S=10 0 1 w 2y
00 O 1 2z
0 0 O 0 1

Right-invariant vector fields: 2D, —4Dy, Dy +22Dy, D, —2yD, D,, +2yD, +
zD,,.

5.4 [e2, es4] = e1, [e3, e5] = eq: center (e;) nilpotent of index 2

S =

SO O
—_ ]

z w
10
0 1
0 0

Right-invariant vector fields: Dy, D,, Dy, D, + 2Dy, Dy +wD,.

ws

5.5 [es, eq] = €1, [e2,e5] = €1, [e3,e5] = eg: center (e1) nilpotent of index 3

n

I
OO O O =
coc o~ g8
OO»—A@MFM
O = OO
RS BEES B S

Right-invariant vector fields are: D;, Dy, D, + zD;,—D,, D, + qDy, + yD,.

5.6 [e3,eq4] = e1, [ea,e5] = €1, [e3,e5] = eq, [eq,€5] = e3: center (ep) nilpotent
of index 4 (filiform)

1 2w w?—z y—zw+“’73 q
0 1 w “’TZ T
S=10 0 1 w Y
0 O 0 1 z
0 O 0 0 1

Right-invariant vector fields: —2Dy, —D,, Dy + 2Dy, D, —yDgy, Dy, + 22D, +
yDy + 2Dy.



MATRIX REPRESENTATIONS FOR LOW DIMENSIONAL LIE ALGEBRAS 169

5.7abc (abc #£ 0, —1 < ¢ <b<a <1) [er,e5] = e1, [ez,e5] = aey, [e3,e5] =
bes, [es, e5] = ceq: trivial center

e 0 0 0 ¢

0 e™ 0 0 =z
S=10 0 €* 0 y
0 0 0 e =z

0 0 0 0 1

Right-invariant vector fields: Dy, Dy, Dy, D, Dyy+qDy+ax Dy +byDy+czD,.

5.8¢ (0 < ¢ <1) [ea,e5] =eu, [e3,e5] = e3, [es, e5] = ceq: center (e1)

e 0 0 0 gq
0 e 0 0 =z
S=10 0 1 w y
0 0 0 1 =z
0 0 0 0 1
Right-invariant vector fields: D, Dy, D, Dy, Dy, + cqDgy + yD, + 2D,.

5.9bc (0 # ¢ <b) [e1,e5] = eq, [ea,e5] = €1 + e, [e3,e5] = bes, [eq, e5] = cey:
trivial center

e’ 0 0 0 ¢

0 e 0 0 =
S=10 0 e we¥ y
0 0 0 ev =z

0 0 O 0 1

Right-invariant vector fields: Dy, D, Dy, Dy, Dyy+bx Dy +cqDg+ (y+2) Dy +
zD,.

5.10 [eq, e5] = e1, [es, e5] = ea, [e4, €5] = es: center (e;)

e” 0 0 0 gq
0 1 w “’72 T
S=10 0 1 w y
0 0 0 1 =z
0 0 0 0 1

Right invariant vector fields: D, Dy, D, Dy, Dy, + qDg + yDy + 2D,.
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5.11c (c # 0) [e1,e5] = e1, [e2,e5] = e1 + e, [e3,e5] = ez + €3, [es, €5] = ces:
trivial center

e’ 0 0 0 q
0 e¥ we¥ w228w T
S=10 0 e¥ we¥ y
0 O 0 e’ z
0 0 0 0 1
Right-invariant vector fields: D,, Dy, D,, Dy, Dy, + (z + y)Dg + (y + 2)Dy +

2D, + cqDy.

5.12 [e1,e5] = e1, [ea,e5] = €1 + ea, [e3,e5] = ea + €3, [eq,€5] = €3 + eq: trivial
center

ew we’u) w 26 26 q
0 ev we? % Qew x
S=10 0 e  wev y
0 0 0 e’ z
0 0 0 0 1
Right-invariant vector fields: Dy, Dy, Dy, D,, Dy + (¢ + 2)Dg + (z + y) Dy +

(y+2)Dy + 2D, + qD,.
y q

5.13apr (ar # 0, |a| < 1) [e1,e5] = e1, [e2,€5] = aeq, [e3,e5] = pes — rey,
[e4,e5] = res + peys: trivial center

e’ 0 0 0 T
0 ew 0 0 Y
S=10 0 ecos(rw) ePYsin(rw) =z
0 0 —ePsin(rw) eP¥cos(rw) g
0 0 0 0 1

Right-invariant vector fields: Dy, Dy, Dy, —D,, Dyy+xDy+yDy+(pg—rz)Dg+
(pz +1q)D,.

5.14 [eg, e5] = €1, [e3, 5] = pes — ey, [es, e5] = €3 + pey : center (e;)

1 =z 0 0 q
0 1 0 0 w
S=10 0 ePcos(w) ePUsin(w) vy
0 0 —ePYsin(w) eP¥cos(w) =z
0 0 0 0 1
Right-invariant vector fields: —Dg, Dy + wDgy, Dy, D, Dy, +
(pz = y)D-.

(py + z)Dy +
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5.15a [e1, e5] = e1, [e2,e5] = e1 + ea, [es, e5] = aes, [eq, e5] = e3 + aey : trivial
center a # 0; center (e3) if a = 0:

eV wev 0 0 q

0 ev 0 0 =
S=10 0 e™ we™ y
0 0 0 ez

0 0 0 0 1

Right-invariant vector fields: Dy, Dy, Dy, D,, Dy, + (¢ + z)Dy + D, +
(ay + 2z)Dy + azD,.

5.16pr (r # 0) [e1,es5] = e1, [e2,e5] = e1 + e, [e3,e5] = pez — ey, [e4,e5] =
res + pey: trivial center

e’ we" 0 0 q
0 ev 0 0 x
S=10 0 eV cos(rw)  eP"sin(rw) vy
0 0 —ePsin(rw) ePYcos(rw) z
0 0 0 0 1

Right-invariant vector fields: Dy, Dy, Dy, D,, Dy, + (¢ + z)Dy + D, +
(py +rz)Dy + (—ry + pz)D,.

5.17prs (s # 0) [e1,e5] = pe1 — €2, [ea, e5] = €1 + pey, [e3,e5] = rez — seq,
[e4,e5] = seg + gey: trivial center

el cos(w)  eP¥ sin(w) 0 0 x

—eP? sin(w) el cos(w) 0 0 Y

S = 0 0 e cos(sw) e"sin(sw) =z
0 0 —e" sin(sw) e cos(sw) q

0 0 0 0 1

Right-invariant vector fields: Dy, Dy, D,, Dq, Dy + (pz +y)Dy + (py — ) Dy +
(rz+sq)D; + (rq — sz)Dy.



172 R. GHANAM, I. STRUGAR, G. THOMPSON

5.18p (p > 0) [e1,e5] = per — ea, [e2,e5] = €1 + pea, [e3,e5] = €1 + pes — ey,
[e4,e5] = €2 + e3 + pey: trivial center

e’ cos(w)  ePVsin(w)  weP¥ cos(w) weP" sin(w) x
—ePYsin(w)  ePY cos(w)  —weP™ sin(w) wep“’ cos(w) y

S = 0 0 eP" cos(w) PUsin(w) 2z
0 0 —eP" sin(w) ep“’ cos(w) ¢

0 0 0 0 1

Right-invariant vector fields: Dy, Dy, D,, Dy, Dy + (px +y + 2)D; + (py —
z+q)Dy + (¢ +pz)D, + (pg — 2)D,,.

5.19ab (a # 0) [62,63] = €1, [61,65] = aeq, [62,65] = €2, [63765] = (a - 1)63,
[e4, e5] = bey: trivial center

v 0 0 0 q

0 W oW ye(a—l)w P

S=(0 0 e 0 y
0 0 0 el v (g—1)z

0 0 0 0 1

Right-invariant vector fields: —aD,,D, — (a — 1)zD,, D, + yD,, Dy, Dy, +
(a = 1)zDy 4+ yDy + azD, + bgD,.

5.19ab (a=0) [e2, e3]=e1, [e2,e5]=ea, [e3,€5]=—e3, [e1,e5] =bes: center (e1)
e 0 0 0 ¢
0 1 0 gye¥ =z
S=10 0 e 0 y
0 0 O e’ x
0 0 O 0 1

Right-invariant vector fields: D,, D,, D, +zD,, Dy, D\, —yDy+ 2D, +xD, +
bgD,.

520 (a # 0) [eq,e3] = e, [e1,e5] = aeq, [ea,e5] = ea, [e3,e5] = (a — 1)es,
[es,e5] = €1 + aey: trivial center
e _elq Ze(a Dw weY T
0 e 0 0 z
S=10 0 elbDv 0 (a—1)g
0 0 0 e Y
0 0 0 0 1

Right-invariant vector fields: Dg,D, — (a — 1)¢Dy, Dy + 2D,, Dy, D, —
(a = 1)¢Dy, (a — 1)gDy + (ax 4+ y) Dy + ayDy + 2D, + D,,.
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5.20 (a = 0) [e2,e3] = e, [e2,e5] = ea, [e3,e5] = —e3, [e4,e5] = e1: center (ey)
1 ¢ 0 2xe¥ vy
01 o0 0 w
S=10 0 e 0 =x
0 0 O e’ z
00 O 0 1

Right-invariant vector fields: Dy, D,, Dy +2D,, =Dy —wDy, Dy —x Dy +2D,.

5.21 [62,63] = €1, [61,65] = 2eq, [62,65] = egtes, [63,65] = e3tey, [64,65] = €4:
trivial center

2w w

e 0 ze¥ (z—y+zw)e” ¢

0 €Y wev szew T
S=]10 0 e we®” Y
0 O 0 e’ z

0 0 0 0 1

Right-invariant vector fields: —2Dy, (y+2)Dy+D., Dy—2Dg, Dy, D\y+2qD 4+
(x+y)Dy + (y + Z)Dy +2D,.

5.22 [eg, e3] = e1, [ea, e5] = es, [eq, e5] = e4: center (e1)

e 0 0 0 gq
0 1 w “’TZx
S=10 0 1 w y
0 0 0 1 =
0O 0 0 0 1

Right-invariant vector fields: Dy, Dy, +yD, + 2Dy, =Dy, Dy, D, + qDj.

5.23b (b # 0) [e2,e3] = e, [e1,e5] = 2e1, [e2,e5] = e2 + e3, [e3,e5] = e,
[e4, e5] = bey: trivial center

e 0 0 0 q

0 e —ze® ye¥ T
S=10 0 e’  we" y+z2w

0 0 0 e? z

0 0 0 0 1

Right-invariant vector fields: —%Dm, 2Dy+Dy, D,—(y+2zw)Dy—wDy, Dy, Dyy+
qDy + 22D, +yDy + 2D,.
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5.24e (e = £1) [eg,e3] = ey, [e1,e5] = 2e1, [e2,e5] = ea + e3, [e3,e5] = e3,
[e4, e5] = ee1 + 2eq: trivial center

e zeV e¥(—y+azw) —2ewe*™ ¢

0 e¥ we" 0 Y
S=1(0 0 ev 0 x
0 0 0 e z

0 0 0 0 1

Right-invariant vector fields: —2Dy, Dy+yDy, Dy—xDy, D, D\y+2(q—€z)Dy+
xDy 422D, + (z + y)D,.

5.25bp (b # 0, p # 0) [e2,e3] = ey, [e1,e5] = 2pe1, [ea,e5] = pea + e3,
[es, e5] = pes — e, [eq, €5] = bey: trivial center

e 0 0 g ]
o —€P (y cos(w) P (z cos(w)
0 e + 2 sin(w)) — ysin(w)) &
S=10 0 eP? cos(w) el sin(w) pr+y
0 0 —eP" sin(w) ePv cos(w) Py —x
0 0 0 0 1

Right-invariant vector fields: Dy, =D, + (z —py)D., Dy — (px +y)D., —2pD,,
bgDy + (pz + y) Dy + (py — ) Dy + 2pzD, + D,

5.250p (b # 0, p = 0) [e2,e3] = e1, [ea,e5] = e3, [e3,e5] = —ea, [e4, e5] = bey:
center (e1)

e 0 0 0 q

0 1 zcos(w)+ysin(w) —zsin(w)+ycos(w) =z

S=10 0 cos(w) — sin(w) Yy
0 0 sin(w) cos(w) —z

0 0 0 0 1

Right-invariant vector fields: Dy —xD,, —(D,+yD,), —2D,, Dy, bqDq+xDy—
YDy + Dy.
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5.26¢ (p # 0, € = £1) [ez,e3] = e1, [e1,e5] = 2per, [ea,e5] = pea + e,
[es, e5] = pes — e, [eq, €5] = €e1 + 2pey: trivial center

e ey
0 eP" cos(w) —eP? gin(w) 0 —y + px
§= 0 eP" sin(w) eP? cos(w) 0 py+x
0 0 0 e 2z
|0 0 0 0 1|

Right-invariant vector fields: —2pDg, D, + (py+ x)Dy, Dy + (y —pz) Dy, — D,
Dy, +2p(q + €z)Dy + (pz — y) Dy + (py + ) Dy + 2pzD,.

5.26 (p =0, e = £1) [eg,e3] = e1, [ea, e5] = e3, [e3,e5] = —ea, [e4,e5] = €eeq:
center (ey)

1 zsin(w) —ycos(w) zcos(w)+ ysin(w) ew =z
0 cos(w) — sin(w) 0 =
S=10 sin(w) cos(w) 0 wy
0 0 0 1 ¢
0 0 0 0 1

Right-invariant vector fields: —D, —yD,, —Dy +xD,, —2D,, —2eDy, —yD, +
xDy + Dy, + qeD,.

5.27 [eg,e3] = e1, [e1,e5] = e1, [e3,e5] = e3 + eyq, [eq,e5] = €1 + e4: trivial
center
eV we” 1(2z+w?)e” —y g
0 ev we? 0 =z
S=10 0 e? 0 vy
0 0 0 1 0
0 0 0 0 1

Right-invariant vector fields: Dy, —Dy — yDg, Dy, D, Dy, + (¢ + 2)Dg + (y +
z2)D, +yD,.
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5.28a (a = 0) [ez,e3] = e1, [ea,e5] = —ea, [e3,e5] = e3 + ey, [eq,e5] = ey
center (e1)

e’ 0 we"” 0 q

0 1 0 =ze¥ y
S=10 0 ¢e¥ 0 T
0 0 0 e =z

0 0 0 0 1

Right-invariant vector fields: Dy, D,, D, + 2Dy, Dy, Dy + (¢ + 2)Dg + D, —
zD,.

5.28a (a # 0) [e2,e3] = e1, [e1,e5] = aey, [ea,e5] = (a—1)ez, [e3,e5] = e3 + €4,
[e4, €5] = e4: trivial center

[eow  _gzela=Dw g gew q 1

0 eebDv 0 0 (a—1)z
S=10 0 e’ we" Y
0 0 0 e z

| 0 0 0 0 I

Right-invariant vector fields: —aDy, D, + 2Dy, D, — (a — 1)xDy, Dy, Dy, +
agDy + (a — 1)xDy + 2D, + (y + 2) D,

5.29 [eq, e4] = e1, [e1,e5] = e1, [e2, e5] = €2, [e4, €5] = e3: center (e3)

e’ 0 0 =z q
0 e 0 0 =z
S=10 0 1 w y
0 0 0 1 =z
0O 0 0 0 1

Right-invariant vector fields: —Dy, D, + 2Dy, Dy, D,, D\, +qDg+ 2Dy +2D,,.

5.30 (a # —1) [ez,e4] = €1, [e1,€5] = (a + 1)ey, [es, ea] = e, [ea, 5] = ae,
[es,e5] = (a — 1)es, [eq, e5] = ey trivial center
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1 ze¥ —42%e*% ze v q
0 e¥ —8ze?¥” ye ™V 4dyr—122z
S=10 0 e 0 y
0 O 0 e v 4z
| 0 0 0 0 1 ]

Right-invariant vector fields: —16D,, 42D, + D, Dy, —(12z — 4zy) D, + D, +
y*D,,—Dy + 2Dy —2yD, — 2D,).

530 (a = —1) [ez,e4] = e1, [e3,e4] = €2, [e2,e5] = —e2, [e3,e5] = —2e3,
[e4, e5] = eq: center (e;)

(1 ze¥ —4z%2e2" ze v q
0 ev —8ze?¥ ye ™ 4dyxr—12z
0 0 e?v 0 y
0 0 0 e v 4z

1 0 0 0 0 1 ]

Right-invariant vector fields: —16D,,4cD, + D, Dy, —(12z — 4zy) Dy + D, +
yD,, —Dy +xDy —2yDy — 2D,.

5.31 [ez,e4] = e1, [e3,e4] = €2, [e1,65] = 3e1, [eg,e5] = 2e9, [e3,€5] = es,
[e4, e5] = e3 + eq: trivial center

2e

eV —ze™ 1z eV(Pw+z—yz+ %) ¢

0 v —zeV ey — 2z — zw) x
S=10 0 e’ we? Y
0 0 0 e’ z

0 0 0 0 1

Right-invariant vector fields: 3D,,—(2D, + 2D,),Dy + 2D,,D, — D, —
(y + 2)Dy, Dy + 3qDg + 22Dy + (y + 2) Dy + +2D,.
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5.32a [e, eq4] = €1, [e3,e4] = e, [e1,e5] = e1, [ea,e5] = e, [e3,e5] = ae1 + e3:
trivial center

eV ze® $(2aw+2%)e" z ¢
0 e¥ zeV TR
S=10 0 e? 0 vy
0 0 0 1 0
0 0 0 0 1

Right-invariant vector fields: Dy, Dy, Dy, D, + 2Dy +yDy, Dy + (ay + q) Dy +
Dy + yDy.

5'33aba (a’2 + 62) 7é 0 [61,64] = €1, [63,64] = b€3, [62a65] = €2, [63,65] = aes.
trivial center

e” 0 0 z 0

0 ¢ 0 0 vy
S=10 0 elowths) g4 pg
0 0 0 1 0

0O O 0 0 1

Right-invariant vector fields: Dy, Dy, Dy, D, +yDy+aqDg, Dy, + 2Dy +bgD,.

5.34a [e1,e4] = aei, [e2,e4] = €2, [e3.e4] = e3, [e1,e5] = e1, [e3,e5] = ea:
trivial center
et 0 0 z q
0 e we* x y
S = 0 0 e y 0
0 0O 0 1 0
0 0 0O 01

Right-invariant vector fields: Dy, D, Dy, D, +aqDy+xD,+yD,, D, +qD,+
YDy

5.35ab (a? + b> # 0) [e1,e4] = beq, [e2,e4] = e, [e3,e4] = e3, [e1,e5] = aeq,

[e2, €5] = —es, [e3,e5] = eq: trivial center
eawtbz 0 0 bg aq
0 e“cos(w) efsin(w) —x vy
S = 0 —e*sin(w) e*cos(w) y =z
0 0 0 1 0
0 0 0 0 1

Right-invariant vector fields: Dy, =Dz, Dy, D, + bgDy + 2D, + yDy, D, +
aqDy —yD; + zD,,.



MATRIX REPRESENTATIONS FOR LOW DIMENSIONAL LIE ALGEBRAS 179

5.36 [e2, e3] = ey, [e1,e4] = e1, [e2, e4] = €2, [ea, 5] = —eg, [e3,e5] = e3: trivial

center

e® ze® ge~(@ty)

S = 0 ey wef(m+y)
0 0 e (@ty)

Right-invariant vector fields: —Dg, (D, +wDy), (2Dy — Dy + 3¢Dq + 32D.,),
2(2Dy — Dy — 32D, + 3wD,,).

5.37 [ea,e3] = e1, [e1,e4] = 2e1, [e2,e4] = €2, [e3,e4] = e3, [e2.€5] = —e3,
[e3, e5] = eq: trivial center

e??  —e*(cos(w)zr + sin(w)y) e*(—sin(w)z + cos(w)y) —M q

0 cos(w)e? sin(w)e? x Y
S=10 —sin(w)e* cos(w)e? -y x
0 0 0 1 0

0 0 0 0 1

Right-invariant vector fields: —2D,, Dy + 2Dy, Dy —yDgy, Dy, +2qDg + D, +
yDy,D, —yDy + zD,.

Alternative parametrization:

22 +w? —zx —wy 2y — wr —# q

0 z w T Y

S = 0 —w 2z -y
0 0 0 1 0

0 0 0 0 1

Right-invariant vector fields: —2Dy, Dy+2Dy, Dy —yDy,2qDy+ 2D, +wD,, +
2Dy +yDy,wD, — 2Dy, + yD, — xD,,.

5.38 [e1,e4] = €1, [e2,e5] = €9, [eq, e5] = e3: center (e3)

e 0 0 0 ¢
0 e 0 0 =z
S=10 0 1 w y
0O 0 0 1 =z
0O 0 0 0 1

Right-invariant vector fields: Dy, Dy, Dy, qDg + D, Dy, + 2Dy + 2D,,.
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5.39 [e1,e4] = e1, [e2,e4] = €3, [e1, e5] = —ea, [e2,e5] = €1, [es, e5] = e3: center

(e3)

1 T Y —w q

0 e“cos(z) e%sin(z) 0 O
S=10 —eYsin(z) e€Ycos(z) 0 O
0 0 0 1 =z
0 0 0 0 1]

Left-invariant vector fields: D,, Dy,—Dq,—D, + 2D, + yDy, D, + wD, +
yDy — xD,.

5.40 [e1,e2] = 2e1, [e1,e3] = —ea, [e2,e3] = 2e3, [e1,e4] = e5, [e2,e4] = eu,
[e2, €5] = —es, [es,e5] = e4: trivial center
e’ Y w
S=|z (Q1+yz)e® ¢
0 0 1

Right-invariant vector fields: ze ™D, + (yz 4+ 1)e™*Dy + qDy, —qDg + Dy +
yDy — 2D, +wDy,wDy + €*D,, Dy, D,,.

We now discuss briefly the fundamental groups of the matrix groups we
have exhibited above. At the outset it is apparent that all with the possible
exception of the following are simply-connected: in dimension three, 6, 7, 8,
9; in dimension four, 6, 10, 11, 12; in dimension five, 13, 14, 16, 17, 18, 25, 26,
35, 39, 40. With the exception of the two simple algebras 3.8 and 3.9, all the
groups corresponding to algebras not in this list are upper triangular over R
and they are contractible as can be seen by multiplying each of the coordin-
ates by ¢t and deforming from ¢t = 1 to ¢t = 0. As for algebra 3.8 the standard
representation of the group SL(2,R) as 2 x 2 matrices has fundamental group
isomorphic to Z. The coordinate representation given above is in terms of a
chart in the neighborhood of the identity. More charts are required for the
whole group. It is well known that there is no linear representation of the
simply-connected cover of SL(2,R). For algebra 3.9 the standard representa-
tion of the group SO(3,R) as 3 x 3 matrices has fundamental group isomorphic
to Zg. The simply-connected cover of SO(3,R) can be realized as the unit
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quarternions. The coordinate representation given above is in terms of a chart
in the neighborhood of the identity corresponding to the Euler angles.

As regards the Lie group that corresponds to the Lie algebra 3.6 above,
by multiplying the coordinates x and y by ¢ we may retract to the group
SO(2,R) whose fundamental group is isomorphic to Z. As for the Lie group
that corresponds to the Lie algebra 3.7, again we may retract away the z and
y coordinates: since a # 0 what remains is a curve diffeomorphic to R and
hence the group is simply-connected in this case.

Turning now to dimension four, for algebra 4.6 the z, y and z-coordinates
in the group representation may be retracted away and since a # 0 the result
is simply-connected. Similarly 4.11 can be shown to be simply-connected. On
the other hand in cases 4.10 and 4.12 by retracting the x,y and z coordinates
the fundamental group is seen to be isomorphic to Z in each case.

Let us now consider dimension five. For algebra 5.13 after retraction since
a # 0 we obtain a curve diffeomorphic to R and hence the corresponding
group is simply-connected. A similar analysis applies to algebras 5.14 and
5.16, the latter no matter what value p takes. As regards algebra 5.17 the
fundamental group is isomorphic to Z only if and only if p = ¢ = 0 and s is
a rational number. On the other hand for the algebra 5.18 the fundamental
group is trivial whatever the value of p.

For algebra 5.25(p = 0) and 5.25(p # 0) ¢, z,y,z may be retracted away
and the result is a curve diffeomorphic to R and hence the group is simply-
connected in this case. A similar remark applies also to algebra 5.26 regardless
of the value of p.

For algebra 5.35 we retract away ¢, z,y, z and then the fundamental group
will be either trivial or isomorphic to Z case according as a # 0 or a = 0.
For algebra 5.39 the fundamental group is trivial. Finally for the algebra 5.40
there is a retraction to the group SL(2,R) and so the fundamental group is
isomorphic to Z in this case.

5. SOME N-DIMENSIONAL GROUPS

In this short section we give a few particularly nice examples of groups that
are valid in arbitrary dimensions.
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1. The standard filiform Lie algebra: [ea, e,41] = €1, [e3, ent1] = €2, [€4, ent1] =

es, [es, ent1] = €4, ..., [en,ent1] = en—1: center (e,)

- w? w3 wn—1 wn -

SRR = I
w5 (;2_2)' (%-1)I In—1

S=1o0 0 0 0 w2

0 0 0 0 1 w To

0 0 0 O 0 1 T1

0 0 0 O 0 0 1

Right-invariant vector fields: Dy, Dyy, Dags - -« Dayy Dy + S0 i1 Do,

2. [er,enq1] = e1, [e2,enq1] = €1 + €2, [e3,enq1] = €2 + €3, [es,en41] = e3,
[e5,€nt1] = €4, ...y [€n,€nt1] = €n—1 + €y trivial center
eV we? Wew Wew ... wlow  wlow Tn |
2 6 (n—lg! n! n
w w  wlw . w2 w wl w
0 e we 5€ n=2)1¢ m=Di¢  Tn-1
— 2
S=10 0 0 0 we¥ eV 3
0 0 0 0 e¥ wev? T9
0 0 0 0 0 e T
| 0 0 0 0 0 0 1 ]

Right-invariant vector fields: Dy, , Dy, Dus, - - - Dy, D+ 0 (€i+i41) Do,

3. The Heisenberg Lie algebra: [e1,es] = eoni1, [€3,€4] = €oni1, [e5,6€6] =

€41y - -+ [€2n—1,€2n] = €2p41: center (e 1)
(1 21 290 -+ z, 2]
O 1 0 --- 0 1
0 0 1 0y
S = .
00 0 - 1 y,
0 0 0 - 0 1

Right-invariant vector fields: Dy, , Dy, +y1D;,Dy,, Dy, +y2D,, ..., Dy, , D, +
ynD27 DZ .
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4. [e1, eny1] = areq, [ea,eny1] = agey, ..., [en, €ny1] = aneny1: trivial center
[e1w () 0o - 0 z]
0 etV 0 0 T
0 0 eBY ... 0 T3
S —
0 0 0 s e g,
o 0o o - 0 1]

Right-invariant vector fields: Dy, Dg,, Dy, ..., Dy, , Dy + > i q ajz; Dy,

5. [ent1, €2ny1] = e1, [eng2, €any1] = €2, ..., [e2n,€2n41] = e, center
(e1,€9,...,6n)
[1 0 0 0O w 0 O 0 1 ]
1 0 0 0 0
0 1 0O 0 O 0 T3
g_ 000 1 0 0 w oz,
“looo - 1 0 -+ 0 Zpy
000 -~ 0 0 1 0 -+ 0 =z
000 -~ 0 0 0 0 -+ 1 1z
000 -0 0 00 -+ 0 1

Right-invariant vector fields: Dg,, Dgy, Dggsy. .., Dgy, s Dy + Y iy ZntiDa;.
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