
 
 

TESIS DOCTORAL 

Contribuciones al desarrollo de sistemas 
centrados en la calidad de servicio a través de la 

estimación dinámica de propiedades no 
funcionales 

JUAN FRANCISCO INGLÉS ROMERO 

PROGRAMA DE DOCTORADO DE TECNOLOGÍAS INFORMÁTICAS 

(TIN) 

Con la conformidad de la directora 

Dra. Cristina Vicente Chicote 

Esta tesis cuenta con la autorización de la directora de la misma y de la Comisión Académica 
del programa. Dichas autorizaciones constan en el Servicio de la Escuela Internacional de 

Doctorado de la Universidad de Extremadura. 

2023 



 
 

TESIS DOCTORAL 

Contributions to the development of     
QoS-aware systems through the runtime 
estimation of non-functional properties 

JUAN FRANCISCO INGLÉS ROMERO 

PROGRAMA DE DOCTORADO DE TECNOLOGÍAS INFORMÁTICAS 
(TIN) 

2023 

 



 

 

 

 

A mi mujer y a mi pequeño 

  



Institutional acknowledgements 

I would like to acknowledge the support provided by the following institutions during the 

completion of this Thesis: 

• To Fundación Séneca Agencia de Ciencia y Tecnología de la Región de Murcia for 

supporting me with a research grant, 15561/FPI/10. 

• To the RoQME Integrated Technical Project funded from the European Union’s H2020 

Research and Innovation Programme under grant agreement No. 732410, in the form 

of financial support to third parties of the RobMoSys Project. 

• To the MIRoN Integrated Technical Project funded from the European Union’s H2020 

Research and Innovation Programme under grant agreement No. 732410, in the form 

of financial support to third parties of the RobMoSys Project. 

• To the CLARC Project funded from the European Union’s Seventh Framework 

Programme for research, technological development, and demonstration under grant 

agreement No. 601116, in the form of financial support to third parties of the 

ECHORD++ Project. 

  



Personal acknowledgements 

I am deeply grateful to everyone who, in one way or another, played a role in making this 

doctoral Thesis a reality: 

• To Cristina Vicente Chicote, for her great dedication, patience, unconditional support, 

and good advice during all these years. For shaping me as a researcher (and as a person). 

• To Christian Schlegel, for giving me the opportunity to carry out several research stays 

at the Ulm University of Applied Sciences. And together with his team (Alex, Andreas, 

Matthias, and Dennis), for always making me feel welcome. 

• To Benoit Baudry and Jean-Marc Jézéquel, for giving me the opportunity to carry out 

a research stay at Institut de Recherche at Informatique et Systèmes Aléatoires (IRISA). 

• To Antonio Bandera, for giving me the opportunity to carry out a research stay at 

University of Málaga. 

• To the members of the RoQME and MIRoN projects, for the good times we spent 

together doing science (and other stuff). Especially to Adri and Jesús. 

• To my colleagues at the Catholic University of Murcia, for their support and 

encouragement. 

• A mis padres, por su cariño y apoyo constantes durante toda mi vida. 

• A mi familia, por los ánimos y todos los momentos compartidos durante la elaboración 

de esta tesis. En especial a todos los que me han ayudado a sacar tiempo durante las 

últimas semanas de ardua escritura. 

• A mi mujer Ester y mi peque Álvaro, por ser los pilares de mi cordura emocional. 

  



Resumen 

A medida que se incorpora más tecnología en nuestra vida diaria, crece la demanda de servicios 

que puedan mejorar nuestra calidad de vida y nuestras experiencias. Sin embargo, el éxito de 

estos servicios no se establece únicamente en base a la funcionalidad que ofrecen sino, también, 

y de forma cada vez más importante, considerando su Calidad de Servicio (QoS, del inglés 

Quality of Service). La calidad de servicio de un sistema software se basa en lo bien (o mal) 

que éste se comporta, en relación con determinadas propiedades no funcionales, como 

rendimiento, fiabilidad, o satisfacción del usuario, entre otras. Ser capaces de evaluar la calidad 

de servicio de un sistema es crucial para poder aprovechar todo el potencial de las nuevas 

tecnologías y, por ello, el desarrollo de sistemas centrados en la QoS es de suma importancia.  

Esta Tesis tiene como objetivo contribuir al diseño e implementación de métricas de calidad 

de servicio a través de la estimación dinámica de propiedades no funcionales. Se propone un 

enfoque formal para estimar, en base a la información contextual disponible, una serie de 

métricas de QoS asociadas a las propiedades no funcionales consideradas de interés en cada 

aplicación o escenario. Para ello, se han desarrollado un conjunto de herramientas de modelado 

que facilitan la aplicación del enfoque propuesto, abstrayendo al usuario de toda la complejidad 

de su implementación. En este sentido, el enfoque propuesto busca promover el rol del 

Ingeniero de QoS, guiándole en el uso de las herramientas desarrolladas para que pueda 

especificar (en tiempo de diseño) y estimar (en tiempo de ejecución) métricas de QoS definidas 

sobre las propiedades no funcionales de su interés. 

  



Abstract 

As more technology is incorporated into our daily lives, the demand for services that improve 

our quality of life and experiences, grows. However, the success of these services is not 

established solely based of their functionality, but also, and increasingly importantly, 

considering their Quality of Service (QoS). The quality of service of a software system is 

related to how well it behaves in relation to certain non-functional properties, such as 

performance, reliability, or user satisfaction, among others. Being able to evaluate the QoS of 

a system is crucial to be able to make the best of new technologies and, therefore, the 

development of systems focused on QoS is of the utmost importance.  

This Thesis aims to contribute to the design and implementation of QoS metrics through the 

dynamic estimation of non-functional properties. A formal approach is proposed to estimate, 

based on the available contextual information, a series of QoS metrics associated with the non-

functional properties considered relevant in each application or scenario. In this vein, a set of 

modelling tools has been developed to ease the adoption of the proposed approach, abstracting 

the user from all the complexity of its implementation. The proposed approach seeks to 

promote the role of QoS Engineers, guiding them in the use of the developed tools, so that they 

can specify (at design time) and estimate (at runtime) QoS metrics defined on relevant non-

functional properties. 

  



Contents 

Contents .................................................................................................................................... ix 

List of Figures ........................................................................................................................ xiii 

List of Tables ........................................................................................................................... xv 

 Introduction .......................................................................................................... 17 

1.1 Motivation .................................................................................................................. 17 

1.2 Objectives .................................................................................................................. 18 

1.3 Contributions ............................................................................................................. 19 

1.4 Outline ....................................................................................................................... 20 

 State of the art ...................................................................................................... 21 

2.1 Quality of Service ...................................................................................................... 21 

2.2 Metrics ....................................................................................................................... 22 

2.3 Quality factors ........................................................................................................... 24 

2.4 QoS-aware systems .................................................................................................... 25 

2.5 Causality in QoS awareness ....................................................................................... 26 

2.6 Causal inference ......................................................................................................... 28 

2.6.1 Structural Causal Models ............................................................................... 28 

2.6.2 Causal Bayesian Networks ............................................................................ 30 

 Non-functional properties to measure QoS at runtime ........................................ 33 

3.1 Approach overview .................................................................................................... 33 

3.2 Key concepts .............................................................................................................. 34 

3.2.1 Non-functional property................................................................................. 34 

3.2.2 QoS metric ..................................................................................................... 36 

3.2.3 Context ........................................................................................................... 37 

3.2.4 Observation .................................................................................................... 38 

3.3 An example: robots in hospitals ................................................................................ 38 

3.4 Non-functional properties through probabilistic networks ........................................ 41 

3.4.1 Design premises ............................................................................................. 41 

3.4.2 Introducing the proposed model .................................................................... 43 

3.4.3 Stating the problem ........................................................................................ 45 

3.4.4 Shared context conditions .............................................................................. 47 

3.5 Summary .................................................................................................................... 50 

 Hiding probabilistic networks behind high-level descriptions ............................ 51 

4.1 Towards a high-level specification to measure quality ............................................. 51 



4.2 Deriving the network topology .................................................................................. 56 

4.3 Deriving time values .................................................................................................. 57 

4.3.1 The Weber-Fechner Law ............................................................................... 58 

4.3.2 Absolute time expressions ............................................................................. 58 

4.3.3 Relative time expressions .............................................................................. 60 

4.3.4 Random sampling of time expressions .......................................................... 62 

4.4 Deriving probabilities ................................................................................................ 64 

4.4.1 Distribution P(prop) ....................................................................................... 65 

4.4.2 Distribution P(ctxi | prop)............................................................................... 65 

4.4.3 Distribution P(ctxi | prop1, ... , propM)............................................................ 67 

4.4.4 Distribution P(Nobs i < t > | ctxi ) ................................................................. 71 

4.5 Summary .................................................................................................................... 83 

 Running QoS metrics ........................................................................................... 84 

5.1 Process for calculating QoS metrics .......................................................................... 84 

5.1.1 First step: detect the occurrence of observations ........................................... 84 

5.1.2 Second step: update the accumulated evidence ............................................. 85 

5.1.3 Third step: estimate QoS metrics ................................................................... 87 

5.1.4 Example simulations ...................................................................................... 91 

5.2 Statistics on QoS metrics ........................................................................................... 94 

5.2.1 Central tendency and variability .................................................................... 94 

5.2.2 Temporal mean of Nobs i < t > ..................................................................... 97 

5.2.3 Contribution of the observations .................................................................. 101 

5.2.4 Example simulation ..................................................................................... 109 

5.3 Tuning QoS metrics ................................................................................................. 111 

5.3.1 Proposed neural network architecture .......................................................... 112 

5.3.2 Practical cases .............................................................................................. 115 

5.3.3 Comparison with a regular feedforward neural network ............................. 121 

5.4 Summary .................................................................................................................. 126 

 Modelling language for QoS metrics ................................................................. 127 

6.1 Supporting the role of QoS Engineers ..................................................................... 127 

6.2 Regarding the DSML specification ......................................................................... 128 

6.3 The Abstract syntax of the language........................................................................ 129 

6.3.1 The Datatypes metamodel............................................................................ 129 

6.3.2 The Expressions metamodel ........................................................................ 132 

6.3.3 The Kernel metamodel ................................................................................. 135 

6.4 The textual concrete syntax of the language ............................................................ 138 

6.4.1 A language walkthrough .............................................................................. 138 



6.4.2 The grammar specification .......................................................................... 141 

6.5 Validation of the models .......................................................................................... 143 

6.5.1 Syntactical correctness ................................................................................. 143 

6.5.2 Cross-reference validation ........................................................................... 143 

6.5.3 Concrete syntax validation ........................................................................... 144 

6.6 Runtime support ....................................................................................................... 145 

6.6.1 Overall process............................................................................................. 145 

6.6.2 Publish/Subscribe Data Space...................................................................... 146 

6.6.3 Event Processor ............................................................................................ 148 

6.6.4 QoS Metrics Estimator ................................................................................. 151 

6.7 Summary .................................................................................................................. 153 

 Evaluation .......................................................................................................... 154 

7.1 Experiments in real-world scenarios........................................................................ 154 

7.1.1 Intralogistics Industry 4.0 Robot Fleet Pilot ................................................ 154 

7.1.2 Geriatric assessment..................................................................................... 158 

7.1.3 Discussion .................................................................................................... 165 

7.2 Characterization of QoS metrics .............................................................................. 168 

7.2.1 The persistence of the observations ............................................................. 168 

7.2.2 The effect of repeating observations ............................................................ 171 

7.2.3 The impact of the observations .................................................................... 175 

7.2.4 Discussion .................................................................................................... 177 

 Conclusions and future work ............................................................................. 179 

8.1 Conclusions .............................................................................................................. 179 

8.2 Future work .............................................................................................................. 181 

8.3 Publications .............................................................................................................. 182 

8.3.1 Publications related to the Thesis ................................................................ 182 

8.3.2 Previous publications on self-adaptive software.......................................... 183 

References .............................................................................................................................. 186 

Appendix A ............................................................................................................................A-1 

A.1 Xtext Grammar Specification ..................................................................................A-1 



List of Figures 

Figure 1. Example of a hierarchy of quality factors ................................................................ 25 

Figure 2. Link between QoS and context data ......................................................................... 27 

Figure 3. Relationship between smoking and lung cancer ...................................................... 30 

Figure 4. Relationship between smoking, gene mutation and lung cancer .............................. 31 

Figure 5. Probabilities for the example .................................................................................... 32 

Figure 6. (Left) Proposed probabilistic network model. (Right) Example .............................. 44 

Figure 7. Probabilistic network with one property .................................................................. 47 

Figure 8. (Left) Two properties with shared context. (Right) Using the props variable ......... 49 

Figure 9. Concepts for the specification of QoS concerns....................................................... 52 

Figure 10. Concepts for the specification of time values......................................................... 53 

Figure 11. Illustration of how to derive of the network topology ............................................ 56 

Figure 12. Time intervals for each unit .................................................................................... 59 

Figure 13. Example of probability densities ............................................................................ 64 

Figure 14. Transition graph and transition rate matrix of an occurrence................................. 72 

Figure 15. Possible LR profiles for Nobs i < t > given a context condition 𝑐𝑡𝑥𝑖 .................... 74 

Figure 16. Transition graph and transition rate matrix for a M/M/ queue ............................ 75 

Figure 17. Example of how Nobs i < t > changes during the transient period ........................ 76 

Figure 18. Visual representation of the quantization of Nobs i < t > ...................................... 77 

Figure 19. Safety when the robot collides with someone ........................................................ 91 

Figure 20. User engagement by observing the acceptance among patients ............................. 92 

Figure 21. Safety when the robot is stranded without battery ................................................. 93 

Figure 22. Safety when the observation affects two properties ............................................... 94 

Figure 23. Simulation results ................................................................................................. 110 

Figure 24. Proposed neural network architecture .................................................................. 112 

Figure 25. QoS estimate before and after training ................................................................. 117 

Figure 26. QoS estimate before and after training ................................................................. 118 

Figure 27. QoS estimate before and after training ................................................................. 120 

Figure 28. Datatypes metamodel ........................................................................................... 130 

Figure 29. Expressions metamodel ........................................................................................ 133 

Figure 30. Kernel metamodel ................................................................................................ 136 



Figure 31. Overall process for enabling the estimation of QoS metrics ................................ 146 

Figure 32. Elements of the Kernel metamodel used by each generator ................................. 151 

Figure 33. Intralogistics Industry 4.0 Robot Fleet Pilot......................................................... 155 

Figure 34. Evolution of the QoS Metrics defined on performance........................................ 157 

Figure 35. Evolution of the QoS Metrics defined on safety .................................................. 158 

Figure 36. The CLARC robot ................................................................................................ 159 

Figure 37. Probabilistic network for the intralogistics scenario ............................................ 166 

Figure 38. Average value of the metric for different times between occurrences ................. 169 

Figure 39. Simulations of a QoS metric from frequent occurrences with long persistence .. 170 

Figure 40. QoS metric from sparse occurrences with short persistence ................................ 171 

Figure 41. QoS metric with different repetitions ................................................................... 172 

Figure 42. QoS metric with repetition set to 12 (upper) and 40 (lower) ............................... 173 

Figure 43. The average number of active occurrences .......................................................... 174 

Figure 44. QoS metric when an observation has just occurred.............................................. 175 

Figure 45. Impact of an observation for different repetitions ................................................ 176 

Figure 46. Impact of a shared observation for up to 7 properties .......................................... 176 



List of Tables 

Table 1. Context variables ....................................................................................................... 40 

Table 2. Observations for user engagement ............................................................................. 40 

Table 3. Observations for safety .............................................................................................. 41 

Table 4. High-level specification for the hospital robot .......................................................... 54 

Table 5. Typical time values for absolute time expressions .................................................... 60 

Table 6. Typical time values for some relative time expressions ............................................ 62 

Table 7. Values of q for each quantifier .................................................................................. 63 

Table 8. Mapping strength with Likelihood Ratios ................................................................. 66 

Table 9. Resulting probabilities from the observation ............................................................. 66 

Table 10. Quantification of the observation support for each possible belief ......................... 68 

Table 11. Conditional probabilities for the example ............................................................... 70 

Table 12. Probabilities derived from the observation .............................................................. 83 

Table 13. Observation “bump into someone” .......................................................................... 91 

Table 14. Observation “the robot is called by its name” ......................................................... 92 

Table 15. Observation “stranded without battery” .................................................................. 93 

Table 16. Observations considered in the simulation ............................................................ 110 

Table 17. Observation “screen interaction” ........................................................................... 115 

Table 18. Observation “question” .......................................................................................... 119 

Table 19. QoS specifications with a regular neural network ................................................. 122 

Table 20. Aggregate functions ............................................................................................... 148 

Table 21. Pattern operators .................................................................................................... 149 

Table 22. Preliminary Barthel tests ........................................................................................ 163 

Table 23. Preliminary “Get Up & Go” tests .......................................................................... 163 

Table 24. Real Barthel tests ................................................................................................... 164 

Table 25. Real “Get Up & Go” tests ...................................................................................... 165 

Table 26. Statistics for different values of repetition ............................................................. 174 



 

 Introduction 

This chapter outlines the motivation behind this Thesis and provides an overview of its 

objectives. It also highlights the main contributions and describes the structure of the rest of 

the dissertation. 

1.1 Motivation 

As the world becomes increasingly reliant on technology, the need for “smart” services that 

can improve our daily lives is more pressing than ever. Whether it is robots serving as co-

workers, assistants, or caregivers, or smart cities revolutionizing healthcare, transportation, and 

other essential services, technology has the power to create a better future for us all. However, 

the true measure of these services is not just what they can do, but how well they can do it. 

This is where Quality of Service (QoS) comes into play. 

Measuring QoS is key to ensure a high quality in non-functional properties, such as 

performance, reliability, and satisfaction, essential to unlock the full potential of the new 

technologies. This is why the development of QoS-aware systems is of paramount importance. 

By focusing on the development of quality-aware systems, we can create a more connected, 

efficient, and satisfying world for everyone. This Thesis aims to contribute to this effort by 

exploring the design, implementation, and evaluation of QoS-aware systems through the 

runtime estimation of non-functional properties. 

Consider the following scenario as an example to motivate this Thesis: A social robot acts as a 

receptionist in a hospital, providing information to visitors and conducting health surveys for 

new patients. It is possible to estimate how engaged people are with the robot by observing 

whether they approach or avoid it. Each time the robot is ignored, the perception of its ability 

to engage people decreases while, when someone approaches the robot, it increases. In order 



18 Introduction 

 

to measure the robot QoS in terms of user engagement, this perception needs to be translated 

into a numerical score (QoS estimate). This score may be used by QoS Engineers, e.g., to check 

whether the robot meets the user engagement requirements, or to compare different interaction 

strategies and decide which one performs better. QoS estimates may also be used by the robot 

itself, e.g., to adapt its behaviour in order to improve the scores when they are low. 

This Thesis develops a mathematical model to express this kind of dynamics and quantify them 

into QoS estimates, associated with non-functional properties, such as “engagement”. In 

addition, to make the model accessible, a high-level language has been created, providing QoS 

Engineers with an easy-to-use modelling tool and all the required runtime infrastructure to deal 

with the estimation of non-functional properties. 

The idea of measuring QoS based on contextual observations is not new. It has been applied to 

different domains, including human-robot interaction [1][2], human-machine teams [3], smart 

cities [4] or edge computing [5], among others. However, most approaches address QoS 

measurement in a limited and ad-hoc way, with little or no reuse, disregarding separation of 

roles (not considering specifically QoS Engineers), and with a narrow view of non-functional 

properties, which are usually limited to existing taxonomies. Moreover, to the best of our 

knowledge, it seems to be a lack of modelling frameworks focused on QoS estimation, 

providing a simple language, not restricted to a limited set of non-functional properties, and 

independent of the application domain, the software architecture, and the purpose of the QoS 

estimates. 

1.2 Objectives 

The main intended goal of this Thesis is to contribute to the development of QoS-aware systems 

through the runtime estimation of non-functional properties. To achieve this, the following 

specific objectives have been established: 

• Objective 1: Examine the role of causality in QoS awareness, including how to 

formally express and reason about causal relationships. 



1.3 Contributions 19 

 

• Objective 2: Design a mathematical model to estimate QoS in terms of non-functional 

properties and based on contextual observations. 

• Objective 3: Identify the main modelling concepts that could be used to hide the 

mathematical complexity behind QoS estimations. 

• Objective 4: Develop techniques to automatically derive the parameters of the 

mathematical model (Objective 2) from the modelling concepts (Objective 3). 

• Objective 5: Define the algorithms to estimate QoS at runtime, focusing on numerical 

stability and efficiency. 

• Objective 6: Develop a set of statistics on QoS estimates to provide users with 

additional information they can use to improve their specifications. 

• Objective 7: Explore how the parameters of the mathematical model can be adjusted 

through empirical examples illustrating different contextual situations. 

• Objective 8: Implement a Domain Specific Modelling Language and its supporting 

tools for specifying and executing QoS models. This objective is based on the results 

of objectives 1-6. 

• Objective 9: Evaluate the proposal in real-world and simulated scenarios. 

1.3 Contributions 

The contributions of this Thesis are as follows: 

1. A probabilistic framework that, based on contextual observations, allows estimating 

QoS metrics as indicators of how well the system performs in terms of relevant non-

functional properties (see Chapter 3). 

2. The runtime infrastructure required to support the probabilistic framework, including 

an exact inference algorithm for computing QoS estimates, and some relevant statistics 

on them (see Chapter 5). 



20 Introduction 

 

3. The design of a neural network architecture as an alternative to the probabilistic 

approach, which allows refining QoS estimates with a limited number of input-output 

examples (see Chapter 5). 

4. An abstraction of the probabilistic framework to make the specification of QoS metrics 

more accessible. This includes the identification of the key modelling concepts and their 

relationships, and the methods for translating the resulting high-level specifications into 

both the topology and the parameters of the underlying probabilistic model (see Chapter 

4). 

5. A Domain-Specific Modelling Language, a model-to-code transformation and the 

runtime infrastructure allowing the estimation of the QoS metrics. This contribution 

builds on the previous ones (see Chapter 6).  

1.4 Outline 

The rest of this document is organized as follows, Chapter 2 describes the research background 

and the state of the art; Chapter 3 identifies the key elements of the proposal and presents a 

formal framework to estimate QoS metrics in terms of non-functional properties; Chapter 4 

develops the basis of a high-level language to hide the complexities of the formal framework; 

Chapter 5 focuses on the runtime estimation of the QoS metrics, including their execution, 

statistics, and fine-tuning based on examples; Chapter 6 details the Domain-Specific Modelling 

Language built on the concepts discussed in the previous chapters; Chapter 7 presents the 

evaluation of the proposed approach in different scenarios; and finally, Chapter 8 concludes 

the Thesis, including some final remarks and discussing future work.



 

 State of the art 

2.1 Quality of Service 

The origin of the term "Quality of Service" (QoS) can be traced back to the telecommunication 

industry. It was used to describe the level of service that telecom operators could provide to 

their customers, such as the reliability, speed, and performance of their networks and services. 

According to the International Telecommunications Union (ITU), QoS is “the totality of 

characteristics of a telecommunications service that bear on its ability to satisfy stated and 

implied needs of the user of the service” [6].  

In this context, the QoS has been quantified using metrics such as: throughput (the amount of 

data transmitted over a period), latency (the time it takes for a packet to travel from source to 

destination), jitter (the variation in latency over time) or packet loss (the percentage of data 

packets that are lost in transit), among other metrics. However, with the development of the 

digital age and the increasing use of data and multimedia services on the Internet, the term QoS 

has ended up being adopted in a wide range of domains beyond telecommunications. Just to 

name a few examples, QoS plays a role in cloud computing, to describe the level of service 

that cloud providers can offer to customers in terms of resource allocation, performance, and 

availability [7]; in e-learning, to assess students’ experience with online platforms [8]; or in 

smart homes, to provide greater comfort to homeowners through the selection of the services 

connected to their home devices [9]. 

Consequently, there is a plethora of “Quality of...” terms derived from QoS, including Quality 

of Experience (QoE), Quality of Data (QoD), Quality of Work (QoW), Quality of Health Care 

(QoHC), Quality of Information (QoI), among many others. These terms expand on the concept 

of quality of service and provide specific means to measure and evaluate different quality 

factors. That is, each “Quality of...” term answers at least: what and how to measure (metrics), 



22 State of the art 

 

and for what purpose (quality factors). For example, Quality of Experience (QoE) [10] aims to 

measure the user’s subjective experience with a product or service, by using a number of 

techniques (surveys, log analysis, eye tracking, etc.) to assess quality factors such as usability, 

content quality, and enjoyment. In the following sections we will define the concept of metric 

and quality factor.  

Finally, it should be noted that, in this Thesis, we will use QoS in its broadest sense, as a generic 

concept that encompasses the rest of the “Quality of...” terms. Therefore, we do not consider 

its original definition exclusively limited to the quality of the network. 

2.2 Metrics 

Some definitions for metrics can be found in the literature in the context of software 

systems [11] [12]. Based on those we will consider that a metric is a method to quantify 

attributes of a system, product, or service. Metrics can be used to monitor and track changes in 

a system over time, and to identify areas for improvement. Note that metrics and measurements 

are often used interchangeably, despite being distinct. Metrics are functions, while 

measurements are the numbers obtained from applying metrics. For example, a website might 

use a web analytics tool to track the number of visitors to their site over a given period of time. 

The metric being applied here is the number of website visitors, and the measurement is the 

actual count of visitors obtained through the application of the metric. The measurement can 

then be used to track the performance of the website and make informed decisions for 

optimization and growth. 

Metrics can be sorted into various categories depending on the nature of the measurements. 

Below, we present a possible classification based on [13].  

• Objective vs. subjective: Objective metrics are based on quantifiable and observable 

data, such as response time or error rate. These metrics are independent of personal 

opinions or subjective interpretations. On the contrary, subjective metrics are based on 

personal opinions, such as satisfaction or user experience. These metrics are influenced 

by personal biases and subjective interpretations. 



2.2 Metrics 23 

 

• Quantitative vs. qualitative: Quantitative metrics come from numerical measurements, 

such as response time or throughput. On the other hand, qualitative metrics come from 

descriptive measurements that can be expressed in terms of attributes or characteristics, 

such as user satisfaction. 

• Static vs. dynamic: Dynamic metrics evolve with time, while static metrics do not. For 

example, a static metric can be the storage capacity of a disk drive, and a dynamic 

metric the network latency. 

• Absolute vs. relative: Absolute metrics are standalone measurements that can be 

quantified independently, while relative metrics are only meaningful when evaluated in 

relation to other metrics. 

• Continuous vs. discrete: Continuous metrics are expressed as continuous values, such 

as response time or throughput. Discrete metrics are expressed as a set of discrete 

values, such as the number of errors or the number of successful transactions. 

• Direct vs. indirect: Direct metrics are obtained by observing the property being 

measured directly, while indirect metrics are calculated by evaluating and analysing 

other data sources. For example, the delay between sending and receiving data over a 

network connection is an indirect metric, as it is derived by evaluating the time taken 

for data to be transmitted and received. 

Metrics are a valuable tool for evaluating and optimizing the quality of a system. They provide 

a means of measuring and tracking changes in the system over time and can be used to make 

informed decisions about how to optimize the system. In the following, we describe some of 

the capabilities that metrics provide. 

1. Objectives: Metrics are used to measure specific objectives, such as response time, 

reliability, or efficiency. The objectives of the metrics should be clearly defined, so that 

the metric can be evaluated against them. 

2. Data collection: Metrics are collected by monitoring the system and gathering data that 

reflects how the system is working. This data is then analysed to determine the value 

of the metric. 



24 State of the art 

 

3. Data analysis: The data collected from the system is analysed to determine the value of 

the metric. The analysis may involve simple calculations, such as averaging the values, 

or more complex statistical models, such as regression analysis. 

4. Visualization: The data collected from the system can be visualized in various forms, 

such as charts, graphs, or tables, to help understand the behaviour of the system and the 

changes in the metric over time. 

5. Comparison: Metrics can be compared against each other to evaluate the performance 

of different systems, or against established baselines or thresholds to determine whether 

the system is meeting performance goals. 

6. Optimization: Metrics can be used to identify areas for improvement in the system. By 

monitoring changes over time, it is possible to identify trends and patterns, and to make 

informed decisions about how to optimize the system to improve its performance. 

7. Collaboration: Metrics can be shared and discussed with stakeholders, such as 

developers, managers, and customers, to help them understand the performance of the 

system and to make informed decisions about how to optimize it. 

2.3 Quality factors 

We will consider some software engineering standards to better understand the concept of 

quality factor. This is not because this work requires adhering to a standard, but rather because 

standards often provide a wealth of established knowledge and commonly accepted practices. 

The term quality factor was introduced in the ISO/IEC 9126-1 standard [14] and, later, in its 

update, the ISO/IEC 25010 [15]. According to these standards, quality factors are defined as 

specific aspects of a product, service, or process that contribute to its overall quality. The 

standards define a quality model consisting of general characteristics that are divided into sub-

characteristics, which are further divided into attributes, creating a hierarchical structure with 

higher levels of abstraction at the top and more specific ones at the bottom. Thus, 

characteristics, sub-characteristics, and attributes are quality factors ordered from abstract to 

more concrete. At the bottom of the hierarchy, a quality factor can be measured through a 

metric. Then, the results are propagated upwards to determine the level of the general 



2.4 QoS-aware systems 25 

 

characteristics at the top of the hierarchy. Figure 1 shows an example of hierarchy of quality 

factors. 

 

Figure 1. Example of a hierarchy of quality factors 

In this Thesis we are going to use the term of non-functional property to refer to quality factors 

that describe how well the system or service performs at runtime in terms of specific criteria, 

such as safety, resource consumption, or usability. These properties contrast with functional 

properties, which describe what a system or service is supposed to do, in terms of specific 

functions or capabilities. It should be noted that, in this work, non-functional properties are 

quality factors of the system in operation, which should be measured at runtime under real 

conditions. In contrast, we will not pay attention to quality factors, such as testability and 

scalability, focused on the development process. In addition, contrary to its use in Requirement 

Engineering [16], in this context, non-functional properties are not requirements. Rather, 

requirements may be defined as constraints on the value of non-functional properties. Later, 

Section 3.2.1 will provide more details about the concept of non-functional property considered 

in this work. 

2.4 QoS-aware systems 

We define QoS awareness as the ability of a system to measure the level of quality it provides 

at runtime in terms of non-functional properties, such as user satisfaction, safety, or resource 

consumption. A QoS-aware system should at least be able to: 



26 State of the art 

 

• Monitor data at runtime from the system itself, the environment, the users, or any other 

source of information. 

• Extract information from the monitored data related to the quality that the system 

achieves and how it changes over time. 

• Estimate the level of performance associated with high-level quality factors based on 

the information extracted. 

QoS awareness is important in systems where the QoS requirements are subject to change, such 

as in systems that are deployed in dynamic or uncertain environments. By being QoS-aware at 

runtime, these systems can ensure that they continue to meet the needs of their users, even as 

those needs change. This can lead to improved user satisfaction, better system performance, 

and increased system reliability. In general, among the tasks of a QoS-aware system we can 

find: 

• Assessment: Checking QoS requirements (e.g., safety rules in mobile robots [17], or 

safety and performance requirements in smart cities [18]). Supporting the developers’ 

decision-making to optimize the system based on the reported quality (e.g., benchmarks 

for human-machine teaming [19], or evaluation of cloud computing services [20]).  

• Adaptation: Dynamically adjusting the behaviour, configuration, or resources of the 

system in order to improve its QoS [21]. 

• Prediction: Anticipating future QoS requirements based on past data, and proactively 

adjusting the system to meet those requirements (e.g., model evolution using Bayesian 

estimators [22]). 

• Reasoning: Using logic and knowledge representation to understand the relationship 

between the system behaviour and the QoS provided, and to make decisions 

accordingly (e.g., using Partially Observable Markov Decision Processes [23]). 

2.5 Causality in QoS awareness 

Establishing the causal relationships between the factors impacting QoS enables better 

decisions about how to control and optimize the services a system provides. In this sense, 



2.5 Causality in QoS awareness 27 

 

Causality and QoS awareness are related as both are concerned with understanding the 

behaviour of the system. Causality can help in identifying the root cause of QoS degradation. 

Understanding the relationships between the different components in the system can help 

determine which component is causing the degradation of QoS, and then take the appropriate 

action to fix the problem. 

However, causality may not only be relevant in the optimization of the QoS, but also in its 

estimation. In this Thesis, we assume that we can estimate QoS by analysing observable effects 

in contextual data (collected from the system, the environment, the users, etc.). Figure 2 shows 

a concept map that links context data with QoS. 

 

Figure 2. Link between QoS and context data 

It is based on the following: 

• There is a causal relationship between the QoS of a system and the perception that a 

domain expert has of it. That is, a poor performance of the system leads the expert to 

perceive it as such. 

• Perception is shaped from observable effects in the context data. For example, a 

smoothly driving autonomous car, following speed limits and traffic signs without 



28 State of the art 

 

accidents, will be perceived as safe. But if it suddenly drifts out of its lane into 

oncoming traffic, this perception will change quickly. 

• The context in which a system operates is made up of data from the system itself, its 

environment, users, or from any other source, such as, an external web service. The 

actions of the system can have a direct impact on this context, and therefore on the 

perception of its quality. Going back to the autonomous car example, if the vehicle 

strays from its lane, it can raise concerns about its safety. Additionally, external factors, 

like weather conditions, can also affect the perception, as the speed at which a car drives 

is considered safe depending on whether it is raining or not. 

The next section introduces formal methods to specify causal relationships on which to draw 

conclusions. 

2.6 Causal inference 

Causal inference is the process of drawing a conclusion about a causal connection based on the 

conditions of the occurrence of an effect. In other words, it is the process of inferring cause and 

effect relationships from observed data. One way to represent causality is through the use of 

causal inference languages. These are formal languages that are specifically designed to 

represent causal relationships and enable query handling. Next, we will introduce the Structural 

Causal Models (SCMs) and the Causal Bayesian Networks (CBNs), which are two important 

approaches to formally represent causal relationships and draw conclusions from the data. Note 

that there are other frameworks such as Pearl's do-calculus [24], Halpern's counterfactual 

logic [25], and Neyman-Rubin potential outcome framework [26]. 

2.6.1 Structural Causal Models 

Structural Causal Models (SCMs) [27] are a framework for representing causal relationships 

using directed acyclic graphs (DAGs). In a SCM, the nodes of the graph represent variables, 

and the directed edges are causal relationships between those variables. The direction of the 

edges indicates the direction of causality, with the tail of the edge representing the cause and 

the head of the edge the effect. 



2.6 Causal inference 29 

 

An SCM is defined by a set of structural equations, one for each variable in the model. Each 

structural equation expresses the value of the variable as a function of the values of its parents 

(i.e., the variables that have directed edges pointing to it) and an error term. The error term 

represents the uncertainty or noise in the relationship, which is often assumed to be normally 

distributed with zero mean and a fixed variance. 

SCMs can be used for a variety of tasks, such as: 

• Interventions: One of the main strengths of SCMs is the ability to model the effects of 

interventions in a system. An intervention is a change made to one or more variables in 

the system. The effect of the intervention on the rest of the system can be estimated by 

analysing the graph structure and the causal relationships modelled by the SCM. 

• Causal effect: By analysing the graph structure and the causal relationships represented 

by the SCM, one can estimate the causal effect of interventions on the system. This 

allows us to understand how changes in one variable can affect the values of other 

variables in the system. 

• Counterfactual reasoning: SCMs can also be used to reason about counterfactuals, 

which are statements about what would happen in a different hypothetical scenario. For 

example, one can ask what would happen if a certain variable was set to a different 

value, or if an intervention was made to the system. 

• Predictive power: By modelling the underlying mechanisms of a system, SCMs can be 

used to make predictions about the system’s behaviour. This makes SCMs a powerful 

tool for analysing and predicting the behaviour of complex systems. 

Some popular software packages to work with structural causal models are: Pcalg [28], Causal 

Explorer [29] or TETRAD [30]. There are also other libraries and packages available in 

widespread programming languages, such as Python [31], that provide implementations of the 

algorithms for working with structural causal models. 

Example: Let us illustrate the above with a simple example. Figure 3 shows the DAG 

associated with a SCM. In this graph, nodes denote variables and edges causal relationships. 

Thus, we have two variables: Smoking (S) and Lung cancer (L), and a causal relationship: S 



30 State of the art 

 

causes L. Since S has no incoming edges, it is called exogenous variable, while L is called 

endogenous because of the incoming edge.  

Lung cancer has Smoking as a direct cause, or, in other words, the value of L depends explicitly 

on the values of S, that is, 𝐿 = 𝑓(𝑆). Suppose that this function can be expressed with a linear 

model as follows: 𝐿 = 𝛽0 + 𝛽1𝑆 + 𝑈, where 𝛽0 and 𝛽1 are the parameters of the model and 𝑈 the 

residual error term. In this model, the effect of being a smoker (S=1) on lung cancer is 

quantified by the parameters 𝛽1, while the term 𝛽0 would represent the baseline risk of lung 

cancer in the absence of smoking (S=0). Note that this is just an example, the model could be 

linear or not. Normally, it would be chosen based on previous experience in similar cases, trial 

and error, and/or the analysis of historical lung cancer data. 

To estimate the parameters of the model, one could use observational or intervention data. With 

observational data, the parameters could be estimated using regression analysis or similar 

methods. With intervention data, the parameters could be estimated by manipulating S (e.g., by 

randomly assigning individuals to quit smoking or continue smoking) and observing the effect 

on L. 

 

Figure 3. Relationship between smoking and lung cancer 

2.6.2 Causal Bayesian Networks 

Causal Bayesian Networks (CBNs) [27] are a type of Bayesian network specifically designed 

to represent causal relationships between variables. They are an extension of traditional 

Bayesian networks that allows to represent both probabilistic and causal relationships between 

variables. 



2.6 Causal inference 31 

 

As the SCMs, a CBN is a directed acyclic graph (DAG) where each node represents a random 

variable, and the edges causal relationships between these variables. Each node has a 

probability distribution that expresses the probability of the variable given the values of its 

parents in the graph. These probability distributions are represented as conditional probability 

tables (CPTs) or by conditional probability distributions (CPDs). 

CBNs allow to model interventions, or changes in the values of certain variables, by changing 

the CPTs or CPDs of the affected variables. This can be used to make counterfactual 

predictions, that is, predictions about what would happen if a certain intervention were 

performed. CBNs also allow to reason about causality, that is, to determine the cause-and-

effect relationships between variables. For example, we can use the CBN to infer the 

probability distribution of an unobserved variable given the observations of other variables. In 

addition, we can determine which variables are most likely to be the cause of some effect. 

CBNs are widely used in various fields such as medicine [32], biology [33], or economics [34]. 

They are particularly useful for modelling systems where the goal is to make predictions about 

future observations, and to reason about causality based on a set of observations. Some popular 

software packages to work with CBNs are: BayesiaLab [35], GeNIe [36] and PyMC3 [37]. 

Example: Let us extend the example shown in the previous section. Figure 4 shows a new 

DAG, where now the variables are Smoking (S), Lung cancer (L) and Gene mutation (M). 

Regarding the causal relationships, a gene mutation can cause lung cancer, while smoking can 

cause lung cancer and a gene mutation. 

 

Figure 4. Relationship between smoking, gene mutation and lung cancer 

Suppose that after a statistical analysis of the incidence of lung cancer in the population, we 

have the probabilities shown in Figure 5. Note that each of the causal relationships (edges in 



32 State of the art 

 

the graph) is specified by a probability table, thus, 𝑃(𝑆) is the probability of smoking, 𝑃(𝑀|𝑆) 

is the probability of a gene mutation conditioned by smoking, and 𝑃(𝐿|𝑆,𝑀) is the probability 

of lung cancer conditioned by smoking and a gene mutation. Variables only have two possible 

values, 0 (for false) and 1 (for true). 

 

Figure 5. Probabilities for the example 

Given the observation that a person has lung cancer (L=1), we can perform inference to 

determine the probability of smoking (S=1). For that, by applying the chain rule of probability, 

we obtain the joint probability function, 𝑃(𝐿, 𝑆,𝑀) = 𝑃(𝑆) 𝑃(𝑀|𝑆) 𝑃(𝐿|𝑆,𝑀). Then, we can use 

Bayes’ theorem and marginalize to calculate 𝑃(𝑆 = 1|𝐿 = 1), as follows: 

𝑃(𝑆 = 1| 𝐿 = 1) =
∑ 𝑃(𝐿 = 1, 𝑆 = 1,𝑀)𝑀
∑ ∑ 𝑃(𝐿 = 1, 𝑆, 𝑀)𝑀𝑆

=
∑ 𝑃(𝑆 = 1)𝑃(𝑀|𝑆 = 1)𝑃(𝐿 = 1|𝑆 = 1, 𝑀)𝑀

∑ ∑ 𝑃(𝑆)𝑃(𝑀|𝑆)𝑃(𝐿 = 1|𝑆, 𝑀)𝑀𝑆

=
0.37 ∙ 0.95 ∙ 0.05 + 0.37 ∙ 0.05 ∙ 0.2

0.63 ∙ 0.99 ∙ 0.01 + 0.63 ∙ 0.01 ∙ 0.03 + 0.37 ∙ 0.95 ∙ 0.05 + 0.37 ∙ 0.05 ∙ 0.2 = 0.76 

As a result, there is a 76% chance that a person with lung cancer is a smoker. 



3.1 Approach overview 33 

 

 Non-functional properties to measure 

QoS at runtime 

3.1 Approach overview 

The ability to observe the context and derive information about how the system performs with 

regard to a number of non-functional properties, such as power consumption or safety, seems 

to be an essential aspect for any system in a real-world environment. It is taken for granted that 

systems must work properly even though the environment may be complex, inherently open 

and show a huge number of variants and contingencies, which is not realistic unless we have 

systems capable of monitoring their own performance. From this information, a system could 

autonomously decide to take action to improve aspects in which it performs poorly, or 

developers can use the feedback to refine the operation of the system. 

In this chapter and the next two, we discuss a probabilistic framework that allows domain 

experts to measure quality of service (QoS) in terms of non-functional properties. In particular, 

the main challenges we will face are the following: 

1. Identification of the key elements involved in the estimation of non-functional 

properties. In regard to this Thesis, we will clarify the notion of non-functional 

property, QoS metric, context and observation, and how they are related to each other. 

2. A formal framework to estimate QoS metrics as runtime indicators of how the system 

performs, according to non-functional properties and based on contextual information. 

We will present a probabilistic network model in which the concepts identified in 1 will 

be put into practice. This network will capture the causality between variables, 

quantified through conditional probability distributions. 



34 Non-functional properties to measure QoS at runtime 

 

3. A high-level specification to help domain experts express QoS metrics on non-

functional properties, conforming to the previous probabilistic framework but without 

having to deal with its complexities. From this specification, a ready-to-use 

probabilistic network would be derived transparently. 

4. The algorithms that allow the resulting probabilistic network to be executed. The 

estimation of the QoS metrics will have to deal with the inherent uncertainty of the 

context and run according to the observations detected in the environment. 

3.2 Key concepts 

Many concepts mentioned in this Thesis are used in a number of different research areas. 

Therefore, the same concept can be referred under different terms, or the same term may refer 

to different concepts. In this section, the definition of non-functional property, QoS metric, 

context and observation is clarified in the scope of this Thesis. 

3.2.1 Non-functional property 

Non-functional properties relate to how a system performs rather than to what it does. 

Examples of non-functional properties include safety, usability or resource consumption, 

among others. Although this concept has long been considered by the Requirement Engineering 

community to express the desired qualities of a system, there is still no consensus on what the 

term non-functional is and how can be classified and represented [38]. Consequently, there 

exists a plethora of varied terms (e.g., qualities, attributes, properties, characteristics or 

constraints) causing not only terminology, but also vast conceptual differences [38].  

In this Thesis, we consider that a non-functional property is a quality factor characterized by 

being:  

• Abstract. Non-functional properties cannot be assigned objective metrics (i.e., formal 

and precise ways to measure them) but subjective ones (i.e., ways to measure them 

depending on the perception of the people involved in the measurement process). For 

instance, if we want to measure safety or user satisfaction, there will not be a specific 



3.2 Key concepts 35 

 

method to quantify them. Rather, these non-functional properties will be formed 

through the abstract perception of multiple pieces of contextual evidence. The domain 

expert is the one who establishes what safety and user satisfaction mean and, 

consequently, how to interpret the contextual evidence. Therefore, through a proper 

modelling process, domain experts should be able to specify how contextual 

information influences non-functional properties based on their knowledge and 

experience. From this information, it should be possible to build a system capable of 

automatically estimating its QoS as it works, based on the context information it 

receives and according to the specification of the domain expert. 

• Global. Since a non-function property is usually estimated from multiple sources of 

contextual information, it tends to exhibit a global and aggregating nature that presents 

the system as a whole. 

• Measured at runtime. We consider that non-functional properties are quality factors 

of the system in operation, such as, resource consumption or effectiveness. As a result, 

they should be measured at runtime under real conditions. In contrast, we will not pay 

attention to static properties, such as testability and scalability, focused on the system 

development process. 

• Not limited to a catalogue. Contrary to some efforts and standards that provide a 

classification, e.g. ISO/IEC 25010 [15] or the Volere taxonomy [16], in this Thesis, we 

consider that the specification of non-functional properties is not limited to a catalogue. 

While a catalogue helps establish a common ground, the idea that properties are subject 

to contextual evidence makes them more dependent on the application and the system 

ability to monitor context. As a result, the same property in two application domains 

could be expressed in a totally different way and have little in common. On the other 

hand, the absence of a catalogue provides more freedom to explore new non-functional 

properties. 

• Not explicitly hierarchical. Although there may exist relationships between 

properties, in general, we will assume that non-functional properties are independent 

quality factors at the same level of abstraction. Therefore, we suppose that a property 

cannot be decomposed into lower-level properties that aid in its measurement. This 



36 Non-functional properties to measure QoS at runtime 

 

consideration will allow us to simplify the QoS estimation associated with non-

functional properties. 

• Not focused on validating the software development process. Quality requirements 

can be defined as restrictions on non-functional properties. Requirement Engineering 

covers all stages from the requirements elicitation to their validation and 

management [16], which has been shown to clearly contribute to the success of 

software projects. Although the concept of non-functional property has been developed 

in this context, in this Thesis, the main purpose of non-functional properties is not the 

specification of requirements but QoS awareness. In particular, non-functional 

properties could be considered to adapt the behaviour of the system to improve QoS, 

so that detecting, for example, a poor performance or a deficient resource utilization is 

the first step to achieve a better operation in terms of these non-functional properties. 

Finally, it should be noted that throughout this Thesis we sometimes use the term “property” 

instead of “non-functional property” for simplicity. Unless otherwise stated, we will consider 

both terms to be equivalent. 

3.2.2 QoS metric 

We consider that a QoS metric expresses the degree of fulfilment that a system achieves with 

respect to a non-functional property. In other words, a QoS metric will be a score of how well 

the system performs according to, e.g., safety. QoS metrics are quantified as real numbers in 

the range [0,1] without unit of measurement, such that a value of 1 indicates that the system is 

optimal in terms of the property, while 0 denotes the opposite. The baseline is 0.5, that is, the 

default value when there is no information about the performance. Note that a QoS metric can 

fluctuate over time as the system operates. 

Each non-functional property will have a QoS metric associated with it. The challenge will be 

to estimate its value through the observation of contextual information, assuming that there is 

a causal relationship between the perception we have of the system and the context. Therefore, 

by observing the effects in the context that the system and other elements of its environment 

produce, we should be able to quantify how well it works with respect to a certain non-



3.2 Key concepts 37 

 

functional property. For example, if an autonomous car drives smoothly, follows speed limits 

and traffic signs, and has never had an accident, the system can be considered safe and the 

corresponding QoS metric for safety will show a high value. But the moment we see the car 

drifts out of the lane and invades the opposite direction, the QoS metric will drop to a much 

lower value. Given the abstract nature of non-functional properties, QoS metrics are subjective 

metrics, as they depend on how contextual information is interpreted. For this reason, we 

consider that they provide coarse-grained values, i.e., a small difference between estimates may 

not be significant. Finally, QoS estimates will be repeatable and reproducible as long as the 

system is exposed to the same context events.  

3.2.3 Context 

One of the most generally suggested definitions of context is that of Dey and Abowd [39], 

where they described context as “any information that can be used to characterize the situation 

of an entity”, being an entity “a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and applications themselves”. 

This definition, like others in context-awareness, revolves around the tandem user-application. 

Although the concept of QoS could sometimes be interpreted as an attribute of the interaction 

between the user and the application, the figure of the user does not always have a central role. 

For example, an autonomous cleaning robot can perform its tasks with a certain quality without 

taking into account the interaction with users. In this work, we will explicitly put the system 

service in the centre. As a result, we will slightly modify the above definition to “any 

information that can be used to characterize the situation of an entity, where an entity can be a 

person, place, or object that is considered relevant in the way the system delivers its service, 

including the system itself”. 

This definition allows a wide range of possibilities regarding the types of contextual 

information that can be considered. On the one hand, context sources can be external, i.e., data 

may come from the physical environment (e.g., the noise level), from users (e.g., their gender 

and age), or from other systems and services (e.g., stock market values); or internal, such as 

the available resources or the current configuration of the system components. The level of 

abstraction of the context can also range from primitive data (e.g., ambient temperature) to 



38 Non-functional properties to measure QoS at runtime 

 

derived complex information (e.g., weather forecast). Finally, time is an important variable 

since context data often form sequences from which new insights can be drawn by looking at 

how they evolve over time. 

3.2.4 Observation 

In this work, an observation is defined as a conditional expression of one or more context 

variables, such that the observation occurs when the condition (aka. the pattern) is met. We 

specify observations to detect the effects that the system produces in the context due to a good 

or bad behaviour for a non-functional property. In other words, when an observation occurs it 

provides contextual evidence that the system is working optimally (or not) in terms of a non-

functional property. Following the example of the autonomous car, we could define an 

observation to note when the car drifts out of the lane, so that each time it occurs, the estimate 

associated with safety would be negatively affected. Consequently, an observation can 

reinforce (increase) or undermine (decrease) the QoS estimate of a property depending on 

whether or not the evidence supports the idea that the system is performing optimally with 

respect to this property. 

3.3 An example: robots in hospitals 

Imagine a social robot in a huge hospital working as a receptionist to provide information and 

accompany visitors. One that is able to conduct health surveys to new patients or answer routine 

questions, such as where to buy a coffee or where visitors can park. A robot that could also 

help children overcome their fears by engaging in conversation and playing with them, or 

relieve nurses of some duties, such as delivering medicines and taking someone’s temperature. 

Although it may sound like science fiction, these robots are becoming a reality in some 

hospitals [40]. Inspired by these new uses of robotics, this section presents a simple example, 

which will be used throughout this Thesis to illustrate the explanations. 

The tasks mentioned above, i.e. providing information, conducting surveys, delivering 

medicines, etc, refer to the functional part of the robot, but what about the non-functional 

aspects? How do we know how well a robot does its job? How can we measure its service? To 



3.3 An example: robots in hospitals 39 

 

answer these questions, first, we have to choose the non-functional properties under which the 

robot is going to be evaluated. A service can be good or bad depending on the criteria 

considered. For that reason, it is not the same to look at the service paying attention to power 

consumption or under the prism of user satisfaction. In this example, we are going to consider 

“user engagement” and “safety”, which, like most non-functional properties, are abstract 

concepts with a vague interpretation. However, in this case, we will define them as the degree 

to which the robot is successful in producing the following desired results. 

Regarding user engagement: 

• Acceptance among patients. 

• The robot manages to attract the people’s interest. 

• The robot achieves a high level of interaction. 

Regarding safety: 

• The robot does not bump into anyone. 

• The robot is not negatively reported by hospital staff. 

• The emergency stop button has not been pressed. 

• The robot has not been stranded without battery. 

• The robot has not received the order to stop or move away. 

To quantify how “engaging” and “safe” the robot is during its operation, we will use two QoS 

metrics to express the degree of fulfilment that is associated with each non-functional property, 

represented as a number between 0 and 1. Given the subjective nature of these metrics, they 

should not be taken as accurate measures, but as rough indicators that help shape a global 

perception of the robot service. In essence, the approach adopted in this Thesis will be the 

following: first, we define context variables (e.g., battery level) and, from them, relevant 

context patterns (e.g., “the battery level drops by more than 1% per minute”). At runtime, the 

detection of a context pattern will trigger an observation, which provides contextual evidence 

that reinforces (or undermines) the belief that the system is optimal (or not) in terms of a non-

functional property (e.g., power consumption). Finally, this belief will be quantified by a QoS 

metric (which, with a value of 0.93, could show a good performance). With all that, we can see 

how the key concepts introduced in Section 3.2 are put into practice. 



40 Non-functional properties to measure QoS at runtime 

 

Table 1 illustrates possible context variables for the hospital robot example, which are used in 

Table 2 and Table 3 to define some observations for user engagement and safety, respectively. 

For instance, the degree of engagement can be determined by observing how patients behave 

with the robot. In particular, the first observation in Table 2 considers a sign of acceptance 

when people call the robot by its name. Thus, every time this happens, that is, every time the 

speech recognition module produces an event of type name (see speech in Table 1), the 

observation will reinforce the belief that the robot is operating optimally in terms of user 

engagement. As for safety, the first observation in Table 3 establishes that the robot is not safe 

if it bumps into someone. So, every time a collision is detected, the observation will undermine 

the belief that the robot is running optimally in terms of safety. In the following sections and 

chapters, we will return to this example case to illustrate the explanations. 

Table 1. Context variables 

CONTEXT TYPE VALUES SOURCE DESCRIPTION 
State Enum. IDLE, 

GREETING, 

SERVING, 

PARTING, 

DOCKED 

Internal state of the robot Indicates a state: (1) IDLE, the robot is not serving anyone; 

(2) GREETING, the robot starts talking to a person; 

(3) SERVING, the robot is providing information, 

accompanying someone, running some medical test, etc.; 

(4) PARTING, the person leaves; and (5) DOCKED, the 

robot is charging the battery 

Screen Event -- Touch screen Indicates the use of the touch screen, e.g. tapping a button 

Speech Event question, name, 

stop, away 

Based on speech 

recognition 

Someone asks the robot, calls it by name, or orders it to stop 

or move away, respectively 

Collision Event -- Based on the bumper 

sensors and accelerometer  

Indicates that the robot has hit something or somebody 

Emergency 

button 

Event -- Emergency button Indicates that the emergency stop button has been pressed  

Battery level Percentage --  Battery sensor Indicates the robot’s battery level 
Report Event -- Reporting service Indicates that hospital staff have negatively reported an 

incident with the robot 

Eye contact Boolean -- Based on image processing Indicates whether or not there is eye contact with the person 

the robot is talking to 

Table 2. Observations for user engagement 

# INFLUENCE DESCRIPTION 
Acceptance among patients 

1 Reinforces People call the robot by its name, i.e., it triggers when a Speech event of type Name is received 

2 Undermines Patients refuse to interact with the robot, i.e., it triggers when State transitions from GREETING to PARTING 

 The robot manages to attract the people’s interest 

3 Undermines 
The person does not hold the gaze, i.e., it triggers when the Eye contact value changes more than 10 times in 

less than 1 min while the robot is in SERVING state 

 The robot achieves a high level of interaction 

4 Reinforces People use the robot’s touch screen, i.e., it triggers when a Screen event is received 

5 Reinforces People ask questions, i.e., it triggers when a Speech event of type Question is received 

 



3.4 Non-functional properties through probabilistic networks 41 

 

Table 3. Observations for safety 

# INFLUENCE OBSERVATION 

The robot does not bump into anyone 

1 Undermines A Collision event is received 

 The robot is not negatively reported by hospital staff 

2 Undermines Reported negatively, i.e., it triggers when a Report event of type Negative is received 

3 Reinforces It has not been reported negatively in the last 3 days 

 The emergency stop button has not been pressed 

4 Undermines An Emergency stop event is received 

 The robot has not been stranded without battery 

5 Undermines The battery level is lower than 1% and the robot is not in the DOCKED state 

 The robot has not received the order to stop or move away 

6 Undermines An event Speech is received of type Stop or Away 

 

3.4 Non-functional properties through probabilistic networks 

The measurement of QoS metrics involves uncertainty, given that we cannot accurately 

quantify how well a system works according to non-functional properties. Probabilistic 

networks [41] (also known as Causal Bayesian Networks, see Section 2.6.2) provide us with a 

formalism for expressing and reasoning with uncertain information. In this section, we will 

describe the probabilistic network model we propose to estimate QoS metrics on non-

functional properties. 

3.4.1 Design premises 

The probabilistic network model has been designed in accordance with the following premises: 

• We want to make explicit the causality between non-functional properties and context, 

in which the fact that the system behaves (or not) optimally with respect to one or more 

properties is partly responsible for a number of observable effects in the context. 

• The process will be driven by context evidence from a number of observations, whose 

direction, intensity and time aspects are subject to being configured. 



42 Non-functional properties to measure QoS at runtime 

 

• The process will apply to an indefinite number of properties and support the definition 

of shared observations among properties, that is, observations that provide evidence for 

more than one property. 

• The process will be independent of context variables. From the point of view of the 

probabilistic network, an observation simply happens or not, regardless of how this 

observation was defined. 

• We will assume that an observation occurs independently of any other observation, that 

is, observations are conditionally independent of each other, the fact that one 

observation has occurred does not affect the probability of another observation. Since 

two observations could be defined from common context sources, this assumption is a 

simplification that might not hold. Therefore, one must be aware of this circumstance 

when designing the observations. 

• The model will not consider explicitly the concept of counterevidence. While the 

occurrence of an observation can produce evidence that the system performs in a certain 

way, the opposite (when not occurring) does not provide counterevidence, that is, 

evidence that contradicts that the system is performing in that way. In fact, we assume 

that the absence of observations increases the uncertainty about how the system is 

working with regard to the considered properties. 

In addition, the probabilistic network model will support observations defined with the 

following attributes. 

• Direction of the influence. An observation can reinforce (increase) or undermine 

(decrease) the QoS estimate of a property depending on whether or not the evidence 

supports the idea that the system is performing optimally with respect to this property. 

• Intensity of the influence. An observation can have a greater or lesser impact on a QoS 

estimate, based on whether the evidence shows more or less certainty about the 

performance of the system in relation to the property. For example, in terms of safety, 

that a robot might collide with someone seems far more serious than if it collides with 

a wall. As a result, it would provide stronger evidence that the robot is not performing 

well with regard to safety. 



3.4 Non-functional properties through probabilistic networks 43 

 

• Persistence time. This point refers to how an observation interacts over time. Normally, 

observations gradually lose their significance as time passes. As soon as an observation 

occurred its influence is maximum, but as time passes it weakens until it eventually 

disappears. In this sense, the fact that the robot used to bump into everything months 

ago is less important than if this were happening now. 

• Repetition. Sometimes a particular condition can make an observation occurs multiple 

times. In that case, the influence of each occurrence will depend on the previous ones. 

For example, the first time a "low battery" signal is received it may not have a great 

effect (it could be a sensor error), but as this observation is repeated it would gain in 

reliability as well as in intensity, until the evidence is totally consolidated. 

3.4.2 Introducing the proposed model 

A probabilistic network is defined by a directed acyclic graph (DAG), in which nodes represent 

variables of interest and links direct causal influences between variables. The intuitive meaning 

of an arrow, from a node X to a node Y, is typically that X has a direct influence on Y, which 

suggests that causes should be parents of effects. The strength of these influences is quantified 

by conditional probabilities for each node given its parents in the network. The absence of a 

direct link indicates conditional independence. The network supports the computation of the 

probabilities of any subset of variables given evidence about any other subset. 

Figure 6 shows the probabilistic network model we propose to estimate QoS metrics. In this 

network, a non-functional property, such as User engagement, is represented by a hidden 

propositional variable, denoted by 𝑝𝑟𝑜𝑝 with prior probability distribution 𝑃(𝑝𝑟𝑜𝑝). A 

propositional variable expresses a fact that can be true or false, in this case, the system may or 

may not work optimally in terms of the non-functional property, which cannot be observed 

directly, but rather what one has is the belief of being in a particular state based on observable 

pieces of evidence. The runtime quantification of this belief results in the corresponding QoS 

metric value. For example, a resulting value of 0.67 for User engagement can be understood 

as the probability that the system is performing optimally in terms of this property given the 

observed evidence.  



44 Non-functional properties to measure QoS at runtime 

 

As mentioned in Section 3.2.4, we will consider observations as the means to obtain contextual 

evidence. Using the available context variables, an observation defines a pattern whose 

detection supports the presence of a particular context condition. In the example about the use 

of robots in hospitals, the observation number 2 in Table 2, linked to User engagement, states 

that every time a patient leaves when the robot starts talking to him or her reinforces the “low 

acceptance” condition. If it has only happened once or twice, it probably does not mean 

anything, but as the observation occurs more times, this context condition becomes more 

plausible. Thus, context conditions are also hidden propositional variables (denoted by 𝑐𝑡𝑥𝑖), 

as they may or may not exist, which can only be inferred by looking at indirect evidence, i.e., 

the occurrence of observations.  

       

Figure 6. (Left) Proposed probabilistic network model. (Right) Example 

Figure 6 shows that context conditions have as parent a non-functional property, which means 

that being optimal in terms of a property favours (or disfavours) certain conditions. In the 

example, if the robot excels at engaging with users, there will probably be “high acceptance”, 

“high haptic interaction” and “high speech interaction”, while there will be no “low 

acceptance” and “inability to attract interest”. Put another way, if we do not know how well 

the robot engages with users, the presence of a context condition reinforces (or undermines) 

the belief that the system is acting optimally (or not) with regard to the non-functional property. 

The strength of this influence is quantified by the conditional probability distribution 

𝑃(𝑐𝑡𝑥𝑖 | 𝑝𝑟𝑜𝑝). 



3.4 Non-functional properties through probabilistic networks 45 

 

Finally, the variable Active occurrences (denoted by 𝑁𝑜𝑏𝑠 𝑖
<𝑡> ) indicates the average number of 

past occurrences (of an observation) that remain active at the time of measurement. Unlike the 

hidden propositional variables above, it takes a real number that is directly calculated from 

observable evidence. The notion “active” captures the fact that an occurrence gradually loses 

its relevance as time passes. To model this, we introduce the probability that a particular 

occurrence continues to be active after a period of time (also called survival function [42]). The 

moment it happens, the occurrence shows its maximum effect (i.e. this probability is 1), after 

that, it progressively fades until it becomes insignificant (the probability tends to 0).  

The number of active occurrences provides evidence of being in a concrete context condition, 

so that these two nodes are linked together in the probabilistic network. See that each context 

condition is uniquely bound to a concrete observation pattern. Similar to what we mentioned 

for properties and context conditions, the number of active occurrences is an effect that appears 

when a certain context condition exists. Which allows us to infer, for example, the presence of 

the condition “high speech interaction” from the number of times that people ask the robot for 

information. This influence is determined by the probability distribution 𝑃(𝑁𝑜𝑏𝑠 𝑖
<𝑡>  | 𝑐𝑡𝑥𝑖). It is 

worth noting that, although normally the notion of time is not an inherent characteristic of 

probabilistic networks, the fact that occurrences remain active for a period of time allows us to 

include timing considerations in 𝑃(𝑁𝑜𝑏𝑠 𝑖
<𝑡>  | 𝑐𝑡𝑥𝑖), specifically the persistence and the repetition 

of the observations, as we will see in Section 4.4.4. 

3.4.3 Stating the problem 

Let us consider that a non-functional property is represented by the propositional variable prop, 

with values {PROP, ¬PROP}, where PROP means “the system performs optimally with regard 

to the non-functional property” and ¬PROP is the negation of this statement. We want to infer 

prop given some contextual evidence, which is typified by a set of N observations, 𝑂𝐵𝑆 =

{𝑜𝑏𝑠1, 𝑜𝑏𝑠2,… , 𝑜𝑏𝑠𝑁}, each one defining a particular context pattern in terms of a number of 

context variables. An occurrence 𝑜𝑏𝑠𝑖
<𝑡> is produced when the pattern specified by 𝑜𝑏𝑠𝑖  is 

detected at time t. After that, at time 𝑡 + 𝜏, 𝜏 ≥ 0, the occurrence may remain active with a 

probability expressed by 𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏). Note that this probability shows its maximum 

value when 𝜏 = 0 and decays as time passes, being 𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏 → ∞) = 0. The 



46 Non-functional properties to measure QoS at runtime 

 

average number of active occurrences of 𝑜𝑏𝑠𝑖  at time t is defined as the sum of the probabilities 

of all the occurrences, conditioned by the time elapsed since their detection, as stated below, 

𝑁𝑜𝑏𝑠 𝑖
<𝑡> = ∑𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{ℎ𝑜𝑏𝑠 𝑖(𝑘)} | 𝜏 = 𝑡 − 𝑡𝑘)

∀𝑘

 (3.1) 

being ℎ𝑜𝑏𝑠 𝑖(𝑘) the current history of occurrences associated with 𝑜𝑏𝑠𝑖 , i.e., ℎ𝑜𝑏𝑠 𝑖(𝑘) =

(𝑜𝑏𝑠𝑖
<𝑡0>, 𝑜𝑏𝑠𝑖

<𝑡1>,… , 𝑜𝑏𝑠𝑖
<𝑡𝐾−1>, 𝑜𝑏𝑠𝑖

<𝑡𝐾>) where 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐾−1 < 𝑡𝐾. 

The goal is to estimate the QoS metric that quantifies the belief that the system is optimal in 

terms of the non-functional property, which can be formally expressed by the following 

conditional probability: the probability of being optimal given, as contextual evidence, the 

average number of active occurrences for each observation. 

𝑄𝑜𝑆 𝑚𝑒𝑡𝑟𝑖𝑐 ≡  𝑃(𝑃𝑅𝑂𝑃 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… ,𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) (3.2) 

According to the probabilistic network proposed in Figure 6 (left), the full joint probability 

distribution is expressed as follows, 

𝑃(𝑝𝑟𝑜𝑝, 𝑐𝑡𝑥1, … , 𝑐𝑡𝑥𝑁, 𝑁𝑜𝑏𝑠 1
<𝑡> , … , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) = 𝑃(𝑝𝑟𝑜𝑝)∏𝑃(𝑐𝑡𝑥𝑖 | 𝑝𝑟𝑜𝑝) 𝑃(𝑁𝑜𝑏𝑠 𝑖
<𝑡>  | 𝑐𝑡𝑥𝑖)

𝑁

𝑖=1

 (3.3) 

where 𝑐𝑡𝑥𝑖  is a propositional variable with values {𝐶𝑇𝑋𝑖, ¬𝐶𝑇𝑋𝑖}, where 𝐶𝑇𝑋𝑖  means “the i-th 

context condition is present” and ¬𝐶𝑇𝑋𝑖  is its negation. To develop Equation (3.2), we need to 

consider the definition of conditional probability and the joint distribution. The result can be 

seen in Equation (3.4). Note that 𝑐𝑡𝑥𝑖  has been marginalized out since its value is not 

conditioned. 

𝑃(𝑃𝑅𝑂𝑃 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) =
∑ 𝑃(𝑃𝑅𝑂𝑃, 𝑐𝑡𝑥1,… , 𝑐𝑡𝑥𝑁,𝑁𝑜𝑏𝑠 1

<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁
<𝑡> )𝑐𝑡𝑥𝑖

∑ ∑ 𝑃(𝑝𝑟𝑜𝑝, 𝑐𝑡𝑥1, … , 𝑐𝑡𝑥𝑁,𝑁𝑜𝑏𝑠 1
<𝑡> ,… ,𝑁𝑜𝑏𝑠 𝑁

<𝑡> )𝑐𝑡𝑥𝑖𝑝𝑟𝑜𝑝
 (3.4) 

Finally, taking Equation (3.3) into (3.4), we obtained the following expression, in which 𝛼 is a 

normalization constant that ensures that the probabilities sum up to one. 

𝑃(𝑃𝑅𝑂𝑃 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) = 𝛼 𝑃(𝑃𝑅𝑂𝑃)∏ (∑𝑃(𝑐𝑡𝑥𝑖 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 𝑖
<𝑡>  | 𝑐𝑡𝑥𝑖)

𝑐𝑡𝑥𝑖

)
∀𝑖

 (3.5) 

𝛼 =
1

∑ 𝑃(𝑝𝑟𝑜𝑝)∏ (∑ 𝑃(𝑐𝑡𝑥𝑖 | 𝑝𝑟𝑜𝑝) 𝑃(𝑁𝑜𝑏𝑠 𝑖
<𝑡>  | 𝑐𝑡𝑥𝑖)𝑐𝑡𝑥𝑖 )∀𝑖𝑝𝑟𝑜𝑝

 (3.6) 



3.4 Non-functional properties through probabilistic networks 47 

 

Example. Let us apply Equation (3.5) to a simple example to clarify the notation of products 

and summations. The expanded form of this equation for the network in Figure 7 can be seen 

in Equation (3.7). Note that the product symbol multiplies all the contributions associated with 

context conditions, each of which takes into account the possible values for 𝑐𝑡𝑥𝑖  (since the 

expression does not condition its value). 

 

Figure 7. Probabilistic network with one property 

𝑄𝑜𝑆 𝑚𝑒𝑡𝑟𝑖𝑐 ≡ 𝑃(𝑃𝑅𝑂𝑃 | 𝑁𝑜𝑏𝑠 1
<𝑡> , 𝑁𝑜𝑏𝑠 2

<𝑡> , 𝑁𝑜𝑏𝑠 3
<𝑡> )

= 𝛼 𝑃(𝑃𝑅𝑂𝑃) ∙ (𝑃(𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 1
<𝑡>  | 𝐶𝑇𝑋1) + 𝑃(¬𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 1

<𝑡>  | ¬𝐶𝑇𝑋1)) 

∙ (𝑃(𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 2
<𝑡>  | 𝐶𝑇𝑋2) + 𝑃(¬𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 2

<𝑡>  | ¬𝐶𝑇𝑋2))

∙ (𝑃(𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 3
<𝑡>  | 𝐶𝑇𝑋3) + 𝑃(¬𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 3

<𝑡>  | ¬𝐶𝑇𝑋3)) 

(3.7) 

 

𝛼 = 1/[𝑃(𝑃𝑅𝑂𝑃) ∙ (𝑃(𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 1
<𝑡>  | 𝐶𝑇𝑋1) + 𝑃(¬𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 1

<𝑡>  | ¬𝐶𝑇𝑋1))  

∙ (𝑃(𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 2
<𝑡>  | 𝐶𝑇𝑋2) + 𝑃(¬𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 2

<𝑡>  | ¬𝐶𝑇𝑋2))

∙ (𝑃(𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 3
<𝑡>  | 𝐶𝑇𝑋3) + 𝑃(¬𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 3

<𝑡>  | ¬𝐶𝑇𝑋3)) +  𝑃(¬𝑃𝑅𝑂𝑃)

∙ (𝑃(𝐶𝑇𝑋1 | ¬𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 1
<𝑡>  | 𝐶𝑇𝑋1) + 𝑃(¬𝐶𝑇𝑋1 | ¬𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 1

<𝑡>  | ¬𝐶𝑇𝑋1)) 

∙ (𝑃(𝐶𝑇𝑋2 | ¬𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 2
<𝑡>  | 𝐶𝑇𝑋2) + 𝑃(¬𝐶𝑇𝑋2 | ¬𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 2

<𝑡>  | ¬𝐶𝑇𝑋2))

∙ (𝑃(𝐶𝑇𝑋3 | ¬𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 3
<𝑡>  | 𝐶𝑇𝑋3) + 𝑃(¬𝐶𝑇𝑋3 | ¬𝑃𝑅𝑂𝑃) 𝑃(𝑁𝑜𝑏𝑠 3

<𝑡>  | ¬𝐶𝑇𝑋3))] 

(3.8) 

3.4.4 Shared context conditions 

When considering more than one property, Equation (3.5) would apply if we assume that these 

properties are mutually independent and have separate context conditions. In that case, the 

previous equation allows us to estimate the corresponding QoS metrics as if they were M 

different probabilistic networks. On the other hand, if a context condition appears as the effect 

of several properties, these become conditionally dependent given the shared context, which 

will require the introduction of some changes in the formulation. 



48 Non-functional properties to measure QoS at runtime 

 

Imagine that a context condition 𝑐𝑡𝑥𝑖  produce evidence for M properties, {𝑝𝑟𝑜𝑝1,… , 𝑝𝑟𝑜𝑝𝑀}. 

We can conveniently see this set of properties as a single propositional variable called 𝑝𝑟𝑜𝑝𝑠. 

While we defined 𝑝𝑟𝑜𝑝𝑖 ∈ {𝑃𝑅𝑂𝑃𝑖,¬𝑃𝑅𝑂𝑃𝑖}) to indicate whether the system is working 

optimally (𝑃𝑅𝑂𝑃𝑖) or not (¬𝑃𝑅𝑂𝑃𝑖) according to a property 𝑝𝑟𝑜𝑝𝑖, 𝑝𝑟𝑜𝑝𝑠 states that the system 

is performing optimally with respect to a specific subset of properties. Thus, the possible values 

of 𝑝𝑟𝑜𝑝𝑠 arise from all the state combinations of the properties, that is, 𝑝𝑟𝑜𝑝𝑠 will have 2𝑀 

possible values, 𝑝𝑟𝑜𝑝𝑠 ∈ {𝑃𝑅𝑂𝑃𝑆0, 𝑃𝑅𝑂𝑃𝑆1,… , 𝑃𝑅𝑂𝑃𝑆2𝑀−1}, where 𝑃𝑅𝑂𝑃𝑆0 means that the 

system is not running optimally for any property (i.e., ¬𝑃𝑅𝑂𝑃𝑀 ⋀…⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ ¬𝑃𝑅𝑂𝑃1), 

𝑃𝑅𝑂𝑃𝑆1 means that the system is running optimally only for property 𝑝𝑟𝑜𝑝1 (i.e., 

¬𝑃𝑅𝑂𝑃𝑀 ⋀ …⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1), and so on until 𝑃𝑅𝑂𝑃𝑆2𝑀−1, which means that the system is 

running optimally for all the properties (i.e., 𝑃𝑅𝑂𝑃𝑀 ⋀… ⋀ 𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1). The values are 

ordered following the typical sequencing of a binary numeral system with symbols ¬𝑃𝑅𝑂𝑃 

(equivalent to 0) and 𝑃𝑅𝑂𝑃 (equivalent to 1), such that the index k in 𝑃𝑅𝑂𝑃𝑆𝑘  is the decimal 

representation of the value. For instance, given 3 properties (M=3), 𝑃𝑅𝑂𝑃𝑆5 would correspond 

to 𝑃𝑅𝑂𝑃3 ⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1, since the number 5 is 101 in binary. 

The corresponding full joint probability distribution can be expressed as shown below. In this 

equation the a priori distribution of props is 𝑃(𝑝𝑟𝑜𝑝𝑠) = ∏ 𝑃(𝑝𝑟𝑜𝑝𝑗)𝑀
𝑗=1 , since properties are 

considered independent when they are not conditioned to a shared context. 

𝑃(𝑝𝑟𝑜𝑝𝑠, 𝑐𝑡𝑥𝑖,𝑁𝑜𝑏𝑠 𝑖
<𝑡> ) = 𝑃(𝑝𝑟𝑜𝑝𝑠) 𝑃(𝑐𝑡𝑥𝑖|𝑝𝑟𝑜𝑝𝑠) 𝑃(𝑁𝑜𝑏𝑠 𝑖

<𝑡> |𝑐𝑡𝑥𝑖) (3.9) 

The QoS metric for a property 𝑝𝑟𝑜𝑝𝑗 can be calculated by taking the full joint distribution into 

the definition of conditional probability, as shown in Equation (3.10). Note that the term 𝑏𝑖 

denotes the i-th digit of the binary representation of k. 

𝑄𝑜𝑆 𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑜𝑟 𝑝𝑟𝑜𝑝𝑗  ≡  𝑃(𝑃𝑅𝑂𝑃𝑗 | 𝑁𝑜𝑏𝑠 𝑖
<𝑡> ) =

∑ ∑ 𝑃(𝑃𝑅𝑂𝑃𝑆𝑘, 𝑐𝑡𝑥𝑖, 𝑁𝑜𝑏𝑠 𝑖
<𝑡> )𝑐𝑡𝑥𝑖∀𝑘 | 𝑏𝑗=1

∑ ∑ 𝑃(𝑃𝑅𝑂𝑃𝑆𝑘, 𝑐𝑡𝑥𝑖,𝑁𝑜𝑏𝑠 𝑖
<𝑡> )𝑐𝑡𝑥𝑖𝑘

 (3.10) 

Example. Analogously to what we did in the previous section, we will apply Equation (3.10) 

to the network in Figure 8 (left) to clarify the notation of products and summations. First, we 

will use the propositional variable props instead of the two property nodes, see Figure 8 (right). 

This variable will have 4 possible values, i.e., 𝑝𝑟𝑜𝑝𝑠 ∈ {𝑃𝑅𝑂𝑃𝑆0, 𝑃𝑅𝑂𝑃𝑆1, 𝑃𝑅𝑂𝑃𝑆2, 𝑃𝑅𝑂𝑃𝑆3}, 



3.4 Non-functional properties through probabilistic networks 49 

 

each one representing the following combinations, respectively, (¬𝑃𝑅𝑂𝑃2 ⋀ ¬𝑃𝑅𝑂𝑃1), 

(¬𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1), (𝑃𝑅𝑂𝑃2 ⋀ ¬𝑃𝑅𝑂𝑃1) and (𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1). 

         

Figure 8. (Left) Two properties with shared context. (Right) Using the props variable 

In this example we are going to calculate the QoS metric associated with the first property. 

Thus, being optimal in terms of prop1 means that props must be equal to PROPS1 or PROPS3. 

Equation (3.11) shows the corresponding probability expression. Note that, in this expression, 

conditional probabilities that refer to non-shared context conditions can be simplified. For 

example, 𝑃(𝑐𝑡𝑥1|𝑃𝑅𝑂𝑃𝑆1) = 𝑃(𝑐𝑡𝑥1|¬𝑃𝑅𝑂𝑃2, 𝑃𝑅𝑂𝑃1) = 𝑃(𝑐𝑡𝑥1|𝑃𝑅𝑂𝑃1), this is so because, 

according to Figure 8 (left), the Context condition 1 only depends on Non-functional 

property 1.  

𝑄𝑜𝑆 𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑜𝑟 𝑝𝑟𝑜𝑝1 ≡ 𝑃(𝑃𝑅𝑂𝑃1 | 𝑁𝑜𝑏𝑠 1
<𝑡> , 𝑁𝑜𝑏𝑠 2

<𝑡> , 𝑁𝑜𝑏𝑠 3
<𝑡> )

= 𝛼 ∑ ∑ ∑(𝑃(𝑃𝑅𝑂𝑃𝑆1, 𝑐𝑡𝑥1, 𝑐𝑡𝑥2, 𝑐𝑡𝑥3, 𝑁𝑜𝑏𝑠 1
<𝑡> ,𝑁𝑜𝑏𝑠 2

<𝑡> , 𝑁𝑜𝑏𝑠 3
<𝑡> )

𝑐𝑡𝑥3𝑐𝑡𝑥2𝑐𝑡𝑥1

+ 𝑃(𝑃𝑅𝑂𝑃𝑆3, 𝑐𝑡𝑥1, 𝑐𝑡𝑥2, 𝑐𝑡𝑥3,𝑁𝑜𝑏𝑠 1
<𝑡> , 𝑁𝑜𝑏𝑠 2

<𝑡> ,𝑁𝑜𝑏𝑠 3
<𝑡> ))

= 𝛼 [𝑃(𝑃𝑅𝑂𝑃𝑆1) ∙ (𝑃(𝑁𝑜𝑏𝑠 1
<𝑡>  | 𝐶𝑇𝑋1) 𝑃(𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆1) + 𝑃(𝑁𝑜𝑏𝑠 1

<𝑡>  | ¬𝐶𝑇𝑋1) 𝑃(¬𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆1))

∙ (𝑃(𝑁𝑜𝑏𝑠 2
<𝑡>  | 𝐶𝑇𝑋2) 𝑃(𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆1) + 𝑃(𝑁𝑜𝑏𝑠 2

<𝑡>  | ¬𝐶𝑇𝑋2) 𝑃(¬𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆1))

∙ (𝑃(𝑁𝑜𝑏𝑠 3
<𝑡>  | 𝐶𝑇𝑋3) 𝑃(𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆1) + 𝑃(𝑁𝑜𝑏𝑠 3

<𝑡>  | ¬𝐶𝑇𝑋3) 𝑃(¬𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆1)) + 𝑃(𝑃𝑅𝑂𝑃𝑆3)

∙ (𝑃(𝑁𝑜𝑏𝑠 1
<𝑡>  | 𝐶𝑇𝑋1) 𝑃(𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆3) + 𝑃(𝑁𝑜𝑏𝑠 1

<𝑡>  | ¬𝐶𝑇𝑋1) 𝑃(¬𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆3))

∙ (𝑃(𝑁𝑜𝑏𝑠 2
<𝑡>  | 𝐶𝑇𝑋2) 𝑃(𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆3) + 𝑃(𝑁𝑜𝑏𝑠 2

<𝑡>  | ¬𝐶𝑇𝑋2) 𝑃(¬𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆3))

∙ (𝑃(𝑁𝑜𝑏𝑠 3
<𝑡>  | 𝐶𝑇𝑋3) 𝑃(𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆3) + 𝑃(𝑁𝑜𝑏𝑠 3

<𝑡>  | ¬𝐶𝑇𝑋3) 𝑃(¬𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆3))] 

(3.11) 



50 Non-functional properties to measure QoS at runtime 

 

𝛼 = 1/[𝑃(𝑃𝑅𝑂𝑃𝑆0) ∙ (𝑃(𝑁𝑜𝑏𝑠 1
<𝑡>  | 𝐶𝑇𝑋1) 𝑃(𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆0) + 𝑃(𝑁𝑜𝑏𝑠 1

<𝑡>  | ¬𝐶𝑇𝑋1) 𝑃(¬𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆0))

∙ (𝑃(𝑁𝑜𝑏𝑠 2
<𝑡>  | 𝐶𝑇𝑋2) 𝑃(𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆0) + 𝑃(𝑁𝑜𝑏𝑠 2

<𝑡>  | ¬𝐶𝑇𝑋2) 𝑃(¬𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆0))

∙ (𝑃(𝑁𝑜𝑏𝑠 3
<𝑡>  | 𝐶𝑇𝑋3) 𝑃(𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆0) + 𝑃(𝑁𝑜𝑏𝑠 3

<𝑡>  | ¬𝐶𝑇𝑋3) 𝑃(¬𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆0)) + 𝑃(𝑃𝑅𝑂𝑃𝑆1)

∙ (𝑃(𝑁𝑜𝑏𝑠 1
<𝑡>  | 𝐶𝑇𝑋1) 𝑃(𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆1) + 𝑃(𝑁𝑜𝑏𝑠 1

<𝑡>  | ¬𝐶𝑇𝑋1) 𝑃(¬𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆1))

∙ (𝑃(𝑁𝑜𝑏𝑠 2
<𝑡>  | 𝐶𝑇𝑋2) 𝑃(𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆1) + 𝑃(𝑁𝑜𝑏𝑠 2

<𝑡>  | ¬𝐶𝑇𝑋2) 𝑃(¬𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆1))

∙ (𝑃(𝑁𝑜𝑏𝑠 3
<𝑡>  | 𝐶𝑇𝑋3) 𝑃(𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆1) + 𝑃(𝑁𝑜𝑏𝑠 3

<𝑡>  | ¬𝐶𝑇𝑋3) 𝑃(¬𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆1)) + 𝑃(𝑃𝑅𝑂𝑃𝑆2)

∙ (𝑃(𝑁𝑜𝑏𝑠 1
<𝑡>  | 𝐶𝑇𝑋1) 𝑃(𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆2) + 𝑃(𝑁𝑜𝑏𝑠 1

<𝑡>  | ¬𝐶𝑇𝑋1) 𝑃(¬𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆2))

∙ (𝑃(𝑁𝑜𝑏𝑠 2
<𝑡>  | 𝐶𝑇𝑋2) 𝑃(𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆2) + 𝑃(𝑁𝑜𝑏𝑠 2

<𝑡>  | ¬𝐶𝑇𝑋2) 𝑃(¬𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆2))

∙ (𝑃(𝑁𝑜𝑏𝑠 3
<𝑡>  | 𝐶𝑇𝑋3) 𝑃(𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆2) + 𝑃(𝑁𝑜𝑏𝑠 3

<𝑡>  | ¬𝐶𝑇𝑋3) 𝑃(¬𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆2)) + 𝑃(𝑃𝑅𝑂𝑃𝑆3)

∙ (𝑃(𝑁𝑜𝑏𝑠 1
<𝑡>  | 𝐶𝑇𝑋1) 𝑃(𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆3) + 𝑃(𝑁𝑜𝑏𝑠 1

<𝑡>  | ¬𝐶𝑇𝑋1) 𝑃(¬𝐶𝑇𝑋1 | 𝑃𝑅𝑂𝑃𝑆3))

∙ (𝑃(𝑁𝑜𝑏𝑠 2
<𝑡>  | 𝐶𝑇𝑋2) 𝑃(𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆3) + 𝑃(𝑁𝑜𝑏𝑠 2

<𝑡>  | ¬𝐶𝑇𝑋2) 𝑃(¬𝐶𝑇𝑋2 | 𝑃𝑅𝑂𝑃𝑆3))

∙ (𝑃(𝑁𝑜𝑏𝑠 3
<𝑡>  | 𝐶𝑇𝑋3) 𝑃(𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆3) + 𝑃(𝑁𝑜𝑏𝑠 3

<𝑡>  | ¬𝐶𝑇𝑋3) 𝑃(¬𝐶𝑇𝑋3 | 𝑃𝑅𝑂𝑃𝑆3))] 

(3.12) 

3.5 Summary 

In this chapter, we have defined the key elements involved in the estimation of non-functional 

properties. Also, we presented a probabilistic framework to estimate QoS metrics as runtime 

indicators of how the system performs, according to non-functional properties and based on 

contextual information. Chapter 4 will discuss the fundamentals of a high-level specification 

to help domain experts express QoS metrics, conforming to the probabilistic framework but 

without having to deal with its complexities.



4.1 Towards a high-level specification to measure quality 51 

 

 Hiding probabilistic networks behind 

high-level descriptions  

The probabilistic network proposed in Chapter 3 attempts to mimic the QoS evaluation that 

domain experts would subjectively perform based on their personal judgement. Thus, as 

domain experts specify the probabilistic network for their use case (following the model 

proposed in Section 3.4), they would be transferring some of their knowledge about non-

functional properties to the network. Unfortunately, while it is usually easy to decide which 

context conditions may be relevant to some non-functional properties, specifying probabilities 

is challenging. Mainly because it does not fit well with the natural way people express things. 

It is simpler for us to give qualitative indications, such as that a certain context condition has a 

strong and positive influence on a property, which we would never have spontaneously defined 

it as a conditional probability of 0.83. To mitigate this problem, this section presents the 

foundations to create a high-level specification, close to our understanding, where qualitative 

descriptions predominate over quantitative ones. We will see how the network and their 

probabilities could be derived from these descriptions in a transparent way for users. Note that 

the notions in this chapter will form the basis of the modelling language that will be presented 

in Chapter 6. 

4.1 Towards a high-level specification to measure quality 

In accordance with the previous chapter and taking into account the design premises introduced 

in Section 3.4.1, Figure 9 shows the main concepts that would be included in the definition of 

a high-level specification to measure quality. 



52 Hiding probabilistic networks behind high-level descriptions 

 

 

Figure 9. Concepts for the specification of QoS concerns  

The elements of the above concept map are described next. 

• Non-functional property. Measuring QoS revolves around the estimation of how well 

the system works in terms of one or more non-functional properties. Implicitly, each 

property will be associated with a QoS metric that quantifies the performance of the 

system for the given property. 

• Observation, it provides evidence that the system behaviour is optimal (or not) in 

relation to a non-functional property. An observation can be defined considering the 

following aspects. 

o Context pattern, it identifies a condition expressed in terms of one or more 

context variables. The detection of this pattern produces an occurrence (an 

event), which influences the value of a QoS metric associated with a property. 

o Direction, it indicates the orientation of the evidence, it may reinforce (increase) 

or undermine (decrease) the belief that the system performs optimally. 

o Strength, it qualitatively determines the intensity of the evidence considering 

five different levels: from “very low” to “very high”. 

o Persistence, it specifies the maximum period of time in which the effect of an 

occurrence remains with some influence until it disappears.  

o Repetition, it indicates how many times an observation must be repeated to have 

full effect. By defining this parameter, the effect of an occurrence will depend 



4.1 Towards a high-level specification to measure quality 53 

 

on the occurrences detected just before rather than taking them as independent 

observations. For instance, it could be useful to handle a “low battery” 

condition. The first time "low battery" is detected it may not have a great effect 

(it could be a sensor error), but as this observation is repeated it would gain in 

reliability as well as in intensity. The default value of this parameter is 0 (no 

repetitions are expected).  

Note that persistence will require the specification of a time value, which could be provided in 

several ways. For example, we can opt for precision ("13 seconds"), for the convenience of 

expressing it linguistically ("a few seconds"), or for the simplicity of a relative value ("a short 

time"). Figure 10 shows the concepts we propose for the specification of time values. 

 
Figure 10. Concepts for the specification of time values 

Next, the elements of the above concept map are described. 

• Absolute time value, it introduces the notion of time with a certain unit. This work will 

take into account the following time units: seconds, minutes, hour, days, weeks and 

months. 

• Numeric time value, it denotes the use of time values expressed numerically, such as 

“13 seconds”. 



54 Hiding probabilistic networks behind high-level descriptions 

 

• Absolute time expression, it represents linguistic expressions that explicitly include the 

time unit, such as “a few seconds”, “some minutes” or “many hours”. In this work, we 

will consider three different quantifiers: few, some and many.  

• Relative time value, it introduces the notion of time relative to a reference period (called 

time frame). The time frame should be expressed as an absolute time value. 

• Relative time expression, it identifies relative linguistic time expressions. For example, 

considering a time frame of one hour, this concept allows the use of the expression “a 

short time” as a way of saying “a few minutes”. But if the time frame had been one 

month, probably the meaning of “a short time” would have been closer to “a few days”. 

In this work, we will consider three different quantifiers: short, medium and long. 

Table 4 shows an example of high-level specification for the scenario described in Section 3.3. 

Note that in this example some time values were defined using relative expressions with a 7-

day time frame. We selected this time frame because a week seems long enough for the robot 

to show all its functionality. In addition, it could be reasonable to make this time frame coincide 

with the robot maintenance time, so let us imagine that the robot is checked regularly every 

week, in which the QoS estimates collected during this period can be reviewed as part of the 

maintenance tasks. 

Table 4. High-level specification for the hospital robot 

PROPERTY User engagement 
 

OBSERVATION  “People call the robot by its name” 
(PATTERN) The robot’s name is recognized (PERSISTENCE) Some hours (REPETITION) 5 

(PROPERTY) User engagement            (DIRECTION) Reinforce         (STRENGTH) Low 

NOTE: If this observation is repeated at least 5 times, the evidence will be consolidated. Moreover, the influence is low as it 
is a small gesture of acceptance. 
 

OBSERVATION  “Patients refuse to interact with the robot” 
(PATTERN) People leaves when the robot 
greets them (PERSISTENCE) Medium (7-day timeframe) (REPETITION) 5 

(PROPERTY) User engagement            (DIRECTION) Undermine         (STRENGTH) Low 
NOTE: If this observation is repeated at least 5 times, the evidence will be consolidated. Moreover, the influence is low 
because this reaction could be caused by reasons unrelated to the robot's performance (e.g., the users' fear of the new). 
 

OBSERVATION  “People lose interest” 
(PATTERN) People do not hold the gaze (PERSISTENCE) Few hours (REPETITION) None 

(PROPERTY) User engagement            (DIRECTION) Undermine         (STRENGTH) Medium 

NOTE: Users can lose interest if the robot follows tedious procedures or there are long wait times. 



4.1 Towards a high-level specification to measure quality 55 

 

 

OBSERVATION  “People interact through the robot’s touch screen” 
(PATTERN) A screen event is received (PERSISTENCE) Short (7-day timeframe) (REPETITION) None 

(PROPERTY) User engagement            (DIRECTION) Reinforce       (STRENGTH) High 

NOTE: It is a positive sign of interaction with the robot. It is considered important (high influence), and the persistence is 
short as it is expected to occur frequently.  
 

OBSERVATION  “People ask questions” 
(PATTERN) A question is recognized (PERSISTENCE) Short (7-day timeframe) (REPETITION) None 

(PROPERTY) User engagement            (DIRECTION) Reinforce         (STRENGTH) High 

NOTE: As the previous observation, it is a positive sign of interaction with the robot. It is considered important (high 
influence), and the persistence is short as it is expected to occur frequently. 
 

PROPERTY Safety 
 

OBSERVATION  “Bump into someone” 
(PATTERN) A collision event is received (PERSISTENCE) Long (7-day timeframe) (REPETITION) None 

(PROPERTY) Safety            (DIRECTION) Undermine         (STRENGTH) Very high 

NOTE: In relation to safety, a collision represents a critical circumstance that greatly undermines the belief that the robot is 
performing optimally. Given its importance, its effect has a long persistence. 
 

OBSERVATION  “Negatively reported” 
(PATTERN) A negative report event is received (PERSISTENCE) Long (7-day timeframe) (REPETITION) None 

(PROPERTY) Safety            (DIRECTION) Undermine         (STRENGTH) High 

NOTE: A negative report from the hospital staff on safety issues is considered serious and has long persistence. 
 

OBSERVATION  “Emergency stop pressed” 
(PATTERN) Emergency stop event is received (PERSISTENCE) Medium (7-day timeframe) (REPETITION) None 

(PROPERTY) Safety            (DIRECTION) Undermine         (STRENGTH) Medium 

NOTE: Pressing the emergency stop seems less severe than the previous observations since it can be activated for reasons 
other than safety. 
 

OBSERVATION  “Not reported” 
(PATTERN) It has not been reported 
negatively in the last 3 days (PERSISTENCE) Some days (REPETITION) None 

(PROPERTY) Safety            (DIRECTION) Reinforce       (STRENGTH) High 

NOTE: Persistence was set to fit the 3-day period defined by the pattern. We do not set repetition to treat occurrences 
separately. 
 

OBSERVATION  “Stranded without battery” 
(PATTERN) The battery level is lower than 1% 
and not in DOCKED state (PERSISTENCE) Medium (7-day timeframe) (REPETITION) 5 

(PROPERTY) Safety            (DIRECTION) Undermine         (STRENGTH) High 

NOTE: Once the robot reaches this situation, the observation is repeated periodically every few minutes. The situation is 
consolidated after 5 repetitions of the observation. 
 

OBSERVATION  “Commanded to stop” 
(PATTERN) An event Speech is received of 
type Stop or Away (PERSISTENCE) Short (7-day timeframe) (REPETITION) None 

(PROPERTY) Safety            (DIRECTION) Undermine         (STRENGTH) Low 

NOTE: The strength is low since the speech recognition can produce false results in real noisy environments. 



56 Hiding probabilistic networks behind high-level descriptions 

 

In the following sections we will see how the underlying probabilistic network can be derived 

transparently from this high-level specification. As a result, domain experts will be able to 

focus on their use cases without having to deal with the complexities of probability 

distributions or dependencies among variables. 

4.2 Deriving the network topology 

By taking into account the model presented in Section 3.4, it is straightforward to derive the 

constituent parts of the probabilistic network from a high-level specification. In essence, the 

two basic rules to obtain the probabilistic network are: 

1. A Property generates a Non-functional property node. 

2. An Observation produces two nodes: A Context condition linked to an Active 

occurrence, where the former has as parents the Non-functional property nodes on 

which the observation impacts. 

Figure 11 illustrates the application of these rules. 

 

Figure 11. Illustration of how to derive of the network topology 

When we have several properties, it is convenient, before applying these rules, to identify 

groups of dependent properties in order to segment the specification into multiple networks. 

Potentially, it will reduce the computational cost since the estimates would be calculated over 

Property

“Safety”

Observation

“Bump into somebody”

Observation

“Stranded without battery”

Active 
occurrences 

1

Active 
occurrences 

2

Active 
occurrences 

3

Active 
occurrences 

4

Active 
occurrences 

5

Active 
occurrences 

6

Context 
condition 1

Context 
condition 2

Context 
condition 3

Context 
condition 4

Context 
condition 5

Context 
condition 6

Safety

(1)

(2)

...



4.3 Deriving time values 57 

 

several smaller probabilistic networks (rather than over a single larger and more intricate 

network). In this sense, two properties are considered dependent if there is an observation that 

has an impact on both (i.e., the properties share a common context condition as we saw in 

Section 3.4.4).  

Regarding the method we could use to identify dependencies among properties, first, let us 

denote C as a collection of non-empty subsets of dependent properties, where their union 

represents the total set of properties and the intersection between subsets is always empty (a 

property can only be in a single subset). To sort properties into subsets in C we could proceed 

as follows. 

1. At first, C is empty. 

2. We go through all the observations. For each one, let us consider A as the subset of 

properties on which the observation impacts, 

2.1 Given any subset B in C, if the intersection 𝐴 ∩ 𝐵 ≠ ∅, we update A as the union 

𝐴 ∪ 𝐵 and remove B from C 

2.2 We add A as a new subset of C 

Finally, once the previous method has been carried out, we will generate a separate 

probabilistic network from each subset of dependent properties in C, so that, if we want to 

obtain estimates for a given property, we will only need to process the corresponding network 

in which that property is defined. 

4.3 Deriving time values 

The concept map presented in Figure 10 lays the foundations for expressing time values using 

qualitative quantifiers. While these bring specifications closer to the natural way users 

understand things, we need a method to transparently derive numerical values from this 

information to apply them to the underlying probabilistic network. Next, we propose a method 

based on the Weber-Fechner Law. 



58 Hiding probabilistic networks behind high-level descriptions 

 

4.3.1 The Weber-Fechner Law 

The Weber-Fechner Law (WFL) [43] is an important principle in psychophysics that describes 

the relationship between the magnitude of a physical stimulus and the intensity perceived by a 

person. This relationship has been experimentally validated for a broad range of scenarios, like 

human vision, hearing, touching, or time perception, and is considered today as one of the most 

fundamental laws of the psychology of perception. According to the WFL, the differential 

perception dP is directly proportional to the relative change dS/S of the physical stimulus: 

𝑑𝑃 = 𝑘 
𝑑𝑆
𝑆

 (4.1) 

with S as the current magnitude of the stimulus, while the constant k is up to experimental 

determination. Straightforward integration of (4.1) leads to (4.2), where P identifies the 

magnitude of the perception, and the constant of integration S0 can be interpreted as the 

stimulus threshold (below which no sensory perception is possible at all). 

𝑃 = 𝑘 𝑙𝑛
𝑆
𝑆0

 (4.2) 

4.3.2 Absolute time expressions 

Absolute time expressions were presented in the concept map proposed in Figure 10. 

According to this concept map, we need two attributes to define an absolute time expression: 

quantity and unit, the former is constructed using one of the following quantifiers: few, some 

and many, while the latter indicates the unit of measurement. As a result, we can produce 

expressions, such as “few seconds” or “some minutes”. To derive numerical values from these, 

we assume that when we use the term “seconds”, “minutes”, “hours”, etc., it represents a 

disjointed period of time, greater than or equal to 2 (since we can only form the plural with at 

least 2 units) and strictly less than the lower limit of the next higher unit of measurement. For 

example, we suppose that when we speak of seconds, whether few, some or many, we refer to 

a value in the interval [2, 120) (i.e., from 2s to 1min and 59s). Figure 12 illustrates the 

corresponding intervals for the considered units of measurement. Note that we have 

conveniently assumed that a month has 4 weeks. 



4.3 Deriving time values 59 

 

 

Figure 12. Time intervals for each unit 

According to WFL, a person perceives the duration of a period following the logarithmic 

relationship shown by Equation (4.2). This equation allows us to quantify the perception P of 

a time value S. A zero perception (𝑃 = 0) would correspond to the stimulus threshold S0, below 

which we cannot distinguish time values. We will assume that S0 is 1 second, since below the 

second it is difficult for people to measure whether it has passed, for example, 500ms or 800ms. 

By applying Equation (4.2), we know that the perception that we would have of a time value 

in the interval [2s, 120s) would be defined in [𝑘 ln(2) , 𝑘 ln(120)). In the same way, if the time 

value is in [2min, 120min), the perception would be in [𝑘 ln(2 ∙ 60) , 𝑘 ln(120 ∙ 60)). And so on 

with the rest of the intervals shown in Figure 12. In general, the perception of a time value in 

the interval [𝑆1, 𝑆2) will be in [𝑘 ln(𝑆1) , 𝑘 ln(𝑆2)), where S must be expressed in seconds and 

𝑘 ∈ ℝ is a constant. Depending on whether we use “few”, “some” or “many”, the perception 

value can be in the lower, middle, or upper part of the interval, respectively. Considering three 

equal parts, we can take the midpoint of each one to represent the typical perception value for 

each quantifier, as shown in (4.3). 

𝑃𝑓𝑒𝑤 =
1
6

(𝑘 ln(𝑆2) − 𝑘 ln (𝑆1)) + 𝑘 ln(𝑆1) 

𝑃𝑠𝑜𝑚𝑒 =
1
2

(𝑘 ln(𝑆2) − 𝑘 ln(𝑆1)) + 𝑘 ln(𝑆1) 

𝑃𝑚𝑎𝑛𝑦 =
5
6

(𝑘 ln(𝑆2) − 𝑘 ln (𝑆1)) + 𝑘 ln(𝑆1) 

(4.3) 

 

)
2 120

secondsfew some many

)
2 48

hoursfew some many

)
2 8

weeksfew some many

)
2 120

minutesfew some many

)
2 14

daysfew some many

)
2 24

monthsfew some many



60 Hiding probabilistic networks behind high-level descriptions 

 

Once we have the perception attributed to each quantifier, it is easy to obtain its respective time 

value by isolating S from Equation (4.2) and replacing P by the corresponding term. The result 

can be seen in (4.4). Note that k disappears from the equation, and that (ln(𝑆2) − ln (𝑆1)) has 

been reduced to ln (𝑆2
𝑆1

). Finally, Table 5 presents the typical time values that represent each 

absolute time expression. This mapping can be used to derive time values from expressions in 

order to configure the underlying probabilistic network, as we will see in Section 4.4. 

𝑆𝑓𝑒𝑤 = 𝑒
1
6 ln(𝑆2

𝑆1
)+ln(𝑆1)

    

𝑆𝑠𝑜𝑚𝑒 = 𝑒
1
2 ln(𝑆2

𝑆1
)+ln(𝑆1)

 

𝑆𝑚𝑎𝑛𝑦 = 𝑒
5
6 ln(𝑆2

𝑆1
)+ln(𝑆1)

 

(4.4) 

Table 5. Typical time values for absolute time expressions 

Unit Few Some Many 
seconds 4s 15s 61s 

minutes 3min 57s 15min 29s 60min 38s 

hours 3h 23min 48s 9h 47min 52s 28h 15min 43s 

days 2d 18h 23min 17s 5d 6h 59min 45s 10d 2h 56min 5s 

weeks 2w 3d 15h 20min 3w 6d 23h 59min 59s 6w 2d 10h 44min 

months 12w 17h 35min 14s 27w 4d 23h 45min 9s 63w 3d 3h 45s 

4.3.3 Relative time expressions 

Relative time expressions were also introduced in the concept map proposed in Figure 10. 

According to this concept map, we need two attributes to define a relative time expression: 

quantity and reference. The former allows one of the following quantifiers: short, medium and 

long, while the latter indicates the time frame that will be used as a reference. For example, 

depending on the time frame, we can use the expression “short time” as a way of saying “few 

minutes” if the time frame is one hour, or “few days” if the time frame is one month. We will 

derive numerical values from relative time expressions in a similar way to how we did it in the 

previous section.  

First, we need to set the interval in which the resulting time value will be defined. The upper 

limit, which establishes the maximum time that can be attributed to a relative expression, will 



4.3 Deriving time values 61 

 

be the considered time frame, expressed by 𝑆𝑓𝑟𝑎𝑚𝑒  in seconds. As for the lower limit, we have 

to introduce the concept of just-noticeable difference (JND) [43]. JND is the smallest change 

in stimuli that can be perceived. For instance, if a period of 10s can (only just) be distinguished 

from that of 12s, the JND is 2s. According to the WFL, the perception that a change produces 

is inversely proportional to the initial period (see Equation (4.1)), so adding 2s to a period of 

10s is much more noticeable than adding the same 2s to 10 hours. In consequence, if the period 

is doubled, the JND also doubles (to keep the same perception). In general, the JND can be 

expressed as a percentage of the initial period. With all that, we will consider that the lower 

limit of the interval is the minimum noticeable period, that is, the JND for the given time frame, 

which we quantify as the 4% of the time frame. We have chosen this percentage empirically as 

it seems to produce reasonable results. Therefore, a relative expression will be derived to a time 

value in the interval [0.04 𝑆𝑓𝑟𝑎𝑚𝑒, 𝑆𝑓𝑟𝑎𝑚𝑒]. 

Taking into account Equation (4.2), the perception of a time value in the interval [0.04 𝑆𝑓𝑟𝑎𝑚𝑒,

𝑆𝑓𝑟𝑎𝑚𝑒] is defined in [𝑘 ln(0.04 𝑆𝑓𝑟𝑎𝑚𝑒) , 𝑘 ln(𝑆𝑓𝑟𝑎𝑚𝑒)]. Thus, depending on whether we use 

“short”, “middle” or “long”, the perception value can be in the lower, middle, or upper part of 

the interval, respectively. Given three equal parts, we take the upper limit of each one to 

represent the typical perception value of each quantifier, as shown in (4.5). We use the upper 

limit instead of the midpoint, as we did in the previous section, to make the expression "long 

time" match the time frame. 

𝑃𝑠ℎ𝑜𝑟𝑡 =
1
3 (𝑘 ln(𝑆𝑓𝑟𝑎𝑚𝑒) − 𝑘 ln (0.04 𝑆𝑓𝑟𝑎𝑚𝑒)) + 𝑘 ln(0.04 𝑆𝑓𝑟𝑎𝑚𝑒) 

𝑃𝑚𝑒𝑑𝑖𝑢𝑚 =
2
3 (𝑘 ln(𝑆𝑓𝑟𝑎𝑚𝑒) − 𝑘 ln(0.04 𝑆𝑓𝑟𝑎𝑚𝑒)) + 𝑘 ln(0.04 𝑆𝑓𝑟𝑎𝑚𝑒) 

𝑃𝑙𝑜𝑛𝑔 = (𝑘 ln(𝑆𝑓𝑟𝑎𝑚𝑒) − 𝑘 ln (0.04 𝑆𝑓𝑟𝑎𝑚𝑒)) + 𝑘 ln(0.04 𝑆𝑓𝑟𝑎𝑚𝑒) 

(4.5) 

With the perception attributed to each quantifier, we can obtain the respective time value by 

isolating S from Equation (4.2) and replacing P by the corresponding term. The result can be 

seen in (4.6). Table 6 presents the typical time values for some example expressions. 



62 Hiding probabilistic networks behind high-level descriptions 

 

𝑆𝑠ℎ𝑜𝑟𝑡 = 𝑒
1
3 ln(25) + ln(0.04 𝑆𝑓𝑟𝑎𝑚𝑒)

    

𝑆𝑠𝑜𝑚𝑒 = 𝑒
2
3 ln(25) + ln(0.04 𝑆𝑓𝑟𝑎𝑚𝑒)

 

𝑆𝑙𝑜𝑛𝑔 = 𝑒ln(25) + ln(0.04 𝑆𝑓𝑟𝑎𝑚𝑒) = 𝑆𝑓𝑟𝑎𝑚𝑒 

(4.6) 

Table 6. Typical time values for some relative time expressions 

Time Frame Short Medium Long 
10min 1min 10s 3min 25s 10min 

1h 7min 1s 20min 31s 1h 

5h 35min 5s 1h 42min 35s 5h 

1d 2h 48min 25s 8h 12min 28s 1d 

1w 19h 38min 57s 2d 9h 27min 18s 1w 

4w 3d 6h 35min 51s 1w 2d 13h 49min 14s 4w 

4.3.4 Random sampling of time expressions 

Although we could directly use the mapping resulting from Sections 4.3.2 and 4.3.3 to convert 

qualitative expressions into concrete time values, sometimes it is preferable to introduce some 

randomness. In this section, we will assign time expressions to probability distributions instead 

of time expressions to values, so that an expression like "some minutes" would be translated 

into a random variable with values around 15 minutes. The proposal shown below is inspired 

by how Beta distributions are used in Subjective Logic [44]. 

We are going to generalize what we have introduced in the last two sections. For that, we will 

assume that the perception follows a beta distribution [45] whose mode corresponds to the time 

value that we have obtained for each expression previously. In other words, Table 5 shows the 

most likely value for each absolute time expression. The beta distribution will be defined as 

follows. 

𝑃~𝐵𝑒𝑡𝑎(𝛼,𝛽)    (4.7) 

The parameters  and  are calculated as indicated in (4.8).  

𝛼 =
2𝑞
𝑣

+ 1;    𝛽 =
2(1 − 𝑞)

𝑣
+ 1 (4.8) 



4.3 Deriving time values 63 

 

where q is a function of the quantifier and v defines the vagueness as a number between 0 and 

1. Table 7 presents the different values that q can adopt, which come from the intervals that 

were defined in the previous sections. For example, if we consider a perception normalized in 

the range from 0 to 1, the typical perception for “few” will be represented by 𝑞 = 1/6 (i.e., the 

midpoint of the first third), 𝑞 = 1/2 for “some” (the midpoint of the second third) and 𝑞 = 5/6 

for “many” (the midpoint of the last third). Regarding the vagueness, it controls the dispersion 

of the distribution, such that, as the parameter approaches 0, the more peaked the distribution 

is. The concept of vagueness establishes how concrete a quantifier is, so, in the extreme end, 

when 𝑣 → 0, there is no ambiguity, that is, each quantifier is associated with a single perception 

value, the one defined in Section 4.3.2 and 4.3.3. It is worth noting that we can select v so that 

a certain proportion of the samples fall within an interval. For instance, if we want the 90% of 

the time values generated by the quantifier "some" to have a normalized perception of 𝑞 ± 0.1, 

we must select 𝑣 = 0.031, since it makes 𝑃(𝑞 − 0.1 < 𝑋 ≤ 𝑞 + 0.1) = 𝐹(𝑞 + 0.1; 𝛼, 𝛽)-

 𝐹(𝑞 − 0.1; 𝛼, 𝛽) = 0.9, being F the cumulative distribution function of 𝐵𝑒𝑡𝑎(𝛼, 𝛽). 

Table 7. Values of q for each quantifier 

Quantifier q 
few 1/6 

some 1/2 

many 5/6 

short 1/3 

medium 2/3 

long 1 

In order to assign a time value to an expression, once we have modelled the perception as a 

random variable following a Beta distribution with parameters ’ and ’, we need to generate 

a random sample x according to this particular distribution. For that, we could use the inverse 

transform sampling method [46]. The resulting time value is obtained by applying 

Equation (4.9), where 𝑆0, 𝑆1 and 𝑆2 were defined in Section 4.3.2 and 4.3.3. 

𝑆𝑥 = 𝑆0 𝑒
𝑥 ln(𝑆2

𝑆1
) ln(𝑆1)

 (4.9) 



64 Hiding probabilistic networks behind high-level descriptions 

 

Figure 13 shows an example of the resulting probability density for absolute (left graph) and 

relative (right graph) time expressions. Note that the peaks of the distributions are located on 

the values that were defined in the previous sections. 

  

Figure 13. Example of probability densities. (Left) Probability density for “few” (blue), “some” (red) and 

“many” (yellow) seconds. (Right) Probability density for “short” (blue), “medium” (red) and “long” (yellow), 

with a time frame of 10 minutes. The vagueness has been set to 0.1 

Section 4.4.4 will show how the translation of time expressions (absolute and relative) is used 

to derive some of the parameters of the underlying probabilistic network. 

4.4 Deriving probabilities 

In order to complete the probabilistic network, we need to define the probability distributions 

associated with the variables, mainly: 𝑃(𝑝𝑟𝑜𝑝), 𝑃(𝑐𝑡𝑥𝑖 | 𝑝𝑟𝑜𝑝) and 𝑃(𝑁𝑜𝑏𝑠 𝑖
<𝑡>  | 𝑐𝑡𝑥𝑖), see Figure 

6 (left). To do this, it is necessary a method to transparently derive these terms from the high-

level specification. It is worth noting that the process of deriving probabilities is not intended 

to generate precise values, but to capture the basic dynamics behind QoS metrics. As mentioned 

in Section 3.2.2, we regard QoS metrics as coarse-grained subjective values raised from 

contextual observations. Therefore, it is not significant if a probability is 0.83 or 0.82. This is 

also the reason why, unlike classical approaches (e.g., based on maximum likelihood [41]), we 

do not need to rely on data to compute probabilities. 

0 20 40 60 80 100 120
Time (seconds)

0

1

2

3

4

5

6

Pr
ob

ab
ilit

y 
de

ns
ity

0 1 2 3 4 5 6 7 8 9 10
Time (minutes)

0

5

10

15

20

25

Pr
ob

ab
ilit

y 
de

ns
ity



4.4 Deriving probabilities 65 

 

4.4.1 Distribution P(prop) 

The distribution 𝑃(𝑝𝑟𝑜𝑝) quantifies the belief that the system behaves optimally in terms of a 

property before some evidence is taken into account. We will consider 𝑃(𝑝𝑟𝑜𝑝) equal to 0.5, 

which expresses maximum uncertainty. That this, when there is no evidence, we do not know 

if the system is inclined to be optimal or not, so we make 𝑃(𝑃𝑅𝑂𝑃) = 𝑃(¬𝑃𝑅𝑂𝑃) = 0.5. This 

value will represent the baseline of QoS metrics, that is, the starting point or the value to which 

metrics tend when there is no information. 

4.4.2 Distribution P(ctxi | prop) 

The probability distribution 𝑃(𝑐𝑡𝑥𝑖 | 𝑝𝑟𝑜𝑝) tells us how well the presence of a context condition 

fits with the belief that the system is working optimally with respect to a property. To derive 

this distribution, we assume that the attribute strength of an observation indicates the 

Likelihood Ratio (LR) of a context condition with respect to a property, expressed as it can be 

seen in Equation (4.10). LR provides a measure of how discriminating a context condition is. 

A LR of 1 indicates that the presence of a context condition does not provide any information 

about the property. A LR that tends to 0 suggests a very strong positive correlation, that is, the 

presence of the condition implies that the system behaves optimally with respect to the 

property. On the contrary, if LR tends to infinity, it indicates the opposite: the system does not 

behave optimally. Intermediate values will exhibit a wide range of different degrees of 

influence. In general, values in the interval (0,1) reinforce, while those in the interval (1,+∞) 

undermine.  

Table 8 shows the assigned LR to each strength value, distinguishing whether the evidence 

reinforces or undermines. When reinforcing, this mapping has been designed to make strength 

and LR follow a linear relationship, so that the range of intensities of an observation is 

uniformly covered by strength. In case of undermining, the LR values are obtained as the 

inverse of the equivalent reinforcing LR values since we would like strength values to be 

symmetric and have the same intensity regardless of whether the evidence reinforces or 

undermines. 



66 Hiding probabilistic networks behind high-level descriptions 

 

Table 8. Mapping strength with Likelihood Ratios 

Strength LR (Reinforcing) LR (Undermining) 
VERY HIGH 0.1 1/0.1 

HIGH 0.28 1/0.28 

MEDIUM 0.46 1/0.46 

LOW 0.64 1/0.64 

VERY LOW 0.82 1/0.82 

By taking into account the definition of LR (4.10) in Equation (4.11), we can obtain (4.12), 

which results in (4.13) by assuming that 𝑃(𝑝𝑟𝑜𝑝) and 𝑃(𝑐𝑡𝑥𝑖) are equal to 0.5. This final 

equation enables us to calculate the conditional probabilities associated with a context 

condition. 

𝐿𝑅 =
𝑃(𝐶𝑇𝑋𝑖 | ¬𝑃𝑅𝑂𝑃)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃)

 (4.10) 

𝑃(𝐶𝑇𝑋𝑖) = 𝑃(𝐶𝑇𝑋𝑖|𝑃𝑅𝑂𝑃)𝑃(𝑃𝑅𝑂𝑃) + 𝑃(𝐶𝑇𝑋𝑖|¬𝑃𝑅𝑂𝑃)𝑃(¬𝑃𝑅𝑂𝑃) (4.11)  

𝑃(𝐶𝑇𝑋𝑖|𝑃𝑅𝑂𝑃) =
𝑃(𝐶𝑇𝑋𝑖)

𝑃(𝑃𝑅𝑂𝑃) + 𝑃(¬𝑃𝑅𝑂𝑃) 𝐿𝑅
;   𝑃(𝐶𝑇𝑋𝑖|¬𝑃𝑅𝑂𝑃) = 𝐿𝑅 𝑃(𝐶𝑇𝑋𝑖|𝑃𝑅𝑂𝑃) (4.12) 

𝑃(𝐶𝑇𝑋𝑖|𝑃𝑅𝑂𝑃) = 1 (1 + 𝐿𝑅)⁄ ;   𝑃(𝐶𝑇𝑋𝑖|¬𝑃𝑅𝑂𝑃) = 𝐿𝑅 (1 + 𝐿𝑅)⁄  (4.13) 

Example. Let us consider the observation “Bumped into somebody” specified in Table 4. The 

occurrence of this observation undermines safety very highly, which means a LR of 10 (i.e., 

1/0.1) according to Table 8. After applying the equations in (4.13), Table 9 lists the resulting 

probabilities that form the distribution 𝑃(𝑐𝑡𝑥|𝑝𝑟𝑜𝑝). Note that the probabilities in each row 

must sum to 1 in accordance with the probability theory. 

Table 9. Resulting probabilities from the observation 

 ¬CTX CTX 

¬PROP 0.0909 0.9091 

PROP 0.9091 0.0909 



4.4 Deriving probabilities 67 

 

4.4.3 Distribution P(ctxi | prop1, ... , propM) 

This distribution appears when an observation provides evidence for several properties, in 

which case it would result in a probabilistic network with a context condition shared among a 

number of properties, as explained in Section 3.4.4. Next, we will propose a generalization of 

the method presented in the previous section. 

Let us consider that a context condition 𝑐𝑡𝑥𝑖  produces evidence for N of the M properties 

defined in the network as {𝑝𝑟𝑜𝑝1,… , 𝑝𝑟𝑜𝑝𝑀}. As we did in Section 3.4.4, we can conveniently 

see the set of properties as a single propositional variable called 𝑝𝑟𝑜𝑝𝑠, which states that the 

system is performing optimally with respect to a specific subset of properties. Thus, the 

possible values of 𝑝𝑟𝑜𝑝𝑠 arise from all the state combinations of the properties, that is, 𝑝𝑟𝑜𝑝𝑠 

will have 2𝑀 possible values, 𝑝𝑟𝑜𝑝𝑠 ∈ {𝑃𝑅𝑂𝑃𝑆0, 𝑃𝑅𝑂𝑃𝑆1, … , 𝑃𝑅𝑂𝑃𝑆2𝑀−1}, where 𝑃𝑅𝑂𝑃𝑆0 

means that the system is not running optimally for any property (i.e., 

¬𝑃𝑅𝑂𝑃𝑀 ⋀ …⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ ¬𝑃𝑅𝑂𝑃1), 𝑃𝑅𝑂𝑃𝑆1 means that the system is running optimally only 

for property 𝑝𝑟𝑜𝑝1 (i.e., ¬𝑃𝑅𝑂𝑃𝑀 ⋀… ⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1), and so on until 𝑃𝑅𝑂𝑃𝑆2𝑀−1, which 

means that the system is running optimally for all the properties (i.e., 

𝑃𝑅𝑂𝑃𝑀 ⋀ …⋀ 𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1). The values are ordered following the typical sequencing of a 

binary numeral system with symbols ¬𝑃𝑅𝑂𝑃 (equivalent to 0) and 𝑃𝑅𝑂𝑃 (equivalent to 1), 

such that the index k in 𝑃𝑅𝑂𝑃𝑆𝑘  is the decimal representation of the value. For instance, given 

3 properties (M=3), 𝑃𝑅𝑂𝑃𝑆5 would correspond to 𝑃𝑅𝑂𝑃3 ⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1, since the number 

5 is 101 in binary. 

The impact that an observation has on each property is defined individually by the attribute 

strength. We denote with the term 𝑆𝐸𝑝𝑟𝑜𝑝 𝑗 ∈ {5, 4, 3, … ,−4,−5} the evidence associated with a 

property 𝑝𝑟𝑜𝑝𝑗, where the absolute value |𝑆𝐸𝑝𝑟𝑜𝑝 𝑗| indicates the strength (5 for VERY HIGH, 

4 for HIGH, 3 for MEDIUM, etc.) and the sign function 𝑠𝑔𝑛(𝑆𝐸𝑝𝑟𝑜𝑝 𝑗) is the direction (+1 

means reinforce, while -1 means undermine). By default, if not specified, 𝑆𝐸𝑝𝑟𝑜𝑝 𝑗 = 0, which 

means the observation provides no evidence for property 𝑝𝑟𝑜𝑝𝑗. Although this information is 

provided individually to properties, sharing a context condition makes properties conditionally 

dependent, so an observation will always have a global effect on them. Therefore, given the 

M-tuple (𝑆𝐸𝑝𝑟𝑜𝑝 1, … , 𝑆𝐸𝑝𝑟𝑜𝑝 𝑀), Equation (4.14) allows us to quantify the degree to which an 



68 Hiding probabilistic networks behind high-level descriptions 

 

observation supports the belief that the system acts optimally with respect to a particular subset 

of properties, stated by 𝑃𝑅𝑂𝑃𝑆𝑘 . In this equation, the term 𝑏𝑖 is the i-th digit of the binary 

representation of k. The results are in the range [-5, 5] and have the same semantics that we 

have defined for 𝑆𝐸𝑝𝑟𝑜𝑝 𝑗 . Moreover, the results satisfy 𝑆𝐸𝑃𝑅𝑂𝑃𝑆𝑘 = −𝑆𝐸𝑃𝑅𝑂𝑃𝑆2𝑀−1−𝑘
, which 

means that 𝑃𝑅𝑂𝑃𝑆𝑘  and 𝑃𝑅𝑂𝑃𝑆2𝑀−1−𝑘 are opposite propositions, that is, they exhibit the same 

intensity but opposite directions. In general, according to Equation (4.14), the opposite of 

𝑃𝑅𝑂𝑃𝑆𝑘  is the one that has the state of the properties inverted (swapping ¬𝑃𝑅𝑂𝑃𝑖  and 𝑃𝑅𝑂𝑃𝑖). 

For instance, as we saw previously, if 𝑃𝑅𝑂𝑃𝑆5 represents 𝑃𝑅𝑂𝑃3 ⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1, then its 

opposite is 𝑃𝑅𝑂𝑃𝑆2, which corresponds to ¬𝑃𝑅𝑂𝑃3 ⋀ 𝑃𝑅𝑂𝑃2 ⋀ ¬𝑃𝑅𝑂𝑃1. 

𝑆𝐸𝑃𝑅𝑂𝑃𝑆𝑘 =
1
𝑁

 ∑(−1)(1−𝑏𝑖) 𝑆𝐸𝑝𝑟𝑜𝑝 𝑖

𝑀

𝑖=1

 (4.14) 

Example. Imagine we have an observation that produces evidence for 3 properties (𝑁 = 𝑀). 

Its occurrence will reinforce 𝑝𝑟𝑜𝑝1 highly, undermine 𝑝𝑟𝑜𝑝2 very lowly and reinforce 𝑝𝑟𝑜𝑝3 

very highly, which results in (𝑆𝐸𝑝𝑟𝑜𝑝 1, 𝑆𝐸𝑝𝑟𝑜𝑝 2, 𝑆𝐸𝑝𝑟𝑜𝑝 3) = (4,−1, 5). Equation (4.14) 

indicates how much support the observation produces for a specific scenario in which the 

system is believed to be optimal (or non-optimal) with respect to some properties. Table 10 

shows the results obtained after applying the equation to the possible states of the system. For 

instance, the observation will support (reinforce), with an overall intensity of 3.3333 (i.e., a 

high-medium intensity), the idea that the system is operating optimally in terms of 𝑝𝑟𝑜𝑝1 and 

𝑝𝑟𝑜𝑝3 but poorly with respect to 𝑝𝑟𝑜𝑝2 (see row 𝑃𝑅𝑂𝑃𝑆5). To a lesser degree, the observation 

also supports, with a medium-low intensity, the belief of being optimal in terms of any property 

(row 𝑃𝑅𝑂𝑃𝑆7). On the other hand, if we think that the system is behaving in a totally deficient 

way (row 𝑃𝑅𝑂𝑃𝑆0), the observation will contradict (undermine) it with low-medium intensity. 

Table 10. Quantification of the observation support for each possible belief 

props Properties 𝑺𝑬𝑷𝑹𝑶𝑷𝑺𝒌 
𝑃𝑅𝑂𝑃𝑆0 ¬𝑃𝑅𝑂𝑃3 ⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ ¬𝑃𝑅𝑂𝑃1 1 3⁄  (5(−1) − 1(−1) + 4(−1)) = −2.6667 

𝑃𝑅𝑂𝑃𝑆1 ¬𝑃𝑅𝑂𝑃3 ⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1 1 3⁄  (5(−1) − 1(−1) + 4) = 0 

𝑃𝑅𝑂𝑃𝑆2 ¬𝑃𝑅𝑂𝑃3 ⋀ 𝑃𝑅𝑂𝑃2 ⋀ ¬𝑃𝑅𝑂𝑃1 1 3⁄  (5(−1) − 1 + 4(−1)) = −3.3333 

𝑃𝑅𝑂𝑃𝑆3 ¬𝑃𝑅𝑂𝑃3 ⋀ 𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1 1 3⁄  (5(−1) − 1 + 4) = −0.6667 

𝑃𝑅𝑂𝑃𝑆4 𝑃𝑅𝑂𝑃3 ⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ ¬𝑃𝑅𝑂𝑃1 1 3⁄  (5 − 1(−1) + 4(−1)) = 0.6667 

𝑃𝑅𝑂𝑃𝑆5 𝑃𝑅𝑂𝑃3 ⋀ ¬𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1 1 3⁄  (5 − 1(−1) + 4) = 3.3333 

𝑃𝑅𝑂𝑃𝑆6 𝑃𝑅𝑂𝑃3 ⋀ 𝑃𝑅𝑂𝑃2 ⋀ ¬𝑃𝑅𝑂𝑃1 1 3⁄  (5 − 1 + 4(−1) ) = 0 

𝑃𝑅𝑂𝑃𝑆7 𝑃𝑅𝑂𝑃3 ⋀ 𝑃𝑅𝑂𝑃2 ⋀ 𝑃𝑅𝑂𝑃1 1 3⁄  (5 − 1 + 4) = 2.6667 



4.4 Deriving probabilities 69 

 

In order to derive probabilities of 𝑆𝐸𝑃𝑅𝑂𝑃𝑆𝑘, we will assume that 𝑆𝐸𝑃𝑅𝑂𝑃𝑆𝑘  shows a specific 

Likelihood Ratio 𝐿𝑅𝑘 , which follows the same relationship we used in Table 8. Equation (4.15) 

states this mapping, where the definition of Likelihood Ratio adopted in this section is 

expressed by (4.16). This definition suggests that 𝐿𝑅𝑘  is a relative measure of how 

discriminating a context condition is for a certain belief with respect to its opposite. In other 

words, a 𝐿𝑅𝑘  that tends to 0 indicates that the presence of the context condition will make 

𝑃𝑅𝑂𝑃𝑆𝑘  much more likely than 𝑃𝑅𝑂𝑃𝑆2𝑀−1−𝑘. On the other hand, if 𝐿𝑅𝑘  tends to infinity, it 

will indicate the contrary. In addition, thanks to the symmetry between opposite propositions 

(i.e., 𝑆𝐸𝑃𝑅𝑂𝑃𝑆𝑘 = −𝑆𝐸𝑃𝑅𝑂𝑃𝑆2𝑀−1−𝑘
), expression (4.15) satisfies the relation 𝐿𝑅𝑘 = 1/𝐿𝑅2𝑀−1−𝑘. 

In the previous example, 𝐿𝑅2 = 1
𝐿𝑅5

. That is, 𝐿𝑅2 = (1 − 0.9
5

 3.3333)−1 = 1/0.4, which 

represents 
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆5)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆2)

, and 𝐿𝑅5 = (1 − 0.9
5

 3.3333)1 = 0.4, where 𝐿𝑅5 = 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆2)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆5)

. 

𝐿𝑅𝑘 = (1 −
0.9
5

 |𝑆𝐸𝑃𝑅𝑂𝑃𝑆𝑘|)
𝑠𝑔𝑛(𝑆𝐸𝑃𝑅𝑂𝑃𝑆𝑘)

  (4.15) 

𝐿𝑅𝑘 =
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆2𝑀−1−𝑘)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)
 (4.16) 

To obtain the conditional distribution 𝑃(𝑐𝑡𝑥𝑖 | 𝑝𝑟𝑜𝑝𝑠) (i.e., 𝑃(𝑐𝑡𝑥𝑖 | 𝑝𝑟𝑜𝑝1,… , 𝑝𝑟𝑜𝑝𝑀)) from the 

likelihood ratios, we assume that the ratio of the conditional probabilities when negating the 

context condition will be 1/𝐿𝑅𝑘, as shown by Equation (4.17). In (4.18), we start from the 

definition of 𝐿𝑅𝑘 , first, we use the relation 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗) + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗) = 1 and then, 

we divide both sides of the equality by 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘). After that, we develop the expression 

until we obtain the final result, which can be seen in (4.19). Note that this result is a 

generalization of the equations obtained in Section 4.4.2. 

1
𝐿𝑅𝑘

=
𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆2𝑀−1−𝑘)

𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)
 (4.17) 



70 Hiding probabilistic networks behind high-level descriptions 

 

𝐿𝑅𝑘 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) = 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆2𝑀−1−𝑘)  

⟹ 𝐿𝑅𝑘 (1 − 𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘)) = 1 − 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆2𝑀−1−𝑘) 

⟹
𝐿𝑅𝑘 (1 − 𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘))

𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) =
1 − 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆2𝑀−1−𝑘)

𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘)  

⟹
𝐿𝑅𝑘

𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) − 𝐿𝑅𝑘 =
1

𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) −
1

𝐿𝑅𝑘
 

⟹ 𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) =
𝐿𝑅𝑘(𝐿𝑅𝑘 − 1)

(𝐿𝑅𝑘 − 1)(𝐿𝑅𝑘 + 1) 

⟹ 𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) =
𝐿𝑅𝑘

𝐿𝑅𝑘 + 1
 

⟹ 1 − 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) =
𝐿𝑅𝑘

𝐿𝑅𝑘 + 1 

⟹ 𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) =
1

𝐿𝑅𝑘 + 1 

(4.18) 

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) =
1

𝐿𝑅𝑘 + 1
;   𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) =

𝐿𝑅𝑘

𝐿𝑅𝑘 + 1
 (4.19) 

Example. Following the previous example, we can complete the information shown in Table 

10 with the conditional probabilities obtained after applying the equations in (4.19). The results 

can be seen in Table 11.  

Table 11. Conditional probabilities for the example 

props Likelihood ratio 𝑷(𝑪𝑻𝑿𝒊 | 𝒑𝒓𝒐𝒑𝒔) 𝑷(¬𝑪𝑻𝑿𝒊 | 𝒑𝒓𝒐𝒑𝒔) 

𝑃𝑅𝑂𝑃𝑆0  1.9231 0.3421 0.6579 

𝑃𝑅𝑂𝑃𝑆1 1 0.5 0.5 

𝑃𝑅𝑂𝑃𝑆2  2.5 0.2857 0.7143 

𝑃𝑅𝑂𝑃𝑆3  1.1364 0.4681 0.5319 

𝑃𝑅𝑂𝑃𝑆4  0.88 0.5319 0.4681 

𝑃𝑅𝑂𝑃𝑆5  0.4 0.7143 0.2857 

𝑃𝑅𝑂𝑃𝑆6  1 0.5 0.5 

𝑃𝑅𝑂𝑃𝑆7  0.52 0.6579 0.3421 



4.4 Deriving probabilities 71 

 

4.4.4 Distribution P(𝐍𝐨𝐛𝐬 𝐢
<𝐭>  | ctxi ) 

In essence, this probability distribution quantifies how well the recent history of occurrences 

of an observation fits with the presence of a context condition. Referring to the example on the 

use of robots in hospitals, this distribution may state things like, if the robot is believed to be 

in the “stranded without battery” condition, it is unlikely that the observation “battery less than 

1% and not in the charging station” (see Table 4) would have not been occurred. In fact, the 

distribution will tell us that what is expected is that this observation appears several times 

whenever the context condition is present. In the following, we will derive the distribution 

𝑃(Nobs i
<t> |𝑐𝑡𝑥𝑖) based on two concepts: persistence and repetition of the observations. Recall that 

these concepts were introduced in Section 4.1. 

4.4.4.1 Persistence of the observations 

In the description shown in Table 4, we annotated each observation with the maximum period 

of time in which the effect of an occurrence remains with some influence until it disappears. 

Formally, the notion of persistence appears in the term 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  through the distribution 

𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏). According to Equation (3.1), 𝑁𝑜𝑏𝑠 𝑖

<𝑡> , the average number of past 

occurrences (of an observation 𝑜𝑏𝑠𝑖) that are still active at time t, depends on 

𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏), the probability that a particular occurrence 𝑜𝑏𝑠𝑖

<𝑡> continues to be 

active after a period of time 𝜏. As a result, to find 𝑃(Nobs i
<t> |𝑐𝑡𝑥𝑖), we first need to be able to 

compute 𝑁𝑜𝑏𝑠 𝑖
<𝑡> , which implies that we have to derive 𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖

<𝑡>} | 𝜏). 

In order to obtain the distribution 𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏), we will consider a continuous-time 

Markov chain [47] to describe how the state of an occurrence changes over time, from alive, 

when it is active, to dead, when it is not. Figure 14 shows the transition graph and the 

corresponding transition rate matrix (denoted by Q), in which all possible transitions between 

the two states are represented. Each element of the matrix indicates a transition depicted on the 

graph as an arrow, such that the elements of the first row correspond to transitions departing 

from dead and the elements of the second row those departing from alive. Moreover, the first 

column gathers the transitions ending in dead and the second one those ending in alive. The 



72 Hiding probabilistic networks behind high-level descriptions 

 

self-transitions are on the diagonal of the matrix and have been defined so that the rows sum to 

zero (a necessary condition in any transition rate matrix). 

 

Figure 14. Transition graph and transition rate matrix of an occurrence 

The distribution 𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏) shows its maximum value when 𝜏 = 0 and decays over 

time, being 𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏 → ∞) = 0. In other words, since it happens, an occurrence 

moves towards the dead state as time passes. Therefore, as dead is a terminal state, 𝜆 must be 

equal to 0, which results in the transition rate matrix shown in (4.20). 

𝑄 = (0 0
𝜇 −𝜇)  (4.20) 

Thanks to the Kolmogorov forward equation, see (4.22), we can determine the transition 

probability matrix, denoted by 𝑃(𝑡). An element of this matrix, 𝑃𝑖𝑗(𝑡), indicates the probability 

of transitioning from state i to state j at time t, assuming that 𝑖, 𝑗 ∈ {0,1} where 0 and 1 

correspond to dead and alive, respectively. 𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏) will be calculated as the 

probability of being in the alive state (𝑗 = 1) at time 𝜏, that is,  

𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏) = 𝑃01(𝜏) +  𝑃11(𝜏) = 𝑃11(𝜏) (4.21) 

Note that it is reduced to 𝑃11(𝜏) since the probability of transitioning from dead to alive is 0. 

To find 𝑃11(𝑡), we have to solve the differential equation (4.23) obtained after developing the 

matrix multiplication in the Kolmogorov forward equation in (4.24). 

𝑑𝑃(𝑡)
𝑑𝑡

= 𝑃(𝑡) 𝑄  (4.22) 

𝑑𝑃11(𝑡)
𝑑𝑡

= −𝜇 𝑃11(𝑡) (4.23) 

(
𝑑𝑃00(𝑡) 𝑑𝑡⁄ 𝑑𝑃01(𝑡) 𝑑𝑡⁄
𝑑𝑃10(𝑡) 𝑑𝑡⁄ 𝑑𝑃11(𝑡) 𝑑𝑡⁄ ) = (

𝑃00(𝑡) 𝑃01(𝑡)
𝑃10(𝑡) 𝑃11(𝑡)

) (0 0
𝜇 −𝜇) (4.24) 



4.4 Deriving probabilities 73 

 

The solution of the equation (4.23) can be calculated as follows: 

∫
𝑑𝑃11(𝑡)
𝑃11(𝑡)

𝑃11(𝑡)

𝑃11(0)
= −∫ 𝜇 𝑑𝑡

𝑡

0
 

⇒ ln[𝑃11(𝑡)] − ln[𝑃11(0)] = −𝜇 𝑡  

⇒ 𝑃11(𝑡) = 𝑃11(0) 𝑒−𝜇 𝑡 

(4.25) 

Assuming that the probability of being active for an occurrence that just happened is 1, 𝑃11(0) 

must also be equal to 1, which produces the final result (4.26). To get 𝜇, we have to consider 

the persistence value defined in the high-level specification. As mentioned, persistence 

indicates the maximum period of time that an occurrence remains. We will think that “the 

maximum period” is the time in which the probability of being active approaches a value close 

to 0, in our case, 0.01. Taking into account this and clearing 𝜇 from (4.26), we obtain 

Equation (4.27). Note that all time values in these expressions will be in seconds. 

𝑃(𝐴𝐶𝑇𝐼𝑉𝐸{𝑜𝑏𝑠𝑖
<𝑡>} | 𝜏) = 𝑒−𝜇 𝜏 (4.26) 

𝜇 = −
𝑙𝑛(0.01)

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒
 (4.27) 

4.4.4.2 Repetition of the observations 

The presence of a context condition can make an observation occurs multiple times, where the 

influence of each occurrence may depend on the previous ones. To set this behaviour in the 

distribution 𝑃(Nobs i
<t> |𝑐𝑡𝑥𝑖), we will specify the Likelihood Ratio (LR) of the average number of 

active occurrences Nobs i
<t>  given a context condition 𝑐𝑡𝑥𝑖 , as defined in Equation (4.28). Figure 

15 shows two possible LR profiles. In the left graph, occurrences gradually become more 

discriminating as the average number of active occurrences grows, so that the first occurrences 

have less impact than the later ones. In other words, as an observation is repeated, the process 

gains confidence that the context condition is present. As for the right graph, the curve is 

sharper, which means that almost from the first occurrence the impact will always be the same. 

Note that, as the LR approaches 0, the evidence that the context condition exists becomes 

stronger. 



74 Hiding probabilistic networks behind high-level descriptions 

 

 

Figure 15. Possible LR profiles for Nobs i
<t>

 given a context condition 𝑐𝑡𝑥𝑖   

𝐿𝑅 =
𝑃(Nobs i

<t>  | ¬𝐶𝑇𝑋𝑖)
𝑃(Nobs i

<t>  | 𝐶𝑇𝑋𝑖)
  (4.28) 

The LR profile function. Although we can use any function 𝑓: ℝ>0 → (0, +∞) to specify the 

LR profile, we will consider an exponential function due to: (1) its simplicity, it is easy to 

operate; (2) its flexibility, it has one parameter that allows us to adjust its shape (as shown in 

Figure 15); and (3) its suitability, it fits well with the expected behaviour: evidence gains 

confidence as the observation is repeated. In particular, the function will be defined as follows. 

𝐿𝑅(Nobs i
<t> ) = 𝑒−𝛼 Nobs i

<t>
     (Nobs i

<t> ≥ 0) (4.29) 

The parameter  will be calculated taking into account how the attribute repetition was set in 

the high-level specification. If it has not been defined, we will select a profile like the right 

graph in Figure 15, in which occurrences tend to behave as independent observations. 

Conversely, if repetition has been defined, the profile may be more similar to the left graph.  

M/M/ as an equivalent model. To delve into the problem of how to calculate the parameter 

 according to repetition and then estimate the distribution 𝑃(Nobs i
<t> |𝑐𝑡𝑥𝑖), we consider that, 

when a context condition 𝑐𝑡𝑥𝑖  is present, the corresponding observation 𝑜𝑏𝑠𝑖  occurs following 

a Poisson process. In that situation, our model will behave as a M/M/ queue [48]. Figure 16 

shows its transition graph and transition rate matrix. 



4.4 Deriving probabilities 75 

 

 

𝑄 =

(

 
 

-λ λ 0 0 0
μ -(μ+λ) λ 0 0
0 2μ -(2μ+λ) λ 0
0 0 3μ -(3μ+λ) λ
0 0 0 4μ ⋱)

 
 

 

Figure 16. Transition graph and transition rate matrix for a M/M/ queue. Self-transitions have been omitted 

in the diagram for the sake of clarity 

In queueing theory, a M/M/ is a stochastic model that assumes the following conditions: 

• The state space is a set {0, 1, 2, 3, ...} where the value corresponds to the number of 

jobs in the system. 

• Arrivals occur at rate 𝜆 according to a Poisson process and move the system from state 

i to i+1. 

• The system has an infinite number of servers so arriving jobs are served with no waiting 

time.  

• The service time is exponentially distributed with parameter μ. Transitions from state i 

to i−1 are at rate iμ (since i jobs are being served in parallel). 

At the end of this section, we will provide a proof that our process is equivalent to a M/M/ 

queue. For now, we can intuitively see that this model fits well with our problem, such that 

(1) arrivals are occurrences of an observation that is repeated with rate 𝜆, (2) the state indicates 

the average number of active occurrences at a given time, (3) occurrences are stochastically 

independent and remain active for a time that is exponentially distributed with parameter μ 

according to (4.27) and (4) when an occurrence dies and is no longer active, we consider it 

served and out of the system. 

Delving into how 𝐍𝐨𝐛𝐬 𝐢
<𝐭>  changes over time in order to determine  (and consequently ). 

We are going to pay attention to how the average number of active occurrences Nobs i
<t>  changes 

over time from t=0 until reaching stability, which, in terms of a M/M/ queue, means to 

looking at the average queue length during the transient period. According to this model, when 

the process starts in state 0, Nobs i
<0>  is 0. As the observation is repeated, Nobs i

<t>  gradually increases 

until it reaches stability at 𝜆 𝜇⁄ . Equation (4.30) describes this behaviour (see [48] for more 

details about the derivation of this formula on a M/M/ queue). 



76 Hiding probabilistic networks behind high-level descriptions 

 

Nobs i
<t> =

𝜆
𝜇
 (1 − 𝑒−𝜇𝑡)  (4.30)  

The length of the transient period coincides with the persistence time of the observation, that 

is, the maximum period in which an occurrence remains with some influence. However, as we 

limited this maximum period to the time in which the probability of being active drops to 0.01 

(see the previous section), if we apply 𝑡 = 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 to Equation (4.30) (and the definition 

of 𝜇 given in (4.27)), we are not going to obtain 𝜆 𝜇⁄  but a close approximation: Nobs i
<𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒> =

𝜆

𝜇
 (1 − 𝑒ln(0.01) 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒/𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒) = 0.99 𝜆 𝜇⁄ . Figure 17 illustrates how Nobs i

<t>  tends to 𝜆 𝜇⁄  

(Nobs i
<𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒> = 4.34 in the example), which slightly differs from the value obtained 

(Nobs i
<𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒> = 4.30) when applying the corresponding persistence time (t = 600s). 

 

Figure 17. Example of how Nobs i
<t>  changes during the transient period 

In the high-level specification, we introduced the concept of repetition to indicate that, during 

the life of an occurrence, others may happen in a way that all contribute to establishing the 

overall influence of the evidence. In this sense, we consider that the attribute repetition (how 

many times an observation has to be repeated to have full effect) will define the average number 

of active occurrences that is achieved when the observation reaches stability, that is, 

Nobs i
<𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦> = 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 + 1 (we add 1 to take into account the first occurrence of the 

observation). Therefore, clearing 𝜆 from Nobs i
<𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦> = 𝜆 𝜇⁄ , we obtain (4.31). Note that by 

default 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 = 0, which make Nobs i
<t>  tend to 𝜆 𝜇⁄ = 1, since on average only one 

occurrence will be expected. 

𝜆 = (repetition + 1) μ (4.31) 

0 100 200 300 400 500 600
time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Av
er

ag
e 

nu
m

be
r o

f a
ct

iv
e 

oc
cu

rre
nc

es



4.4 Deriving probabilities 77 

 

Calculation of . The presence of a context condition will become apparent if the average 

number of active occurrences from the corresponding observation behaves as described in 

Figure 17. While the first occurrences may not mean anything, the evidence will get stronger 

as Nobs i
<t>  grows, reaching its maximum effect once Nobs i

<t>  enters the stationary phase at 𝜆 𝜇⁄  

(0.99 𝜆 𝜇⁄ , considering our approximation). Therefore, the parameter  in (4.29) will be set to 

show a highly discriminant LR (0.01, in our case) at Nobs i
<t> = 0.99 𝜆 𝜇⁄ , as seen in (4.32). 

0.01 = 𝑒−𝛼 0.99 𝜆𝜇  ⟹  α = −
ln (0.01)
0.99 𝜆 𝜇⁄  (4.32) 

Approach to find the distribution of 𝐍𝐨𝐛𝐬 𝐢
<𝐭> . Now let us focus on 𝑃(Nobs i

<t> |𝐶𝑇𝑋𝑖), that is, the 

distribution of the average number of active occurrences for the observation obs𝑖 when the 

context condition ctx𝑖  is present. In order to simplify the handling of probabilities, we are going 

to quantize Nobs i
<t>  into K+1 bins, so that we go from a continuous variable in the range [0,+∞) 

to a categorical variable defined in a finite set, 𝑞𝑛obs i
<t> ∈ {𝑄0, 𝑄1, 𝑄2 … ,𝑄𝐾}. The considered 

quantization process is specified in (4.33). Figure 18 shows a visual representation of the 

mapping between Nobs i
<t>  and 𝑞𝑛obs i

<t> . To determine ∆ we will consider that 𝑄𝐾 is reached when 

Nobs i
<t>  enters the stationary phase, that is, (𝐾 − 1

2
)∆ =  0.99 𝜆 𝜇⁄ . 

𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡> = 𝑄0  ⟺  Nobs i

<t> <
∆
2

 

𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡> = 𝑄𝑘  ⟺  (𝑘 −

1
2)∆ ≤ Nobs i

<t> < (𝑘 +
1
2)∆      (𝑘 = 1,2…𝐾 − 1) 

𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡> = 𝑄𝐾  ⟺  Nobs i

<t> ≥ (𝐾 −
1
2)∆ 

𝑤ℎ𝑒𝑟𝑒 ∆ =
0.99 𝜆 𝜇⁄
𝐾 − 1 2⁄   

(4.33) 

 

Figure 18. Visual representation of the quantization of Nobs i
<t>  

 



78 Hiding probabilistic networks behind high-level descriptions 

 

We will distinguish between transient and stationary phase, such that the probability 

distribution can be decomposed as shown in (4.34).  

𝑃(Nobs i
<t> |𝐶𝑇𝑋𝑖)~𝑃(𝑞𝑛obs i

<t> |𝐶𝑇𝑋𝑖) 

= 𝑃(𝑞𝑛obs i
<t>  | ¬𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌,𝐶𝑇𝑋𝑖) 𝑃(¬𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌 | 𝐶𝑇𝑋𝑖) 

+ 𝑃(𝑞𝑛obs i
<t>  | 𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌, 𝐶𝑇𝑋𝑖) 𝑃(𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌 | 𝐶𝑇𝑋𝑖) 

(4.34)  

where: 

• 𝑃(qnobs i
<t>  | ¬𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌, 𝐶𝑇𝑋𝑖) is the distribution of 𝑞𝑛obs i

<t>  during the transient phase. 

• 𝑃(qnobs i
<t>  | 𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌, 𝐶𝑇𝑋𝑖) is the distribution of 𝑞𝑛obs i

<t>  during the stationary phase. 

• 𝑃(𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌 | 𝐶𝑇𝑋𝑖) is the probability of being in the stationary phase and 

𝑃(¬𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌 | 𝐶𝑇𝑋𝑖) = 1 − 𝑃(𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌 | 𝐶𝑇𝑋𝑖) the probability of being in the 

transient phase. 

Based on the LR profile, we will be able to obtain the probability distribution when the context 

condition is not present (𝑐𝑡𝑥𝑖 = ¬𝐶𝑇𝑋𝑖) as seen in (4.35).  

𝑃(Nobs i
<t> |¬𝐶𝑇𝑋𝑖)~𝑃(𝑞𝑛obs i

<t> |¬𝐶𝑇𝑋𝑖) = 𝑃(𝑞𝑛obs i
<t> |𝐶𝑇𝑋𝑖) 𝐿𝑅(𝑘∆) (4.35) 

The expression 𝐿𝑅(𝑘∆) is the LR associated with Nobs i
<t> = 𝑘∆, which is the middle of the bin 

defined by 𝑄𝑘 . However, according to its definition in (4.29), 𝐿𝑅 ≤ 1 ∀𝑞𝑛obs i
<t> , so that the sum 

of the distribution cannot be 1, i.e. ∑ 𝑃(𝑞𝑛obs i
<t> = 𝑄𝑘 | ¬𝐶𝑇𝑋𝑖)𝐾

𝑘=0 < 1. This fact violates the 

principles of probability theory because we are ignoring the concept of counterevidence. 

As an observation occurs it reinforces the claim that a certain context condition is present, this 

is the idea behind Nobs i
<t>  - the more occurrences per unit of time, the greater its value and, 

therefore, the greater the probability that a certain condition exists. When there are no 

occurrences of an observation (Nobs i
<t> = 0) the uncertainty is maximum. However, in our model, 

we have not considered counterevidence, that is, evidence that contradicts the presence of the 

context condition. Intuitively, the concept of counterevidence helps us balance the probability 

distribution, so that its sum is 1. Counterevidence could be included explicitly as a new type of 

observation or implicitly as a function of time - the longer without positive evidence, the more 

likely the context condition is not present. Although this concept is not addressed, (4.36) shows 



4.4 Deriving probabilities 79 

 

its effect on the probability distribution. In this expression, a new value for 𝑞𝑛obs i
<t>  (named 𝑄𝑐𝑒) 

represents any counterevidence. 

𝑃(𝑞𝑛obs i
<t> = 𝑄𝑐𝑒|𝐶𝑇𝑋𝑖) = 0;   𝑃(𝑞𝑛obs i

<t> = 𝑄𝑐𝑒|¬𝐶𝑇𝑋𝑖) = 1 − ∑ 𝑃(𝑞𝑛obs i
<t> = 𝑄𝑘 | ¬𝐶𝑇𝑋𝑖)

𝐾

𝑘=0

 (4.36) 

Distribution during the transient phase. Given a context condition 𝑐𝑡𝑥𝑖 , normally, the 

transient phase appears twice: (1) when the condition begins to be present, and (2) once the 

condition clears. For example, the observation “battery less than 1% and not in the charging 

station” will start when the robot is entering the “stranded without battery” condition. As the 

observation is repeated, more evidence will be added and, eventually, Nobs i
<t>  will reach stability, 

consolidating the belief of being in that condition. After a while, the situation of the robot may 

change and then the condition would disappear, e.g., someone could have replaced the battery. 

From that moment, Nobs i
<t>  will gradually drop to 0. This closing period will behave as the 

opening one but in reverse. Although in terms of distribution of Nobs i
<t>  (or qnobs i

<t> ) both transient 

periods are equivalent, we focus on the opening period, which was described by the M/M/ 

queue through the Equation (4.30). It is because we are conditioned to the presence of 𝑐𝑡𝑥𝑖  (i.e., 

𝑐𝑡𝑥𝑖 = 𝐶𝑇𝑋𝑖) and the transient closing only happens once this condition disappears (i.e., 𝑐𝑡𝑥𝑖 =

¬𝐶𝑇𝑋𝑖).  

To obtain the cumulative distribution function (CDF) of Nobs i
<t>  during the transient period, we 

consider that time t is a uniformly distributed variable, whose values are in the interval [0, T], 

with t = 0 being the beginning of the transient period and t = T the end of this period. Note that 

T will correspond to the configured persistence time. Expression (4.37) shows the CDF of t. 

Based on this function, we can develop the CDF of Nobs i
<t> , denoted by F𝑁(𝑛), as seen in (4.38). 

F𝑡(𝑡′) = 𝑃(t < 𝑡′) =
𝑡′

𝑇
       (0 ≤ 𝑡′ ≤ 𝑇) (4.37) 

F𝑁(𝑛) = 𝑃(Nobs i
<t> < 𝑛 | ¬𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌, 𝐶𝑇𝑋𝑖) = 𝑃 (

𝜆
𝜇

(1 − 𝑒−𝜇𝑡) < 𝑛 |… ) 

= 𝑃 (𝑡 <
−1
𝜆

ln(1 −
𝜇
𝜆

𝑛) |… ) =
−1
𝜇𝑇

ln (1 −
𝜇
𝜆
𝑛)   

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑛 ≤
𝜆
𝜇

(1 − 𝑒−𝜇𝑇) 

(4.38) 



80 Hiding probabilistic networks behind high-level descriptions 

 

𝑃(𝑞𝑛obs i
<t>  | ¬𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌, 𝐶𝑇𝑋𝑖) arises from applying the CDF above to obtain the probability 

that Nobs i
<t>  lies in each of the bins defined by 𝑞𝑛obs i

<t> . The resulting probability distribution has 

been developed in (4.39). Note that we have assigned zero to the probability associated with 

𝑄𝐾, since it is only present in the stationary phase. Also, we arrived at the final expressions 

after some simplifications using the definition of ∆ and 𝜇 in (4.33) and (4.27) respectively, and 

considering T as the persistence time. Although these expressions end up not depending on 𝜇 

or 𝜆, these parameters are an essential part in the quantization of Nobs i
<t>  into 𝑄0,𝑄1,𝑄2 …, so 𝜇 

and 𝜆 are still present indirectly, see (4.33). 

𝑃(𝑞𝑛obs i
<t> = 𝑄0 | ¬𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌,𝐶𝑇𝑋𝑖) = P (Nobs i

<t> <
∆
2
 |… ) = F𝑁 (

∆
2) =

−1
𝜇𝑇

ln (1 −
𝜇
2𝜆

∆)  

=
−1

ln (0.01)
ln (1 −

0.99
2𝐾 − 1) 

𝑃(𝑞𝑛obs i
<t> = 𝑄𝑘 | ¬𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌, 𝐶𝑇𝑋𝑖) = P((𝑘 −

1
2)∆ ≤ Nobs i

<t> < (𝑘 +
1
2)∆ |… ) 

                  = F𝑁 ((𝑘 + 1
2
)∆) − F𝑁 ((𝑘 − 1

2
)∆) = 1

𝜇𝑇
[ln (1 − 𝜇

𝜆
(𝑘 − 1

2
)∆) − ln (1 − 𝜇

𝜆
(𝑘 + 1

2
) ∆)] 

                   = −1
ln (0.01)

[ln (1 − 0.99 (𝑘−1/2)
𝐾−1/2

) − ln (1 − 0.99 (𝑘+1/2)
𝐾−1/2

)]    (0 < k < 𝐾) 

𝑃(𝑞𝑛obs i
<t> = 𝑄𝐾 | ¬𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌, 𝐶𝑇𝑋𝑖) = 0 

(4.39) 

Distribution during the stationary phase. In the stationary phase, Nobs i
<t>  is expected to be in 

the interval (0.99 𝜆 𝜇⁄ , 𝜆 𝜇⁄ ), since at the end of the transient period Nobs i
<t>  is 0.99 𝜆 𝜇⁄  and it 

tends to 𝜆 𝜇⁄  as time passes. However, in practice, Nobs i
<t>  may fluctuate due to its random nature 

or because the configured 𝜆 and 𝜇 may not fit well with reality, causing Nobs i
<t>  to fall outside 

this interval. For this reason, as we can see in (4.40), we have considered a very simple 

distribution, where 𝑄𝐾 represents any value of Nobs i
<t>  greater than 0.99 𝜆 𝜇⁄ . This will make the 

model more robust. 

𝑃(𝑞𝑛obs i
<t> = 𝑄𝑘 | 𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌,𝐶𝑇𝑋𝑖) = 0    (0 ≤ k < 𝐾) 

𝑃(𝑞𝑛obs i
<t> = 𝑄𝐾 | 𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌, 𝐶𝑇𝑋𝑖) = 1 

(4.40)  

 



4.4 Deriving probabilities 81 

 

Probability of being in the stationary phase. If the context condition ctx𝑖  is present, the term 

𝑃(𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌 | 𝐶𝑇𝑋𝑖) indicates the proportion of time in which Nobs i
<t>  is in the stationary 

phase. For example, regarding the context condition “stranded without battery”, a probability 

of 0.8 would indicate that if on average this condition lasts 10 minutes, the robot will spend 2 

minutes consolidating the evidence (the transient phase), and 8 minutes in which the evidence 

will have full effect on the safety estimate (the stationary phase). Since we do not have a priori 

information, we will start by considering 𝑃(𝑆𝑇𝐴𝑇𝐼𝑂𝑁𝐴𝑅𝑌 | 𝐶𝑇𝑋𝑖) = 0.5 (i.e., both phases are 

weighted equally in (4.34)). Although we could adjust this assumption at runtime based on the 

data, this would have no effect on the results since it does not change the likelihood ratio used 

to build the probability distribution in (4.34). 

A proof that our model is equivalent to a M/M/ queue. To show the equivalence between 

a M/M/ queue and our model when observations follow a Poisson process, we will check 

whether both approaches provide the same expected value for Nobs i
<t> . In a M/M/ queue, Nobs i

<t>  

is the average queue length, whose expected value is 𝜆 𝜇⁄  [48]. In our model, Nobs i
<t> =

∑ 𝑒−𝜇(𝑡−𝑡𝑖)∀𝑡𝑖 , that is, the average number of active occurrences of 𝑜𝑏𝑠𝑖  at time t was defined as 

the sum of the probabilities that any past occurrence (detected at time 𝑡𝑖) remains active (see 

this definition in (3.1) and how we derived the probability in Section 4.4.4.1). As the expected 

value of the sum of several random variables is equal to the sum of their expectations, we can 

reduce the problem as follows.  

𝐸(Nobs i
<t> ) = 𝐸 (∑𝑒−𝜇(𝑡−𝑡𝑖)

∀𝑡𝑖

) = ∑𝐸(𝑒−𝜇(𝑡−𝑡𝑖))
∀𝑡𝑖

= ∑ 𝐸(𝑁𝑖)
∀𝑡𝑖

 (4.41)  

In order to calculate 𝐸(𝑁𝑖), first, we have to determine the cumulative distribution 

function (CDF) of 𝑁𝑖 . As we did before when we presented the Equation (4.37), we consider 

that time t is a uniformly distributed variable, whose values are in the interval [0, T). The 

resulting CDF can be seen in (4.42). 

𝐹(𝑁𝑖) = 𝑃(𝑁𝑖 ≤ 𝑛) = 𝑃(𝑒−𝜇(𝑡−𝑡𝑖) ≤ 𝑛) = 1 − 𝑃 (𝑡 ≤
−1
𝜇

ln(n) + 𝑡𝑖) =
1
𝜇𝑇

ln(n) +
𝑡𝑖
𝑇

+ 1 

𝑤ℎ𝑒𝑟𝑒 𝑡𝑖 ∈ ℝ | 0 ≤ 𝑡𝑖 < 𝑇  𝑎𝑛𝑑  𝑛 ∈ ℝ | 0 ≤ 𝑛 ≤ 1  

(4.42)  



82 Hiding probabilistic networks behind high-level descriptions 

 

Once we have the CDF, we can compute the probability density function (PDF) of 𝑁𝑖 , and from 

that, the expected value 𝐸(𝑁𝑖). This process is shown in (4.43) and (4.44) respectively. 

𝑓(𝑁𝑖) =
𝑑𝐹(𝑛)

𝑑𝑛
=

𝑑
𝑑𝑛 (

1
𝜇𝑇

ln(n) +
𝑡𝑖
𝑇

+ 1) =
1

𝜇𝑇𝑛
 (4.43) 

𝐸(𝑁𝑖) = ∫ 𝑛 𝑓(𝑛) 𝑑𝑛 =
1

0
∫

1
𝜇𝑇

 𝑑𝑛
1

0
=

1
𝜇𝑇

[1 − 0] =
1
𝜇𝑇

 (4.44) 

The term 𝐸(𝑁𝑖) is the contribution to 𝐸(Nobs i
<t> ) of a past occurrence detected at time 𝑡𝑖 . Given 

that this term is independent of 𝑡𝑖 , the summation ∑ 𝐸(𝑁𝑖)∀𝑡𝑖  can be reduced to multiply 𝐸(𝑁𝑖) 

by the average number of occurrences that appear in a period T. For that, as we have assumed 

a Poisson process to describe how often an observation occurs when a context condition is 

present, if an observation is repeated with rate 𝜆, the average number of occurrences in a period 

T will be 𝜆𝑇. Thus, the resulting expected value of Nobs i
<t>  is finally obtained in (4.45). Note that 

this value is the same as that prescribed by the M/M/ queue. 

𝐸(Nobs i
<t> ) = ∑ 𝐸(𝑁𝑖)

∀𝑡𝑖

= 𝜆𝑇 
1
𝜇𝑇

=
𝜆
𝜇

 (4.45)  

Example. Let us consider the observation “stranded without battery” specified in Table 4. This 

observation must be repeated at least 5 times for the evidence to have full effect. Moreover, its 

persistence is defined as “medium” (relative to a 7-day time frame). According to Section 4.3.3, 

it will result in a persistence of 2d 9h 27min 18s (i.e., 206838s). From this information, we can 

calculate the following parameters. 

𝜇 = −
ln(0.01)

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒
= −

ln(0.01)
206838

= 2.2265 ∙ 10−5 

𝜆 = (𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 + 1) 𝜇 = (5 + 1) 2.2265 ∙ 10−5 = 1.3359 ∙ 10−4 

α = −
ln(0.01)
0.99 𝜆 𝜇⁄ = −

ln(0.01)
0.99 ∙ 1.3359 ∙ 10−4 2.2265 ∙ 10−5⁄ = 0.7753 

(4.46)  

Taking into account 11 levels of quantization and applying the equations obtained in this 

section, Table 12 presents the resulting probabilities. 



4.5 Summary 83 

 

Table 12. Probabilities derived from the observation 

𝑵𝒐𝒃𝒔 𝒊
<𝒕>  𝒒𝒏𝒐𝒃𝒔 𝒊

<𝒕>  𝑷(𝒒𝒏𝒐𝒃𝒔 𝒊
<𝒕> | 𝑪𝑻𝑿𝒊) 𝑷(𝒒𝒏𝒐𝒃𝒔 𝒊

<𝒕> | ¬𝑪𝑻𝑿𝒊) 

[0, 9.87) 𝑄0 0.0058 0.0058 

[9.87, 29.62) 𝑄1 0.0126 0.0078 

[29.62, 49.37) 𝑄2 0.0143 0.0054 

[49.37, 69.12) 𝑄3 0.0165 0.0039 

[69.12, 88.87) 𝑄4 0.0195 0.0028 

[88.87, 108.62) 𝑄5 0.0237 0.0021 

[108.62, 128.37) 𝑄6 0.0304 0.0017 

[128.37, 148.12) 𝑄7 0.0424 0.0014 

[148.12, 167.87) 𝑄8 0.0704 0.0015 

[167.87, 187.62) 𝑄9 0.2644 0.0034 

[187.62, +) 𝑄10 0.5 0.0039 

4.5 Summary 

In this chapter, we have presented a high-level specification to help domain experts express 

QoS metrics on non-functional properties, conforming to the probabilistic framework 

introduced in Chapter 3. From this specification, a ready-to-use probabilistic network is derived 

transparently without having to deal with its complexities. Next chapter will show how this 

probabilistic network can be put into action when running QoS metrics. 



84 Running QoS metrics 

 

 Running QoS metrics 

This chapter covers the main aspects of running and using QoS metrics, including the 

algorithms for calculating QoS estimates, the application of statistics, and how to tune QoS 

metrics. 

5.1 Process for calculating QoS metrics 

Although Section 3.4 introduced the mathematics that allows us to obtain QoS estimates, the 

classical formulation of a probabilistic network is not practical. Mainly because it makes 

extensive use of multiplications, so that the more observations the more multiplications will 

appear, and precision can end up being an issue since the operands are small numbers 

(probabilities). This section shows the complete process to calculate QoS metrics: (1) detect 

the occurrence of observations, (2) update the accumulated evidence, and (3) estimate QoS 

metric. For the second point we will present a robust method to address the update without the 

need to store the full history of occurrences. Finally, we will introduce a more practical 

formulation as an alternative to the classical one. 

5.1.1 First step: detect the occurrence of observations 

Observations can be thought of as event-driven monitors that react to specific changes in a set 

of context variables. Each observation defines a condition, so that, when it is detected, the 

corresponding observation produces an event, which, as a result, updates the input evidence of 

the probabilistic network. In a later chapter we will see more details of how this mechanism 

can be implemented. 



5.1 Process for calculating QoS metrics 85 

 

5.1.2 Second step: update the accumulated evidence 

Whenever an observation obs𝑖 occurs, its average number of active occurrences 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  will need 

to be updated. This term represents the accumulated evidence associated with an observation, 

which, according to equations (3.1) and (4.16), is defined as follows. 

Nobs i
<t> = ∑𝑒−𝜇𝜏𝑘

∀𝑘

 (5.1)  

Being 𝜏𝑘 the period of time since the k-th occurrence of the observation, i.e., 𝜏𝑘 = 𝑡 − 𝑡𝑘, where 

𝑡 is the current time and 𝑡𝑘  the time the k-th occurrence happened. To recalculate 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  with 

each new occurrence without having to store the entire history of occurrences, we can rewrite 

the previous expression as shown in (5.2). Note that the last summation can be easily updated 

as new occurrences arrive. This summation can be represented by the accumulator variable 

𝑎𝑐𝑐𝑜𝑏𝑠 𝑖, such that, when we have a new occurrence at time 𝑡𝑛, we just need to add its 

contribution to the accumulator (i.e., 𝑎𝑐𝑐𝑜𝑏𝑠 𝑖 ← 𝑎𝑐𝑐𝑜𝑏𝑠 𝑖 + 𝑒𝜇𝑡𝑛). 

Nobs i
<t> = ∑ 𝑒−𝜇(𝑡−𝑡𝑘)

∀𝑘

= 𝑒−𝜇𝑡 ∑𝑒𝜇𝑡𝑘

∀𝑘

= 𝑒−𝜇𝑡 𝑎𝑐𝑐𝑜𝑏𝑠 𝑖 (5.2)  

However, although this approach allows us to ignore the previous history of occurrences, 𝑒𝜇𝑡𝑛  

will tend to get larger and larger as 𝑡𝑛 increases, so the accumulator would not take long to 

have an arithmetic overflow. To solve it, below we have expressed N when a new occurrence 

arrives at t𝑛+1 as a function of the previous value at t𝑛. 

Nobs i
<t𝑛+1> = ∑ 𝑒−𝜇(𝑡𝑛+1−𝑡𝑘)

𝑛+1

𝑘=0

= 𝑒−𝜇𝑡𝑛+1 ∑ 𝑒𝜇𝑡𝑘

𝑛+1

𝑘=0

= 𝑒−𝜇𝑡𝑛+1 (𝑒𝜇𝑡𝑛+1 + ∑ 𝑒𝜇𝑡𝑘

𝑛

𝑘=0

)

= 1 + 𝑒−𝜇𝑡𝑛+1 ∑ 𝑒𝜇𝑡𝑘

𝑛

𝑘=0

= 1 + 𝑒−𝜇𝑡𝑛+1 𝑒𝜇𝑡𝑛 𝑒−𝜇𝑡𝑛 ∑ 𝑒𝜇𝑡𝑘

𝑛

𝑘=0

 

(5.3)  

which finally results in 

Nobs i
<t𝑛+1> = 1 + 𝑒−𝜇(𝑡𝑛+1−𝑡𝑛) Nobs i

<t𝑛>
 (5.4) 

Equation (5.4) shows how N can be recursively updated each time a new occurrence arrives, 

depending only on the previous update (Nobs i
<t𝑛>

) and the arrival time of the new (𝑡𝑛+1) and the 

previous occurrence (𝑡𝑛). Note that, since N is initially equal to 0, the first occurrence at t0 will 



86 Running QoS metrics 

 

have Nobs i
<t0> = 1. In the same way, if we wanted to calculate N 𝜏 seconds after the arrival of an 

occurrence at 𝑡𝑛, being 0 < 𝜏 < 𝑡𝑛+1, we should apply the following equation. 

Nobs i
<t𝑛+τ> = ∑ 𝑒−𝜇(𝑡𝑛+𝜏−𝑡𝑘)

𝑛

𝑘=0

= 𝑒−𝜇(𝑡𝑛+𝜏) ∑ 𝑒𝜇𝑡𝑘

𝑛

𝑘=0

= 𝑒−𝜇𝜏 𝑒−𝜇𝑡𝑛 ∑ 𝑒𝜇𝑡𝑘

𝑛

𝑘=0

 (5.5)  

which results in 

Nobs i
<t𝑛+τ> = 𝑒−𝜇𝜏 Nobs i

<t𝑛>
 (5.6)  

The method we propose consists of two steps. First, the accumulated evidence associated with 

each observation is continuously updated every time a new occurrence arrives. Based on 

Equation (5.4), Listing 1 shows the algorithm to update N with each new occurrence. Second, 

if we want to compute a new QoS estimate at time t, we will apply Equation (5.6) to obtain the 

current value of Nobs i
<t>  for each observation. Listing 2 shows the algorithm. This approach offers 

us an efficient and robust way of handling the accumulated evidence from the observations. 

algorithm update-evidence-with-new-occurrence-obs_i is 
     const:   𝜇𝑜𝑏𝑠 𝑖 ← −ln (0.01) 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖⁄    (𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖 in seconds see Equation (4.27)) 

     global: 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣>, update of N for the previous occurrence (initialized to 0) 

                  𝑡𝑝𝑟𝑒𝑣 , time of the previous occurrence in seconds (initialized to 0) 
     input:   𝑡𝑛𝑒𝑤, time of the new occurrence in seconds 

     output: 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑛𝑒𝑤>

, updated value of N for the observation 

     precondition: 𝑡𝑛𝑒𝑤 > 𝑡𝑝𝑟𝑒𝑣       

     𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑛𝑒𝑤> ← 1 + 𝑒𝑥𝑝 (−𝜇𝑜𝑏𝑠 𝑖 ×  (𝑡𝑛𝑒𝑤 − 𝑡𝑝𝑟𝑒𝑣)) × 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑝𝑟𝑒𝑣>
 

     𝑡𝑝𝑟𝑒𝑣 ← 𝑡𝑛𝑒𝑤  

     𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣> ← 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑛𝑒𝑤> 
     return 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑛𝑒𝑤> 

Listing 1. Algorithm for updating the accumulated evidence 

algorithm calculate-N-obs_i is 
     const: 𝜇𝑜𝑏𝑠 𝑖 ← −ln (0.01) 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖⁄    (𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖 in seconds see Equation (4.27)) 

     input: 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑙𝑎𝑠𝑡>, N of the last occurrence (initialized to 0) (calculated in Listing 1) 

                 𝑡𝑙𝑎𝑠𝑡, time of the last occurrence in seconds (initialized to 0) 

                 𝑡, current time in seconds 

     output: 𝑁𝑜𝑏𝑠 𝑖
<𝑡> , N for the observation i at time t 

     precondition: 𝑡 > 𝑡𝑙𝑎𝑠𝑡           
     return 𝑒𝑥𝑝(−𝜇𝑜𝑏𝑠 𝑖 ×  (𝑡 − 𝑡𝑙𝑎𝑠𝑡)) × 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑙𝑎𝑠𝑡> 

Listing 2. Algorithm for calculating N 



5.1 Process for calculating QoS metrics 87 

 

5.1.3 Third step: estimate QoS metrics 

In the case that properties do not share contexts, the QoS metric associated with a property 

prop can be expressed, according to Section 3.4, as shown in (5.7). The nomenclature will be 

the same as what we have defined in that section. 

𝑄𝑜𝑆 𝑚𝑒𝑡𝑟𝑖𝑐 ≡  𝑃(𝑃𝑅𝑂𝑃 | 𝑁𝑜𝑏𝑠 1
<𝑡> , … ,𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) =
∑ 𝑃(𝑃𝑅𝑂𝑃, 𝑐𝑡𝑥1, … , 𝑐𝑡𝑥𝑁,𝑁𝑜𝑏𝑠 1

<𝑡> , … ,𝑁𝑜𝑏𝑠 𝑁
<𝑡> )𝑐𝑡𝑥𝑖

∑ ∑ 𝑃(𝑝𝑟𝑜𝑝, 𝑐𝑡𝑥1, … , 𝑐𝑡𝑥𝑁,𝑁𝑜𝑏𝑠 1
<𝑡> , … ,𝑁𝑜𝑏𝑠 𝑁

<𝑡> )𝑐𝑡𝑥𝑖𝑝𝑟𝑜𝑝
 (5.7) 

If we divide both parts of the fraction by the numerator (we will consider that there are no 

indeterminacies due to null probabilities), we obtain 

𝑃(𝑃𝑅𝑂𝑃 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) = (1 +
∑ 𝑃(¬𝑃𝑅𝑂𝑃, 𝑐𝑡𝑥1, … , 𝑐𝑡𝑥𝑁,𝑁𝑜𝑏𝑠 1

<𝑡> , … ,𝑁𝑜𝑏𝑠 𝑁
<𝑡> )𝑐𝑡𝑥𝑖

∑ 𝑃(𝑃𝑅𝑂𝑃, 𝑐𝑡𝑥1,… , 𝑐𝑡𝑥𝑁,𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> )𝑐𝑡𝑥𝑖

)
−1

 (5.8) 

Applying the definition of 𝑃(𝑝𝑟𝑜𝑝, 𝑐𝑡𝑥1,… , 𝑐𝑡𝑥𝑁,𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) shown in Equation (3.3) and 

assuming that 𝑃(𝑃𝑅𝑂𝑃) = 𝑃(¬𝑃𝑅𝑂𝑃), we can get (5.9). 𝐿𝑅𝑜𝑏𝑠 𝑖 is expressed in (5.10), where we 

have changed 𝑃(𝑁𝑜𝑏𝑠 𝑖
<𝑡>  |𝐶𝑇𝑋𝑖) for (𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |𝐶𝑇𝑋𝑖), that is, we have introduced the quantization 

of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  according to what we saw in Section 4.4.4.2. 

𝑃(𝑃𝑅𝑂𝑃 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) =
1

1 + ∏ 𝐿𝑅𝑜𝑏𝑠 𝑖𝑖
 (5.9) 

𝐿𝑅𝑜𝑏𝑠 𝑖 =
𝑃(𝐶𝑇𝑋𝑖 | ¬𝑃𝑅𝑂𝑃) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |𝐶𝑇𝑋𝑖) + 𝑃(¬𝐶𝑇𝑋𝑖 | ¬𝑃𝑅𝑂𝑃) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |¬𝐶𝑇𝑋𝑖)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |𝐶𝑇𝑋𝑖) + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |¬𝐶𝑇𝑋𝑖)
 (5.10) 

Finally, operating with logarithms, we can improve the numerical stability by converting 

products into sums. 

𝑃(𝑃𝑅𝑂𝑃 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) = (1 + 𝑒∑ ln (𝐿𝑅𝑜𝑏𝑠 𝑖)𝑖 )
−1

 
(5.11) 

In the general case, where properties could have shared contexts, we saw in Section 3.4 that 

the QoS metric associated with a property 𝑝𝑟𝑜𝑝𝑗 can be expressed as shown in (5.12). 

𝑄𝑜𝑆 𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 𝑝𝑟𝑜𝑝𝑗  ≡  𝑃(𝑃𝑅𝑂𝑃𝑗 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) = ∑ 𝑃(𝑃𝑅𝑂𝑃𝑆𝑘 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> )
∀𝑘 | 𝑏𝑗=1

=
∑ ∑ 𝑃(𝑃𝑅𝑂𝑃𝑆𝑘, 𝑐𝑡𝑥1, … , 𝑐𝑡𝑥𝑁,𝑁𝑜𝑏𝑠 1

<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁
<𝑡> )𝑐𝑡𝑥𝑖∀𝑘 | 𝑏𝑗=1

∑ ∑ 𝑃(𝑃𝑅𝑂𝑃𝑆𝑘, 𝑐𝑡𝑥1, … , 𝑐𝑡𝑥𝑁, 𝑁𝑜𝑏𝑠 1
<𝑡> , … , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> )𝑐𝑡𝑥𝑖𝑘
 

(5.12) 



88 Running QoS metrics 

 

Note that this formulation is a generalization of (5.7), so that both are equivalent if 𝑝𝑟𝑜𝑝𝑠 ∈

{𝑃𝑅𝑂𝑃𝑆0, 𝑃𝑅𝑂𝑃𝑆1}, where 𝑃𝑅𝑂𝑃𝑆0 and 𝑃𝑅𝑂𝑃𝑆1 represent ¬𝑃𝑅𝑂𝑃 and 𝑃𝑅𝑂𝑃 respectively. 

Analogous to what we did previously, if we divide by the numerator, expand 

𝑃(𝑝𝑟𝑜𝑝𝑠, 𝑐𝑡𝑥1,… , 𝑐𝑡𝑥𝑁,𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) and apply logarithms, we end up with the expression 

in (5.13).  

𝑃(𝑃𝑅𝑂𝑃𝑗 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… , 𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) = ∑ (1 + ∑𝑒∑ ln (𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘>)𝑖

𝑙≠𝑘

)
−1

∀𝑘 | 𝑏𝑗=1

 

𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> =

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |𝐶𝑇𝑋𝑖) + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |¬𝐶𝑇𝑋𝑖)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |𝐶𝑇𝑋𝑖) + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |¬𝐶𝑇𝑋𝑖)

 

(5.13) 

(5.14) 

The term 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> provides an instantaneous and relative measure of how likely it is that the 

evidence about a context condition, provided by an observation, can be explained by the 

optimal (or non-optimal) performance of the system for some properties. Specifically, the term 

contrasts two possible configurations of props: (1) 𝑃𝑅𝑂𝑃𝑆𝑘 , which includes the assumption that 

the system behaves optimally with respect to the property under consideration, versus (2) 

𝑃𝑅𝑂𝑃𝑆𝑙 , which assumes that the system is not optimal with respect to that property. A 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> 

approaching 0 suggests a strong support for the presence of 𝑃𝑅𝑂𝑃𝑆𝑘 . On the contrary, if 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> 

tends to infinity, it greatly favours the presence of 𝑃𝑅𝑂𝑃𝑆𝑙 . Finally, a value equals to 1 has a 

neutral connotation, which implies that the current evidence provides no information about the 

property. See that, according to Equation (5.13), if all 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> were 1, the QoS estimate would 

be the baseline value, i.e. 0.5. 

As seen in (5.15), we can further develop (5.14), firstly by multiplying and dividing by 

𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |𝐶𝑇𝑋𝑖) and, secondly by using 𝑁𝑜𝑏𝑠 𝑖

<𝑡>  in place of 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |¬𝐶𝑇𝑋𝑖) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |𝐶𝑇𝑋𝑖)⁄  

in accordance with the LR profile defined in (4.29) and the relationship in (4.35). The result 

has the advantage of depending on 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  instead of 𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡> . 

𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> =

𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)  + 𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |¬𝐶𝑇𝑋𝑖)/𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |𝐶𝑇𝑋𝑖)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) + 𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |¬𝐶𝑇𝑋𝑖)/𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |𝐶𝑇𝑋𝑖)

 

=
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑒−𝛼 𝑁𝑜𝑏𝑠 𝑖

<𝑡>

𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) 𝑒−𝛼 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  

(5.15) 



5.1 Process for calculating QoS metrics 89 

 

Let us elaborate 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> in a different way to see more clearly how this term behaves depending 

on 𝑁𝑜𝑏𝑠 𝑖
<𝑡> . As shown in (5.16), we can express Equation (5.14) in terms of a logistic function, 

denoted by 𝑓(𝑧), with z defined in (5.17). 

𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> =

𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |𝐶𝑇𝑋𝑖) + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |¬𝐶𝑇𝑋𝑖)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |𝐶𝑇𝑋𝑖) + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |¬𝐶𝑇𝑋𝑖)

= (
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)

+
𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)

 
 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |¬𝐶𝑇𝑋𝑖)
𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |𝐶𝑇𝑋𝑖)
)

−1

+ (
𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)
𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

+
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)
𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)

 
 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |𝐶𝑇𝑋𝑖)
𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖

<𝑡>  |¬𝐶𝑇𝑋𝑖)
)

−1

=
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) (1 +

𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)  

 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |¬𝐶𝑇𝑋𝑖)

𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |𝐶𝑇𝑋𝑖)

)
−1

+
𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) (1 +

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)
𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) 

 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |𝐶𝑇𝑋𝑖)

𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |¬𝐶𝑇𝑋𝑖)

)
−1

=
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) 

1
1 + 𝑒−𝑧 +

𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) 

1
1 + 𝑒𝑧

=
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘)

 𝑓(𝑧) +
𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘)

 (1 − 𝑓(𝑧)) 

(5.16) 

𝑧 = − 𝑙𝑛 (
𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) ) − 𝑙𝑛 (

 𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |¬𝐶𝑇𝑋𝑖)

𝑃(𝑞𝑛𝑜𝑏𝑠 𝑖
<𝑡>  |𝐶𝑇𝑋𝑖)

)

= − 𝑙𝑛 (
𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) ) − 𝑙𝑛 (𝑒−𝛼𝑜𝑏𝑠 𝑖 𝑁𝑜𝑏𝑠 𝑖

<𝑡>
)

= − 𝑙𝑛 (
𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘) ) + 𝛼𝑜𝑏𝑠 𝑖 𝑁𝑜𝑏𝑠 𝑖

<𝑡>  

(5.17) 

Logistic functions have a sigmoid curve in the domain of all real numbers with a return value 

(y axis) that transitions from 0 to 1 monotonically. In our case, we have the sum of a logistic 

function and its reflection on the vertical axis (i.e., 1 − 𝑓(𝑧)), which represents two forces 

pulling in opposite directions: (1) evidence (in favour of the presence of the context condition) 

and (2) counterevidence (that contradicts the presence of the context condition). The first one 

is introduced by the term 𝑓(𝑧), which becomes more predominant as 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  grows. Note that, 

as we accumulate more evidence, 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> will approach 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)⁄ , 

which will be less than 1 if the observation reinforces or greater than 1 if it undermines. On the 

other hand, the counterevidence is introduced by the term 1 − 𝑓(𝑧), which reaches its maximum 

as 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  decreases taking negative values. In the end, this term would make 𝐿𝑅𝑜𝑏𝑠 𝑖

<𝑙,𝑘> approach 

𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)⁄ . However, as 𝑁𝑜𝑏𝑠 𝑖
<𝑡> ≥ 0, 𝐿𝑅𝑜𝑏𝑠 𝑖

<𝑙,𝑘> will never take this 

value, conversely it will be bounded between 1 (when 𝑁𝑜𝑏𝑠 𝑖
<𝑡> = 0) and 

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)⁄ . Finally, mention that this alternative formulation will be 



90 Running QoS metrics 

 

especially useful in a later section to address the estimation of QoS through neural networks. 

Listing 3 shows the proposed algorithm to estimate a QoS metric based on Equation (5.13). 

algorithm estimate-qos is 
     const: parameter  for each observation (see Section 4.4.4), 

                a table of probabilities 𝑃(𝑐𝑡𝑥𝑖|𝑝𝑟𝑜𝑝𝑠) for each observation (see Section 4.4.3) 

     input: the property 𝑝𝑟𝑜𝑝 for which we want the QoS estimate, 

                the updated value of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  for each observation (calculated with the algorithm in Listing 2) 

     output: estimate, QoS value for property 𝑝𝑟𝑜𝑝 

     𝑃𝑅𝑂𝑃𝑆𝑝𝑜𝑠 ← (𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡) 
     𝑃𝑅𝑂𝑃𝑆 ← (𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡) 
     for each 𝑝𝑟𝑜𝑝𝑠𝑗 defined in 𝑃(𝐶𝑇𝑋𝑖|𝑝𝑟𝑜𝑝𝑠) do  

          if 𝑝𝑟𝑜𝑝𝑠𝑗 | 𝑝𝑟𝑜𝑝 = 𝑃𝑅𝑂𝑃 then 

               𝑃𝑅𝑂𝑃𝑆𝑝𝑜𝑠 . 𝑖𝑛𝑠𝑒𝑟𝑡(𝑝𝑟𝑜𝑝𝑠𝑗) 

          end if 
           𝑃𝑅𝑂𝑃𝑆. 𝑖𝑛𝑠𝑒𝑟𝑡(𝑝𝑟𝑜𝑝𝑠𝑗) 
     end for 

     𝑙𝑒𝑛𝑝𝑜𝑠 ← 𝑃𝑅𝑂𝑃𝑆𝑝𝑜𝑠 . 𝑠𝑖𝑧𝑒 

     𝑙𝑒𝑛 ← 𝑃𝑅𝑂𝑃𝑆. 𝑠𝑖𝑧𝑒 − 1 

     𝐿𝐿𝑅 ← (𝑛𝑒𝑤 𝑙𝑒𝑛𝑝𝑜𝑠 × 𝑙𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑜 0) 

     for each 𝑜𝑏𝑠𝑖  do 
          𝑟 ← 0 

          for each 𝑝𝑟𝑜𝑝𝑠𝑘 in 𝑃𝑅𝑂𝑃𝑆𝑝𝑜𝑠  do  

                𝑐 ← 0 

               for each 𝑝𝑟𝑜𝑝𝑠𝑙 in 𝑃𝑅𝑂𝑃𝑆 do 
                    if 𝑝𝑟𝑜𝑝𝑠𝑙 ≠ 𝑝𝑟𝑜𝑝𝑠𝑘 do 

                         𝐿𝐿𝑅[𝑟, 𝑐] ← 𝐿𝐿𝑅[𝑟, 𝑐] + 𝑙𝑛(𝐿𝑅𝑜𝑏𝑗 𝑖
<𝑙,𝑘>)        (𝐿𝑅𝑜𝑏𝑗 𝑖

<𝑙,𝑘> calculated according to Equation 5.15 or 5.16) 

                         𝑐 ← 𝑐 + 1 

                    end if 
               end for 

               𝑟 ← 𝑟 + 1 

          end for 

     end for 
     𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 0 

     for r = 0 to 𝑙𝑒𝑛𝑝𝑜𝑠 do 
          𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ← 0 
          for c = 0 to 𝑙𝑒𝑛 do 

                𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ← 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 + 𝑒𝑥𝑝(𝐿𝐿𝑅[𝑟, 𝑐]) 
          end for 

          𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 1/(1 + 𝑝𝑎𝑟𝑡𝑖𝑎𝑙) 
     end for 

     return 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

Listing 3. Algorithm for estimating QoS metrics 



5.1 Process for calculating QoS metrics 91 

 

5.1.4 Example simulations 

Next, we show some simulations based on the hospital robot example introduced in Section 3.3. 

They were executed with a Java implementation of the algorithms presented in the previous 

sections. The simulations cover a period of 7 days with estimates every 2 minutes, resulting in 

a total of 5040 estimates per simulation processed in ~600ms on an average computer. 

5.1.4.1 Example 1: Bumping into someone 

As we explained in Section 3.3, among other reasons, the robot would be considered safe if it 

does not bump into anyone. So, it makes sense to have an observation that is triggered every 

time a collision is detected, which will greatly undermine the belief that the robot is operating 

optimally in terms of safety. Table 13 outlines the details of this observation. 

Table 13. Observation “bump into someone” 

(PATTERN) A collision event is received (PERSISTENCE) Long (7-day timeframe) (REPETITION) None 

(PROPERTY) Safety            (DIRECTION) Undermine         (STRENGTH) Very high 

Figure 19 presents the results of the simulation, in which we can see how the QoS metric 

associated with safety changes after the robot collides with someone. The horizontal axis of 

the graph corresponds to the time elapsed since the start of the simulation and the vertical one 

to the QoS estimate. At the beginning, the QoS estimate is 0.5, which represents the metric 

baseline. The observation occurs 6 hours from the start and produces a sharp drop in the 

estimate. Since there are no more occurrences, the metric will tend to return to 0.5, but very 

slowly as this observation has a long persistence. 

 
Figure 19. Safety when the robot collides with someone 

00:00:00 48:00:00 96:00:00 144:00:00
time

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

sa
fe

ty



92 Running QoS metrics 

 

5.1.4.2 Example 2: Acceptance among patients 

The degree of engagement can be determined by observing how patients behave with the robot. 

In particular, we consider that it is a sign of acceptance if people call the robot by its name. 

Thus, every time this happens, an observation will reinforce the belief that the robot is operating 

optimally in terms of user engagement. Table 14 outlines the details of this observation. 

Table 14. Observation “the robot is called by its name” 

(PATTERN) People call the robot by its name (PERSISTENCE) Some hours (REPETITION) 5 

(PROPERTY) Engagement            (DIRECTION) Reinforce         (STRENGTH) Low 

We have run the simulation with 200 random occurrences of the observation generated 

uniformly throughout the 7 days that have been simulated. Figure 20 shows 10 hours of the 

simulation, in which we can see the fluctuations in the QoS estimate produced by the 

occurrences (marked on the graph with dotted lines). The evidence is consolidated after 5 

consecutive repetitions, at which point the observation will reach its maximum effect on the 

estimate, whose value will be around 0.6. This observation provides weak evidence since 

STRENGH is low. 

 

Figure 20. User engagement by observing the acceptance among patients 

5.1.4.3 Example 3: Stranded without battery 

It is a safety concern to have the robot stranded without battery in the middle of a hospital 

corridor. Thus, an observation will be triggered whenever the battery is below 1% and the robot 

is not in the docking station. Once the robot reaches this situation, the observation is repeated 

04:00:00 06:00:00 08:00:00 10:00:00 12:00:00 14:00:00
time

0.45

0.5

0.55

0.6

0.65

en
ga

ge
m

en
t



5.1 Process for calculating QoS metrics 93 

 

periodically every few minutes until the situation ceases, either because the robot itself 

manages to reach the charging station or because the technical staff intervenes. As in the 

previous example, the evidence will not be consolidated until 5 consecutive repetitions are 

detected, at which point the observation achieves its maximum effect. Table 15 outlines the 

details of this observation. 

Table 15. Observation “stranded without battery” 

(PATTERN) The battery level is lower than 
1% and not in DOCKED state (PERSISTENCE) Medium (7-day timeframe) (REPETITION) 5 

(PROPERTY) Safety            (DIRECTION) Undermine         (STRENGTH) High 

Figure 21 shows the first 18 hours of the simulation. The observation occurs at 6:00:00 and 

five more times in 15-minute intervals. These occurrences have been marked on the graph with 

dotted lines. See that the estimate gradually decreases to 0.22 as the occurrences arrive, and 

only once there are not more occurrences, the estimate returns to the reference value after about 

60 hours. 

 

Figure 21. Safety when the robot is stranded without battery 

In the examples we have seen, all the observations had an impact on individual properties. 

Now, let us imagine that the observation “stranded without battery” does not only impact on 

safety but also on a new property called “power management”, which will help us to illustrate 

the effect of shared contexts. This property shows how optimally the system manages its 

energy, so that, if the robot gets stranded without battery, the observation would provide 

evidence that the system is not performing well in terms of power management (as well as 

06:00:00 09:00:00 12:00:00 15:00:00 18:00:00
time

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

sa
fe

ty



94 Running QoS metrics 

 

safety). The uncertainty will be greater as the observation no longer points to a single cause but 

may instead be the visible effect of various scenarios: the system performing poorly in safety, 

in power management, or in both. Due to this uncertainty, the evidence will lose strength. 

Figure 22 presents the new QoS estimates for safety, where the dashed line represents the 

previous results to facilitate comparison. The simulation has been carried out considering that 

the observation has an impact on power management in the same way as on safety (same 

direction and strength). Because of this, the QoS estimates for power management are identical 

to those for safety. 

 

Figure 22. Safety when the observation affects two properties. The dashed line indicates the result shown 

previously 

5.2 Statistics on QoS metrics 

Once we have QoS estimates, we can treat them like any other type of data, which includes 

applying statistics to extract valuable information for the use case. The purpose of this section 

is twofold. First, we will develop some useful measures to exploit the potential of QoS 

estimates and, second, we will provide designers with some advice on how to check and 

improve their QoS specifications. 

5.2.1 Central tendency and variability 

When it comes to variables that produce a sequence of samples over time, it is common to 

measure their central tendency to obtain a single representative value. Thus, we can compute 

06:00:00 09:00:00 12:00:00 15:00:00 18:00:00
time

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

sa
fe

ty



5.2 Statistics on QoS metrics 95 

 

the mode, the median or the mean of the QoS estimates in the period that has being considered 

to examine the system. Another option is to apply a moving average [49], to smooth out short-

term fluctuations and highlight longer-term trends. With these methods, we will be able to 

obtain a general picture of how the system works in a period of time for the specified non-

functional properties.  

Aside from the central tendency, we should also take into account variability, especially if we 

want to compare QoS metrics, for example, to identify the non-functional property in which 

the system performs worst. In this sense, by simply measuring the range (that is, the highest 

and the lowest value), we can find flaws in the specification. Let us think we have designed 

our specification with two properties, where the first one only has observations that reinforce 

it and the second one only has observations that undermine it. According to the proposed 

probabilistic model, the QoS metric that will result from the first property would be defined in 

the range [0.5, 1], while the second metric would be in [0, 0.5]. As a result, it would not be fair 

to compare the two QoS metrics directly to decide on which property the system should focus 

in order to optimize its performance. In general, the distribution of the values of a metric does 

not only depend on the evidence that is produced due to a good or bad behaviour of the system, 

but a poor design of the observations can introduce a significant bias.  

As for the application of any statistics to QoS metrics, it should be noted that users are the ones 

who decide when to produce a new estimate (through the execution of the algorithm in Listing 

3), so they should choose the monitoring strategy that best suits their requirements (e.g., polling 

every two minutes). Since statistics are often linked to the monitoring, our approach is that, 

with the data obtained, users are responsible for implementing the statistics that they consider 

relevant to their use case. Nevertheless, to make things easier, we are going to provide two 

basic measurements to capture the central tendency and the variability of each QoS metric. 

Moreover, note that the statistics discussed in the following sections are also considered 

because they cannot be derived directly from QoS estimates. 

Next, we are going to pay attention to the range and the Time-Exponential Moving Average 

(TEMA) [50] of each QoS metric. The latter is the version of the Exponential Moving Average 

for unevenly spaced time series. As QoS estimates may or may not be regular in time, 



96 Running QoS metrics 

 

depending on the monitoring strategy implemented by the user, TEMA seems to be flexible 

enough to allow measuring the central tendency regardless of time changes between samples. 

Even so, we must keep in mind that the monitoring strategy of the user can also impact on the 

precision of the indicators. For instance, it is not the same to produce statistics from 10 samples 

than from 100 for the same period. Equation (5.18) shows the definition of TEMA considered 

in this work, where 𝑋𝑡𝑖 is the sample at time 𝑡𝑖  (in our case a QoS estimate produced at 𝑡𝑖) and 

1 𝛽⁄  (with 𝛽 > 0) establishes the average duration over which a sample contributes, such that 

the higher the term 1 𝛽⁄ , the smoother the moving average. Listing 4 extends the algorithm in 

Section 5.1.3 to add the computation of the range and the TEMA of a QoS metric. 

𝑇𝐸𝑀𝐴𝑡 = {
𝑋𝑡0 𝑖𝑓 𝑡 = 𝑡0

𝑒−𝛽 (𝑡𝑖−𝑡𝑖−1) 𝑇𝐸𝑀𝐴𝑡𝑖−1 + (1 − 𝑒−𝛽 (𝑡𝑖−𝑡𝑖−1)) 𝑋𝑡𝑖 𝑖𝑓 𝑡 = 𝑡𝑖 > 𝑡0
 (5.18) 

 

algorithm estimate-qos is 
     const:    𝛽, parameter to stablish the average duration of the samples for the TEMA 
                  ...      
     global:  max_range_stat, maximum QoS value recorded (initialized to 0.5),  
                   min_range_stat, minimum QoS value recorded (initialized to 0.5), 
                   tema_stat, moving average of the QoS estimates (initialized to 0.5), 
                   𝑡𝑝𝑟𝑒𝑣, time previous update (initialized to -1) 
     input:    𝑡, current time, ... 
     output: QoS estimate for property 𝑝𝑟𝑜𝑝, 

     (calculation of the estimate according to Listing 3) 

     if max_range_stat < estimate then 
          max_range_stat  estimate 
     end if 

     if min_range_stat > estimate then 
          min_range_stat  estimate 
     end if 

     if 𝑡𝑝𝑟𝑒𝑣 = -1 then 
          tema_stat  estimate 

     else 
            𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡 ← 𝑒𝑥𝑝 (−𝛽 (𝑡 − 𝑡𝑝𝑟𝑒𝑣)) × (𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) + 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒  (derived from Equation 5.18) 
     end if 
     𝑡𝑝𝑟𝑒𝑣 ← 𝑡 
     return estimate 

Listing 4. Extension of the algorithm for calculating QoS estimates 



5.2 Statistics on QoS metrics 97 

 

5.2.2 Temporal mean of 𝑵𝒐𝒃𝒔 𝒊
<𝒕>  

Measuring the real environment of the system can provide us with valuable information to 

improve our QoS specification. For instance, as a general rule, observations that are very 

frequent can saturate a metric if their occurrences are too strong. In this sense, watching the 

frequency of the observations can help us to check if we have assigned appropriate attributes 

to the observations (i.e., persistence, repetition and strength). Note that these attributes set the 

overall influence of an occurrence, in such a way that the impact of an observation grows as 

we increase its persistence and strength while reducing the number of repetitions.  

In the proposed probabilistic network, the environment is represented through the term 𝑁𝑜𝑏𝑠 𝑖
<𝑡> , 

that is, the instantaneous average number of active occurrences of each observation, which was 

introduced in Section 3.4 and developed in Section 5.1.2. This measurement is interesting 

because it captures the dynamics behind the estimation of QoS metrics. In essence, 

• 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  is a counter that increases by one every time a new occurrence arrives; 

• after an occurrence, the counter gradually loses one unit over time. The higher the 

persistence, the longer it takes to decrease;  

• the maximum effect of an occurrence is reached when 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  is greater than or equal to 

the number of repetitions + 1. 

Examples of the implications that we could learn from 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  are: 

• Observations that are very persistent and frequent can show a high 𝑁𝑜𝑏𝑠 𝑖
<𝑡> .  

• Those observations whose 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  never reaches the number of repetitions + 1 could be 

underestimated. 

• If an observation has a time between arrivals greater than its persistence, 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  will not 

be greater than 1 and, therefore, the number of repetitions should be set to 0. 

In addition, we can also use 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  to discover dependencies between observations. According 

to the premises considered in the design of the proposed probabilistic network (see 

Section 3.4.1), an observation is assumed to occur independently of any other. However, since 

the observations could have common context sources, this assumption might not hold. In order 



98 Running QoS metrics 

 

to check it, we could calculate the Pearson correlation coefficient [49] on the values of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  

belonging to two different observations to see if they are correlated. If two observations were 

strongly correlated, we could consider reducing them to just one. Note that observations with 

very different persistence values could hide possible correlations, so we recommend using the 

same persistence when performing this test. 

In this section, we propose the use of the temporal mean of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  as a more representative 

measure to analyse the effect of the environment. To develop a method to obtain this temporal 

mean, let us consider a sequence of values 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  covering a period of time. Our approach will 

be to divide this period into a set of smaller periods, such that the mean could be formed by the 

weighted sum of the expected values in each of these fragments of time. Specifically, we will 

take into account the period between two adjacent occurrences of the observation, so each time 

a new occurrence arrives, (1) we have to calculate the expected value of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  between the 

previous occurrence and the new one, and (2) we have to update the global temporal mean with 

this result. Next, we will delve into the formulation of the first point.  

Let 𝐸𝑇[𝑁𝑜𝑏𝑠 𝑖
<𝑡> ] be the expected value of 𝑁𝑜𝑏𝑠 𝑖

<𝑡>  over a period of time T between two occurrences. 

According to Equation (5.6), the range of values for 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  would be defined in the interval 

(𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>,𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>], being 𝑡𝑜𝑐𝑐  the time of the first occurrence. 𝑁𝑜𝑏𝑠 𝑖
<𝑡>   is a decreasing 

monotonic function in that interval, it will start with 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐> with the first occurrence and end 

with 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐> just before the second. Note that we have not included the second occurrence 

in the interval, which is why we considered Equation (5.6) instead of (5.4). 

To calculate 𝐸𝑇[𝑁𝑜𝑏𝑠 𝑖
<𝑡> ], we must solve the following integral, where 𝑓𝑁(𝑛) is the probability 

density function (PDF) of 𝑁𝑜𝑏𝑠 𝑖
<𝑡> . The limits of the integral are defined by the previous interval.   

𝐸𝑇[𝑁𝑜𝑏𝑠 𝑖
<𝑡> ] = ∫ 𝑛 𝑓𝑁(𝑛)𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

 (5.19) 

In order to obtain 𝑓𝑁(𝑛), first, we have to determine the cumulative distribution function (CDF) 

of 𝑁𝑜𝑏𝑠 𝑖
<𝑡> . For that, we assume that the time elapsed from the first occurrence is a uniformly 



5.2 Statistics on QoS metrics 99 

 

distributed variable, denoted by 𝜏, with values in the interval [0, T] and CDF as seen in (5.20). 

Taking into account (5.6) and (5.20), we can develop the CDF of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  as shown in (5.21). 

F𝜏(𝑡′) = 𝑃(τ ≤ 𝑡′) =
𝑡′

𝑇  (5.20) 

𝐹𝑁(𝑛) = 𝑃(𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐+𝜏> ≤ 𝑛) = 𝑃(𝑒−𝜇𝜏 Nobs i

<t𝑜𝑐𝑐> ≤ 𝑛) = 1 − 𝑃 (𝜏 ≤
−1
𝜇 ln(

n
Nobs i

<t𝑜𝑐𝑐>)) =
1
𝜇𝑇 ln(

n
Nobs i

<t𝑜𝑐𝑐>) + 1 

𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ ℝ |  (𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>) ≤ 𝑛 ≤ 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>  

(5.21)  

Once we have the CDF, we can compute the PDF of 𝑁𝑜𝑏𝑠 𝑖
<𝑡> , and finally, from that, the expected 

value 𝐸𝑇[𝑁𝑜𝑏𝑠 𝑖
<𝑡> ]. This process is shown in (5.22) and (5.23) respectively.  

𝑓𝑁(𝑛) =
𝑑𝐹(𝑛)

𝑑𝑛 =
𝑑
𝑑𝑛 (

1
𝜇𝑇 ln(

n
Nobs i

<t𝑜𝑐𝑐>) + 1) =
1

𝜇𝑇𝑛 (5.22) 

𝐸𝑇[𝑁𝑜𝑏𝑠 𝑖
<𝑡> ] = ∫ 𝑛 𝑓𝑁(𝑛)𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

=
1
𝜇𝑇 [𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐> − 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>] =

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝜇𝑇
(1 − 𝑒−𝜇𝑇 ) (5.23) 

By applying Equation (5.23) each time a new occurrence arrives, we will be able to calculate 

the expected value of the period between the previous occurrence and just before the new one. 

Thus, if we run this approach repeatedly over time with each occurrence, we will get a time 

series of expected values, which will probably be unevenly spaced since occurrences are not 

usually regular in time. The final temporal mean is the result of the Time-Exponential Moving 

Average (TEMA) [50] on the expected values. See its definition in Equation (5.18). 

Finally, the following listings show the implementation of this statistic. Listing 5 extends the 

first algorithm presented in Section 5.1.2 to include the recurrent update of the temporal mean 

of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  every time a new occurrence arrives, while Listing 6 only applies whenever we want 

to obtain an updated value of the statistic regardless of whether or not there has been an 

occurrence. 

 

 



100 Running QoS metrics 

 

algorithm update-evidence-with-new-occurrence-obs_i is 
     const:   𝜇𝑜𝑏𝑠 𝑖 ← −ln (0.01) 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖⁄    (𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖 in seconds see Equation (4.27)), 

                  𝛽, parameter to stablish the average duration of the samples for the TEMA 

     global: 𝑡𝑝𝑟𝑒𝑣 , time of the previous occurrence in seconds (initialized to 0), 

                    𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣>

, update of N for the previous occurrence (initialized to 0), 

                    𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡_𝑁𝑜𝑏𝑠 𝑖, temporal mean of N for the observation i (initialized to NULL) 
     input:   𝑡𝑛𝑒𝑤, time of the new occurrence in seconds 

     output: 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑛𝑒𝑤>

, updated value of N for the observation, 

     precondition: 𝑡𝑛𝑒𝑤 > 𝑡𝑝𝑟𝑒𝑣    

     𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑛𝑒𝑤> ← 1 + 𝑒𝑥𝑝 (−𝜇𝑜𝑏𝑠 𝑖 ×  (𝑡𝑛𝑒𝑤 − 𝑡𝑝𝑟𝑒𝑣)) × 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑝𝑟𝑒𝑣>
 

     𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ← 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣> (𝜇𝑜𝑏𝑠 𝑖 × (𝑡𝑛𝑒𝑤 − 𝑡𝑝𝑟𝑒𝑣))⁄ × (1 − 𝑒𝑥𝑝 (−𝜇𝑜𝑏𝑠 𝑖 ×  (𝑡𝑛𝑒𝑤 − 𝑡𝑝𝑟𝑒𝑣)) 

     if 𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡_𝑁𝑜𝑏𝑠 𝑖 = 𝑁𝑈𝐿𝐿 then 
          𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡_𝑁𝑜𝑏𝑠 𝑖 ← 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

     else 
          𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡_𝑁𝑜𝑏𝑠 𝑖 ← 𝑒𝑥𝑝 (−𝛽(𝑡𝑛𝑒𝑤 − 𝑡𝑝𝑟𝑒𝑣)) × (𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡_𝑁𝑜𝑏𝑠 𝑖 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) + 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

     end if 
     𝑡𝑝𝑟𝑒𝑣 ← 𝑡𝑛𝑒𝑤  

     𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣> ← 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑛𝑒𝑤>  
     return 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑛𝑒𝑤> 

Listing 5. Extended algorithm for updating the evidence with a new occurrence 

algorithm get-average-N-obs_i is 
     const:    𝜇𝑜𝑏𝑠 𝑖 ← −ln (0.01) 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖⁄    (𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖 in seconds see Equation (4.27)) 

                   𝛽, parameter to stablish the average duration of the samples for the TEMA 

     global:  𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡_𝑁𝑜𝑏𝑠 𝑖, temporal mean of N for the last occurrence (updated in Listing 5) 
                   𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑝𝑟𝑒𝑣>
, N for the last occurrence (updated in Listing 5) 

                   𝑡𝑝𝑟𝑒𝑣 , time of the last occurrence in seconds (updated in Listing 5) 

     input:    𝑡, current time in seconds 

     output:  temporal mean of N at time t 

     precondition: 𝑡 > 𝑡𝑙𝑎𝑠𝑡 

     𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ← 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣> (𝜇𝑜𝑏𝑠 𝑖 × (𝑡 − 𝑡𝑝𝑟𝑒𝑣))⁄ × (1 − 𝑒𝑥𝑝 (−𝜇𝑜𝑏𝑠 𝑖 ×  (𝑡 − 𝑡𝑝𝑟𝑒𝑣)) 

     if 𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡_𝑁𝑜𝑏𝑠 𝑖 = 𝑁𝑈𝐿𝐿 then 
          𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

     else 
          𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑒𝑥𝑝(−𝛽 (𝑡 − 𝑡𝑙𝑎𝑠𝑡)) × (𝑡𝑒𝑚𝑎_𝑠𝑡𝑎𝑡_𝑁𝑜𝑏𝑠 𝑖 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) + 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  
     end if 
     return 𝑟𝑒𝑠𝑢𝑙𝑡   

Listing 6. Algorithm that returns an updated value of the statistic 



5.2 Statistics on QoS metrics 101 

 

5.2.3 Contribution of the observations 

When analysing the resulting QoS estimates, it is practical to know the influence that each of 

the observations has had on them. Unlike the active number of occurrences shown in the 

previous section, where the information is limited to the individual scope of an observation, in 

this section we will see how to contextualize the effect of an observation along with the rest. 

For example, after a period of operation, we will be able to identify if an observation 

predominated over the rest or if, on the contrary, all contributed more or less equally. Next, we 

will develop a method to quantify the average contribution of each observation to a QoS 

estimate. Note that this method will also allow us to establish a ranking of the most influential 

observations for a QoS metric over a period of time. 

In Section 5.1.3, we derived Equation (5.13) to compute QoS estimates. In that expression, the 

term 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> provides a relative measure of how discriminating a context condition associated 

with an observation is. The more discriminating the greater the contribution of an observation. 

Since the contribution of 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> becomes more important as 𝑁𝑜𝑏𝑠 𝑖

<𝑡>  increases, its maximum 

effect will be reached when it equals 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)⁄ , as we saw in 

Section 5.1.3. Note that this value will be in the range (0, 1) if the observation reinforces or (1, 

+) if it undermines. To avoid this range asymmetry, it is convenient to use a logarithmic scale, 

so that if the observation reinforces the value is in (-, 0) or (0, +) if it undermines. On the 

other hand, the least significant value for 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> is 1 (0 in a logarithmic scale), which appears 

when 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  is 0.  

Taking into account the above, we propose Equation (5.24) to define the instantaneous 

contribution that an observation produces (in relation to 𝑃𝑅𝑂𝑃𝑆𝑘  and 𝑃𝑅𝑂𝑃𝑆𝑙). Note that 𝐶𝑜𝑏𝑠 𝑖
<𝑙,𝑘> 

is expressed in terms of absolute value since it does not distinguish between evidence that 

reinforces or undermines, but only the extent of the influence. 

𝐶𝑜𝑏𝑠 𝑖
<𝑙,𝑘> = |𝑙𝑛(𝐿𝑅𝑜𝑏𝑠 𝑖

<𝑙,𝑘>)| (5.24) 

𝐶𝑜𝑏𝑠 𝑖
<𝑙,𝑘> provides a partial measure relative to 𝑃𝑅𝑂𝑃𝑆𝑘  and 𝑃𝑅𝑂𝑃𝑆𝑙 . In order to obtain the overall 

influence of an observation on a property 𝑝𝑟𝑜𝑝𝑗, we need to add all the partial contributions 

that have some effect on the property, as shown in (5.25). 



102 Running QoS metrics 

 

𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> = ∑ ∑𝐶𝑜𝑏𝑠 𝑖

<𝑙,𝑘>

𝑙≠𝑘∀𝑘|𝑏𝑗=1

 (5.25) 

However, 𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> continues to present the contribution at a specific point in time, so we 

require a temporal mean to provide a more representative measure over a period. In particular, 

we are going to follow an approach similar to that applied in the previous section, in which we 

build this temporal mean from the expected values of 𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> produced during any two 

consecutive occurrences of the observation. Therefore, each time a new occurrence arrives, 

(1) we calculate the expected value of 𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>

 between the previous occurrence and the new 

one, and (2) we update the temporal mean with this result. Next, we will delve into the 

formulation of the first point. 

Given the “linearity of expectation”, the expected value of 𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> over a period T can be 

reduced to the sum of the expectations of 𝐶𝑜𝑏𝑠 𝑖
<𝑙,𝑘> as displayed in (5.26). 

𝐸𝑇 [𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>] = ∑ ∑𝐸𝑇[𝐶𝑜𝑏𝑠 𝑖

<𝑙,𝑘>]
𝑙≠𝑘∀𝑘|𝑏𝑗=1

 (5.26) 

In addition, thanks to the law of the unconscious statistician (LOTUS), we can express the 

expected value 𝐸𝑇[𝐶𝑜𝑏𝑠 𝑖
<𝑙,𝑘>] in terms of the probability distribution of the variable 𝑁𝑜𝑏𝑠 𝑖

<𝑡> . Recall 

that 𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘> is a function of 𝑁𝑜𝑏𝑠 𝑖

<𝑡>  as stated by Equation (5.15). So, to calculate 𝐸𝑇[𝐶𝑜𝑏𝑠 𝑖
<𝑙,𝑘>] based 

on the distribution of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  during T, we should solve the following integral, where 𝑓𝑁(𝑛) is 

the probability density function of 𝑁𝑜𝑏𝑠 𝑖
<𝑡> , derived in (5.22). The limits of the integral were 

specified in the previous section based on the time of the first occurrence 𝑡𝑜𝑐𝑐 . 

𝐸𝑇[𝐶𝑜𝑏𝑠 𝑖
<𝑙,𝑘>] = ∫ |𝑙𝑛(𝐿𝑅𝑜𝑏𝑠 𝑖

<𝑙,𝑘>)| 𝑓𝑁(𝑛) 𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

 (5.27) 

In (5.28), we take the absolute value out of the integral since the term 𝑙𝑛(𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘>) only shows 

negative values with reinforcing observations, in which case the values are always less than or 

equal to 0 for the entire range of 𝑁𝑜𝑏𝑠 𝑖
<𝑡> . Besides, 𝑓𝑁(𝑛) only returns positive values. 

∫ |𝑙𝑛(𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘>)| 𝑓𝑁(𝑛) 𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

= | ∫ 𝑙𝑛(𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘>) 𝑓𝑁(𝑛) 𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

| (5.28) 



5.2 Statistics on QoS metrics 103 

 

By taking into account Equation (5.15), below we state 𝑙𝑛(𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘>) as the difference of two 

functions in terms of the integration variable n.  

𝑙𝑛(𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘>) = 𝑙𝑙𝑟𝑙(𝑛) − 𝑙𝑙𝑟𝑘(𝑛) 

where 𝑙𝑙𝑟𝑙(𝑛) = 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)  + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑒−𝛼𝑛)  

and 𝑙𝑙𝑟𝑘(𝑛) = 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘)  + 𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑘) 𝑒−𝛼𝑛) 

(5.29) 

Then the integral in (5.28) can be written as follows, 

∫ 𝑙𝑛(𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘>)  𝑓𝑁(𝑛) 𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

= ∫ 𝑙𝑙𝑟𝑙(𝑛) 𝑓𝑁(𝑛) 𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

− ∫ 𝑙𝑙𝑟𝑘(𝑛) 𝑓𝑁(𝑛) 𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

 (5.30) 

Since 𝑙𝑙𝑟𝑙(𝑛) and 𝑙𝑙𝑟𝑘(𝑛) are the same function, one expressed in terms of 𝑃𝑅𝑂𝑃𝑆𝑙  and the other 

in terms of 𝑃𝑅𝑂𝑃𝑆𝑘 , next we are going to develop one of them and the same will apply to the 

other. Note that we will consider all probabilities to be strictly greater than 0 and less than 1 to 

avoid indeterminacies. 

𝑙𝑙𝑟𝑙(𝑛) =  𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)  + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) 𝑒−𝛼𝑛)

= 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)  + (1 − 𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)) 𝑒−𝛼𝑛)

= 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) (1 +
1 − 𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑒−𝛼𝑛)

= 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) (1 + 𝑒𝑙𝑛(1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

)−𝛼𝑛)

= 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)) + 𝑙𝑛 (1 + 𝑒𝑙𝑛(1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

)−𝛼𝑛) 

(5.31) 

By using the result in (5.31) and substituting 𝑓𝑁(𝑛) by the expression in (5.22), we can 

decompose the following integral in two parts. 

∫ 𝑙𝑙𝑟𝑙(𝑛) 𝑓𝑁(𝑛) 𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

= ∫ 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)) 
1

𝜇 𝑇 𝑛  𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

+ ∫ 𝑙𝑛 (1 + 𝑒𝑙𝑛(1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

)−𝛼𝑛) 
1

𝜇 𝑇 𝑛
 𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

 

(5.32) 



104 Running QoS metrics 

 

The solution of the first part is 

∫ 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)) 
1

𝜇 𝑇 𝑛  𝑑𝑛

𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

=
𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙))

𝜇 𝑇 (𝑙𝑛(𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>) − 𝑙𝑛(𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>))

=
𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙))

𝜇 𝑇 (𝑙𝑛 (
𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>)) =

𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙))
𝜇 𝑇 𝑙𝑛(𝑒𝜇𝑇)

= 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)) 

(5.33) 

As for the second part, we will have to make the approximation shown in (5.34) to be able to 

approach it analytically. 

𝑙𝑛(1 + 𝑒𝑢) = max(𝑢, 0) + 𝑙𝑛(1 + 𝑒−|𝑢|), 𝑢 ∈ ℝ 

𝑙𝑛(1 + 𝑒−|𝑢|) ≈ 𝑙𝑛(2) 𝑒−0.85 |𝑢| 
(5.34) 

This approximation will require case decision depending on whether the value of u is less than 

or greater than 0, being 𝑢 = 𝑙𝑛 (1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

) − 𝛼𝑛. Since it is more convenient to express 

the cases in terms of the integration variable n, the value of n corresponding to the breakpoint 

(𝑢 = 0) is 

0 = 𝑙𝑛 (
1 − 𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
) − 𝛼 𝑛𝑏 ⟹ 𝑛𝑏 =

1
𝛼 𝑙𝑛 (

1 − 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)

) (5.35) 

Let us solve the integral case by case: 

• Case 1: if 𝑛 ≤ 𝑛𝑏, or equivalently 𝑛1 ≤ 𝑛𝑏, 

𝐼𝑛≤𝑛𝑏(𝑛0, 𝑛1) = ∫ 𝑙𝑛 (1 + 𝑒𝑙𝑛(1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

)−𝛼𝑛) 
1

𝜇 𝑇 𝑛
𝑑𝑛

𝑛1

𝑛0

≈ ∫ 𝑙𝑛 (
1 − 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)
)

1
𝜇 𝑇 𝑛

𝑑𝑛

𝑛1

𝑛0

− ∫
𝛼

𝜇 𝑇
𝑑𝑛

𝑛1

𝑛0

+ ∫
𝑙𝑛(2)
𝜇 𝑇 𝑛 𝑒−0.85 (𝑙𝑛(1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
)−𝛼𝑛)𝑑𝑛

𝑛1

𝑛0

= 𝑙𝑛 (
1 − 𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
)

(𝑙𝑛(𝑛1) − 𝑙𝑛(𝑛0))
𝜇 𝑇 −

𝛼
𝜇 𝑇

(𝑛1 − 𝑛0)  

+
𝑙𝑛(2)
𝜇 𝑇

(
1 − 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
)

−0.85

(𝐸𝑖(0.85 𝛼 𝑛1) − 𝐸𝑖(0.85 𝛼 𝑛0)) 

(5.36) 



5.2 Statistics on QoS metrics 105 

 

• Case 2: if 𝑛 ≥ 𝑛𝑏, or equivalently 𝑛0 ≥ 𝑛𝑏, 

𝐼𝑛≥𝑛𝑏(𝑛0, 𝑛1) = ∫ 𝑙𝑛 (1 + 𝑒𝑙𝑛(1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

)−𝛼𝑛) 
1

𝜇 𝑇 𝑛 𝑑𝑛

𝑛1

𝑛0

≈ ∫
𝑙𝑛(2)
𝜇 𝑇 𝑛 𝑒

0.85 (𝑙𝑛(1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

)−𝛼𝑛)
𝑑𝑛

𝑛1

𝑛0

=
𝑙𝑛(2)
𝜇 𝑇 (

1 − 𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

)
0.85

(𝐸1(0.85 𝛼 𝑛0) − 𝐸1(0.85 𝛼 𝑛1)) 

(5.37) 

• Case3: if 𝑛0 < 𝑛𝑏 < 𝑛1, 

𝐼(𝑛0, 𝑛1) = 𝐼𝑛≤𝑛𝑏(𝑛0, 𝑛𝑏) + 𝐼𝑛≥𝑛𝑏(𝑛𝑏, 𝑛1) (5.38) 

The limits of integration in (5.36), (5.37) and (5.38) are the ones we have already defined 

previously, i.e., 𝑛0 = 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>  and 𝑛1 = 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>. Moreover, the functions 𝐸1(𝑥) and 𝐸𝑖(𝑥) 

in (5.36) and (5.37) are exponential integrals [51]. 

Putting it all together, the integral in (5.32) will look like this: 

• Case 1: if  𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐> ≤ 𝑛𝑏,  

∫ 𝑙𝑙𝑟𝑙(𝑛) 𝑓𝑁(𝑛) 𝑑𝑛𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐> ≈ 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)) + 𝑙𝑛 (1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
) − 𝛼(1−𝑒−𝜇𝑇) 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>

𝜇 𝑇
+

𝑙𝑛(2)
𝜇 𝑇 (1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
)
−0.85

(𝐸𝑖(0.85 𝛼 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>) − 𝐸𝑖(0.85 𝛼 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>))  
(5.39) 

• Case 2: if 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐> ≥ 𝑛𝑏, 

∫ 𝑙𝑙𝑟𝑙(𝑛) 𝑓𝑁(𝑛) 𝑑𝑛𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐> ≈ 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)) +

𝑙𝑛(2)
𝜇 𝑇 (1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
)
0.85

(𝐸1(0.85 𝛼 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>) − 𝐸1(0.85 𝛼 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>))  
(5.40) 

• Case 3: if 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐> < 𝑛𝑏 < 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>, 

∫ 𝑙𝑙𝑟𝑙(𝑛) 𝑓𝑁(𝑛) 𝑑𝑛𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>

𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐> ≈ 𝑙𝑛(𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑙)) +

𝑙𝑛 (1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

)
(𝑙𝑛(𝑛𝑏)−𝑙𝑛(𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>))

𝜇 𝑇
− 𝛼(1−𝑒−𝜇𝑇) 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐>

𝜇 𝑇
 +

𝑙𝑛(2)
𝜇 𝑇 (1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
)
−0.85

(𝐸𝑖(0.85 𝛼 𝑛𝑏) − 𝐸𝑖(0.85 𝛼 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>)) +

𝑙𝑛(2)
𝜇 𝑇 (1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙)
)
0.85

(𝐸1(0.85 𝛼 𝑛𝑏) − 𝐸1(0.85 𝛼 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>))  

(5.41) 

Since the functions 𝐸1(𝑥) and 𝐸𝑖(𝑥) present a singularity at 𝑥 = 0, the expressions above can 

only be evaluated if 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐> > 0. Note that we could substitute 𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑜𝑐𝑐> for 



106 Running QoS metrics 

 

𝑚𝑎𝑥(𝑒−𝜇𝑇 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>, 𝛿) to avoid problems, where 𝛿 is a small positive number (e.g. 0.01). 

Regarding the implementation of 𝐸1(𝑥) and 𝐸𝑖(𝑥), these functions does not have a closed-form 

solution, so we will use an approximation. For 𝐸1(𝑥) we consider the method proposed by 

Barry et al. [52]. As for 𝐸𝑖(𝑥), we opt for a lookup table, because the range of values over which 

this function will be evaluated is limited. More specifically, according to the cases in (5.36) 

and (5.38), we will need to compute 𝐸𝑖(𝑥) if 0 < 𝑛 ≤ 𝑛𝑏, which, in terms of x, corresponds to 

0 < 𝑥 ≤ 0.85𝛼𝑛𝑏, or 0 < 𝑥 ≤ 0.85 𝑙𝑛 (1−𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗)
𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗)

) by substituting 𝑛𝑏. This interval will 

show its maximum width when the probability 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗) is minimum, that is, 0.0909 

considering Section 4.4.3. As a result, we get the interval 0 < 𝑥 ≤ 1.9573. Empirically, we have 

verified that a lookup table with 200 values of 𝐸𝑖(𝑥) evenly covering this interval provides a 

mean relative error around 1.5%, which seems acceptable. 

Finally, the expected value 𝐸𝑇[𝐶𝑜𝑏𝑠 𝑖
<𝑙,𝑘>] can be obtained by computing the partial integrals in 

(5.30) considering (5.39), (5.40) and (5.41) applied to 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑙) and 

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑘). Thus, each time a new occurrence arrives, we will be able to determine 

𝐸𝑇[𝐶𝑜𝑏𝑠 𝑖
<𝑙,𝑘>] and from that 𝐸𝑇 [𝐶𝑜𝑏𝑠 𝑖

<𝑝𝑟𝑜𝑝𝑗>]. By running this approach repeatedly over time with 

each occurrence of the observation, we will get a time series of expected values, which will 

probably be unevenly spaced since occurrences are not usually regular in time. The temporal 

mean of 𝐸𝑇 [𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>] will be the result of applying the Time-Exponential Moving Average 

(TEMA) [50]. See its definition in Equation (5.18).  

Once we have the temporal mean of 𝐸𝑇 [𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>] for each observation, we need to normalize 

the values to obtain a relative measure of the contribution with respect to all the observations. 

𝐶̂𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> = 𝑡𝑒𝑚𝑎 (𝐸𝑇 [𝐶𝑜𝑏𝑠 𝑖

<𝑝𝑟𝑜𝑝𝑗>]) ∑𝑡𝑒𝑚𝑎 (𝐸𝑇 [𝐶𝑜𝑏𝑠 𝑘
<𝑝𝑟𝑜𝑝𝑗>])

∀𝑘

⁄  
(5.42) 

To conclude, the following listings show the implementation of this statistic. Listing 7 extends 

the first algorithm presented in Section 5.1.2 to include the recurrent update of the temporal 

mean of 𝐸𝑇 [𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>]. This algorithm runs with each new occurrence and is responsible for 

keeping the statistic updated, while the method in Listing 8 only applies at the moment of 

computing the resulting normalized contribution 𝐶̂𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>. 



5.2 Statistics on QoS metrics 107 

 

algorithm update-evidence-with-new-occurrence-obs_i is 
     const:   𝜇𝑜𝑏𝑠 𝑖 ← −ln (0.01) 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖⁄    (𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖 in seconds see Equation (4.27)) 

                  𝛽, parameter to stablish the average duration of the samples for the TEMA 

     global: 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣>, update of N for the previous occurrence (initialized to 0) 

                  𝑡𝑝𝑟𝑒𝑣 , time of the previous occurrence in seconds (initialized to 0) 

                  𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>

, temporal mean of the contribution of observation i to property j (initialized to NULL) 
     input:   𝑡𝑛𝑒𝑤, time of the new occurrence in seconds 

     output: 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑛𝑒𝑤>

, updated value of N for the observation 

     precondition: 𝑡𝑛𝑒𝑤 > 𝑡𝑝𝑟𝑒𝑣       

     𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑛𝑒𝑤> ← 1 + 𝑒𝑥𝑝 (−𝜇𝑜𝑏𝑠 𝑖 ×  (𝑡𝑛𝑒𝑤 − 𝑡𝑝𝑟𝑒𝑣)) × 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑝𝑟𝑒𝑣>
 

     for each 𝑝𝑟𝑜𝑝𝑗 do 

          𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ← calculate-expectation-obs_i(𝑝𝑟𝑜𝑝𝑗, 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣>, 𝑡 − 𝑡𝑝𝑟𝑒𝑣)  

          if 𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> = 𝑁𝑈𝐿𝐿 then 

               𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> ← 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

          else 
               𝐶𝑜𝑏𝑠 𝑖

<𝑝𝑟𝑜𝑝𝑗> ← 𝑒𝑥𝑝 (−𝛽(𝑡 − 𝑡𝑝𝑟𝑒𝑣)) × (𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) + 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

          end if 
     end for 
     𝑡𝑝𝑟𝑒𝑣 ← 𝑡𝑛𝑒𝑤  

     𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣> ← 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑛𝑒𝑤>
 

     return 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑛𝑒𝑤> 

Listing 7. Extended algorithm for updating the accumulated evidence 

algorithm calculate-contribution-obs_i-to-prop_j is 
     const:   𝜇𝑜𝑏𝑠 𝑖 ← −ln (0.01) 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖⁄    (𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑜𝑏𝑠 𝑖 in seconds see Equation (4.27)) 

                  𝛽, parameter to stablish the average duration of the samples for the TEMA 

     global: 𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>

, temporal mean of the contribution of observation i to property j (calculated in Listing 7) 

                  𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑝𝑟𝑒𝑣>

, N for the last occurrence (updated in Listing 7) 

                  𝑡𝑝𝑟𝑒𝑣 , time of the last occurrence in seconds (updated in Listing 7) 
     input:   𝑡, current time in seconds 

                    𝑝𝑟𝑜𝑝𝑗, property to which the contribution is calculated 

     output: 𝐶̂𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>

, normalized contribution of observation i to property j 

     precondition: 𝑡 > 𝑡𝑝𝑟𝑒𝑣   

     𝑠𝑢𝑚 ← 0  
     for each 𝑜𝑏𝑠𝑖 do 
          𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ← calculate-expectation-obs_i(𝑝𝑟𝑜𝑝𝑗, 𝑁𝑜𝑏𝑠 𝑖

<𝑡𝑝𝑟𝑒𝑣>, 𝑡 − 𝑡𝑝𝑟𝑒𝑣)  

          if 𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> = 𝑁𝑈𝐿𝐿 then 

               𝐶_𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> ← 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

          else 
               𝐶_𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑜𝑏𝑠 𝑖

<𝑝𝑟𝑜𝑝𝑗> ← 𝑒𝑥𝑝 (−𝛽(𝑡 − 𝑡𝑝𝑟𝑒𝑣)) × (𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗> − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) + 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

          end if 



108 Running QoS metrics 

 

          𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐶_𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑜𝑏𝑠 𝑖

<𝑝𝑟𝑜𝑝𝑗> 
     end for 
     for each 𝑜𝑏𝑠𝑖 do 
          𝐶̂𝑜𝑏𝑠 𝑖

<𝑝𝑟𝑜𝑝𝑗> ← 𝐶_𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝𝑗>/𝑠𝑢𝑚  

     end for 
     return 𝐶̂𝑜𝑏𝑠 𝑖

<𝑝𝑟𝑜𝑝𝑗> 

Listing 8. Algorithm to compute the contribution of an observation to a property 

algorithm calculate-expectation-obs_i is 
     const: a table of probabilities 𝑃(𝑐𝑡𝑥𝑖|𝑝𝑟𝑜𝑝𝑠) for observation i (see Section 4.4.3) 

                parameter 𝜇 for the observation i (see Equation (4.27)) 
     input: 𝑝𝑟𝑜𝑝, property for which we want the contribution of the observation 

                𝑇, time between the last two occurrences in seconds 

                  𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>, value of N at 𝑡𝑜𝑐𝑐 (previous occurrence of the observation) 

     output: Expected value 𝐸𝑇[𝐶𝑜𝑏𝑠 𝑖
<𝑝𝑟𝑜𝑝>] 

      𝑟𝑒𝑠𝑢𝑙𝑡 ← 0  

     𝑛1 ← 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>  

     𝑛0 ← 𝑚𝑎𝑥(exp (𝜇 × 𝑇) × 𝑁𝑜𝑏𝑠 𝑖
<𝑡𝑜𝑐𝑐>, 0.01)  

     𝑃𝑅𝑂𝑃𝑆𝑝𝑜𝑠 ← (𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡) 
     𝑃𝑅𝑂𝑃𝑆 ← (𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡) 

     for each 𝑝𝑟𝑜𝑝𝑠𝑗 defined in 𝑃(𝐶𝑇𝑋𝑖|𝑝𝑟𝑜𝑝𝑠) do  

          if 𝑝𝑟𝑜𝑝𝑠𝑗 | 𝑝𝑟𝑜𝑝 = 𝑃𝑅𝑂𝑃 then 

               𝑃𝑅𝑂𝑃𝑆𝑝𝑜𝑠 . 𝑖𝑛𝑠𝑒𝑟𝑡(𝑝𝑟𝑜𝑝𝑠𝑗) 
          end if 
           𝑃𝑅𝑂𝑃𝑆. 𝑖𝑛𝑠𝑒𝑟𝑡(𝑝𝑟𝑜𝑝𝑠𝑗) 
     end for 

     for each 𝑝𝑟𝑜𝑝𝑠𝑘 in 𝑃𝑅𝑂𝑃𝑆𝑝𝑜𝑠  do  

          for each 𝑝𝑟𝑜𝑝𝑠𝑙 in 𝑃𝑅𝑂𝑃𝑆 do 
               if 𝑝𝑟𝑜𝑝𝑠𝑘 ≠ 𝑝𝑟𝑜𝑝𝑠𝑙 do 
                    𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + abs (calculate-partial-expectation-obs_i(𝑛0, 𝑛1, T, 𝑃(𝐶𝑇𝑋𝑖|𝑝𝑟𝑜𝑝𝑠𝑙)) 
                             - calculate-partial-expectation-obs_i(𝑛0, 𝑛1, T, 𝑃(𝐶𝑇𝑋𝑖|𝑝𝑟𝑜𝑝𝑠𝑘))) 

               end if 
          end for 

     end for 

     return 𝑟𝑒𝑠𝑢𝑙𝑡  

Listing 9. Algorithm to calculate the expected contribution of an observation to a property 

 

 



5.2 Statistics on QoS metrics 109 

 

algorithm calculate-partial-expectation-obs_i is 
    const:   parameter  for observation i (see Section 4.4.4) 

                 parameter 𝜇 for observation i (see Equation (4.27)) 
    input:   𝑛0, lower limit of 𝑁𝑜𝑏𝑠 𝑖

<𝑡>  

                    𝑛1, upper limit of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  

                    𝑇, time between occurrences in seconds 

                    𝑝𝑟, conditional probability 𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑗) 

    output: result for the integral in (5.32) 

    𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑙𝑛(𝑝𝑟) 
    𝑛𝑏 ← 𝑙𝑛((1 − 𝑝𝑟) 𝑝𝑟⁄ ) 𝛼⁄  

    if 𝑛𝑏 ≤ 𝑛0 then 
          𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝑙𝑛(2) × (𝐸1(0.85 × 𝛼 × 𝑛0) − 𝐸1(0.85 × 𝛼 × 𝑛1)) × ((1 − 𝑝𝑟)/𝑝𝑟)0.85/(𝜇 × 𝑇)  
    else if 𝑛𝑏 ≥ 𝑛1 then 
          𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + (𝑙𝑛(2) × (𝐸𝑖(0.85 × 𝛼 × 𝑛1) − 𝐸𝑖(0.85 × 𝛼 × 𝑛0)) × (𝑝𝑟/(1 − 𝑝𝑟))0.85 

                −𝛼 × (𝑛1 − 𝑛0))/(𝜇 × 𝑇) + 𝑙𝑛((1 − 𝑝𝑟)/𝑝𝑟) 
    else 
          𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + (𝑙𝑛(2) × ((𝐸1(0.85 × 𝛼 × 𝑛𝑏) − 𝐸1(0.85 × 𝛼 × 𝑛1)) × ((1 − 𝑝𝑟)/𝑝𝑟)0.85  
              +(𝐸𝑖(0.85 × 𝛼 × 𝑛𝑏) − 𝐸𝑖(0.85 × 𝛼 × 𝑛0)) × (𝑝𝑟/(1 − 𝑝𝑟))0.85) − 𝛼 × (𝑛𝑏 − 𝑛0) 

                +𝑙𝑛((1 − 𝑝𝑟)/𝑝𝑟) × (𝑙𝑛(𝑛𝑏) − 𝑙𝑛(𝑛0))) /(𝜇 × 𝑇)  
    end if 
    return result 

Listing 10. Algorithm to calculate the partial expected contribution of an observation 

5.2.4 Example simulation 

In the following, we show an example to illustrate the statistics we have described in the 

previous sections. The simulation has been executed with a Java implementation of the 

algorithms that we have presented. It covers a period of 7 days with estimates every 2 minutes, 

resulting in a total of 5040 estimates processed in ~1500ms on an average computer. 

Following the hospital robot example, the degree of engagement was determined by observing 

how patients behave with the robot, so it is a sign of acceptance that people call the robot by 

its name, or, conversely, it is negative that people refuse to interact with the robot when it 

approaches them. The details of these two observations can be seen in Table 16 according to 

the specification that was introduced in Section 4.1. In this context, we will consider a scenario 

in which, at first, people are reluctant to interact with the robot, but as time goes by, they 

become familiar with it.  



110 Running QoS metrics 

 

Table 16. Observations considered in the simulation 

(PATTERN) People call the robot by its name (PERSISTENCE) Some hours (REPETITION) 5 

(PROPERTY) Engagement            (DIRECTION) Reinforce         (STRENGTH) Low 
 

(PATTERN) People refuse to interact (PERSISTENCE) Medium (7-day timeframe) (REPETITION) 5 

(PROPERTY) Engagement            (DIRECTION) Undermine         (STRENGTH) Low 

We have run the simulation with 200 random occurrences for each observations in Table 16 

distributed over 7 days, in such a way that the observation “People refuse to interact” (“refused” 

for short) is more frequent at the beginning and decreases gradually during the simulation, 

while the observation “People call the robot by its name” (“named” for short) becomes more 

frequent as the simulation progresses. Figure 23 shows 3 days of the simulation.  

 

Figure 23. Simulation results. (Top) QoS estimates for engagement and its time-exponential moving average. 

(Middle) Temporal mean of the average number of active occurrences for each observation. (Bottom) Relative 

contribution of the observations to the QoS estimates 



5.3 Tuning QoS metrics 111 

 

The upper graph presents the instantaneous and the average value of the degree of engagement 

that the robot has shown during the simulation. As expected, the performance improved over 

time as the observation “named” becomes more frequent and “refused” less. This trend stands 

out more clearly in the time-exponential moving average as it smooths out the fluctuations. 

Note that moving averages in the simulation have been set up with 6-hour time windows. 

Regarding the graph in the middle, it shows the temporal mean of the average number of active 

occurrences for each observation, which quantifies the average evidence that supports (or not) 

the idea that the robot works optimally in terms of engagement. Finally, the lower graph 

corresponds to the relative contribution of the observations to the QoS estimates. According to 

this graph, at the beginning, the QoS estimates have the following support: the observation 

“refused” would account for 62% of the evidence, while “named” would account for 38%. 

However, the contribution of the latter grows during the simulation and ends up being 66% of 

the evidence. 

5.3 Tuning QoS metrics 

Chapter 4 presented the bases to create a modelling language, from which to automatically 

generate a probabilistic network to estimate non-functional properties. Through this language, 

domain experts can easily express high-level specifications without having to deal with the 

complexities of the underlying probabilistic model. However, the trade-off is the consequent 

loss of flexibility, since users must stick to what is provided.  For instance, according to 

Section 4.1, domain experts can choose from 5 levels (from very low to very high) to define 

the strength of the evidence produced by an observation. Anything else would require domain 

experts to have the ability to adjust the probabilistic model, which is out of the question in most 

cases. 

In this section, we will introduce an alternative approach where probabilistic networks give 

way to neural networks. The weights of the neural network will be initialized by the parameters 

of the probabilistic network (as a way of transferring the knowledge), so in the end both 

approaches should produce the same estimations. Although they may be equivalent, neural 

networks have the advantage of backpropagation [53], which is a widely-used training 



112 Running QoS metrics 

 

algorithm that allows adjusting the weights through examples. This could provide domain 

experts with a simple method to fine-tune QoS estimates, where they would only need to 

prepare a limited number of examples showing how some input observations should produce 

certain output estimates, based on experience, analysis, testing, whatever they think is best. 

5.3.1 Proposed neural network architecture 

Figure 24 shows the proposed neural network architecture that results from the probabilistic 

model presented in Section 3.4. More specifically, this architecture arises from the translation 

as a computation graph of the formulas (5.13), (5.16) and (5.17). Also, see that it is a 

feedforward network since the information moves in one direction from the inputs to the 

outputs. There are no cycles or loops in the network. 

 

Figure 24. Proposed neural network architecture 

The neural network consists of the following layers. 

• Input layer: It considers the average number of active occurrences for each observation 

(denoted by 𝑁𝑜𝑏𝑠 𝑖
<𝑡> ), so the input will be a vector of real numbers greater than or equal 



5.3 Tuning QoS metrics 113 

 

to 0 with size equal to the number of observations. The point of considering 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  

instead of the raw occurrence of the observations allows us to simplify the network at 

the cost of losing the ability to adjust the persistence of the observations (which is 

embedded in the calculation of 𝑁𝑜𝑏𝑠 𝑖
<𝑡> ). 

• Hidden layer 1: This layer comprises a number of units equal to the number of 

observations, where a unit is defined by Equation (5.43), being 𝑤𝑖 and 𝑏𝑖 trainable 

parameters. Since this expression corresponds to 𝑓(𝑧) in (5.16) with 𝑘 = 0, the unit is 

initialized according to (5.44). Inverting the expressions, we can retrieve the updated 

probabilities after a training through (5.45). Note that these probabilities can be useful 

when performing analyses or considering other applications. Finally, this layer seems 

to be involved in how the influence of an observation varies along 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  (what we 

defined as repetition of the observations in Chapter 4). 

𝑎𝑖
[1] = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑖𝑥𝑖 + 𝑏𝑖) (5.43) 

𝑤𝑖 = 𝛼𝑜𝑏𝑠 𝑖 ;   𝑏𝑖 = − 𝑙𝑛 (
𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆0)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆0)

) (5.44)  

𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆0) =
1

1 + 𝑒−𝑏𝑖
;    𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆0) = 1 − 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆0) (5.45) 

• Hidden layer 2: This layer consists of a set of activations 𝑎𝑖𝑗
[2]

 where the first index 

identifies an observation and the second a state combination of properties, i.e., a value 

of 𝑝𝑟𝑜𝑝𝑠 ∈ {𝑃𝑅𝑂𝑃𝑆0, 𝑃𝑅𝑂𝑃𝑆1,… , 𝑃𝑅𝑂𝑃𝑆2𝑀−1}, being M the number of properties (see 

Section 3.4.4). Equation (5.46) shows the definition of a unit in this layer, being 𝑤𝑖𝑗 and 

𝑣𝑖𝑗 trainable parameters. Note that it uses logarithm as the activation function. Although 

this is not a common feature, there have been similar proposals in the past [54]. In 

addition, we use exponentials with the weights, which is convenient to make them be 

real numbers, initialized as shown in (5.47). Otherwise, the training of 𝑤𝑖𝑗 and 𝑣𝑖𝑗 would 

have to be limited to positive numbers, as these weights represent a ratio of probabilities 

according to (5.16). Finally, we can retrieve the updated probabilities after a training 

through (5.48). 

𝑎𝑖𝑗
[2] = 𝑙𝑛 (𝑒𝑤𝑖𝑗  𝑎𝑖

[1] + 𝑒𝑣𝑖𝑗 (1 − 𝑎𝑖
[1])) (5.46) 



114 Running QoS metrics 

 

𝑤𝑖𝑗 = 𝑙𝑛 (
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑗)
𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆0)

) ;   𝑣𝑖𝑗 = 𝑙𝑛 (
𝑃(¬𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑗)
𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆0)

) (5.47)  

𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆𝑗) = 𝑒𝑤𝑖𝑗  𝑃(𝐶𝑇𝑋𝑖  | 𝑃𝑅𝑂𝑃𝑆0);     𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗) = 𝑒𝑣𝑖𝑗 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆0) (5.48) 

Considering the initialization of the hidden layer 1 and 2, we can observe that they rely 

on some common probabilities, so there is a dependency between the parameters of 

these layers. Since the training process would normally assume independent 

parameters, we may not be able to extract a consistent set of probabilities from the 

trained weights. That is, the resulting weights might produce invalid probability values 

or the relationship 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗) = 1 − 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗) (for 𝑗 = 0,1,…) might 

not hold. The dependency between layers seems necessary to make 𝑎𝑖𝑗
[2]

 equal to 0 when 

𝑁𝑜𝑏𝑠 𝑖
<𝑡>  is 0. In other words, a unit in layer 2 establishes the influence of an observation i 

in relation to 𝑃𝑅𝑂𝑃𝑆0 and 𝑃𝑅𝑂𝑃𝑆𝑗 , so when there is no observation (𝑁𝑜𝑏𝑠 𝑖
<𝑡> = 0), the 

influence should be 0 (𝑎𝑖𝑗
[2] = 0). Following this principle, we have added a 

regularization term in the loss function to favour weight values that keep probabilities 

consistent. This regularization term is defined in (5.49) as the L1 norm of the activations 

of the second layer when the input of the neural network is 0. The importance of the 

regularization term in the loss function is controlled by the hyper-parameter 𝜆. 

𝜆 ∑|𝑎𝑖𝑗
[2]|

𝑖,𝑗

 

𝑗 = 1, … , 2𝑀 − 1       ∀𝑖 | 𝑥𝑖 = 0 

(5.49) 

• Output layer: This layer is responsible for transforming the activations of the previous 

layer into QoS estimates. The layer applies three consecutive operations that do not 

have trainable parameters. First, the layer adds the contribution of each observation in 

relation to 𝑃𝑅𝑂𝑃𝑆0 and 𝑃𝑅𝑂𝑃𝑆𝑗 , which corresponds to the term ∑ ln (𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘>)𝑖  in (5.13) 

for 𝑙 = 𝑗 and 𝑘 = 0. Equation (5.50) defines this first step. Second, the layer performs a 

softmax [53], which ends in a vector of probabilities 𝑃(𝑃𝑅𝑂𝑃𝑆𝑘 | 𝑁𝑜𝑏𝑠 1
<𝑡> ,… ,𝑁𝑜𝑏𝑠 𝑁

<𝑡> ) for 

𝑘 = 0,… , 2𝑀 − 1, being M the number of properties. These probabilities correspond to 

the term (1 + ∑ 𝑒∑ ln (𝐿𝑅𝑜𝑏𝑠 𝑖
<𝑙,𝑘>)𝑖𝑙≠𝑘 )

−1
 in (5.13). Equation (5.51) defines this second step.  



5.3 Tuning QoS metrics 115 

 

𝑧𝑗 = {
0 𝑗 = 0

∑𝑎𝑖𝑗
[2]

∀𝑖

𝑗 = 1,… , 2𝑀 − 1 (5.50) 

𝜎(𝒛)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑗2𝑀−1
𝑗=1

, 𝑗 = 0, 1,… , 2𝑀 − 1 (5.51) 

Finally, the layer applies a linear function to obtain a QoS estimate for each property. 

It multiplies the vector resulting from the softmax function by a 2𝑀 × 𝑀 matrix with the 

binary representation of the numbers from 0 to 2𝑀 − 1. An example for two properties 

is shown in (5.52), where 𝑦1 and 𝑦2 are the resulting QoS estimates associated with 

property 1 and 2, respectively. 

(𝑦2 𝑦1) = (𝜎0 𝜎1 𝜎2 𝜎3)(
0 0
0 1
1 0
1 1

) = (𝜎2 + 𝜎3 𝜎1 + 𝜎3) (5.52) 

5.3.2 Practical cases 

In the following, we are going to introduce some examples to illustrate the use of the proposed 

neural network. All the cases below are based on the hospital robot example presented in 

Section 3.3 and have been implemented in Python with TensorFlow [55]. 

5.3.2.1 Adjusting the strength of an observation 

The observation “People interact through the robot’s touch screen” (“screen interaction” for 

short) is considered a good sign in terms of user engagement. The details of this observation 

can be seen in Table 17 according to the specification that was introduced in Section 4.1.  

Table 17. Observation “screen interaction” 

(PATTERN) A screen event is received (PERSISTENCE) Short (REPETITION) None 

(PROPERTY) Engagement            (DIRECTION) Reinforce         (STRENGTH) High 

Suppose that after evaluating the probabilistic model generated from the specification, we 

decide to adjust the strength of this observation. We want the QoS estimate to reach 0.9 instead 

of 0.78 when the observation occurs. For this, the training data set that we will need to prepare 



116 Running QoS metrics 

 

will have only two samples: (1) an input-output pair (𝑥(1), 𝑦(1)) to indicate the starting point 

when there are no occurrences and (2) an input-output pair (𝑥(2), 𝑦(2)) to indicate the desired 

endpoint when there is at least one occurrence of the observation. See in (5.53) the data set 

used in this example. Note that 𝑥(𝑛) is a column vector containing the value of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  for each 

observation, where the last element of the vector corresponds to the observation “screen 

interaction”. On the other hand, 𝑦(𝑛) is also a column vector with the QoS estimates for each 

property, where the first element is the estimate for “safety” and the last element the one for 

“engagement”. 

𝑋 = [𝑥(1), 𝑥(2)] = [(
0
⋮
0
) , (

0
⋮
1
)]      𝑌 = [𝑦(1), 𝑦(2)] = [(0.5

0.5) , (0.5
0.9)] (5.53) 

The training process was configured with Adam [56] as the optimization algorithm, a learning 

rate of 0.001 and the mean squared error (MSE) as the loss function with 𝜆 = 0.001 for the 

regularization term. As for the testing, since the adjustment we want to perform is equivalent 

to changing the strength from “high” to “very high”, we have generated a data set of 100,000 

random samples using the corresponding probabilistic model. It is worth noting that the 

adjustments are not required to match the terms of a high-level specification (e.g., from “high” 

to “very high”), but domain experts can propose any input-output sample based on experience, 

tests, etc. The sole purpose of mapping adjustments to changes in the high-level specification 

is to facilitate the validation of the example.  

We ran the training for 2,000 epochs, ending with a mean absolute percentage error of 0.15%, 

while the testing shows an error of 1%. Figure 25 illustrates the effect of the observation 

“screen interaction” on the QoS estimate before and after the training. We can see how the 

training was able to change this effect from 0.78 to 0.9079. Regarding the consistency of the 

underlying probabilities, after obtaining them with the expressions in (5.45) and (5.48), we can 

calculate 𝑃(𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗) + 𝑃(¬𝐶𝑇𝑋𝑖 | 𝑃𝑅𝑂𝑃𝑆𝑗). The result of this sum should always be 1 

for any j, thus we can measure consistency as the deviation from this value through the mean 

absolute error, so that the smaller the error, the greater the consistency. The example shows a 

mean error of 1.27 ∙ 10−4 with a maximum of 3.87 ∙ 10−4.  

Although all these results are not bad, we have the option to improve them by segmenting the 

neural network into two smaller networks, one for each property. This is possible due to the 



5.3 Tuning QoS metrics 117 

 

absence of common observations between the properties. With the segmented network, the 

error on the test data set decreases from 1% to 0.39% with a consistency error of 1.94 ∙ 10−5 

(maximum of 8.46 ∙ 10−5). 

 

Figure 25. QoS estimate before and after training 

5.3.2.2 Adjusting the strength and repetition of an observation 

Now, let us adjust the strength and the repetition of the observation “screen interaction” shown 

in Table 17. As in the previous example, we want to increase the QoS estimate up to 0.9, but 

this time gradually. That is, the observation will not be consolidated until it is repeated at least 

5 times. The training data set will have only three samples: (1) a sample (𝑥(1), 𝑦(1)) to indicate 

the starting point when there are no occurrences, (2) a sample (𝑥(2), 𝑦(2)) to consider the 

midpoint and (3) another sample (𝑥(3), 𝑦(3)) to indicate the desired endpoint when 𝑁𝑜𝑏𝑠 𝑖
<𝑡> = 6. 

Note that when an observation is repeated 5 times, it means 6 occurrences: the first occurrence 

plus 5 repetitions. See in (5.54) the data set used in this example, where 𝑥(𝑛) and 𝑦(𝑛) are 

column vectors and follow the same notation that we defined in the previous section. 

𝑋 = [𝑥(1), 𝑥(2), 𝑥(3)] = [(
0
⋮
0
) , (

0
⋮
3
) , (

0
⋮
6
)] ;    𝑌 = [𝑦(1), 𝑦(2), 𝑦(3)] = [(0.5

0.5) , ( 0.5
0.83) , (0.5

0.9)] (5.54) 



118 Running QoS metrics 

 

For the training process, we used the Adam optimization algorithm with a learning rate of 0.01 

and the MSE as the loss function with 𝜆 = 0.001 for the regularization term. Since the 

adjustment we want to perform is equivalent to changing in Table 17 the strength from “high” 

to “very high” and the repetition from 0 to 5, we have generated a test data set with 100,000 

random samples using the corresponding probabilistic model. We ran the training for 2,000 

epochs, ending with a mean absolute percentage error of 0.08%, while the testing shows an 

error of 1.27%. See in Figure 26 the effect of the observation before and after the training. 

Regarding the consistency of the probabilities, the mean absolute error is 1.02 ∙ 10−3 with a 

maximum error of 4.61 ∙ 10−3. Finally, considering a segmented neural network focused on 

“engagement”, we can decrease the error on the test data set to 0.11% with a consistency error 

of 3.07 ∙ 10−4 (maximum of 9.32 ∙ 10−4). 

 

Figure 26. QoS estimate before and after training 

5.3.2.3 Adjusting several observations 

In this example we are going to consider the observation “People ask questions” (“question” 

for short) together with the observation “screen interaction”. The details of this new 

observation can be seen in Table 18 according to the specification that was introduced in 

Section 4.1.  



5.3 Tuning QoS metrics 119 

 

Table 18. Observation “question” 

(PATTERN) A question is recognized (PERSISTENCE) Short (REPETITION) None 

(PROPERTY) Engagement            (DIRECTION) Reinforce         (STRENGTH) High 

In addition to the adjustment applied in the previous example, we will decrease the strength of 

“question” from 0.78 to 0.68. Moreover, this observation will need to be repeated at least once 

to reach its maximum influence. The training data set will have five samples: (1) a sample 

(𝑥(1), 𝑦(1)) to indicate the starting point when there are no occurrences, (2) two samples, 

(𝑥(2), 𝑦(2)) and (𝑥(3), 𝑦(3)), to adjust the midpoint and endpoint of the observation “screen 

interaction” and (3) two samples, (𝑥(4), 𝑦(4)) and (𝑥(5), 𝑦(5)), to indicate the midpoint and 

endpoint of the observation “question”. See in (5.55) the training data set used in this example. 

The vector 𝑥(𝑛) contains the value of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  for each observation, where the first component of 

the vector corresponds to “question” and the last one to “screen interaction”. 

𝑋 = [𝑥(1), 𝑥(2), 𝑥(3), 𝑥(4), 𝑥(5)] = [(
0
⋮
0
) , (

0
⋮
3
) , (

0
⋮
6
) ,(

1
0
⋮
0

) ,(
2
0
⋮
0

)] 

𝑌 = [𝑦(1), 𝑦(2), 𝑦(3), 𝑦(4), 𝑦(5)] = [(0.5
0.5) , ( 0.5

0.83) , (0.5
0.9) , ( 0.5

0.65) , ( 0.5
0.68)] 

(5.55) 

The training process was executed with the Adam optimization algorithm considering a 

learning rate of 0.01 and the MSE as the loss function with 𝜆 = 0.001 for the regularization 

term. The adjustment we want to perform is equivalent to (1) changing the strength of 

“question” from “high” to “medium” and its repetition from 0 to 1, and (2) changing the 

strength of “screen interaction” from “high” to “very high” and its repetition from 0 to 5. 

Considering these changes in the probabilistic model, we have generated a test data set with 

100,000 random samples. The training was carried out for 2,000 epochs and ends with a mean 

absolute percentage error of 0.15%, showing an error of 1.52% on the test data. As for the 

consistency of the probabilities, the mean absolute error is 1.02 ∙ 10−3 with a maximum error 

of 4.61 ∙ 10−3. As we have already seen in the previous examples, we can improve these results 

with a segmented neural network, in that case, the error on the test data set decreases to 0.11% 

with a consistency error of 7.36 ∙ 10−4 (maximum of 3.58 ∙ 10−3). Figure 27 shows the effect of 

the observation “question” before and after the training. 



120 Running QoS metrics 

 

 

Figure 27. QoS estimate before and after training 

Until now, we have considered a single training set in the examples. Next, we will try a different 

approach, in which we will perform several consecutive training sessions, each one focused on 

the adjustment of an observation. In this sense, we can see in (5.56) the division of the training 

data into two sets. 

𝑋𝑠𝑐𝑟𝑒𝑒𝑛 = [𝑥(1), 𝑥(2), 𝑥(3)] = [(
0
⋮
0
) , (

0
⋮
3
) , (

0
⋮
6
)] ;   𝑌𝑠𝑐𝑟𝑒𝑒𝑛 = [𝑦(1), 𝑦(2), 𝑦(3)] = [(0.5

0.5) , ( 0.5
0.83) , (0.5

0.9)] 

𝑋𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 = [𝑥(1), 𝑥(4), 𝑥(5)] = [(
0
⋮
0
) ,(

1
0
⋮
0

) , (
2
0
⋮
0

)] ;    𝑌𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 = [𝑦(1), 𝑦(4), 𝑦(5)] = [(0.5
0.5) , ( 0.5

0.65) , ( 0.5
0.68)] 

(5.56) 

We have repeated the training process with the same configuration for the optimizer, but 

arranged in two consecutive steps: 2,000 epochs for the data set (𝑋𝑠𝑐𝑟𝑒𝑒𝑛, 𝑌𝑠𝑐𝑟𝑒𝑒𝑛) and 2,000 

epochs for (𝑋𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛, 𝑌𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛). Considering the complete neural network (without 

segmentation), the error on the test data decreases to 1.04% with a consistency error of 9.83 ∙

10−4 (maximum of 4.45 ∙ 10−3). The training of one observation appears to be independent of 

all other observations, at least to some extent, which provides users with a lot of flexibility to 

tune the network. We will see more details about this approach in Section 5.3.3.3. 



5.3 Tuning QoS metrics 121 

 

5.3.3 Comparison with a regular feedforward neural network 

This section presents a comparison between the proposed architecture and a conventional 

feedforward neural network, which will allow us to point out the benefits of the proposal. 

5.3.3.1 Model complexity 

Looking at the probabilistic model introduced in Section 3.4 as a non-linear function that maps 

observations (in terms of 𝑁𝑜𝑏𝑠 𝑖
<𝑡> )  to QoS estimates, the complexity shows up in the variability 

of the outputs. Put simply, if the entire range of inputs were mapped to just two output values, 

it would be easy to remember, and the complexity would be low. On the other hand, the 

complexity would be high, if the outputs change so much that it is difficult to establish a pattern. 

This idea of complexity is related to the Shannon entropy [57], so we will consider the entropy 

of the QoS estimates as a measure of the complexity of the model. The higher the entropy, the 

higher the complexity. 

Basically, the complexity of the probabilistic model increases as the corresponding high-level 

specification (1) has more observations, (2) which are shared among more properties, and (3) 

whose "repetition" are set to higher values. Based on these three points, we have created several 

specifications of different complexity, from which we generate data by sampling the 

probabilistic model with random inputs. Once we have data, it is possible to train a 

conventional neural network to approximate the QoS estimates. Table 19 shows the results, 

which establish a relationship between the complexity of the specification and the size of the 

neural network and the training data. The columns in the table are the followings: 

• Entropy: It is calculated based on the histogram of the QoS estimates resulting from the 

random sampling of the probabilistic model. Equation (5.57) shows the definition 

where 𝑝𝑖(𝑌) is the probability mass associated with the i-th bin. 

Η(Y) = −∑ 𝑝𝑖(𝑌) ln(𝑝𝑖(𝑌))
∀𝑖

 (5.57) 

 



122 Running QoS metrics 

 

Table 19. QoS specifications with a regular neural network 

Entropy QoS specification Neural network Trainable 
parameters 

Training 
data set MAPE 

0.068 1 property + 1 observation 

(repetition = 0) 

Network with a single sigmoid 

unit 2 (4) 100 

samples 0.18% 

0.89 
1 property + 10 observations 

(repetition = 0) 

Network with a single sigmoid 

unit 
20 (40) 

1,000 

samples 
1.2% 

3.64 
1 property + 2 observations 

(repetition ~ 𝒩(𝜇 = 50,𝜎2 = 1)) 

Fully connected network with 2 

layers: 10 ReLU units + 1 sigmoid 

unit 

60 (8) 
5,000 

samples 
1% 

4.96 

2 properties + 2 shared 

observations  

(repetition ~ 𝒩(𝜇 = 50,𝜎2 = 1)) 

Fully connected network with 2 

layers: 10 ReLU units + 2 sigmoid 

units 

80 (16) 
5,000 

samples 
0.51% 

7.06 

2 properties + 10 shared 

observations 

(repetition ~ 𝒩(𝜇 = 50,𝜎2 = 25)) 

Fully connected network with 2 

layers: 30 ReLU units + 2 sigmoid 

units 

720 (80) 
10,000 

samples 
1% 

• QoS specification: Description of the high-level specification from which the 

probabilistic model is automatically generated. 

• Neural network: Architecture used to approximate the QoS estimates. The network 

architecture has been selected empirically based on experiments. 

• Trainable parameters: It shows the number of trainable parameters of the neural 

network compared to what would be needed with the architecture we proposed in Figure 

24 (indicated in parentheses).  

• Training data set: Size of the data set that was used to train the neural network. 

• MAPE: Mean absolute percentage error of the results produced by the neural network 

with respect to those of the probabilistic model. The test was performed with a data set 

of 100,000 samples. 

Although the complexity of the QoS specification could be increased much more than what is 

shown in the table, research states that a feedforward neural network with a single hidden layer 

is sufficient to represent any function [58]. In this sense, a fully connected network with two 

layers should have no problem approximating any specification if the hidden layer and the 

training data are large enough. However, it does not seem feasible for domain experts to create 

a data set of thousands of samples from scratch. In contrast to this traditional data-centric 

approach, our proposal promotes the initialization of the neural network based on the 



5.3 Tuning QoS metrics 123 

 

probabilities derived from the QoS specification, so that knowledge is transferred more 

efficiently from the experts to the network. 

In the table, decisions about the size of the neural network and the training data were made 

empirically on the basis of trial and error. Note that to keep the error small they must grow as 

the complexity of the specification increases. On the contrary, in our proposal, the neural 

network architecture naturally grows in complexity as new inputs are added. Moreover, this 

architecture is not arbitrary, but it is based on the probabilistic model we have developed 

throughout this Thesis. 

As for the number of trainable parameters, they grow linearly with the number of observations. 

In a fully connected neural network, they increase twice the number of hidden units for each 

new observation, while, in our proposal, the number of parameters increases 2𝑀+1 per 

observation, being M the number of properties. In general, the number of connections will tend 

to be higher in a fully connected network, which means more parameters and a longer training. 

However, a larger number of parameters can extend the relationships that the network can 

learn. For example, we have considered independent observations in our model, but a fully 

connected neural network can learn that the effect of two observations is different depending 

on their joint values. In this sense, the proposed architecture is more rigid in that it has been 

built based on some assumptions that limit it. 

5.3.3.2 Fitting QoS estimates with small data sets 

As we saw in the examples, the proposed neural network allows users to adjust the QoS 

estimates using very few samples. In this section, we try the same with a regular neural 

network. In particular, we have repeated the example in Section 5.3.2.2, in which we adjusted 

the strength and repetition of the observation “screen interaction”. For that, we have considered 

a fully connected network with two layers: a hidden layer with 20 ReLU units and an output 

layer with 2 sigmoid units.  

The first step was to train the neural network to approximate the initial QoS specification. For 

that, we have used the optimization algorithm "Follow the Regularized Leader" (FTRL) [59] 

with a learning rate of 0.01 and the MSE as the loss function. The training data set consisted 



124 Running QoS metrics 

 

of 10,000 samples randomly generated with the probabilistic model that is derived from the 

QoS specification. We ran the training for 20,000 epochs, ending with a mean absolute 

percentage error of 0.047%, tested on a data set of 100,000 samples. 

Once we had the neural network ready to produce QoS estimates, we proceeded with the 

adjustment of the observation “screen interaction” using the training data in (5.54), which 

corresponds to changing the observation strength from “high” to “very high” and its repetition 

from 0 to 5. The training was run for 8,000 epochs using FTRL, a learning rate of 0.01 and the 

MSE loss function. Finally, the testing shows an error of 16% over a data set of 100,000 

samples. We have also tried to extend the training data up to 100 samples, increasing the error 

to 18.34%. 

In the proposed architecture, the data from each observation flows separately until everything 

is combined in the output layer. It seems that this scheme favours the adjustment of an 

observation almost without affecting the rest. On the contrary, in a fully connected neural 

network, everything is interrelated, which means that a complete training set (with thousands 

of samples) is required to adjust the observation in question and ensure that the rest behaves as 

it should. 

5.3.3.3 Breaking down the training process into several independent sessions 

As already mentioned before, the estimation of QoS can be seen as a function 𝑌 = 𝑓(𝑋), where 

the vector X contains the observations (in terms of 𝑁𝑜𝑏𝑠 𝑖
<𝑡> ) and the vector Y the QoS estimates 

corresponding to each non-functional property. If the function 𝑓(𝑋) could be decomposed into 

several independent functions defined on mutually exclusive subsets of inputs, so that 𝑓(𝑋) =

𝑔(𝑓1(𝑋1), 𝑓2(𝑋2) … ), being g a known aggregation function, then 𝑓(𝑋) could be approximated 

by training each function 𝑓𝑖 separately. 

The proposed neural network architecture is suitable for this type of training decomposition 

since the input data is developed independently until it is aggregated in the output layer. This 

is the same reason that allows the neural network to be trained with a few samples (see the 

previous section). To illustrate this feature, let us consider the hospital robot example, in which 

instead of initializing the parameters of the neural network using the probabilities derived from 



5.3 Tuning QoS metrics 125 

 

the QoS specification, we are going to train the proposed architecture with data generated from 

the probabilistic model. However, unlike the traditional approach, we will perform 11 

consecutive training sessions on different data sets, each one focused on an observation. For 

instance, the training data set linked to the i-th observation would follow the configuration 

shown in (5.58). The column vectors in 𝑋𝑖  have 0s in all the components, except the one 

associated with the i-th observation, which varies from 0 to 9.99. As for 𝑌𝑖, it shows the QoS 

estimates resulting from evaluating the probabilistic model with 𝑋𝑖 . Each data set will have 100 

samples. 

𝑋𝑖 = [𝑥𝑖
(1), 𝑥𝑖

(2), 𝑥𝑖
(3), … , 𝑥𝑖

(100)] =

[
 
 
 
 

(

 
 

0
⋮
0
0
⋮)

 
 

,

(

 
 

0
⋮

0.1
0
⋮ )

 
 

,

(

 
 

0
⋮

0.2
0
⋮ )

 
 

, … ,

(

 
 

0
⋮

9.99
0
⋮ )

 
 

]
 
 
 
 
 

𝑌𝑖 = [𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(100)] = [(0.5
0.5) , ( 0.5

0.63) , ( 0.5
0.68) ,… , (0.5

0.9)] 

(5.58) 

We have used the Adam optimization algorithm considering a learning rate of 0.001, the MSE 

as the loss function and 𝜆 = 0.001 for the regularization term. We ran each training session for 

3,000 epochs, and after that, the neural network was tested with a set of 100,000 samples, 

showing a mean absolute percentage error of 1.76%.  

The same was repeated with a fully connected network with two layers: a hidden layer with 20 

ReLU units and an output layer with 2 sigmoid units. The training was set with FTRL as the 

optimization algorithm, a learning rate of 0.01 and MSE as the loss function. We ran each 

training session for 5,000 epochs, ending with a mean absolute percentage error of 31.11%, 

tested on a data set of 100,000 samples. As expected, the architecture of a fully connected 

neural network is not appropriate for this type of training since the observations are not treated 

in isolation but rather the opposite, all the inputs are combined in each unit of the hidden layer. 

Finally, the ability to break down the training process gives users a lot of flexibility in how 

they can tune the neural network. Thus, they can do it in several steps, focusing only on a 

limited set of observations and using few samples. 



126 Running QoS metrics 

 

5.4 Summary 

In this chapter, we have presented the main aspects to support the execution of QoS metrics, 

including the algorithms for calculating QoS estimates, the application of statistics, and how to 

tune QoS metrics. Next chapter will address the creation of a Domain Specific Modelling 

Language (DSML) to specify QoS metrics. This modelling language will be based on the 

concepts discussed so far and will provide users with a tool to write and run high-level 

descriptions of QoS metrics. 



6.1 Supporting the role of QoS Engineers 127 

 

 Modelling language for QoS metrics 

In this chapter we propose a Domain Specific Modelling Language (DSML) to specify QoS 

metrics on non-functional properties. This DSML builds on the concepts discussed in the 

previous chapters and provides users with a modelling tool to write and run high-level 

descriptions for QoS estimation. Basically, we take the following approach. Users can model 

context variables and, from them, observations of relevant context patterns. At runtime, these 

observations can provide evidence that reinforce (or undermine) the belief that the system is 

optimal (or not) in terms of one or more non-functional properties. Finally, QoS metrics 

quantify this belief by expressing the estimated degree of fulfilment of each property as a 

number. 

6.1 Supporting the role of QoS Engineers 

Our proposal aims to help QoS Engineers with tasks such as (1) the evaluation of non-

functional requirements, e.g., to check statements like “the robot should perform, at least, well 

with respect to safety”; (2) benchmarking, e.g., to test the impact of different robot realizations 

on user engagement; and (3) self-adaptation, e.g., the robot could select, at runtime, its 

navigation strategy based on power consumption. The success of all these tasks relies primarily 

on the ability to estimate the performance of the system in terms of non-functional properties, 

such as the previously mentioned safety, user engagement and power consumption. In this 

sense, the proposed DSML provides QoS Engineers with an easy-to-use modelling tool and the 

necessary runtime artifacts to deal with the estimation of non-functional properties. More 

specifically, our proposal provides the following benefits. 



128 Modelling language for QoS metrics 

 

• QoS Engineers can use the DSML for any application domain. The concepts it includes 

(such as context variable, non-functional property, or observation) are domain 

independent. 

• QoS Engineers can write domain-specific definitions in terms of reusable models, 

which can be imported later when modelling a particular application. In this sense, the 

DSML promotes the reuse of models by including in the language the ability to 

parameterize and import models. 

• QoS Engineers can easily assimilate the language thanks to its simple textual syntax. 

In this regard, the DSML limits the use of numerical representations, promoting a more 

natural form of expression for users, where qualitative descriptions predominate over 

quantitative ones. For example, the strength of an observation could be defined as 

“high” and its persistence as “long”. 

• QoS Engineers can use the language to model complex context patterns. Although this 

is not the focus of this Thesis, the DSML includes primitives to process time series data. 

Thus, users could define that an observation occurs when a context variable follows a 

particular sequence of updates.  

• QoS Engineers can specify causal relationships between context and non-functional 

properties in terms of observations. As we saw in Chapter 4, a probabilistic network 

will be transparently derived from these definitions, so the DSML presents a high level 

of abstraction that hides all the complexities of this probabilistic network. 

• QoS Engineers can automatically generate runtime artifacts from their models. These 

artifacts can be integrated into their systems to allow the monitoring of input contexts 

and produce QoS estimates for each non-functional property. In addition, the artifacts 

will also provide engineers with the statistics developed in Section 5.2. The way in 

which all this information is used is entirely up to the QoS Engineers. 

6.2 Regarding the DSML specification 

Over the last years, the Eclipse Modeling Tools (EMT) [60] package has become the de facto 

standard for the development of modelling languages, graphical and textual model editors and 



6.3 The Abstract syntax of the language 129 

 

model transformations. Among the tools included in EMT, we have used the Eclipse Modelling 

Framework (EMF) (version 4.25.0) [61] to define the abstract syntax of the language in terms 

of metamodels. Moreover, the concrete textual syntax was created using the Xtext framework 

(version 2.29.0) [62], from which we generated a complete infrastructure including a parser, a 

linker, and a textual model editor for Eclipse with syntax colouring, auto-completion, and on-

the-fly syntactic model validation, among other features. 

The DSML specification is organized into three packages: 

• The Datatypes package, which provides users with the basics of the modelling language 

including data types, typed variables and values. 

• The Expressions package, which allows the definition of logical, arithmetical and 

pattern expressions. 

• The Kernel package, which specifies the main modelling concepts, such as, context 

variables, properties, and observations. 

The following sections will address the specification of these packages. 

6.3 The Abstract syntax of the language 

This section presents the specification of the abstract syntax of the proposed language in terms 

of metamodels. A metamodel is a model that describes the concepts of a language and the 

relationships between them. Basically, the procedure that we have followed to create the 

metamodels in Eclipse has been the following: (1) we have expressed the metamodels 

graphically with the Ecore editor included in EMF, and (2) we have generated the Java 

implementation of the metamodels. Note that this implementation will allow the modelling 

editor to internally represent the models that are created with the language. 

6.3.1 The Datatypes metamodel 

Figure 28 shows the Datatypes metamodel. This metamodel contains the definition of the basic 

elements of the DSML, such as the root element and the concepts related to data types. 



130 Modelling language for QoS metrics 

 

 

F
ig

u
re

 2
8

. 
D

a
ta

ty
p
e
s 

m
e
ta

m
o
d
e
l 



6.3 The Abstract syntax of the language 131 

 

Next, we describe the elements included in the metamodel. 

• Model: root class of a model, whose main functionality is to contain the elements 

belonging to the same specification. In this regard, a model can only contain definitions 

of data types, variables, and sentences. Also, note that users can define a namespace, 

which is used to form unique identifiers and avoid name conflicts, for example, when 

importing a model. 

• Sentence: abstract class to represent sentences. 

• DataTypeDefinition: represents a user definition of a data type that is intended to be 

reused in several variable declarations. 

• DataType: abstract representation of a data type. 

• BooleanType: Boolean data type. 

• Numeric Type: data type for real numbers. 

• TimeType: data type for time values, not only represented numerically but also with 

linguistic expressions (as we saw in section 4.1). 

• EventType: data type for variables that send or receive events. 

• EnumType: represents an enumerated data type consisting of a list of literals. 

• EnumLiteral: denoted a named value in an enumeration. 

• TypedVariable: abstracts a variable belonging to a data type. 

• DataTypeDeclaration: generic class that represents the data type declaration of a 

variable. 

• BuiltinTypeDeclaration: used when the declaration of a variable contains the definition 

of the data type. 

• ExternalTypeDeclaration: used when the declaration of a variable references a data 

type created by the user. 

• TypedValue: abstracts a value belonging to a data type. 

• BooleanValue: represents a Boolean value. 

• NumericValue: represents a real number. 

• EventValue: denotes the occurrence of an event. 

• EnumValue: references a literal from an enumeration. 

• TimeValue: abstracts the notion of time value. 



132 Modelling language for QoS metrics 

 

• AbsoluteTime: class to abstract the concept of absolute time value. It introduces the unit 

of measurement as an attribute. 

• NumericTimeValue: allows the use of numeric values, such as “13 seconds”. 

• AbsoluteTimeExpression, enables linguistic time expressions, such as “few seconds”. 

• TimeFrame, sentence to represent a reference period defined in terms of an absolute 

time value. 

• RelativeTime, abstract class that helps us express relative time values taking a 

TimeFrame instance as a reference. 

• RelativeTimeExpression, it enables relative linguistic time expressions, such as “short 

time”.  

• TimeUnitEnum: units of time. 

• AbsoluteQuantifierEnum: enumeration to quantify time in AbsoluteTimeExpression. 

• RelativeQuantifierEnum: enumeration to quantify time in RelativeTimeExpression. 

6.3.2 The Expressions metamodel 

The Expressions metamodel contains the concepts needed to form mathematical expressions, 

such as arithmetic, relational, or logical operators. In addition, it also includes special operators 

to define patterns in time series data, which are useful for creating context observations. Figure 

29 shows the proposed metamodel, which has the following elements: 

• Expression: represents a mathematical expression that can be defined with pattern, 

arithmetic, relational and logical operators. 

• Term: abstract class for representing the building blocks of an expression. A term can 

identify an operator, a constant, or a variable. 

• ConstTerm: term for including constant values in expressions. 

• VarTerm: term for including variable references in expressions. 



6.3 The Abstract syntax of the language 133 

 

 

F
ig

u
re

 2
9
. 
E

x
p
re

ss
io

n
s 

m
e
ta

m
o
d
e
l 



134 Modelling language for QoS metrics 

 

• UnaryTermOp: represents unary operators (i.e., those that contain a single term). 

• UnaryLogicalOp: parent class for unary logical operators. 

• NotBooleanTerm: logical NOT operator. 

• UnaryPatternOp: parent class for unary pattern operators. 

• OnceTerm: satisfied the first time a pattern is detected. 

• NotEventTerm: checks for the absence of a pattern. 

• RepeatTerm: operator that defines how many times a pattern must occur. 

• RangeTerm: operator that specifies the minimum and maximum number of times a 

pattern must occur. 

• BinaryTermOp: represents binary operators (i.e., those that contain two terms). 

• BinaryLogicalOp: parent class for binary logical operators. 

• AndBooleanTerm: logical AND operator. 

• OrBooleanTerm: logical OR operator. 

• BinaryArithOp: parent class for binary arithmetical operators. 

• AddTerm: addition operator. 

• SubTerm: subtraction operator. 

• MultTerm: multiplication operator. 

• DivTerm: division operator. 

• ModTerm: remainder operator. 

• BinaryRelationalOp: abstracts binary relational operators. 

• LessThanTerm: “less than” operator. 

• LessEqualTerm: “less than or equal to” operator. 

• EqualTerm: “equal to” operator. 

• GreaterEqualTerm: “greater than or equal to” operator. 

• GreaterTerm: “greater than” operator. 

• BinaryPatternOp: abstracts binary pattern operations. 

• FollowedByTerm: determines that the occurrence of a pattern must be followed by 

another occurrence. 

• WhileTerm: checks for a pattern while the condition (of another pattern) is evaluated to 

true. 



6.3 The Abstract syntax of the language 135 

 

• AndEventTerm: checks for the simultaneous occurrence of two patterns. 

• OrEventTerm: checks for the occurrence of at least one of two patterns. 

• NaryTermOp: abstract class for representing a n-ary operator (i.e., those that contain 

any number of terms). 

• ConditionalTerm: ternary operator. The first term is a comparison argument, the second 

is the result if the comparison is true, and the third is the result if it is false. 

• FunctionTerm: abstract class for representing a function. 

• PatternFunction: represents a pattern function. 

• PatternFtnEnum: enumeration of n-ary pattern functions: EVENT_WHEN (produces an 

event when the specified Boolean condition changes to true), UPDATE (event when the 

argument receives an update), and PERIOD (returns the period of time since the last 

update in the past). 

• ArithFunction: represents an arithmetical function. 

• ArithFtnEnum: enumeration of n-ary arithmetical functions: POW (power), EXP 

(exponential), SQRT (square root), and ABS (absolute value). 

• AggregationFunction: represents an aggregation function. An aggregation function 

takes a set of values and groups them to form a single value. 

• AggregationFtnEnum: enumeration of n-ary aggregation functions: AVG (average), 

MIN (minimum), MAX (maximum), COUNT (number of values), SUM (summation), 

DECREASING (returns true when the trend of the values is descending), INCREASING 

(true when the trend of the values is ascending), and STABLE (true when the values are 

stable). 

6.3.3 The Kernel metamodel 

The Kernel metamodel contains the main modelling concepts of the language. Figure 30 shows 

the metamodel. 

 



136 Modelling language for QoS metrics 

 

 

F
ig

u
re

 3
0

. 
K

e
rn

e
l 

m
e
ta

m
o
d
e
l 



6.3 The Abstract syntax of the language 137 

 

• Property: defines a non-functional property. A property has been modelled as a 

TypedVariable since it represents the corresponding QoS metric from which we can 

read the current QoS estimate. Thus, properties must always be declared as 

NumericType. 

• GeneralPurposeVariable: general-purpose variable for auxiliary operations, creation of 

state variables, among other uses. 

• Parameter: special type of variable to define configuration parameters. They are 

created with default values that can only be changed when importing the model into 

another (see SetParameter), which allows users to adjust the model when it is reused. 

• Timer: special type of variable that triggers an event after a specified date or period. 

The data type of this variable must be EventType. 

• Context: abstract class for representing a context variable. 

• PrimitiveContext: variables that take context data monitored by the system (e.g., from 

sensors or other components). 

• DerivedContext: context variable that can be expressed in terms of one or more 

PrimitiveContext (and any other type of variable, such as GeneralPurposeVariable or 

Timer). 

• Import: allows importing other models to reuse data types, variables, or observations. 

• SetParameter: allows users to adjust the value of a parameter defined in an importing 

model. 

• Observation: named sentence that identifies a context condition as a pattern expressed 

in terms of one or more context variables. The detection of this pattern can trigger 

actions. Moreover, users can optionally configure the following attributes to adjust how 

the occurrences of an observation behave over time: (1) persistence, it specifies the 

maximum period in which the effect of an occurrence remains with some influence 

until it disappears; and (2) repetition, which indicates how many times an observation 

must be repeated to have full effect. 

• Action, abstract class to represent an action that takes place when an observation occurs. 

• SetEvidence: provides evidence that the system behaviour is optimal (or not) in terms 

of a non-functional property (linked by property). The effect of this evidence is 



138 Modelling language for QoS metrics 

 

established according to the attributes: (1) direction, which indicates the orientation of 

the evidence; and (2) strength, which qualitatively determines the intensity of the 

evidence. 

• DirectionEnum: enumeration to establish the orientation of the evidence, REINFORCE 

(to increase) or UNDERMINE (to reduce) the belief that the system performs optimally. 

• StrengthEnum: enumeration to describe the intensity of the evidence considering five 

different levels: from VERY_LOW to VERY_HIGH. 

• ClearEvidence: removes all previous evidence (which was set with SetEvidence). 

• SetVariable: allows setting a general-purpose variable when an observation occurs. 

6.4 The textual concrete syntax of the language 

This section addresses the textual concrete syntax of the proposed language. As we have 

already mentioned, the language was developed using the Xtext framework, which allows us 

to generate a complete model editor for Eclipse. Basically, the procedure that we have followed 

to create the editor has been the following: (1) we have created a new Xtext project using the 

metamodels from the previous section, (2) we have written the grammar for each of the 

concepts included in the metamodels, and (3) we have generated the language artifacts. 

6.4.1 A language walkthrough 

Next, we are going to introduce how the main elements of the language are expressed, which 

will be presented in a simple way using the hospital robot example from Section 3.3. 

6.4.1.1 Context variables 

We are going to model, in a file called contexts.qosme, some of the context variables we saw 

in Table 1. Note that the extension qosme identifies the models created with the DSML.  

At the beginning of the model, we have the option to define the namespace. In that case, when 

importing the model, we would need to prepend this namespace to reference any of the 

imported variables, e.g. contexts.batteryLevel. Regarding the definition of primitive 



6.4 The textual concrete syntax of the language 139 

 

context variables, lines 10-13 of Listing 11 show 4 variables, declared with the keyword 

context followed by the variable name and the data type. These variables use built-in data 

types except for state, whose data type is defined separately (see line 7). As we will see in 

Section 6.6, each primitive context variable will be linked to a context monitor in the system, 

which will be responsible for providing updates at runtime. As for the definition of derived 

context variables, line 16 shows attentionLoss, which becomes true when eyeContact 

changes more than lossAttThreshold times in less than 1 minute, indicating that the user is 

not paying attention to the robot. The lossAttThreshold parameter is a variable whose default 

value can only be changed at the time of importing the model. 

1   namespace contexts 
2 

3   // Parameter 
4   param lossAttThreshold : number default 8 
5 

6   // Data type definition 
7   type StateEnum : enum {IDLE, GREETING, SERVING, PARTING, DOCKED} 
8 

9   // Primitive context variables 
10  context state : StateEnum 
11  context collision : event 
12  context batteryLevel : number 
13  context eyeContact : boolean 
14 

15  // Derived context variable 
16  context attentionLoss : boolean 
17     = count(eyeContact, 1min) > lossAttThreshold 

Listing 11. Content of contexts.qosme 

6.4.1.2 Properties 

Let us create a new model called example.qosme. Listing 12 shows its content. The first thing 

in the model is to import contexts.qosme so that we can use the context variables defined in it. 

Besides, we take the opportunity to adjust the parameter lossAttThreshold with a new value 

(see line 2).  

Lines 7-8 shows the declaration of two properties with the keyword property followed by a 

name. We do not have to define the data type as it is fixed to NumericType in the grammar. 

Remember that a property stores the current value of the corresponding QoS metric. 



140 Modelling language for QoS metrics 

 

6.4.1.3 Observations 

Lines 11-21 in Listing 12 show the definition of three observations. They are expressed with 

the keyword observation followed by (1) a name, (2) a context pattern, (3) optionally, the 

configuration of the persistence and the repetition, and finally (4) one or more actions. These 

observations correspond to the “People lose interest”, “Bump into someone” and “Stranded 

without battery” observations in Table 4, respectively. Note that some of the observations use 

relative time expressions to set the persistence (see lines 16 and 20), which requires the 

definition of the timeframe (line 4). 

1   import “contexts.qosme”  
2      with lossAttThreshold = 10 
3 

4   timeframe 7 days 
5 

6   // Properties 
7   property userEngagement 
8   property safety 
9   

10  // Observations 
11  observation obs1 : contexts.attentionLoss & contexts.state == SERVING 
12     persistence few hours 
13     undermines userEngagement 
14 

15  observation obs2 : contexts.collision 
16     persistence long 

17     undermines safety very high 
18 

19  observation obs3 : contexts.batteryLevel<1 & contexts.state != DOCKED 
20     persistence medium repetition 5 
21     undermines safety high 

Listing 12. Content of example.qosme  

6.4.1.4 Other resources: general-purpose variables and timers 

Consider that the robot is put into maintenance every day from 7 a.m. to 8 a.m. When this 

happens, we want to (1) disable some observations to avoid accumulating false evidence and 

(2) reset the properties to start the day with clean statistics. Listing 13 presents a new model 

that illustrates how to express general-purpose variables and timers using this example. First, 

line 8 shows the definition of a general-purpose variable to indicate if the robot is under 

maintenance. This is declared using the keyword var followed by a name, a data type, and an 



6.4 The textual concrete syntax of the language 141 

 

expression to be evaluated. Moreover, lines 11-12 shows the definition of two timers. A timer 

is declared using the keyword timer followed by a name and a value. The value can be a period 

expressed numerically (e.g., “3 seconds”, which means that the timer will go off every 3s) or a 

string to express a date or time (as in the example, “7:00h”, which means that the timer will be 

activated every day at 7:00 a.m.). Note that we do not have to indicate the data type of a timer 

as it is fixed to EventType in the grammar. Finally, observations ob1 and ob2 control the value 

of underMaintenance, and reset the properties when the maintenance is finished. The last 

observation will be disabled whenever the robot is under maintenance. 

1   import “contexts.qosme” 
2 

3   // Properties 
4   property userEngagement 
5   property safety 
6   

7   // General-purpose variable 
8   var underMaintenance : boolean = false 
9 

10  // Timers 
11  timer startMaintenance = “7:00h” 
12  timer endMaintenance = “8:00h” 
13 

14  // Observations 
15  observation obs1 : startMaintenance 
16     sets underMaintenance = true 
17 

18  observation obs2 : endMaintenance { 
19     sets underMaintenance = false 
20     clears userEngagement 
21     clears safety 
22  } 

23  observation obs3 : !underMaintenance & contexts.collision 
24     undermines safety very high 

Listing 13. Content of example2.qosme  

6.4.2 The grammar specification 

Listing 14 shows the EBNF specification of the language grammar. Although the textual 

concrete syntax was defined using Xtext, EBNF provides a more compact representation of the 

grammar. The complete specification developed with Xtext can be found in A.1. 

 



142 Modelling language for QoS metrics 

 

Model    ::= [‘namespace’ ID] 

  (‘import’ STRING (‘with’ ID ‘=’ Value)* )* 

  [‘timeframe’ (NumericTimeValue | AbsoluteTimeExpression)] 

    (DataTypeDefinition | TypedVariable | Observation) + 

DataTypeDefinition ::= ‘type’  ID  ‘:’  DataType 

DataType  ::= EnumType | NumericType | TimeType | BooleanType | EventType 

EnumType  ::= ‘enum’ ‘{’ ID  ( ‘,’ ID )* ‘}’ 
NumericType  ::= ‘number’ 
TimeType  ::= ‘time’ 
BooleanType  ::= ‘boolean’ 
EventType  ::= ‘event’ 
TypedValue  ::= EnumValue | NumericValue | BooleanValue | EventValue | TimeValue 

EnumValue  ::= ID ‘::’ ID 

EventValue  ::= ‘trigger’ 
NumericValue  ::= INT | DOUBLE 

BooleanValue  ::= ‘true’ | ‘false’ 
TimeValue  ::= NumericTimeValue | AbsoluteTimeExpression | RelativeTimeExpression 

NumericTimeValue ::=  NumericValue TimeUnitEnum 

AbsoluteTimeExpression ::=  (‘few’ | ‘some’ | ‘many’) TimeUnitEnum 

RelativeTimeExpression ::=  ‘short’ | ‘medium’ | ‘long’ 
TimeUnitEnum  ::= ‘seconds’ | ‘minutes’ | ‘hours’ | ‘days’ | ‘weeks’ | ‘months’ | 
    ‘second’ | ‘minute’ | ‘hour’ | ‘day’ | ‘week’ | ‘month’ 
TypedVariable  ::= GeneralPurposeVariable | Context | Property | Parameter | Timer 

GeneralPurposeVariable ::= ‘var’ ID ‘:’ (ID| DataType) ‘=’ Expr 

Context   ::= PrimitiveContext | DerivedContext 

PrimitiveContext  ::= ‘context’ ID ‘:’ (ID | DataType) 

DerivedContext  ::= ‘context’ ID ‘:’ (ID | DataType) ‘=’ Expr 
Property   ::= ‘property’  ID 

Parameter  ::= ‘param’ ID ‘:’ (ID | DataType) [ ‘default’ TypedValue ] 

Timer   ::= ‘timer’ ID ‘=’ (NumericTimeValue | STRING) 

Observation  ::= ‘observation’  ID  ‘:’  Expr  
    [ ‘repetition’ INT ] [ ‘persistence’ TimeValue ] 

  (‘{’ Action+ ‘}’) | Action 

Action   ::= SetEvidence | ClearEvidence | SetVariable 

SetEvidence  ::= ( ‘reinforces’ | ‘undermines’ ) ID  

  (‘very low’ | ‘low’ | ‘medium’ | ‘high’ | ‘very high’ ) 
ClearEvidence  ::= ‘clears’ ID 

SetVariable  ::= ‘sets’ ID ‘=’ NumericTimeValue 

Expr   ::= ‘once’ Expr   |  Expr ‘repeat’  ‘(‘ INT ‘)’ 
   | Expr ‘range’  ‘(‘ INT ‘,’ INT  ‘)’  |  Expr ‘while’  ‘(‘ Expr ‘)’ 
   | Expr ‘->’ Expr   |  Expr (‘or’ | ‘and’) Expr 



6.5 Validation of the models 143 

 

   | ‘not’ Expr   |  Expr ‘?’ Expr ‘:’ Expr 

   | Expr (‘|’ | ‘$’) Expr  |  ‘!’ Expr 

   | Expr (‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’) Expr 

   | Expr (‘+’ | ‘-’ | ‘*’ | ‘/’) Expr |  ‘(‘ Expr ‘)’ 
   | [ID ‘ ' ’] ID ‘(’ Expr ( ‘,’ Expr )* ‘)’ 
   | ID    |  TypedValue 

Listing 14. EBNF specification 

6.5 Validation of the models 

The model editor, developed with Xtext, provides three different types of validations based on 

the grammar specification we have created. 

6.5.1 Syntactical correctness 

The parser validates any textual input, including the format of attribute values. For example, in 

the Kernel metamodel (see Figure 30), the Observation metaclass defines repetition as an 

integer. We could have used OCL [63] to restrict this value to positive numbers, but we did it 

more conveniently through the grammar. Listing 15 shows an excerpt from the grammar in 

which the INT rule does not allow us to type a negative sign. If we do, the editor will generate 

an error message. 

Observation returns kernel::Observation: 
   'observation' name=ID ':' pattern=Expression  
      (('repetition' repetition=INT)? 

      ... 

terminal INT returns ecore::EInt: 

   ('0'..'9')+; 

Listing 15. Snippet of the grammar to show how the attribute "repetition" does not allow negative values 

6.5.2 Cross-reference validation 

The editor incorporates a linker to handle cross-references, for example, to allow the use of a 

variable already defined. The default mechanism is not appropriate for some of the language 

elements. For instance, SetParameter, in the Kernel metamodel (see Figure 30), allows users 



144 Modelling language for QoS metrics 

 

to configure the value of the parameters defined in the model that is imported. However, the 

linker does not check the origin of the references, so the parameters might not come from the 

imported model. To fix it, we had to extend the Java implementation of the editor. 

6.5.3 Concrete syntax validation 

The serializer validates all constraints that are implied by the grammar. Thus, by tuning the 

grammar, it is possible to introduce many of the constraints that need to be placed on the 

metamodel. For example, the Kernel metamodel (see Figure 30), extends TypedVariable to 

define Property and Timer as two special variables. We could have added in the abstract syntax 

a constraint to ensure that a property is always declared as NumericType and a timer as 

EventType. However, we did it easily through the grammar. Listing 16 and Listing 17 shows 

an excerpt from the grammar that addresses this issue for properties and timers, respectively. 

Basically, the solution is to assign the type directly when creating a property or a timer. 

Property returns kernel::Property: 
   'property' name=ID declaration=ImplicitNumericTypeDeclaration; 
 

ImplicitNumericTypeDeclaration returns datatypes::BuiltinTypeDeclaration: 
   type=ImplicitNumericType; 
  
ImplicitNumericType returns datatypes::NumericType: 
   {datatypes::NumericType}; 

Listing 16. Snippet of the grammar to show how "declaration" is implicitly set in properties 

Timer returns kernel::Timer: 
 'timer' name=ID declaration = ImplicitEventTypeDeclaration  
 '=' (period=NumericTimeValue | date=EString); 
 

ImplicitEventTypeDeclaration returns datatypes::BuiltinTypeDeclaration: 
 type=ImplicitEventType; 
  
ImplicitEventType returns datatypes::EventType: 
 {datatypes::EventType}; 

Listing 17. Snippet of the grammar to show how "declaration" is implicitly set in timers 

 



6.6 Runtime support 145 

 

6.6 Runtime support 

This section presents the artifacts that allow the estimation of QoS metrics, necessary to run 

the models created according to the specification covered in the previous sections. 

6.6.1 Overall process 

Figure 31 shows the overall process for enabling the estimation of QoS metrics. The process is 

as follows: 

1. At design-time, users create valid models using the textual editor developed with the 

Xtext framework. 

2. From these models, users can generate two components: the Event Processor and the 

QoS Metrics Estimator. 

3. At runtime, context monitors collect contextual data (from the system, its environment, 

other systems, etc.) and share it as context events in the Publish/Subscribe Data Space. 

Context monitors are not automatically generated as they will usually depend on the 

system architecture. Note that the proposed modelling language is platform-

independent, so models does not contain information about the architecture. However, 

Section 6.6.2 will provide the message format specification so that developers can 

easily integrate their monitors. 

4. The Event Processor receives context events and searches for the patterns specified in 

the model. When found, produces an observation event. It is worth noting that context 

events are updates of primitive context variables. 

5. The QoS Metrics Estimator receives the observations and produces QoS estimates, 

which quantify the degree of fulfilment of the non-functional properties. 

6. QoS consumers subscribe to QoS estimates to use them in, for example, a visualization 

tool that generates graphs to help engineers analyse the performance of the system. 

7. Like context monitors, Section 6.6.2 will provide the message format specification so 

that developers can integrate their QoS consumers. 

The following sections describe in more detail the Publish/Subscribe Data Space, the Event 

Processor, and the QoS Metrics Estimator.  



146 Modelling language for QoS metrics 

 

 

Figure 31. Overall process for enabling the estimation of QoS metrics 

6.6.2 Publish/Subscribe Data Space 

The process introduced in the previous section involves several components sharing 

information across the Publish/Subscribe Data Space. This data space is achieved through a 

publish/subscribe middleware, such as the Data Distribution Service (DDS) [64] or the 

Message Queuing Telemetry Transport (MQTT) [65].  

In these platforms, the information is organized in a hierarchy of topics, which identifies data 

of a particular type. When a publisher has a new item of data on a topic, it is sent to the 

middleware, which distributes the information to any client subscribed to the topic. The 

publisher does not need to know about the number or location of the subscribers, and the 

subscribers, in turn, do not have to be configured with any data about the publisher. Moreover, 

this flexibility allows system builders to seamlessly deploy the components on different 

scenarios. For instance, in the hospital robot example, the Event Processor and the QoS Metrics 

Estimator could be executed in a different computer to save computational resources in the 

robot, and without further configuration. This is also the case for context monitors and QoS 

consumers, they can run outside the robot.  

Textual model editor

QoS Metrics
Estimator

Event
Processor

Context 
monitor

Publish/Subscribe 
Data Space

Context 
eventsContext 

events
Observations

Observations QoS estimates

Properties 
Contexts 

Observations

DESIGN-TIME RUNTIME

Code
generator

QoS 
consumer

model.qosme
QoS 
estimates

Context 
monitor

Context 
events

QoS 
estimates

QoS 
consumer



6.6 Runtime support 147 

 

We have defined 5 topics for the Publish/Subscribe Data Space: (1) qosmetrics/context for 

context data; (2) qosmetrics/observation for observations; (3) qosmetrics/estimate for 

QoS estimates; (4) qosmetrics/estimateStats for statistics related to QoS estimates; and 

(5) qosmetrics/observationStats for statistics related to observations. Listing 18 shows the 

message format associated with each topic. This definition has been made with Protocol 

buffers [66], which is a language-neutral, platform-neutral, and extensible mechanism for 

serializing structured data. 

message Context {  

   string name = 1; 

   oneof value { 

      int32 intValue = 2; 

      uint32 uintValue = 3; 

      double doubleValue = 4; 

      bool boolValue = 5; 

      string stringValue = 6; 

   } 

} 

 

message Observation {  

   string name = 1; 

} 

 

message Estimate {  

   string property = 1; 

   double value = 2; 

} 

 

message EstimateStats {  

   string property = 1; 

   double max = 2; 

   double min = 3; 

   double mean = 4; 

   map<string,double> evidenceSupport = 5; 

} 

 

message ObservationStats {  

   string observation = 1; 

   double n = 2; 

   double mean = 3; 

} 

Listing 18. Message format specified in Protocol buffers 

The Context message contains two fields: the name of the corresponding context variable and 

value, which is selected according to its type. The Observation message only needs the name 

of the observation and Estimate the name and the estimate value of the property. Note that all 

the names must match the ones defined in the model. As for the statistics, the QoS Metrics 

Estimator will publish 2 types of messages: EstimateStats and ObservationStats. The 

former contains the name of the property, the central tendency and variability of the estimates 



148 Modelling language for QoS metrics 

 

(in terms of mean, max and min, calculated according to Section 5.2.1), and the percentage to 

which each observation supports the current estimate (evidenceSupport, see Section 5.2.3). 

On the other hand, ObservationStats contains the name of the observation, the average 

number of active occurrences (n in Listing 18), and its temporal mean (computed according to 

Section 5.2.2). 

6.6.3 Event Processor 

The Event Processor is aimed at detecting the context patterns specified in the model and, when 

found, producing the corresponding observations. This is accomplished through the 

Publish/Subscribe Data Space, as this component subscribes to context updates and publishes 

observations. 

6.6.3.1 Semantics of the pattern expressions 

Before addressing the implementation of the Event Processor, we need to establish the 

semantics of the elements used to create pattern expressions, which mainly involves aggregate 

functions and pattern operators. Table 20 summarizes the aggregate functions available in the 

language. As for the pattern operators, Table 21 shows their specification.  

Table 20. Aggregate functions 

Aggregate functions Description 

mean, sum, min, max Applied to numerical variables, they return a number after calculating the mean, sum, 

minimum, or maximum, respectively. The window size is an argument. E.g., o1 

triggers if the mean of variable over its last 5 updates exceeds 80. observation o1 : variable’mean(5)>80 ... 

stable, increasing, decreasing Applied to numerical variables, they return a Boolean. They are true when all the 

values remain constant, increase, or decrease, resp. The window size and the tolerance 

are arguments. The latter indicates the minimum variation to consider an increase or 

decrease. E.g., o1 triggers if variable constantly increases for 1 minute. 
observation o1 : variable’increasing(1 minute) ... 

count Applied to any variable. Count gets the number of updates of a variable. E.g., o1 

triggers if variable get more than 6 updates in 1 minute. 
observation o1 : variable’count(1 minute)>6 ... 

Notes: Aggregate functions are computed on a set of past values using a sliding window, which can be specified by (1) period or (2) number 

of samples. Highlight that the notation arg1’function(arg2,...) is equivalent to function(arg1, arg2,...). It is used to emphasize the 

target variable of the aggregate function. 

 



6.6 Runtime support 149 

 

Table 21. Pattern operators 

Operator Description 
update(expr) Satisfied when at least a variable in expr is updated. E.g., observation o1 triggers 

whenever anyVariable changes. Formally, 

〈𝑤, 𝑖〉 ⊨ 𝑢𝑝𝑑𝑎𝑡𝑒(𝑒𝑥𝑝𝑟(𝑉′)) ⇔ ∃𝑣𝑗 ∈ 𝑉′| 𝑤 ⊨ 𝑣𝑗 (𝑉′ ⊆ 𝑉) observation o1 : update(anyVariable) ... 

eventWhen(expr) Satisfied when a Boolean expression changes to true. E.g., observation o1 triggers 

whenever the state of boolVariable changes to true. Formally, 

〈𝑤, 𝑖〉 ⊨ 𝑒𝑣𝑒𝑛𝑡𝑊ℎ𝑒𝑛(𝑒𝑥𝑝𝑟) ⇔ 
〈𝑤, 𝑖〉 ⊨ 𝑢𝑝𝑑𝑎𝑡𝑒(𝑒𝑥𝑝𝑟) ∧ 𝑒𝑥𝑝𝑟 = 𝑡𝑟𝑢𝑒 

observation o1 :  
    eventWhen(boolVariable) ... 

expr It means eventWhen(expr) if expr is Boolean, update(expr) otherwise. E.g., observation 

o1 is equivalent to the example seen above. 

〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟 ⇔ {
〈𝑤, 𝑖〉 ⊨ 𝑒𝑣𝑒𝑛𝑡𝑊ℎ𝑒𝑛(𝑒𝑥𝑝𝑟) 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑒𝑥𝑝𝑟.

〈𝑤, 𝑖〉 ⊨ 𝑢𝑝𝑑𝑎𝑡𝑒(𝑒𝑥𝑝𝑟) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
observation o1 : boolVariable ... 

expr1 or expr2 Satisfied if expr1 or expr2 is met. E.g., o1 is executed if intVariable is updated with a 

value lower than 50 or if boolVariable is updated to true. Note that this is an event-typed 

operator, not a Boolean one (denoted by ‘|’ instead). The operands must be events, so o1 

implicitly is: eventWhen(intVariable<50) or eventWhen(boolVariable), while o2 

is: eventWhen(intVariable<50 | boolVariable) 

〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟1 𝑜𝑟 𝑒𝑥𝑝𝑟2 ⇔ 〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟1 ∨ 〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟2  

observation o1 :  
     intVariable < 50 or boolVariable ... 
observation o2 :  
     intVariable < 50 | boolVariable ... 

expr1 and expr2 Satisfied when expr1 and expr2 are met (not necessarily at the same time). E.g., 

observation o1 triggers when intVariable is greater than 50 and, at some point in the 

past, eventVariable occurred (or vice versa). Note that it is an event-typed operator and 

not a Boolean one (denoted by ‘&’). E.g., o2 uses & to express that intVariable is 

updated between two values. 

〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟1 𝑎𝑛𝑑 𝑒𝑥𝑝𝑟2 ⇔ 〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟1  
∧ ∃𝑗 < 𝑖 | 〈𝑤, 𝑗〉 ⊨ 𝑒𝑥𝑝𝑟2 (commutative) 

observation o1 :  
     intVariable > 50 and eventVariable ... 
observation o2 :  
     intVariable > 50 & intVariable < 80 ... 

not expr1 Satisfied if expr1 is not met. E.g., observation o1 is executed when eventVariable is not 

updated at the time of checking the observation.  

〈𝑤, 𝑖〉 ⊨ 𝑛𝑜𝑡 𝑒𝑥𝑝𝑟 ⇔ 〈𝑤, 𝑖〉 ⊭ 𝑒𝑥𝑝𝑟 observation o1 : not eventVariable ... 

expr1 -> expr2 (Followed-by) Satisfied when expr2 is met just after expr1. E.g., observation o1 triggers if intVariable 

exceeds 80 after exceeding 50. 

〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟1 → 𝑒𝑥𝑝𝑟2 ⇔ 〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟2 
∧ ∃𝑗 < 𝑖 | 〈𝑤, 𝑗〉 ⊨ 𝑒𝑥𝑝𝑟1 

observation o1 :  
     intVariable>50 -> intVariable>80 ... 

expr1 while(expr2) Satisfied when expr1 is met while the Boolean expr2 is true. E.g., observation o1 is 

executed when intVariable exceeds 50 while boolVariable is true. Note that o1, o2 and 

o3 are not the same. The first is only check when intVariable is updated, o2 when 

intVariable or boolVariable are updated, and o3 requires both variables to be updated. 

〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟1 𝑤ℎ𝑖𝑙𝑒(𝑒𝑥𝑝𝑟2) ⇔ 〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟1 ∧ 
𝑒𝑥𝑝𝑟2 = 𝑡𝑟𝑢𝑒 

observation o1: 
    intVariable>50 while (boolVariable) ... 
observation o2:  
    intVariable >50 & boolVariable ... 
observation o3:  
    intVariable >50 and boolVariable ... 

expr repeat(n) Satisfied when expr is met n times. E.g., observation o1 is executed when eventVariable 

occurs three times. 

〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟 𝑟𝑒𝑝𝑒𝑎𝑡(𝑛) ⇔ 〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟 ∧ 
∃𝑘1, 𝑘2 … 𝑘𝑛−1 < 𝑖 | 〈𝑤, 𝑘𝑗〉 ⊨ 𝑒𝑥𝑝𝑟  (𝑛 ∈ ℕ) 

observation o1 : eventVariable repeat(3) ... 

expr range(a,b) Satisfied when expr is met between a and b times. E.g., observation o1 is executed when 

eventVariable occurs between 3 and 5 times (including 3 and 5). 

〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟 𝑟𝑎𝑛𝑔𝑒(𝑎, 𝑏) ⇔ 〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟 ∧ 
∃ 𝑛, 𝑎 ≤ 𝑛 ≤ 𝑏 | 𝐾𝑛 < 𝑖 ∧  〈𝑤,𝐾𝑗〉 ⊨ 𝑒𝑥𝑝𝑟  

(𝑎 < 𝑏 𝑏𝑒𝑖𝑛𝑔 𝑛, 𝑎, 𝑏 ∈ ℕ) 

observation o1:  
    eventVariable range(3,5) … 

once expr Satisfied only the first time expr is met. E.g., observation o1 is triggered the first time 

intVariable exceeds 10, after that, it will not be triggered again. 

〈𝑤, 𝑖〉 ⊨ 𝑜𝑛𝑐𝑒 𝑒𝑥𝑝𝑟 ⇔ 〈𝑤, 𝑖〉 ⊨ 𝑒𝑥𝑝𝑟 

∧ ∄𝑗 < 𝑖 | 〈𝑤, 𝑗〉 ⊨ 𝑒𝑥𝑝𝑟 
observation o1: once intVaraible >10 … 



150 Modelling language for QoS metrics 

 

The semantics of the pattern operators have been described as an extension of the Linear 

Temporal Logic [67]. Let 𝑉 = {𝑣1,… , 𝑣𝑛} be the set of variables defined in a model and Σ =

{𝛼1,… , 𝛼𝑛} the set of atomic propositions, where 𝛼𝑗 denotes that the variable 𝑣𝑗 was updated. 

We consider a discrete and linear model of time represented by the structure 〈𝑤, 𝑖〉, where w is 

a temporal sequence of updates and i is a natural number that indicates the current time point. 

E.g., w formed by 𝑤(0) = 𝛼4,𝑤(1) = 𝛼2,𝑤(2) = 𝛼7,𝑤(3) = 𝛼1,… presents a sequence of 

updates, each one performed in a different moment in time, such that, the variable 𝑣4 is updated 

before 𝑣2, this one before 𝑣7, etc. If the current time were 𝑖 = 2, 𝑣7 would take a new value at 

that moment, the variables 𝑣4 and 𝑣2 would already be updated, and 𝑣1 would be updated in the 

future. Formally, we say that, at the current time i, a variable 𝑣𝑗 ∈ 𝑉 is updated if it satisfies 

the following relation 〈𝑤, 𝑖〉 ⊨ 𝑣𝑗 ⇔ 𝛼𝑗 ∈ 𝑤(𝑖). In Table 21, the terms expr(V’), expr, expr1 or 

expr2 denote mathematical expressions involving a set of variables V’ (defined in V). Finally, 

𝑤[𝑘, 𝑗] represents a subsequence of w, i.e., 𝑤[𝑘, 𝑗] = 𝑤(𝑘), 𝑤(𝑘 + 1),… , 𝑤(𝑗 − 1), 𝑤(𝑗) where k 

and j are natural numbers being k ≤ j. 

6.6.3.2 Code generation 

The methods and techniques necessary to implement the Event Processor are available in the 

field of Complex Event Processing (CEP) [68], whose goal is to extract information from event 

streams to identify significant patterns and respond to them as quickly as possible. Most CEP 

platforms provide an Event Processing Language (EPL) to allow users to describe event pattern 

expressions. Although there are similarities, our proposal offers a different way of expressing 

context patterns regarding EPLs. First, contrary to most approaches, pattern expressions in our 

language are implicitly recursive, that is, they remain active after being satisfied and can be 

activated multiple times. And second, our proposal is more oriented to variables than to events. 

While CEP sees event occurrences, our proposal sees variable updates. 

Despite the differences, the idea is to rely on CEP for the implementation of the Event 

Processor. To do this, during the code generation phase, part of the model will be translated 

into a EPL program. This program will support (1) the evaluation of variables, including 

derived context, general-purpose variables, and timers. For example, if a user defines a derived 



6.6 Runtime support 151 

 

context, the Event Processor comes into play to calculate its value each time the primitive 

contexts on which it depends are updated; (2) observations as event-typed expressions, which 

produces an event whenever the pattern is satisfied; and (3) the computation of functions, 

including aggregate functions, such as, sum, average, maximum and minimum. Figure 32 

shows the Kernel metamodel we presented in Section 6.3.3, in which we have identified in red 

the elements that would be involved in the generation of the Event Processor. In what has to 

do with the implementation of this generation, our contribution has focused on the language 

specification. Therefore, the generation of EPL is outside the scope of this Thesis. It was 

addressed by the RoQME project [69], where Esper [70] was selected as the runtime platform 

for the Event Processor.  

 

Figure 32. Elements of the Kernel metamodel used by each generator. The elements in red are involved in the 

generation of the Event Processor and the elements in blue in the generation of the QoS Metrics Estimator 

6.6.4 QoS Metrics Estimator 

The QoS Metrics Estimator receives notifications when observations are detected and, as a 

result, publishes estimates of the specified QoS metrics. The implementation of this component 

involves two elements: (1) a model-to-text transformation that produces a simplified 

specification with the information only concerning the QoS estimation, and (2) a component 

that translates this especification into a probabilistic network and runs the QoS metrics. 



152 Modelling language for QoS metrics 

 

6.6.4.1 The model-to-text transformation 

The goal of this transformation is to remove irrelevant information for the QoS Metrics 

Estimator. Figure 32 shows the Kernel metamodel presented in Section 6.3.3, in which we can 

see in blue the elements that matter. That is, everything related to context pattern detection will 

be filtered out, since the QoS Metrics Estimator only needs to know two things: (1) when an 

observation occurs and (2) how it impacts on the properties. The transformation is 

straightforward, it was implemented with Xtend [71] and, as a result, produces a JSON file (see 

an example in Listing 19). 

{  

 "timeframe" : {"value" : 7, "unit" : "day"}, 

 "properties" : [ {"name" : "safety"}, {"name" : "userEngagement"}], 

 "observations" : [{  

  "name" : "Bump into someone",  

  "persistence" : {"value" : "long"}, 

  "evidence" : [{ 

   "direction" : "undermines",  

   "strength"  : "very_high",  

   "property"  : "safety" 

  }]},... 

 ] 

}   

Listing 19. Extract of the JSON file generated from an example model 

6.6.4.2 The QoS estimator component 

This component is responsible for (1) deriving the parameters and topology of the probabilistic 

network resulting from the specification in the JSON file, and (2) running the algorithms to 

obtain QoS estimates and statistics. Note that the first point has been detailed in Chapter 4, 

while the second in Chapter 5. The component was implemented in Java. However, we also 

developed an alternative solution based on the neural network model, we saw in Section 5.3, 

with TensorFlow [55] (but it could be done in any other deep learning framework). This 

alternative provides great flexibility, since TensorFlow is available in several programming 

languages and allows the deployment of the model on the web, on mobile phones or on 

embedded devices. 



6.7 Summary 153 

 

6.7 Summary 

This chapter introduced a Domain Specific Modelling Language (DSML) for specifying QoS 

metrics on non-functional properties. The DSML is built upon the concepts discussed earlier 

and gives users a tool for creating and executing high-level specifications of QoS metrics. The 

following chapter covers the evaluation of this approach with two real scenarios and the 

characterization of the QoS metrics through simulations. 

  



154 Evaluation 

 

 

 Evaluation 

In this chapter, we address the evaluation of the proposed approach. First, we will show the 

application of QoS metrics in two real scenarios. After that, Section 7.2 tests the characteristics 

of the QoS metrics through simulations. 

7.1 Experiments in real-world scenarios  

This section shows the application of the proposal in two real robotics scenarios. One related 

to the movement of goods in an intralogistics environment and the other one using a clinic 

assistant robot. 

7.1.1 Intralogistics Industry 4.0 Robot Fleet Pilot 

7.1.1.1 Scenario description 

This Thesis has been carried out in the framework of the RoQME Integrated Technical 

Project [69], funded by the EU H2020 RobMoSys Project [72]. The Ulm University of Applied 

Sciences (HSU) was the technical lead partner of RobMoSys. HSU made the Intralogistics 

Industry 4.0 Robot Fleet Pilot [73] available to all the Integrated Technical Projects funded by 

RobMoSys as a test-bed for experimentation and showcasing. The scenario counts on a fleet 

of robots which can collect, deliver, and transport objects from/to different workstations, 

conveyor belts, etc. Robots can interact with each other and with human operators. Figure 33 

illustrates some of the capabilities of these robots.  



7.1 Experiments in real-world scenarios 155 

 

 

Figure 33. Intralogistics Industry 4.0 Robot Fleet Pilot. (Left) Picking items. (Middle) Transport and 

autonomous delivery of boxes with goods. (Right) Order picking into boxes. (Source: https://robmosys.eu) 

7.1.1.2 Modelling QoS metrics 

Listing 20 shows the model that was developed for the scenario. This model specifies QoS 

metrics on two non-functional properties: Performance and Safety. It also defines contexts 

identified as relevant, and observations that indicate which context patterns reinforce (or 

undermine) each property and to what extent. The O1 observation strongly undermines Safety 

when a collision with the robot is detected (Bump event); O2 undermines Safety if the robot 

drives faster than allowed when there is a person in the robot working area; O3 reinforces 

Performance every time the robot successfully completes a task within the required time; and 

O4 and O5 undermine Performance if the robot enters into the error state or if its current task is 

aborted, respectively. Note that the persistence and repetition of the observations were left by 

default. 

param MAX_VELOCITY : number 
param MAX_JOB_DONE : number 
 

property Performance 
property Safety 
 

context Bump        : event 
context Velocity    : number 
context PersonState : boolean 
context JobState    : enum { NOT_STARTED, STARTED, COMPLETED, ABORDED } 
context RobotState  : enum { IDLE_NOT_CHARGING, IDLE_CHARGING,  
    BUSY_DRIVING_WITH_LOAD, BUSY_DRIVING_EMPTY, ERROR 
} 

context TimeJobDone : time  
    = interval(JobState::STARTED -> JobState::COMPLETED) 
  



156 Evaluation 

 

observation O1 : Bump 
    undermines Safety very high 
 

observation O2 : Velocity > MAX_VELOCITY and PersonState 
    undermines Safety very high 
 

observation O3 : JobState::COMPLETED while (TimeJobDone < MAX_JOB_DONE) 
    reinforces Performance high 
 

observation O4 : RobotState::ERROR 
    undermines Performance 
 

observation O5 : RobotState::ABORTED 
    undermines Performance 

Listing 20. Model for the intralogistics robotic application 

7.1.1.3 Implementation 

The component architecture of the robot was modelled using the SmartMDSD Tool-

Chain [74]. This is an Eclipse-based IDE that provides support to the RobMoSys Ecosystem, 

covering the full cycle of the robotics software development. The RoQME project delivered a 

number of Eclipse plug-ins ready to be integrated into SmartMDSD. With them, we were able 

to specify how the contexts modelled in Listing 20 could be obtained from the services 

provided by the robot architecture (i.e., through a RoQME-to-RobMoSys mapping model). 

Based on the models, RoQME produced a series of transformations to generate the RobMoSys 

component in charge of estimating the QoS metrics. The resulting component was ready to be 

integrated into the robot architecture and included (1) a DDS-based Publish/Subscribe Data 

Space [64], (2) an Event Processor using Esper [70], (3) the QoS Metrics Estimator, (4) the 

context monitors, and (5) a QoS consumer for recording and displaying all the data resulting 

from the execution of the component: contexts, observations and QoS metrics. 

7.1.1.4 Results 

The experiment took place on November 8, 2018, at the Service Robotics Research Center of 

the Ulm University of Applied Sciences (Germany). The experiment started with a robot in an 

IDLE state and placed in its initial position. There was an operator ready to handover boxes to 

the robot. 



7.1 Experiments in real-world scenarios 157 

 

1. The robot was ordered a new task (JobState::STARTED). It moved to the handover 

position (RobotState::BUSY_DRIVING_EMPTY). The operator put a box on top of it and 

the robot moved to the delivery position (RobotState::BUSY_DRIVING_WITH_LOAD). 

The robot delivered the box successfully (JobState::FINISHED) and within the 

required timeslot. Observation O3 was fired, and Performance improved. 

2. A visitor entered the room and met the operator (PersonState::IN). Simultaneously, 

the robot was ordered a new task (JobState::STARTED) and moved to the handover 

position (RobotState::BUSY_DRIVING_EMPTY). On its way, the robot moved faster than 

allowed when a person is in the robot working area. Observation O2 was fired, and 

Safety worsened. 

3. The visitor bumped into the robot (Bump) when turning around for leaving the room. 

Observation O1 was fired, and Safety worsened. 

4. The bumping set the robot in the ERROR state (RobotState::ERROR). Observation O4 

was fired, and Performance worsened. 

5. The error caused the task to be aborted (JobState::ABORTED). Observation O5 was 

fired, and Performance worsened. 

6. The robot was ordered a new task (JobState::STARTED), which was successfully 

completed (JobState::FINISHED). Observation O3 was fired, and Performance 

improved. 

The evolution of the QoS metrics defined on Safety and Performance during the experiment 

is shown in Figure 34 and Figure 35. Further details about the experiment can be found in [75]. 

 

Figure 34. Evolution of the QoS Metrics defined on performance. The numbers in the graph refer to the steps 

described in the section. (Source: [75]) 



158 Evaluation 

 

 

Figure 35. Evolution of the QoS Metrics defined on safety. The numbers in the graph refer to the steps described 

in the section. (Source: [75]) 

7.1.2 Geriatric assessment 

7.1.2.1 Scenario description 

This scenario was carried out in the context of the ECHORD++ CLARC Project [76]. This 

project developed a social robot aimed at helping clinicians perform Comprehensive Geriatric 

Assessment (CGA) procedures. The CGA is a multidimensional clinical procedure that 

includes questionaries, cognitive exercises, and motion analysis exercises. The CLARC robot 

autonomously drives some of these tests (interacting with the patients), saving time for the 

clinicians to perform more added-value activities. See the CLARC robot in Figure 36. In this 

scenario we only considered the Barthel test [77] and the “Get Up & Go” test [78].  

The Barthel test is composed of 10 questions about daily life activities. It usually lasts about 

10–15 min. CLARC can ask questions using natural interaction (via voice or on-screen text). 

For each question, the patient can choose two, three, or four possible answers by touching the 

option on the screen, by using a specially designed remote control (see image on the right in 

Figure 36), or by answering verbally. Patients have two chances to answer, if they do not, the 

robot continues with the next question. 

In the “Get Up & Go” test, the patient is asked to get up from a chair, walk a short distance 

(about three meters) in a straight line, return to the chair, and sit down. The objective is to 

measure the balance, detecting deviations from a normal and confident performance. The test 



7.1 Experiments in real-world scenarios 159 

 

has two main parts. In the first, the patient sits next to CLARC to receive the test instructions. 

In the second, the patient is asked to go to the position where the test will be performed, and 

the robot moves to a suitable location to observe the complete movement. The robot emits a 

signal to start the test and measures the patient’s gait to analyse balance and timing. 

 

Figure 36. The CLARC robot. (Left) CLARC performing a Barthel test on a patient. (Right) Remote control that 

patients can optionally use to interact with the robot. (Source: [79]) 

7.1.2.2 Modelling QoS metrics 

Listing 21 shows the model that was developed for the scenario. It is worth noting that the 

observations were defined with the help of a physiotherapist and an expert in 

usability/accessibility of human-computer interfaces. Both were involved in the CLARC 

project from the beginning. 

The model specifies QoS metrics on three non-functional properties: Performance, 

Interaction and VoiceInteractionQuality. We consider Performance as the degree to 

which the robot succeeds in completing a test. For example, the robot will show a good 

performance in the Barthel test if it gets the patient to answer all the questions on the first try. 

Conversely, a poor performance will be obtained if the robot is unable to end the session. 

Regarding the Interaction property, it expresses whether the patient is actively interacting 

with the robot. Note that this property can score high regardless of whether the robot succeeds 

in getting the patient to complete the test (which is captured by Performance). Finally, 

VoiceInteractionQuality evaluates the patient’s preference for verbal interaction against 



160 Evaluation 

 

non-verbal (touch screen and remote control). This property was included to analyse the 

preferences of the patients for possible future improvements of the robot. It only concerns the 

Barthel test, since the “Get Up & Go” test does not have verbal interaction. 

The context variables involved in the Barthel and “Get Up & Go” test are TestState, 

PersonDetected and CallingDoctor. First, PersonDetected indicates if robot has detected the 

patient, TestState shows the current state of the test, and CallingDoctor is triggered when 

the patient presses the calling doctor button. Regarding the contexts only related to the Barthel 

test, the system provides information on whether a patient answers a question on the first 

attempt (FirstAttemptAnsewerd), on the second attempt (SecondAttemptAnswered) or if the 

patient has not answered (FirstAttemptAnswered and SecondAttemptAnswered would be 

false). Finally, UserInteraction indicates the interaction mechanism that has been used to 

answer a question. 

Scored, PersonIsNextToChair, PersonIsSeated and PersonGetsUp are contexts used in the 

“Get Up & Go” test. Scored states whether the evaluation of the last task returns a score, 

whereas PersonGetsUp, PersonIsNextToChair and PersonIsSeated are used to see if the 

patient follows the robot’s instructions. 

The model defines 14 observations of which the first 12 impact on Performance or 

Interaction in any of the tests, while the last two only affect VoiceInteractionQuality in 

the Barthel test. Note that the persistence and repetition of the observations were left by default. 

property Performance 
property Interaction 
property VoiceInteractionQuality 
 

context JobState : enum { RUNNING, PAUSED, RESTARTED, STOPPED, REPEATING, FINISHED } 
context FirstAttemptAnswered : boolean 
context SecondAttemptAnswered : boolean 
context PersonDetected : boolean 
context CallingDoctor : event 
context UserInteraction : enum { TOUCH_SCREEN, VOICE_RECOGNITION, REMOTE_CONTROL } 
context Scored : boolean 
context PersonGetsUp : boolean 
context PersonIsNextToChair : boolean 
context PersonIsSeated : boolean 
 

observation O1 : TestState::RUNNING or Scored or PersonIsNextToChair or  
    PersonIsSeated or PersonGetsUp 

    reinforces Performance high 



7.1 Experiments in real-world scenarios 161 

 

 

observation O2 : FirstAttemptAnswered or TestState::FINISHED or PersonDetected 
    reinforces Performance low 
 

observation O3 : SecondAttemptAnswered or TestState::RESTARTED 
    reinforces Performance very low 
 

observation O4 : TestState::STOPPED or TestState::PAUSED 
    undermines Performance very high 
 

observation O5 : !Scored or !SecondAttemptAnswered or TestState::REPEATING or 
    !PersonIsNextToChair or!PersonIsSeated or!PersonGetsUp or CallingDoctor 

    undermines Performance high 
 

observation O6 : !FirstAttemptAnswered or !PersonDetected 
    undermines Performance low 
 

observation O7 : PersonIsSeated or PersonIsNextToChair or FirstAttemptAnswered 
    reinforces Interaction high 
 

observation O8 : PersonDetected or PersonGetsUp 
    reinforces Interaction low 
 

observation O9 : CallingDoctor 
    undermines Interaction very high 
 

observation O10 : !PersonIsSeated or !SecondAttemptAnswered or !PersonIsNextToChair 
    undermines Interaction high 
 

observation O11 : !PersonGetsUp or !FirstAttemptAnswered or TestState::PAUSED or 
    TestState::REPEATING or !PersonDetected 

    undermines Interaction low 
 

observation O12 : SecondAttemptAnswered or TestState::RESTARTED 
    reinforces Interaction very low 
 

observation O13 : UserInteraction::VOICE_RECOGNITION 
    reinforces VoiceInteractionQuality high 
 

observation O14 : UserInteraction::REMOTE_CONTROL or UserInteraction::TOUCH_SCREEN 
    undermines VoiceInteractionQuality high 

Listing 21. Model for the geriatric assessment scenario 

7.1.2.3 Implementation 

The software architecture of the robot is based on a collection of agents that interact and 

cooperate to achieve a global goal using a data structure called Deep State Representation 

(DSR) [80]. We were able to use the RoQME toolchain with the model in Listing 21 to generate 

part of the code for a new agent in this architecture aimed at estimating QoS metrics. It was 

part because CLARC does not use the RobMoSys component architecture, so it was necessary 

to implement some of the code manually, such as the context monitors or the glue code to 



162 Evaluation 

 

integrate the RoQME component into CLARC. In the end, the new agent included (1) a DDS-

based Publish/Subscribe Data Space, (2) an Event Processor using Esper, (3) the QoS Metrics 

Estimator, (4) the context monitors, and (5) a QoS consumer for recording the resulting metrics 

during the execution of the scenario. 

7.1.2.4 Results 

The experiment was divided into two parts, a first one based on simulations and a second with 

real patients. In the first part of the experiment, a domain expert was in charge of designing the 

simulations with the aim of covering the most common cases. These simulations served to 

verify that the resulting metrics were sufficiently representative and, if necessary, to be able to 

adjust the model before tackling the second part. 

Preliminary tests. Table 22 presents the cases simulated for the Barthel test and the resulting 

average of each QoS metric. Regarding Performance, as expected, the best outcome is 

achieved when the patient answers all the questions on the first attempt. Performance decreases 

as the patient begins to answer on the second attempt or does not answer some of the questions. 

In the worst case, the patient pauses the session several times, calls the doctor, and occasionally 

the robot is unable to detect him/her (see Test #6). In terms of interaction, the patient 

interacts more efficiently with the robot when it responds on the first try. On the other hand, as 

the robot has to repeat more questions, the interaction gets worse (e.g., see Test #3, where 

all the questions were repeated). The worst interaction appears when we simulate the typical 

actions of a patient who feels uncomfortable with the robot (see Test #6). Finally, 

VoiceInteractionQuality seems to reflect well the degree to which the patient interacts 

verbally with the robot. 

Table 23 shows the simulations for the “Get Up & Go” test and the results. Note that, unlike 

the Barthel test, we recorded the minimum and the last value of each QoS metric. This is so 

because the duration of the “Get Up & Go” tests is variable and depends on the patients, which 

significantly alter the averages. On the other hand, it seems that the minimum value reflects 

well any problems during the test (regardless of its success), while the last value captures how 

the test ends.  



7.1 Experiments in real-world scenarios 163 

 

 

Table 22. Preliminary Barthel tests. The results correspond to the average value of the QoS metrics 

Test Description Performance Interaction VoiceIQ 

#1 The patient answers all questions verbally on the first attempt 0.8188 0.9084 0.8870 

#2 
The patient answers all questions on the first attempt using the touch 

screen or the remote control 
0.8187 0.9076 0.1139 

#3 
The patient answers all questions on the second attempt using the touch 

screen 
0.3351 0.3349 0.1055 

#4 
The patient sometimes answers the questions on the first attempt, 

sometimes on the second attempt, and sometimes does not answer. The 

patient does it verbally or using the touch screen alike 

0.3248 0.6107 0.6870 

#5 
Using the remote control or the touch screen, the patient sometimes 

answers the questions on the first try, on the second try, or does not 

answer. The patient calls the doctor and pauses the session twice 

0.1671 0.4026 0.1454 

#6 
Same as the previous case but occasionally the robot loses the patient 

(patients who do not feel comfortable tend to move around) 
0.1357 0.1893 0.2098 

Table 23. Preliminary “Get Up & Go” tests. The results correspond to [min, last] of the QoS metrics 

Test Description Performance Interaction 

#1 The patient performs the test successfully 
[0.5000, 

0.9987] 

[0.5000, 

0.9857] 

#2 The robot loses the person for a few seconds when starting the test. After that, the test is 

performed successfully 

[0.4982, 

0.9987] 

[0.4982, 

0.9857] 

#3 The robot loses the person for a few seconds when starting the test. On the first try, the 

person does not stay next to the chair. On the second, he does, and the test is successful 

[0.2978, 

0.9808] 

[0.2978, 

0.9567] 

#4 
The robot loses the person for a few seconds when starting the test. The person does not 

stay next to the chair. The test is stopped 

[0.1550, 

0.1555] 

[0.0824, 

0.0828] 

#5 
The patient stays next to the chair, but he sits on the chair at the second attempt (the robot 

must repeat the instructions). After that, the test is performed successfully 

[0.5000, 

0.9956] 

[0.4879, 

0.9361] 

#6 
The patient stays next to the chair, sits on the chair but he does not get up. The robot does 

not give him a score 

[0.5000, 

0.8310] 

[0.5000, 

0.7067] 

#7 
The patient stays next to the chair, sits on chair, gets up but does not sit on the chair again. 

The robot does not give him a score 

[0.5000, 

0.9343] 

[0.5000, 

0.8270] 

#8 
During the test introduction the patient presses the restart button. The test is performed 

successfully 

[0.1242, 

0.9904] 

[0.4981, 

0.9818] 

#9 
During the test introduction the patient presses the calling doctor button. The doctor presses 

the restart button. The test is performed successfully 

[0.2984, 

0.9963] 

[0.1242, 

0.9058] 

Regarding performance, the cases in which the test ends successfully always obtain a high last 

value (greater than 0.98). If the patient makes progress but performs poorly, the robot may not 

be able to score the task, in which case, the last QoS value is lower (see Test #3 and #7). The 

worst situation appears when the test has to be stopped before concluding (Test #4). Note that 

a minimum value lower than 0.5 (the initial value of the metrics) indicates that the test 

execution was not perfect (e.g., the robot lost the patient for a moment, or the test was restarted). 



164 Evaluation 

 

In terms of interaction, according to the results, the patients interact more efficiently with 

the robot when they follow the instructions on the first try (see Test #1). The metric gets worse 

as the number of times the robot has to repeat the instructions increases.  

Real tests. From January 2019 to March 2019, one CLARC robot was put into operation at the 

Reims Hospital (France) and two at the Hospital Virgen del Rocío in Seville (Spain). The 

experimental evaluation was based on data collected during this period from 22 patients for the 

Barthel test, and 13 patients for the “Get Up & Go” test.  

Table 24 and Table 25 present the results for the Barthel and the “Get Up & Go” tests, 

respectively. We can see that some cases are similar to the ones that were designed for the 

preliminary tests. Moreover, the results are also in line with these preliminary tests. In general, 

the metrics seem to capture well the degree of performance and interaction that is expected 

based on the case description. For example, as in the simulations, the best performance for the 

Barthel test is obtained when the patients answer all the questions on the first attempt (see #1 

in Table 24). Further details about the experiment can be found in [79] 

Table 24. Real Barthel tests. The results correspond to the average value of the QoS metrics 

Group Description Performance Interaction VoiceIQ 

#1 5 patients answer all questions on the first try using the touch screen 0.8204 0.9094 0.1117 

#2 1 patient answer all questions verbally on the first try 0.8182 0.9078 0.8862 

#3 7 patients answer all questions on the first try using remote control 0.8191 0.9081 0.1133 

#4 
1 patient answers 9 questions verbally on the first try. 1 unanswered 

question 
0.6800 0.8946 0.8803 

#5 
2 patients answer 9 questions on the first try using touch screen. 1 

unanswered question 
0.6428 0.8688 0.1252 

#6 
Using the touch screen, 2 patients answer 9 questions on the first try 

and 1 question on the second try 
0.7433 0.8399 0.1386 

#7 
Using the remote control, 2 patients answer 9 questions on the first 

try and 1 question on the second try 
0.7482 0.8514 0.1316 

#8 
Using the remote control, 1 patient answers 9 questions on the first 

try and 1 question on the second try. The patient paused the test and 

then resumed it. 

0.5586 0.8879 0.1284 

#9 
1 patient answers 3 questions verbally on the first try. 7 unanswered 

questions 
0.1602 0.2423 0.8126 

#10 
Using the remote control, 1 patient answers 5 questions on the first 

try and another 5 on the second. The patient paused the test and then 

resumed it. Occasionally the robot loses the patient 

0.2647 0.7596 0.1278 

 



7.1 Experiments in real-world scenarios 165 

 

Table 25. Real “Get Up & Go” tests. The results correspond to [min, last] of the QoS metrics 

Group Description Performance Interaction 

#1 12 patients perform the test successfully 
[0.5000, 

0.9987] 

[0.5000, 

0.9858] 

#2 1 patient stays next to the chair, sits on the chair but he does not get up. The robot does 

not give him a score 

[0.5000, 

0.8310] 

[0.5000, 

0.7067] 

7.1.3 Discussion 

The scenarios were developed in collaboration with researchers from the RoQME and the 

CLARC projects. See the list of authors in [79], [81], [82]. The main contributions of this 

Thesis to the scenarios were (1) the formal framework for the estimation of non-functional 

properties, (2) the design and implementation of the modelling language to express QoS 

metrics, and (3) the QoS Metric Estimator. The results shown in Section 7.1.1 and Section 7.1.2 

were obtained when the experiments were carried out. Since then, and thanks to the experience 

gained in these experiments, the proposal has received minor changes and improvements that 

do not invalidate the results. Next, we will discuss some aspects of our proposal based on this 

experience. 

7.1.3.1 On the effectiveness to estimate non-functional properties 

In view of the results in both scenarios, QoS metrics seem to be able to express, at least to some 

extent, the fulfilment that a system shows with respect to one or more non-functional 

properties. For instance, in the intralogistics scenario, when the visitor bumped into the robot, 

the safety metric dropped drastically. Or, in the Barthel test, whenever a patient answers all the 

questions on the first try, the average of the performance metric shows a high score. Regardless 

of whether the visitor was reckless, or if answering all the questions was thanks to the good 

work of the patient (and not of the robot), these circumstances modify the perception of how 

the system is working, and QoS metrics provide a mechanism to quantify it.  

In our proposal, QoS metrics not only react to context patterns, but can also exhibit certain 

dynamics. For example, the incident with the visitor will be forgotten over time, so the safety 

metric gradually recovers its initial value as time passes (see Figure 35). 



166 Evaluation 

 

According to our approach, to be effective in estimating non-functional properties, it is 

necessary (but not sufficient) that: (1) properties produce observable effects in the context, 

which (2) should be adequately expressed with the modelling language and (3) detected by the 

system. Thus, among the factors that could limit the estimation of properties we find that: (1) an 

observation could not only occur due to a property but there could be other hidden causes; 

(2) the modelling language might not be expressive enough to define certain observations; and 

(3) the system may not be able to monitor certain contextual information. However, while there 

may be limitations affecting the accuracy of the estimates, in the end, what matters is getting 

results that are good enough for our purposes. In this regard, we will discuss the applicability 

of the proposal in Section 7.1.3.3. 

7.1.3.2 On the benefits of raising the level of abstraction 

Figure 37 shows the probabilistic network that is derived from the model in Listing 20. This 

illustrates how the modelling language manages to abstract the details that require specific 

knowledge and present the information in a qualitative way with a simple vocabulary. Note 

that the observations of the geriatric assessment scenario were defined with the help of a 

physiotherapist and an expert in usability/accessibility of human-computer interfaces. This 

collaboration would have been almost impossible if they had worked directly in terms of 

probabilities. In addition, thanks to handling fewer details, it is reasonable to think that the 

communication became more efficient, and the task could be completed in less time. 

 

Figure 37. Probabilistic network for the intralogistics scenario 



7.1 Experiments in real-world scenarios 167 

 

The trade-off of abstraction is the consequent loss of flexibility, since users must stick to what 

is provided in the modelling language. This is related to the limitation that we discussed in the 

previous section, in which we imagined that there could be observations unable to be expressed 

with the modelling language. Fortunately, neural networks can mitigate this limitation since 

they offer us the possibility of tuning a model based on examples, as we saw in Section 5.3. 

7.1.3.3 On the applicability of the proposal 

The application of the proposal in two real environments has allowed us to demonstrate its 

feasibility. In this sense, the proposal did not require the incorporation of new hardware to the 

robots, and we did not observe any deterioration of the system performance due to the 

processing of QoS metrics.  

The proposal was put into practice in two different application domains: intralogistics and 

geriatric assessment. The modelling language was suitable for both, which confirms that it is 

independent of the application domain. Moreover, the proposal was deployed on two different 

robotic platforms with little effort. In the case of the intralogistics application, it was possible 

to generate the complete code of a component for enabling QoS estimation, ready to be added 

to the software architecture. While in the case of the clinic assistant robot, it was only possible 

to generate part of the code and the manual implementation of glue code and context monitors 

was required. In this vein, the distributed approach of the proposal, thanks to the 

publish/subscribe data space, was useful. 

Regarding the possible applications, QoS metrics could be used to compare different 

realizations of a system in terms of non-functional properties, such as safety or interaction. For 

instance, considering the clinic assistant robot, we could try two different ways to engage 

patients in the tests, and QoS metrics would give us the means to assess which is best. In this 

case, since we would be comparing two alternatives in the same conditions, it may not be so 

important to have totally accurate metrics. For example, if there is a bias, it would be in both 

alternatives and would become irrelevant when comparing. As we mentioned in 

Section 7.1.3.1, QoS metrics only need to be good enough for our purposes. 



168 Evaluation 

 

QoS metrics could also be used to check non-functional requirements at runtime. For example, 

let us imagine that an intralogistics robot, by design, must always be safe. The robot would 

monitor the corresponding QoS metric and, if the estimate fell below a threshold, the robot 

would execute a contingency plan: send an alert to the maintenance team and return to its 

docking station. 

Ultimately, what is sought is QoS-aware systems capable of adapting their behaviours when 

necessary. For instance, a clinic assistant robot that selects the way to engage a patient in the 

tests based on previous experience, the person’s mood, preferences, etc. in order to improve 

QoS metrics, such as performance or interaction. 

7.2 Characterization of QoS metrics  

This section presents some simulations to examine the characteristics that QoS metrics can 

exhibit under certain conditions. 

7.2.1 The persistence of the observations 

Observations gradually lose their significance as time passes. As soon as an observation 

occurred its influence is maximum, but as time passes it weakens until it eventually disappears. 

Our proposal allows us to set a persistence time to each observation. The following experiments 

aim to explore the behaviour of QoS metrics under different persistence configurations. 

7.2.1.1 Experiment 1 

We have generated a sequence of 10 occurrences equidistant in time. These occurrences 

correspond to observations that reinforces a property with random strength. All the 

observations have a persistence of 20 minutes. After running several simulations of the same 

sequence varying the time between occurrences, Figure 38 shows the average of the resulting 

QoS estimates. 

 



7.2 Characterization of QoS metrics 169 

 

Since observations weaken as time passes, the evidence accumulated over a period will be 

potentially more intense the more concentrated the occurrences are in time. Let us use an 

example to show that this effect not only makes sense but is also practical. Suppose that we 

have an intralogistics robot like the one in Section 7.1.1. Every time the robot completes a job, 

an observation is triggered to reinforce performance. With that, if the robot had completed the 

jobs, it does in a day, in half the time, the QoS metric would have been higher. Thus, Figure 

38 tells us that if the sequence of 10 occurrences were jobs done, completing them in 50s 

intervals would result in an average estimate of 0.89, while if we took 365s to complete each 

job the estimate would drop to 0.67. 

 

Figure 38. Average value of the metric for different times between occurrences 

7.2.1.2 Experiment 2 

The time between occurrences and the persistence of an observation are often related. In the 

sense that rare events usually have a long persistence. For example, a visitor bumping into the 

robot in a warehouse is something that will remain in everyone's memory for a long time. In 

this experiment we will go against logic, and we will simulate frequent observations with long 

persistence. 

We have simulated the effect of 400 random occurrences evenly distributed over 6 hours. The 

occurrences were produced from 4 random observations, being the average time between 

occurrences of 3min 36s. In addition, all the observations were set with a persistence of 6 hours. 

0 50 100 150 200 250 300 350 400
Time between occurrences (seconds)

0.65

0.7

0.75

0.8

0.85

0.9

Av
er

ag
e 

es
tim

at
e



170 Evaluation 

 

Figure 39 shows the first 40 minutes of two simulations. At first, we can see that the QoS metric 

reacts to the occurrences (marked with dotted lines). However, shortly after starting, the metric 

reaches a value that remains constant regardless of the occurrences. This effect appears when 

there are enough occurrences to support the maximum level of evidence that the observations 

can provide. The situation is maintained because the evidence does not have time to dissipate 

before the arrival of a new occurrence. 

Regarding the value at which the metric remains constant, it will depend on the balance of the 

observations, whether the mass of evidence that reinforces is greater, less or equal to that which 

undermines. For example, the upper graph resulted from equally strong reinforcing and 

undermining observations (so that the metric tends to 0.5), while in the lower graph the 

observations were more reinforcing (so that the metric tends to 0.63). In conclusion, a long 

persistence in frequent observations eliminates the dynamic behaviour of the metrics. The QoS 

estimation becomes a static process where what matters is the weight of the observations. 

 

 

Figure 39. Simulations of a QoS metric from frequent occurrences with long persistence 

00:00:00 00:10:00 00:20:00 00:30:00 00:40:00
time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
oS

 m
et

ric

00:00:00 00:10:00 00:20:00 00:30:00 00:40:00
time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
oS

 m
et

ric



7.2 Characterization of QoS metrics 171 

 

7.2.1.3 Experiment 3 

In this experiment we are going to do the opposite of what we did in the previous experiment. 

We will simulate sparse observations with short persistence. For that, we have generated 20 

random occurrences evenly distributed over 6 hours. The occurrences were produced from 4 

random observations. The average time between occurrences is 72 minutes while their 

persistence was set to 10 seconds. Figure 40 shows the resulting QoS metric. Although we can 

see sporadic spikes every time there is an occurrence, the impact on the metric is minimal. 

Proof of this is the temporal mean of the metric, which only varies between 0.4869 and 0.5163 

(using a 2-minute window). The observations are so ephemeral that they cannot build solid 

evidence. 

 

Figure 40. QoS metric from sparse occurrences with short persistence 

7.2.2 The effect of repeating observations 

Apart from the persistence, repetition is another attribute to establish the dynamic behaviour 

of the observations. This attribute indicates how many times an observation must be repeated 

to have full effect. Thus, the first time an observation is detected it may not have a great impact 

(it could be an error), but as the observation is repeated it would gain in reliability as well as in 

intensity. In the following experiments, we will explore this feature. 

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00
time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q
oS

 m
et

ric



172 Evaluation 

 

7.2.2.1 Experiment 4 

In this experiment we are going to visualize the effect of the repetition attribute on a QoS 

metric. For that, we have executed 5 simulations with different repetition values, from 0 to 60. 

We have considered 100 occurrences from an observation that reinforces very highly with long 

persistence (10 hours). These occurrences were regularly distributed every 20 seconds. In total, 

the duration of the simulation was 33min 20s. As expected, we can see in Figure 41 how as 

repetition is greater, the observation takes longer to reach its maximum effect.  

 

Figure 41. QoS metric with different repetitions 

7.2.2.2 Experiment 5 

In the experiment in Section 7.2.1.2, we saw that the metric remains constant when the 

observations get enough occurrences to support the maximum level of evidence. One way to 

delay this effect would be to increase the number of occurrences that the observation must 

reach to have full effect. That is, increasing the value of repetition. 

We have generated 400 random occurrences evenly distributed over 6 hours. The occurrences 

were produced from 4 random observations, with persistence set to 6 hours. We have run two 

simulations with different repetition values: 12 and 40. Figure 42 shows the results. In the upper 

graph (with repetition equal to 12), we can see a similar tendency to the one we showed in 

Experiment 2. The QoS metric now takes almost 2 hours to reach a stable state, much longer 

compared to the 8-9 minutes it took in Experiment 2, where repetition was set to 1. 

00:00:00 00:10:00 00:20:00 00:30:00
time

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Q
oS

 m
et

ric

repetition = 0
repetition = 15
repetition = 30
repetition = 45
repetition = 60



7.2 Characterization of QoS metrics 173 

 

 

 

Figure 42. QoS metric with repetition set to 12 (upper) and 40 (lower)  

As for the lower graph in Figure 42 (with repetition equal to 40), it does not tend to a constant 

value. To help us understand this result, Figure 43 shows the average number of active 

occurrences for each observation (defined as 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  in Section 3.4). The graph expresses the 

number of past occurrences that persist, which is like the mass of evidence supporting an 

observation. At the beginning of the simulation, this evidence grows until it stabilizes around 

23 approximately. If repetition is much lower than this value, the observation will reach and 

maintain its maximum effect over time, resulting in a constant estimate for the QoS metric (the 

case when repetition is 12). On the other hand, if we choose a value for repetition greater than 

the highest value shown in the graph, the observations will never achieve their maximum effect 

and the estimate will continue to vary in relation to the available evidence (the case when 

repetition is 40). 

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00
time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
oS

 m
et

ric

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00
time

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Q
oS

 m
et

ric



174 Evaluation 

 

 

Figure 43. The average number of active occurrences 

At the beginning of Section 5.2.2, we discussed some aspects of 𝑁𝑜𝑏𝑠 𝑖
<𝑡>  that could be of interest 

when specifying QoS metrics. Among them, we commented that those observations whose 

𝑁𝑜𝑏𝑠 𝑖
<𝑡>  never reaches the number of repetitions + 1 could be underestimated. To investigate the 

effects of selecting oversized values for repetition, we have performed several simulations 

considering 1600 random occurrences evenly distributed over 24 hours. As in the previous 

simulations, the occurrences were produced from 4 random observations, with persistence set 

to 6 hours. Note that the time between occurrences is also maintained. Table 26 shows that as 

repetition increases, the values of the metric narrow and the mean tends to 0.5. That is, the 

observations lose influence and become more and more underestimated. 

Table 26. Statistics for different values of repetition 

Repetition Mean [min, max] Range 

40 0.5947 [0.4690, 0.7544] 0.2854 

60 0.5730 [0.4511, 0.7279] 0.2768 

80 0.5580 [0.4534, 0.6926] 0.2348 

100 0.5477 [0.4585, 0.6633] 0.2048 

150 0.5327 [0.4694, 0.6156] 0.1462 

200 0.5248 [0.4762, 0.5886] 0.1124 

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00
time

0

5

10

15

20

25

30
Ac

tiv
e 

oc
cu

rre
nc

es
 (N

)

observation 1
observation 2
observation 3
observation 4



7.2 Characterization of QoS metrics 175 

 

7.2.3 The impact of the observations 

In the previous experiments, we analysed how observations behave over time by setting the 

persistence and the number of repetitions. Now, we are going to study the impact that an 

observation has just when it occurs. 

7.2.3.1 Experiment 6 

Figure 44 shows the value of a QoS metric when an observation configured with a certain 

strength and direction has just occurred. In each simulation, we considered a single isolated 

occurrence and 0.5 as the metric value before the occurrence. Regarding the results, in 

Section 4.4.2, we assigned a uniform likelihood ratio for each strength configuration an 

observation might have. This decision seems to be reflected in the almost linear relationship 

shown in the figure.  

The impact of an observation not only depends on its strength and direction, but repetition also 

plays a role in this regard, as we saw in Experiment 4. Figure 45 shows the influence that 

repetition has on the impact of an observation. Unsurprisingly, the higher the value for 

repetition, the more the impact is reduced. Finally, although repetition should only take non-

negative integers, the formulation we developed in Section 4.4.4.2 allows real numbers equal 

or greater than 0. 

 

Figure 44. QoS metric when an observation has just occurred  

Very high High Medium Low Very low
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q
oS

 m
et

ric

Reinforces
Undermines



176 Evaluation 

 

 

Figure 45. Impact of an observation for different repetitions  

7.2.3.2 Experiment 7 

In this experiment, we explore the effect that sharing evidence among several properties has 

on an observation. Figure 46 shows the impact of an observation when it provides evidence for 

up to 7 properties. Note that the number of properties has been represented as a continuous 

value for simplicity (although it is a positive integer). In addition, to carry out each simulation, 

we considered a single isolated occurrence and 0.5 as the metric value before the occurrence. 

Regarding the results, when sharing evidence among several properties, the uncertainty 

increases as the number of possibilities also increases, i.e., the occurrence may be the effect of 

one of the properties, of two, of a combination of them. It is not known. Therefore, due to this 

greater uncertainty, the evidence loses strength, which means observations with less impact. 

 

Figure 46. Impact of a shared observation for up to 7 properties  

0 1 2 3 4 5 6 7 8 9
repetition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
oS

 m
et

ric
Reinforces very high
Reinforces high
Reinforces medium
Reinforces low
Reinforces very low
Undermines very low
Undermines low
Undermines medium
Undermines high
Undermines very high

1 2 3 4 5 6 7
Number of properties

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
oS

 m
et

ric

Reinforces very high
Reinforces high
Reinforces medium
Reinforces low
Reinforces very low
Undermines very low
Undermines low
Undermines medium
Undermines high
Undermines very high



7.2 Characterization of QoS metrics 177 

 

7.2.4 Discussion 

In our proposal, the behaviour of an observation can be defined through 4 basic attributes: 

persistence, repetition, strength, and direction. While the first two establish the dynamic 

response of the observation, the last two focus on the impact that the evidence has on the 

properties. In the previous sections, we have examined, with 7 experiments, the effects of 

different attribute configurations. Below, we highlight the following conclusions: 

• Since observations weaken as time passes, the evidence accumulated over a period will 

be potentially more intense the more concentrated the occurrences are in time. 

Therefore, in general terms, a system that completes the same jobs faster than another 

will obtain higher estimates for performance, or two incidents in a matter of days will 

be perceived worse than if months had passed between them. This kind of implication 

is intrinsic in the behaviour of QoS metrics and can be adjusted thanks to the persistence 

attribute. 

• Rare events usually have long persistence. However, to study the effects that we could 

obtained with different configurations of persistence, we tested the opposite: frequent 

observations with long persistence. The result was that the metric tends to a constant 

value after accumulating so many occurrences that saturate the observations. The value 

at which the metric remains constant will depend on the balance of the observations. 

• Continuing with the study of the effects that we could obtained with different 

configurations of persistence. We have simulated sparse observations with short 

persistence. The resulting observations had little impact on the mean of the QoS 

estimates. These were so ephemeral that they could not build solid evidence.  

• The attribute repetition indicates how many times an observation must be repeated to 

have full effect. Consequently, as the repetition value is higher, the observation takes 

longer to reach its maximum effect. 

• We have analysed the role of the attribute repetition in the case of frequent observations 

with long persistence. We studied the repetition value based on the average number of 

active occurrences (𝑁𝑜𝑏𝑠 𝑖
<𝑡> ). If repetition is much lower than this values that 𝑁𝑜𝑏𝑠 𝑖

<𝑡>  shows, 

the observation will reach and maintain its maximum effect over time, resulting in a 

constant estimate for the QoS metric. Observations become saturated. On the other 



178 Evaluation 

 

hand, if repetition is higher than any 𝑁𝑜𝑏𝑠 𝑖
<𝑡> , the observations may not achieve their 

maximum effect and the estimate will move in relation to the available evidence. 

However, as repetition increases further, the values of the metric narrow and the mean 

tends to 0.5. That is, the observations lose influence and become increasingly 

underestimated. 

• We have studied the impact that an observation has just when it occurs. The impact of 

an observation not only depends on its strength and direction, but repetition also plays 

a role in this regard. In this sense, the higher the repetition value, the more the impact 

is reduced. 

• When an observation provides evidence among several properties, the uncertainty 

increases and, consequently, the evidence loses strength, which means observations 

with less impact. 

 

 

 



8.1 Conclusions 179 

 

 Conclusions and future work 

This chapter draws the conclusions of the Thesis and outlines some potential research 

directions to extend it in the future. Research papers published in different journals and 

conferences in relation to this Thesis are also listed, as well as some previous publications in 

which the foundations of this work were laid. 

8.1 Conclusions 

The research presented in this Thesis addresses the dynamic estimation of non-functional 

properties using Quality of Service (QoS) metrics. In this work, QoS metrics are defined as 

subjective and coarse-grained scores, indicating how well the system performs in terms of non-

functional properties, such as safety, resource consumption or user satisfaction, among others. 

A formal approach for deriving QoS estimates from contextual observations using probabilistic 

networks has been presented. These networks are created by making explicit the causal 

relationship between QoS perception and context. Unfortunately, the use of this method 

requires domain experts to have the ability to make the probabilistic model fit each application, 

which is challenging and requires specialized knowledge. To mitigate this problem, a Domain-

Specific Modelling Language (DSML) has been defined, which hides the complexity of dealing 

with probabilistic networks. This DSML allows users to model QoS metrics in simple terms, 

and then derive the underlying probabilistic network transparently. 

The classical formulation of the proposed probabilistic networks is not practical from a 

computer-based implementation perspective. It makes extensive use of multiplications and, 

when operands are small numbers (probabilities), numerical stability and precision can become 



180 Conclusions and future work 

 

an issue. Thus, an alternative formulation of the proposed probabilistic networks to perform 

exact inference in a more robust way has been presented, as another of the main contributions 

of this Thesis. The implementation of this new formulation provides QoS Engineers with some 

statistics, which may help them improve their specifications. 

Apart from introducing a novel formulation for probabilistic networks, an alternative approach, 

based on neural networks, is also proposed. These neural networks can be initialized from the 

parameters of the probabilistic networks, ensuring that they produce the same estimations. 

Although both methods are equivalent, neural networks have an important advantage thanks to 

the use of backpropagation, which provides domain experts with a straightforward method to 

refine QoS estimates, using a limited number of input-output examples. 

The DSML developed to hide the complexity of dealing with probabilistic networks has been 

supported with a textual model editor, implemented using the Eclipse Modelling Framework 

and Xtext. It is worth noting that the QoS specifications created with the proposed DSML are 

software architecture- and domain application-independent. From the QoS specifications, 

developed with the textual model editor, domain experts can automatically generate the 

software components required to estimate QoS metrics at runtime. These components are 

loosely connected to each other through a publish/subscribe middleware, offering high 

flexibility and compatibility to be deployed on different platforms. 

The proposal has been evaluated in two real-world scenarios with robots, one related to the 

transportation of goods in an intralogistics environment, and the other one using a clinic 

assistant robot for geriatric assessment. The abstraction provided by the proposed DSML, 

allowed a physiotherapist and an accessibility/usability expert to define the QoS specifications 

for the geriatric assessment scenario. Besides, the QoS metrics defined for both scenarios were 

able to correctly estimate how well both systems performed with respect to several non-

functional properties. Finally, some additional experiments were carried out to observe the 

behaviour of the QoS metrics under some specific conditions. In all cases, the dynamic 

response of the observations and the influence of the evidence on the selected non-functional 

properties was as expected. 

 



8.2 Future work 181 

 

8.2 Future work 

The findings of this Thesis open several lines for future research. Next, we outline some of the 

areas that can be further explored: 

1. Aggregation of QoS metrics. Sometimes, it is desirable to combine QoS metrics into 

a single score to reflect the overall (aggregate) ability of a system to meet several quality 

requirements. The aggregation of QoS metrics may help reflect specific user 

specifications, including logic conditions, such as simultaneity and substitutability, or 

the relative importance of each non-functional property. Based on the work in 

Continuous Preference Logic (CPL) [83] and Generalized conjunction/disjunction 

(GDC) [84], further investigations could be conducted to build hierarchies of QoS 

metrics. 

2. Quality monitoring networks. Service ecosystems are rapidly emerging to tame the 

complexity derived from the increasing number of entities providing and using services. 

In these ecosystems, the ability to derive global quality information seems an essential 

feature, and QoS metrics could be an important asset for monitoring, fault detection, or 

decision-making processes. Unfortunately, quality assessment becomes more and more 

challenging as ecosystems grow in complexity. The advancement of quality monitoring 

networks could facilitate the creation of more comprehensive quality metrics using 

heterogeneous and distributed contextual data.  

3. QoS metrics in reinforcement learning. One of the fundamental problems of 

reinforcement learning is the so-called cursing of the objective specification [85]. 

Rewards are an essential part of any reinforcement learning problem, as they implicitly 

determine the desired behaviour. However, the specification of a good reward function 

can be highly complex. QoS metrics could help in the specification of these problems.  

These and other related research lines show the great potential to continue exploring the 

development and application of QoS metrics on non-functional properties. 

 

 



182 Conclusions and future work 

 

8.3 Publications 

8.3.1 Publications related to the Thesis 

The publications related to this Thesis are listed below in chronological order:  

• A. Romero-Garcés, R. Salles De Freitas, R. Marfil, C. Vicente-Chicote, J. Martínez, J. 

F. Inglés-Romero, and A. Bandera, “QoS metrics-in-the-loop for endowing runtime 

self-adaptation to robotic software architectures,” Multimed Tools Appl, vol. 81, no. 3, 

pp. 3603–3628, Jan. 2022, doi: 10.1007/s11042-021-11603-7. 

• J. F. Ingles-Romero, R. Salles de Freitas, A. Romero-Garces, A. Bandera, J. Martinez, 

J.R. Lozano-Pinilla, D. Garcia-Pérez, and C. Vicente-Chicote, “The MIRoN Project — 

Endowing robots with context-awareness and self-adaptation capabilities,” in 

JISBD2021, 2021. [Online]. Available: http://hdl.handle.net/11705/JISBD/2021/049 

• R. Salles De Freitas, A. Romero-Garcés, R. Marfil, C. Vicente-Chicote, Jesús Martínez-

Cruz, J. F. Inglés-Romero, and A. Bandera “QoS Metrics-in-the-Loop for Better Robot 

Navigation,” in Advances in Physical Agents II, 2021, pp. 94–108. 

• A. Romero-Garcés, J. Martínez-Cruz, J. F. Inglés-Romero, C. Vicente-Chicote, R. 

Marfil, and A. Bandera, “Measuring Quality of Service in a Robotized Comprehensive 

Geriatric Assessment Scenario,” Applied Sciences, vol. 10, no. 18, 6618, 2020, doi: 

10.3390/app10186618. 

• C. Vicente-Chicote, D. García-Pérez, P. García-Ojeda, J. F. Inglés-Romero, A. 

Romero-Garcés, and J. Martínez, “Modeling and Estimation of Non-functional 

Properties: Leveraging the Power of QoS Metrics,” in From Bioinspired Systems and 

Biomedical Applications to Machine Learning, 2019, pp. 380–388. 

• J. F. Inglés-Romero, J. M. Espín, R. Jiménez, R. Font, and C. Vicente-Chicote, 

“Towards the use of quality of service metrics in reinforcement learning: A robotics 

example,” CEUR Workshop Proc, vol. 2245, pp. 465–474, 2018. 

• C. Vicente-Chicote, J.F. Inglés-Romero, J. Martínez, D. Stampfer, A. Lotz, M. Lutz, C. 

Schlegel. “A Component-Based and Model-Driven Approach to Deal with Non-

Functional Properties through Global QoS Metrics,” Proc. 5th International Workshop 



8.3 Publications 183 

 

on Interplay of Model-Driven and Component-Based Software Engineering 

(ModComp'18), in conjunction with MODELS 2018. Copenhagen (Denmark), 14-19 

October, 2018. 

• J. M. Espín, R. Font, J. F. Inglés-Romero, and C. Vicente-Chicote, “Towards the 

Application of Global Quality-of-Service Metrics in Biometric Systems,” in 

IberSPEECH 2018, 2018, pp. 159–160. 

• C. Vicente-Chicote, J. Berrocal, J. García-Alonso, J. Hernández, A. J. Bandera, J. 

Martínez, A. Romero-Garcés, R. Font, and J. F. Inglés-Romero, “RoQME: Dealing 

with non-functional properties through global robot QoS metrics,” Actas de las 23rd 

Jornadas de Ingenieria del Software y Bases de Datos, JISBD 2018, 2018. 

8.3.2 Previous publications on self-adaptive software 

A selection of publications prior to the work of this Thesis are listed below in chronological 

order. Note that the ideas presented in this Thesis are largely influenced by prior research on 

adaptive software systems. The following publications serve as a representative sample of this 

work. 

• M. Lutz, J. F. Inglés-Romero, D. Stampfer, A. Lotz, C. Vicente-Chicote, and C. 

Schlegel, “Managing Variability as a Means to Promote Composability: A Robotics 

Perspective,” in New Perspectives on Information Systems Modeling and Design, A. 

M. Rosado da Cruz and M. E. Ferreira da Cruz, Eds. Hershey, PA, USA: IGI Global, 

2019, pp. 274–295. doi: 10.4018/978-1-5225-7271-8.ch012. 

• J. Ingles-Romero, A. Romero-Garces, C. Vicente-Chicote, and J. Martinez, “A Model-

Driven Approach to Enable Adaptive QoS in DDS-Based Middleware,” IEEE Trans 

Emerg Top Comput Intell, p. 1, 2017, doi: 10.1109/tetci.2017.2669187. 

• R. Sanchez-Iborra, J. F. Ingles-Romero, G. Domenech-Asensi, J. L. Moreno-Cegarra, 

and M.-D. Cano, “Proactive Intelligent System for Optimizing Traffic Signaling,” in 

2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl 

Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence 

and Computing and Cyber Science and Technology 



184 Conclusions and future work 

 

Congress(DASC/PiCom/DataCom/CyberSciTech), 2016, pp. 544–551. doi: 

10.1109/DASC-PICom-DataCom-CyberSciTec.2016.104. 

• C. Schlegel, A. Lotz, M. Lutz, D. Stampfer, J. F. Inglés-Romero, and C. Vicente-

Chicote, “Model-driven software systems engineering in robotics: Covering the 

complete life-cycle of a robot,” it - Information Technology, vol. 57, no. 2, Jan. 2015, 

doi: 10.1515/itit-2014-1069. 

• A. Lotz, J. F. Inglés-Romero, D. Stampfer, M. Lutz, C. Vicente-Chicote, and C. 

Schlegel, “Towards a Stepwise Variability Management Process for Complex 

Systems,” International Journal of Information System Modeling and Design, vol. 5, 

no. 3, pp. 55–74, 2014, doi: 10.4018/ijismd.2014070103. 

• J. F. Inglés-Romero, R. Morales-Chaparro, C. Vicente-Chicote, and F. Sánchez-

Figueroa, “A Model-Based Approach to Develop Self-Adaptive Data Visualizations,” 

in Information System Development, Springer Nature, 2014, pp. 345–357. doi: 

10.1007/978-3-319-07215-9_28. 

• A. Romero-Garcés, J. F. Inglés-Romero, J. Martínez, and C. Vicente-Chicote, “Self-

Adaptive Quality-of-Service in Distributed Middleware for Robotics,” in 2nd 

International Workshop on Recognition and Action for Scene Understanding 

(REACTS 2013), 2013. 

• A. Lotz, J. F. Inglés-Romero, C. Vicente-Chicote, and C. Schlegel, “Managing run-

time variability in robotics software by modeling functional and non-functional 

behavior,” Lecture Notes in Business Information Processing, vol. 147 LNBIP, pp. 

441–455, 2013. 

• J. F. Inglés-Romero and C. Vicente-Chicote, “Towards a formal approach for 

prototyping and verifying self-adaptive systems,” Lecture Notes in Business 

Information Processing, vol. 148 LNBIP, pp. 432–446, 2013. 

• J. F. Inglés-Romero, A. Lotz, C. V. Chicote, and C. Schlegel, “Dealing with Run-Time 

Variability in Service Robotics: Towards a DSL for Non-Functional Properties.” arXiv, 

2013. doi: 10.48550/ARXIV.1303.4296. 

• J. F. Inglés-Romero, C. Vicente-Chicote, B. Morin, and O. Barais, “Towards the 

automatic generation of self-adaptive robotics software: An experience report,” 

Proceedings of the 2011 20th IEEE International Workshops on Enabling 



8.3 Publications 185 

 

Technologies: Infrastructure for Collaborative Enterprises, WETICE 2011, pp. 79–86, 

2011. 

• J. F. Ingles-Romero, C. Vicente-Chicote, B. Morin, and O. Barais, “Using 

Models@Runtime for Designing Adaptive Robotics Software: an Experience Report,” 

2010.



186 References 

 

References 

[1] R. R. Murphy and D. Schreckenghost, “Survey of metrics for human-robot 

interaction,” in 2013 8th ACM/IEEE International Conference on Human-Robot 

Interaction (HRI), 2013, pp. 197–198. doi: 10.1109/HRI.2013.6483569. 

[2] S. M. Anzalone, S. Boucenna, S. Ivaldi, and M. Chetouani, “Evaluating the 

Engagement with Social Robots,” Int J Soc Robot, vol. 7, no. 4, pp. 465–478, 2015, 

doi: 10.1007/s12369-015-0298-7. 

[3] P. Damacharla, A. Y. Javaid, J. J. Gallimore, and V. K. Devabhaktuni, “Common 

Metrics to Benchmark Human-Machine Teams (HMT): A Review,” IEEE Access, vol. 

6, pp. 38637–38655, 2018, doi: 10.1109/ACCESS.2018.2853560. 

[4] M. Ma, J. A. Stankovic, and L. Feng, “Runtime Monitoring of Safety and Performance 

Requirements in Smart Cities,” in Proceedings of the 1st ACM Workshop on the 

Internet of Safe Things, 2017, pp. 44–50. doi: 10.1145/3137003.3137005. 

[5] International Telecommunication Union (ITU), “ITU-T. Quality of telecommunication 

services: Concepts, models, objectives and dependability planning–Terms and 

definitions related to the quality of telecommunication services,” in SERIES E: Overall 

Network Operation, Telephone Service, Service Operation and Human Factors, 2008. 

[6] S. Singh and I. Chana, “QoS-Aware Autonomic Resource Management in Cloud 

Computing,” ACM Comput Surv, vol. 48, no. 3, pp. 1–46, Feb. 2016, doi: 

10.1145/2843889. 

[7] L. Garcia, J. Lloret, C. Turro, and M. Taha, “QoE assesment of MPEG-DASH in 

polimedia e-learning system,” in 2016 International Conference on Advances in 



8.3 Publications 187 

 

Computing, Communications and Informatics (ICACCI), Sep. 2016, pp. 1117–1123. 

doi: 10.1109/ICACCI.2016.7732194. 

[8] Z. Xu, J. Lin, W. She, J. Xu, Z. Xiong, and H. Cai, “Neighbor Collaboration-Based 

Secure Federated QoS Prediction for Smart Home Services,” 2022, pp. 71–85. doi: 

10.1007/978-3-031-23515-3_6. 

[9] Q. Dai, “A Survey of Quality of Experience,” 2011, pp. 146–156. doi: 10.1007/978-3-

642-23541-2_16. 

[10] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Approach, 

Third Edition, 3rd ed. USA: CRC Press, Inc., 2014. 

[11] M. K. Daskalantonakis, “A practical view of software measurement and 

implementation experiences within Motorola,” IEEE Transactions on Software 

Engineering, vol. 18, no. 11, pp. 998–1010, 1992, doi: 10.1109/32.177369. 

[12] R. B. Vaughn, R. Henning, and A. Siraj, “Information assurance measures and metrics 

- state of practice and proposed taxonomy,” in 36th Annual Hawaii International 

Conference on System Sciences, 2003. Proceedings of the, 2003, p. 10 pp. doi: 

10.1109/HICSS.2003.1174904. 

[13] ISO/IEC, “ISO/IEC 9126-1:2001 Software engineering - Product quality,” 2001. 

https://www.iso.org/standard/22749.html (accessed Jan. 29, 2022). 

[14] ISO/IEC, “ISO/IEC 25010:2011 - Systems and software Quality Requirements and 

Evaluation (SQuaRE),” 2011. https://www.iso.org/standard/35733.html (accessed Apr. 

29, 2022). 

[15] S. Robertson and J. Robertson, Mastering the Requirements Process Getting 

Requirements Right, 3rd ed. Addison-Wesley Professional, 2012. 

[16] S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, “Rule-based Dynamic Safety 

Monitoring for Mobile Robots,” 2016. 



188 References 

 

[17] M. Ma, J. A. Stankovic, and L. Feng, “Runtime Monitoring of Safety and Performance 

Requirements in Smart Cities,” in Proceedings of the 1st ACM Workshop on the 

Internet of Safe Things, Nov. 2017, pp. 44–50. doi: 10.1145/3137003.3137005. 

[18] P. Damacharla, A. Y. Javaid, J. J. Gallimore, and V. K. Devabhaktuni, “Common 

Metrics to Benchmark Human-Machine Teams (HMT): A Review,” IEEE Access, vol. 

6, pp. 38637–38655, 2018, doi: 10.1109/ACCESS.2018.2853560. 

[19] K. Bardsiri, “QoS Metrics for Cloud Computing Services Evaluation Amid,” 2016. 

[20] F. Fleurey and A. Solberg, “A Domain Specific Modeling Language Supporting 

Specification, Simulation and Execution of Dynamic Adaptive Systems,” 2009, pp. 

606–621. doi: 10.1007/978-3-642-04425-0_47. 

[21] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model evolution by run-time 

parameter adaptation,” in 2009 IEEE 31st International Conference on Software 

Engineering, 2009, pp. 111–121. doi: 10.1109/ICSE.2009.5070513. 

[22] L. H. G. Paucar and N. Bencomo, “RE-STORM: Mapping the Decision-Making 

Problem and Non-functional Requirements Trade-Off to Partially Observable Markov 

Decision Processes,” 2018 IEEE/ACM 13th International Symposium on Software 

Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 19–25, 2018. 

[23] J. Pearl, “The Do-Calculus Revisited,” Uncertainty in Artificial Intelligence - 

Proceedings of the 28th Conference, UAI 2012, pp. 4–11, Oct. 2012, doi: 

10.48550/arxiv.1210.4852. 

[24] J. Y. Halpern, “From Causal Models To Counterfactual Structures,” Jun. 2011. 

[25] J. Sekhon, “The Neyman— Rubin Model of Causal Inference and Estimation Via 

Matching Methods,” in The Oxford Handbook of Political Methodology, Oxford 

University Press, 2009, pp. 271–299. doi: 

10.1093/oxfordhb/9780199286546.003.0011. 

[26] J. Pearl, Causality. Cambridge University Press, 2009. doi: 

10.1017/CBO9780511803161. 



8.3 Publications 189 

 

[27] “pcalg: Methods for Graphical Models and Causal Inference version 2.7-8 from 

CRAN.” https://rdrr.io/cran/pcalg/ (accessed Jan. 28, 2023). 

[28] C. Aliferis, I. Tsamardinos, A. Statnikov, and L. Brown, Causal Explorer: A Causal 

Probabilistic Network Learning Toolkit for Biomedical Discovery. 2003. 

[29] “TETRAD - Tools for causal inference and search (Carnegie Mellon University).” 

https://github.com/cmu-phil/tetrad (accessed Jan. 28, 2023). 

[30] Y. Shimoni et al., “An Evaluation Toolkit to Guide Model Selection and Cohort 

Definition in Causal Inference,” Jun. 2019. 

[31] A. Fahmi et al., “Causal Bayesian Networks for Medical Diagnosis: A Case Study in 

Rheumatoid Arthritis,” in 2020 IEEE International Conference on Healthcare 

Informatics (ICHI), 2020, pp. 1–7. doi: 10.1109/ICHI48887.2020.9374327. 

[32] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis, “Advances to 

Bayesian network inference for generating causal networks from observational 

biological data,” Bioinformatics, vol. 20, no. 18, pp. 3594–3603, Dec. 2004, doi: 

10.1093/bioinformatics/bth448. 

[33] M. Kliangkhlao, S. Limsiroratana, and B. Sahoh, “The Design and Development of a 

Causal Bayesian Networks Model for the Explanation of Agricultural Supply Chains,” 

IEEE Access, vol. 10, pp. 86813–86823, 2022, doi: 10.1109/ACCESS.2022.3199353. 

[34] “BayesiaLab.” https://www.bayesia.com/articles/#!bayesialab-knowledge-

hub/bayesialab-overview (accessed Jan. 28, 2023). 

[35] “GeNIe Modeler – BayesFusion.” https://www.bayesfusion.com/genie/ (accessed Jan. 

28, 2023). 

[36] J. Salvatier, T. v. Wiecki, and C. Fonnesbeck, “Probabilistic programming in Python 

using PyMC3,” PeerJ Comput Sci, vol. 2, p. e55, Apr. 2016, doi: 10.7717/peerj-cs.55. 



190 References 

 

[37] M. Glinz, “Quality requirements and their role in successful products,” in Proceedings 

- 15th IEEE International Requirements Engineering Conference, RE 2007, 2007, pp. 

21–26. doi: 10.1109/RE.2007.45. 

[38] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles, 

“Towards a better understanding of context and context-awareness,” Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), vol. 1707, no. January, pp. 304–307, 1999, doi: 

10.1007/3-540-48157-5_29. 

[39] BBC News, “Pepper robot to work in Belgian hospitals,” 2016. 

https://www.bbc.com/news/technology-36528253 

[40] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 

Inference. Morgan Kaufmann, 1988. 

[41] R. G. Miller, Survival Analysis, 2nd Editio. John Wiley & Sons, 2011. 

[42] J. C. Baird and E. Noma, Fundamentals of scaling and psychophysics. John Wiley & 

Sons, 1978. 

[43] A. Jøsang, Subjective logic : a formalism for reasoning under uncertainty. 2016. 

[44] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical distributions, 4th ed. 

Hoboken, N.J: Wiley, 2010. 

[45] L. Devroye, Non-Uniform Random Variate Generation. Springer New York, 1986. 

doi: 10.1007/978-1-4613-8643-8. 

[46] J. R. Norris, Markov Chains. Cambridge University Press, 1997. doi: 

10.1017/CBO9780511810633. 

[47] V. G. Kulkarni, Modeling and analysis of stochastic systems: Third edition. CRC 

Press, 2016. doi: 10.1201/9781315367910. 

[48] M. G. (Maurice G. Kendall, A. Stuart, and J. K. Ord, “Kendall’s advanced theory of 

statistics,” 1987. 



8.3 Publications 191 

 

[49] A. Eckner, “Algorithms for Unevenly Spaced Time Series : Moving Averages and 

Other Rolling Operators,” 2015. 

[50] W. Gautschi and W. F. Gahill, “Exponential Integral and Related Functions,” in 

Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical 

Tables, Dover Publications, Inc., 1974. 

[51] D. A. Barry, J. Y. Parlange, and L. Li, “Approximation for the exponential integral 

(Theis well function),” J Hydrol (Amst), vol. 227, no. 1–4, pp. 287–291, Jan. 2000, 

doi: 10.1016/S0022-1694(99)00184-5. 

[52] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. 

[53] J. W. Hines, “Logarithmic neural network architecture for unbounded non-linear 

function approximation,” IEEE International Conference on Neural Networks - 

Conference Proceedings, vol. 2, pp. 1245–1250, 1996, doi: 

10.1109/ICNN.1996.549076. 

[54] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous 

Distributed Systems,” Mar. 2016, doi: 10.48550/arxiv.1603.04467. 

[55] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd 

International Conference on Learning Representations, ICLR 2015 - Conference Track 

Proceedings, 2015. 

[56] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical 

Journal, vol. 27, no. 4, pp. 623–656, 1948, doi: 10.1002/J.1538-

7305.1948.TB00917.X. 

[57] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are 

universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989, doi: 

https://doi.org/10.1016/0893-6080(89)90020-8. 

[58] H. B. Mcmahan et al., “Ad click prediction: A view from the trenches,” Proceedings 

of the ACM SIGKDD International Conference on Knowledge Discovery and Data 



192 References 

 

Mining, vol. Part F128815, pp. 1222–1230, Aug. 2013, doi: 

10.1145/2487575.2488200. 

[59] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in 

Practice, 2nd edition. Morgan & Claypool, 2017. 

[60] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling 

Framework, 2nd edition. Addison-Wesley Professional, 2008. 

[61] “Xtext.” www.eclipse.org/Xtext (accessed Jan. 01, 2023). 

[62] “OMG: Object Constraint Language (OCL).” https://www.omg.org/spec/OCL/ 

(accessed Jan. 19, 2023). 

[63] “OMG: Data-Distribution Service for Real-Time Systems (DDS).” 

https://www.omg.org/dds/ (accessed Jan. 19, 2023). 

[64] “OASIS: Message Queuing Telemetry Transport (MQTT).” https://mqtt.org/ (accessed 

Jan. 19, 2023). 

[65] Google, “Protocol Buffers,” https://developers.google.com/protocol-buffers. 

[66] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press, 2008. 

[67] O. Etzion and P. Niblett, Event Processing in Action, 1st edition. Manning 

Publications Co., 2010. 

[68] “RoQME: Dealing with non-functional properties through global Robot Quality-of- 

Service Metrics.” https://robmosys.eu/roqme/ (accessed Jan. 18, 2023). 

[69] “EsperTech Inc.: Esper language, compiler and runtime for Complex Event Processing 

(CEP).” https://www.espertech.com/esper/ (accessed Jan. 18, 2023). 

[70] “Xtend.” https://www.eclipse.org/xtend/index.html (accessed Jan. 18, 2023). 

[71] “RobMoSys: Composable Models and Software for Robotics.” https://robmosys.eu/ 

(accessed Jan. 20, 2023). 



8.3 Publications 193 

 

[72] “RobMoSys: Intralogistics Industry 4.0 Robot Fleet Pilot.” 

[73] D. Stampfer, A. Lotz, M. Lutz, and C. Schlegel, “The SmartMDSD Toolchain: An 

Integrated MDSD Workflow and Integrated Development Environment (IDE) for 

Robotics Software,” Journal of Software Engineering for Robotics (JOSER), vol. 7, 

pp. 3–19, Aug. 2016. 

[74] “RoQME Demonstration: Dealing with Metrics on Non-Functional Properties in 

RobMoSys,” https://robmosys.eu/wiki/community:roqme-intralog-scenario:start. 

[75] “CLARC: Smart Clinic Assistant Robot for CGA. The European Coordination Hub for 

Open Robotics Development (ECHORD++).” https://echord.eu/essential_grid/clark/ 

(accessed Jan. 22, 2023). 

[76] F. I. Mahoney and D. W. Barthel, “Functional Evaluation: The Barthel Index,” Md 

State Med J, vol. 14, pp. 61–65, 1965, [Online]. Available: 

http://europepmc.org/abstract/MED/14258950 

[77] S. Mathias, U. S. Nayak, and B. Isaacs, “Balance in elderly patients: the ‘get-up and 

go’ test,” Arch Phys Med Rehabil, vol. 67, no. 6, pp. 387–389, 1986, [Online]. 

Available: http://europepmc.org/abstract/MED/3487300 

[78] A. Romero-Garcés, J. Martínez-Cruz, J. F. Inglés-Romero, C. Vicente-Chicote, R. 

Marfil, and A. Bandera, “Measuring Quality of Service in a Robotized Comprehensive 

Geriatric Assessment Scenario,” Applied Sciences, vol. 10, no. 18, 2020, doi: 

10.3390/app10186618. 

[79] R. Marfil et al., “Perceptions or Actions? Grounding How Agents Interact Within a 

Software Architecture for Cognitive Robotics,” Cognit Comput, vol. 12, no. 2, pp. 

479–497, 2020, doi: 10.1007/s12559-019-09685-5. 

[80] C. Vicente-Chicote, D. García-Pérez, P. García-Ojeda, J. F. Inglés-Romero, A. 

Romero-Garcés, and J. Martínez, “Modeling and Estimation of Non-functional 

Properties: Leveraging the Power of QoS Metrics,” in From Bioinspired Systems and 

Biomedical Applications to Machine Learning, 2019, pp. 380–388. 



194 References 

 

[81] C. Vicente-Chicote et al., “A Component-Based and Model-Driven Approach to Deal 

with Non-Functional Properties through Global QoS Metrics,” in ACM/IEEE 

International Conference on Model Driven Engineering Languages and Systems, 

2018. 

[82] J. J. Dujmovic, “Continuous Preference Logic for System Evaluation,” IEEE 

Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1082–1099, 2007, doi: 

10.1109/TFUZZ.2007.902041. 

[83] J. J. Dujmović and H. L. Larsen, “Generalized conjunction/disjunction,” International 

Journal of Approximate Reasoning, vol. 46, no. 3, pp. 423–446, Dec. 2007, doi: 

10.1016/J.IJAR.2006.12.011. 

[84] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” 

Int J Rob Res, vol. 32, no. 11, pp. 1238–1274, Sep. 2013, doi: 

10.1177/0278364913495721. 

  



 

Appendix A  

A.1 Xtext Grammar Specification 

grammar qosme.QoSMetrics with org.eclipse.xtext.common.Terminals 
 
import "http://www.eclipse.org/emf/2002/Ecore" as ecore 
import "platform:/resource/qosme.metamodel/metamodel/kernel/kernel.ecore" as kernel  
import "platform:/resource/qosme.metamodel/metamodel/datatypes/datatypes.ecore" as datatypes  
import "platform:/resource/qosme.metamodel/metamodel/expressions/expressions.ecore" as expressions  
 
 
Model returns datatypes::Model: 
 ('namespace' namespace=EString)? 
 (sentences+=Import)* 
 ( sentences += TimeFrame 
 | dataTypes += DataTypeDefinition 
 | variables += TypedVariable 
 | sentences += Sentence)*; 
 
 
/* ********************************* 
 * KERNEL EPACKAGE 
 * *********************************/ 
 
/* 
 * Variables 
 */ 
  
TypedVariable returns datatypes::TypedVariable: 
 Parameter | Timer | GeneralPurposeVariable | Context | Property; 
  
Parameter returns kernel::Parameter: 
 'param' name=ID ':' declaration = DataTypeDeclaration  
 ('default' default=TypedValue)?; 
 
Timer returns kernel::Timer: 
 'timer' name=ID declaration = ImplicitTimeTypeDeclaration  
 '=' period=NumericTimeValue; 
 
GeneralPurposeVariable returns kernel::GeneralPurposeVariable: 
 'var' name=ID ':' declaration = DataTypeDeclaration  
 '=' definition=Expression; 



A-2  

 

 
Context returns kernel::Context: 
 DerivedContext | PrimitiveContext; 
 
PrimitiveContext returns kernel::PrimitiveContext: 
 'context' name=ID ':' declaration = DataTypeDeclaration; 
 
DerivedContext returns kernel::DerivedContext: 
 'context' name=ID ':' declaration = DataTypeDeclaration 
  '=' definition = Expression; 
   
Property returns kernel::Property: 
 'property' name=ID declaration=ImplicitNumericTypeDeclaration; 
 
 
/* 
 * Sentencies 
 */ 
 
Import returns kernel::Import: 
 'import' importURI=EString 
 (settings += SetParameter)*; 
  
SetParameter returns kernel::SetParameter: 
 'with' parameter = [kernel::Parameter | QualifiedName]  
 '=' value=TypedValue; 
 
Sentence returns datatypes::Sentence: 
 Observation; 
  
Observation returns kernel::Observation: 
 'observation' name=ID ':' pattern=Expression  
 (('repetition' repetition=INT)? 
  & ('persistence' persistence=TimeValue)?) 
 (actions+=Action | ('{' (actions+=Action)+ '}')); 
  
Action returns kernel::Action: 
 SetVariable | ClearEvidence | SetEvidence; 
  
SetVariable returns kernel::SetVariable: 
 'sets' variable = [kernel::GeneralPurposeVariable | QualifiedName]  
 '=' expression=Expression; 
 
ClearEvidence returns kernel::ClearEvidence: 
 'clears' property = [kernel::Property | QualifiedName]; 
 
SetEvidence returns kernel::SetEvidence: 
 direction=DirectionEnum  
 property = [kernel::Property | QualifiedName] 
 (strength=StrengthEnum)?; 
  
enum DirectionEnum returns kernel::DirectionEnum: 
 REINFORCE = 'reinforces' | UNDERMINE = 'undermines'; 



A.1 Xtext Grammar Specification A-3 

 

  
enum StrengthEnum returns kernel::StrengthEnum: 
 VERY_HIGH = 'veryhigh' | VERY_HIGH = 'very high' |  
 HIGH = 'high' | MEDIUM | LOW = 'low' |  
 VERY_LOW = 'verylow' | VERY_LOW = 'very low'; 
 
 
 
 
 
 
 
/* ********************************* 
 * DATATYPE EPACKAGE 
 * *********************************/ 
/*  
 * Data type definitions 
 */ 
 
DataTypeDefinition returns datatypes::DataTypeDefinition: 
 'type' name=EString ':' dataType=DataType; 
 
DataType returns datatypes::DataType: 
 BooleanType | EnumType | EventType | NumericType | TimeType; 
 
BooleanType returns datatypes::BooleanType: 
 {datatypes::BooleanType} 
 'boolean'; 
 
EnumType returns datatypes::EnumType: 
 'enum' 
 '{'  
  literals += EnumLiteral (',' literals += EnumLiteral )+ 
 '}'; 
 
EnumLiteral returns datatypes::EnumLiteral: 
 {datatypes::EnumLiteral} 
 name=ID; 
 
EventType returns datatypes::EventType: 
 {datatypes::EventType} 
 'event'; 
 
NumericType returns datatypes::NumericType: 
 {datatypes::NumericType} 
 'number'; 
 
TimeType returns datatypes::TimeType: 
 {datatypes::TimeType} 
 'time'; 
 
/* 
 * Typed Values 



A-4  

 

 */  
  
TypedValue returns datatypes::TypedValue: 
 BooleanValue | EnumValue | EventValue | NumericValue | TimeValue; 
 
BooleanValue returns datatypes::BooleanValue: 
 {datatypes::BooleanValue}  
 value = EBoolean; 
 
EnumValue returns datatypes::EnumValue: 
 {datatypes::EnumValue} 
 value=[datatypes::EnumLiteral | LiteralQualifiedName]; 
 
EventValue returns datatypes::EventValue: 
 {datatypes::EventValue} 
 'trigger'; 
 
NumericValue returns datatypes::NumericValue: 
 {datatypes::NumericValue} 
 value=EDouble; 
 
TimeValue returns datatypes::TimeValue: 
 AbsoluteTime | RelativeTime; 
  
AbsoluteTime returns datatypes::AbsoluteTime: 
 NumericTimeValue | AbsoluteTimeExpression; 
 
NumericTimeValue returns datatypes::NumericTimeValue: 
 {datatypes::NumericTimeValue} 
 value=EDouble unit=TimeUnitEnum; 
  
AbsoluteTimeExpression returns datatypes::AbsoluteTimeExpression: 
 {datatypes::AbsoluteTimeExpression} 
 quantity=AbsoluteQuantifierEnum unit=TimeUnitEnum; 
 
enum TimeUnitEnum returns datatypes::TimeUnitEnum:  
 SECOND = 'second' | SECOND = 'seconds' | 
 MINUTE = 'minute' | MINUTE = 'minutes' |  
 HOUR = 'hour' | HOUR = 'hours' |  
 DAY = 'day' | DAY = 'days' |  
 WEEK = 'week' | WEEK = 'weeks' | 
 MONTH = 'month' | MONTH = 'months'; 
 
enum AbsoluteQuantifierEnum returns datatypes::AbsoluteQuantifierEnum:  
 FEW = 'few' | SOME = 'some' | MANY = 'many'; 
 
RelativeTime returns datatypes::RelativeTime: 
 RelativeTimeExpression; 
  
RelativeTimeExpression returns datatypes::RelativeTimeExpression: 
 {datatypes::RelativeTimeExpression} 
 quantity=RelativeQuantifierEnum; 
 



A.1 Xtext Grammar Specification A-5 

 

enum RelativeQuantifierEnum returns datatypes::RelativeQuantifierEnum:  
 SHORT = 'short' | MEDIUM = 'medium' | LONG = 'long'; 
 
TimeFrame returns datatypes::TimeFrame: 
 'timeframe' value=AbsoluteTime; 
 
/* 
 * Typed Variables 
 */ 
 
DataTypeDeclaration returns datatypes::DataTypeDeclaration: 
 BuiltinTypeDeclaration | ExternalTypeDeclaration; 
 
BuiltinTypeDeclaration returns datatypes::BuiltinTypeDeclaration: 
 type=DataType; 
 
ExternalTypeDeclaration returns datatypes::ExternalTypeDeclaration: 
 type=[datatypes::DataTypeDefinition]; 
 
ImplicitTimeTypeDeclaration returns datatypes::BuiltinTypeDeclaration: 
 type=ImplicitTimeType; 
  
ImplicitTimeType returns datatypes::TimeType: 
 {datatypes::TimeType}; 
  
ImplicitNumericTypeDeclaration returns datatypes::BuiltinTypeDeclaration: 
 type=ImplicitNumericType; 
  
ImplicitNumericType returns datatypes::NumericType: 
 {datatypes::NumericType}; 
 
 
/* ********************************* 
 * EXPRESSIONS EPACKAGE 
 * *********************************/ 
 
Expression returns expressions::Expression: 
 term = Term; 
 
Term returns expressions::Term: 
 (OnceTerm | WhileTerm); 
 
/* 
 * Event Pattern Operators 
 */ 
 
OnceTerm returns expressions::OnceTerm: 
 'once' term=WhileTerm; 
 
WhileTerm returns expressions::Term: 
 RepetionTerm 
 ({expressions::WhileTerm.left=current} 'while' '(' right=OrBooleanTerm ')')?; 
 



A-6  

 

RepetionTerm returns expressions::Term: 
 SequenceTerm 
 (({expressions::RepeatTerm.term=current} 'repeat' '(' nrep=INT ')') 
  | ({expressions::RangeTerm.term=current} 'range' '(' lowerBound=INT ',' upperBound=INT ')'))?; 
 
SequenceTerm returns expressions::Term: 
 OrEventTerm 
 ({expressions::FollowedByTerm.left=current} '->'   
  right=ConditionalTerm 
 )*; 
 
OrEventTerm returns expressions::Term: 
 AndEventTerm 
 ({expressions::OrEventTerm.left=current} 'or' right=AndEventTerm)*; 
 
AndEventTerm returns expressions::Term: 
 (NotEventTerm | ConditionalTerm) 
 ({expressions::AndEventTerm.left=current} 'and' right= (NotEventTerm | ConditionalTerm) )*; 
 
NotEventTerm returns expressions::Term: 
 {expressions::NotEventTerm}  
 'not' term=ConditionalTerm; 
 
/* 
 * Conditional Operator  
 */ 
 
ConditionalTerm returns expressions::Term: 
 OrBooleanTerm 
 ({expressions::ConditionalTerm.terms+=current} '?' terms+=OrBooleanTerm ':' 
terms+=ConditionalTerm)?; 
 
 
/* 
 * Logical Terms 
 */ 
 
OrBooleanTerm returns expressions::Term: 
 AndBooleanTerm 
 ({expressions::OrBooleanTerm.left=current} '|' right=AndBooleanTerm)*; 
 
AndBooleanTerm returns expressions::Term: 
 (NotBooleanTerm | RelationalTerm) 
 ({expressions::AndBooleanTerm.left=current} '&' right= (NotBooleanTerm | RelationalTerm) )*; 
 
NotBooleanTerm returns expressions::Term: 
 {expressions::NotBooleanTerm}  
 '!' term=RelationalTerm; 
 
/* 
 * Relational Term 
 */ 
 



A.1 Xtext Grammar Specification A-7 

 

RelationalTerm returns expressions::Term: 
 AdditionTerm (({expressions::EqualTerm.left=current} '=='  
  | {expressions::LessThanTerm.left=current} '<'  
  | {expressions::GreaterThanTerm.left=current} '>'  
  | {expressions::LessEqualTerm.left=current} '<='  
  | {expressions::GreaterEqualTerm.left=current} '>='  
  | {expressions::NotEqualTerm.left=current} '!=' 
 ) 
 right=AdditionTerm)?; 
  
/* 
 * Arithmetic Terms 
 */ 
 
AdditionTerm returns expressions::Term: 
 MultiplicationTerm  
 (({expressions::AddTerm.left=current} '+' | {expressions::SubTerm.left=current} '-') 
right=MultiplicationTerm)*; 
 
MultiplicationTerm returns expressions::Term: 
 PrimaryTerm  
 (({expressions::MultTerm.left=current} '*' | {expressions::DivTerm.left=current} '/') right=PrimaryTerm)*; 
 
/* 
 * Primary Terms 
 */ 
 
PrimaryTerm returns expressions::Term: 
 '(' Term ')' | 
 ConstTerm | 
 VarTerm | 
 FunctionTerm; 
 
VarTerm returns expressions::VarTerm: 
 variable = [datatypes::TypedVariable | QualifiedName]; 
 
ConstTerm returns expressions::ConstTerm: 
 value = TypedValue; 
 
/*  
 * Functions 
 */ 
  
FunctionTerm returns expressions::FunctionTerm: 
 ArithFunction | AggregationFunction | PatternFunction; 
 
ArithFunction returns expressions::ArithFunction: 
 (terms+=VarTerm "'")? name=ArithFtnEnum ('(' (terms += Term (',' terms += Term)*)? ')')?; 
 
enum ArithFtnEnum returns expressions::ArithFtnEnum: 
 POW = 'pow' | SQRT = 'sqrt' | EXP = 'exp' | ABS = 'abs'; 
 
AggregationFunction returns expressions::AggregationFunction: 



A-8  

 

 (terms+=VarTerm "'")? name=AggregationFtnEnum ('(' (terms += Term (',' terms += Term)*)? ')')?; 
 
enum AggregationFtnEnum returns expressions::AggregationFtnEnum: 
 AVG = 'avg' | MIN = 'min' | MAX = 'max' | COUNT = 'count' | SUM = 'sum' | DECREASING = 'decreasing' | 
INCREASING = 'increasing' | STABLE = 'stable'; 
 
PatternFunction returns expressions::PatternFunction: 
 (terms+=VarTerm "'")? name=PatternFtnEnum ('(' (terms += Term (',' terms += Term)*)? ')')?; 
 
enum PatternFtnEnum returns expressions::PatternFtnEnum: 
 EVENT_WHEN = 'eventWhen' | UPDATE = 'update' | PERIOD = 'interval'; 
 
 
/* ********************************* 
 * Auxiliary grammar 
 * *********************************/ 
 
EString returns ecore::EString: 
 STRING | ID; 
 
EDouble returns ecore::EDouble: 
 '-'? INT ('.' INT)?; 
 
EBoolean returns ecore::EBoolean: 
 'true' | 'false'; 
  
QualifiedName returns ecore::EString:  
 ID ('.' ID)*; 
  
LiteralQualifiedName returns ecore::EString:  
 ID ('::' ID)+;  
 
@Override  
terminal ML_COMMENT  :  
  ('/*' !'*') -> '*/'; 
   
@Override  
terminal STRING  :  
  '"' ( '\\'('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') | !('\\'|'"') )* '"'; 
 


	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Outline

	Chapter 2 State of the art
	2.1 Quality of Service
	2.2 Metrics
	2.3 Quality factors
	2.4 QoS-aware systems
	2.5 Causality in QoS awareness
	2.6 Causal inference
	2.6.1 Structural Causal Models
	2.6.2 Causal Bayesian Networks


	Chapter 3 Non-functional properties to measure QoS at runtime
	3.1 Approach overview
	3.2 Key concepts
	3.2.1 Non-functional property
	3.2.2 QoS metric
	3.2.3 Context
	3.2.4 Observation

	3.3 An example: robots in hospitals
	3.4 Non-functional properties through probabilistic networks
	3.4.1 Design premises
	3.4.2 Introducing the proposed model
	3.4.3 Stating the problem
	3.4.4 Shared context conditions

	3.5 Summary

	Chapter 4 Hiding probabilistic networks behind high-level descriptions
	4.1 Towards a high-level specification to measure quality
	4.2 Deriving the network topology
	4.3 Deriving time values
	4.3.1 The Weber-Fechner Law
	4.3.2 Absolute time expressions
	4.3.3 Relative time expressions
	4.3.4 Random sampling of time expressions

	4.4 Deriving probabilities
	4.4.1 Distribution P(prop)
	4.4.2 Distribution P(ctxi | prop)
	4.4.3 Distribution P(ctxi | prop1, ... , propM)
	4.4.4 Distribution P(,𝐍-𝐨𝐛𝐬 𝐢-<𝐭>. | ctxi )
	4.4.4.1 Persistence of the observations
	4.4.4.2 Repetition of the observations


	4.5 Summary

	Chapter 5 Running QoS metrics
	5.1 Process for calculating QoS metrics
	5.1.1 First step: detect the occurrence of observations
	5.1.2 Second step: update the accumulated evidence
	5.1.3 Third step: estimate QoS metrics
	5.1.4 Example simulations
	5.1.4.1 Example 1: Bumping into someone
	5.1.4.2 Example 2: Acceptance among patients
	5.1.4.3 Example 3: Stranded without battery


	5.2 Statistics on QoS metrics
	5.2.1 Central tendency and variability
	5.2.2 Temporal mean of ,𝑵-𝒐𝒃𝒔 𝒊-<𝒕>.
	5.2.3 Contribution of the observations
	5.2.4 Example simulation

	5.3 Tuning QoS metrics
	5.3.1 Proposed neural network architecture
	5.3.2 Practical cases
	5.3.2.1 Adjusting the strength of an observation
	5.3.2.2 Adjusting the strength and repetition of an observation
	5.3.2.3 Adjusting several observations

	5.3.3 Comparison with a regular feedforward neural network
	This section presents a comparison between the proposed architecture and a conventional feedforward neural network, which will allow us to point out the benefits of the proposal.
	5.3.3.1 Model complexity
	5.3.3.2 Fitting QoS estimates with small data sets
	5.3.3.3 Breaking down the training process into several independent sessions


	5.4 Summary

	Chapter 6 Modelling language for QoS metrics
	6.1 Supporting the role of QoS Engineers
	6.2 Regarding the DSML specification
	6.3 The Abstract syntax of the language
	6.3.1 The Datatypes metamodel
	6.3.2 The Expressions metamodel
	6.3.3 The Kernel metamodel

	6.4 The textual concrete syntax of the language
	6.4.1 A language walkthrough
	6.4.1.1 Context variables
	6.4.1.2 Properties
	6.4.1.3 Observations
	6.4.1.4 Other resources: general-purpose variables and timers

	6.4.2 The grammar specification

	6.5 Validation of the models
	6.5.1 Syntactical correctness
	6.5.2 Cross-reference validation
	6.5.3 Concrete syntax validation

	6.6 Runtime support
	6.6.1 Overall process
	6.6.2 Publish/Subscribe Data Space
	6.6.3 Event Processor
	6.6.3.1 Semantics of the pattern expressions
	6.6.3.2 Code generation

	6.6.4 QoS Metrics Estimator
	6.6.4.1 The model-to-text transformation
	6.6.4.2 The QoS estimator component


	6.7 Summary

	Chapter 7 Evaluation
	7.1 Experiments in real-world scenarios
	7.1.1 Intralogistics Industry 4.0 Robot Fleet Pilot
	7.1.1.1 Scenario description
	7.1.1.2 Modelling QoS metrics
	7.1.1.3 Implementation
	7.1.1.4 Results

	7.1.2 Geriatric assessment
	7.1.2.1 Scenario description
	7.1.2.2 Modelling QoS metrics
	7.1.2.3 Implementation
	7.1.2.4 Results

	7.1.3 Discussion
	7.1.3.1 On the effectiveness to estimate non-functional properties
	7.1.3.2 On the benefits of raising the level of abstraction
	7.1.3.3 On the applicability of the proposal


	7.2 Characterization of QoS metrics
	7.2.1 The persistence of the observations
	7.2.1.1 Experiment 1
	7.2.1.2 Experiment 2
	7.2.1.3 Experiment 3

	7.2.2 The effect of repeating observations
	7.2.2.1 Experiment 4
	7.2.2.2 Experiment 5

	7.2.3 The impact of the observations
	7.2.3.1 Experiment 6
	7.2.3.2 Experiment 7

	7.2.4 Discussion


	Chapter 8 Conclusions and future work
	8.1 Conclusions
	8.2 Future work
	8.3 Publications
	8.3.1 Publications related to the Thesis
	8.3.2 Previous publications on self-adaptive software


	References
	Appendix A
	A.1 Xtext Grammar Specification



