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Abstract
In recent years, the joint advance of the Internet of Things and Artificial Intelligence is enabling challenging developments 
for Smart Cities and Communities (S&CC). In particular, the SmartCampus, as an essential part of S&CC, acquires a trans-
verse protagonism. On the one hand, SmartCampuses are a realistic representation of more complex systems (i.e., intelligent 
cities or territories) where to deploy sensors and plan specific goals. Nevertheless, on the other hand, Smartcampuses allow 
the coexistence of different technologies and networks of experts that facilitate the development, testing, and evolution of 
technologies. This paper describes the Cyber-Physical System SmartPoliTech, an Internet of Things Framework, as part of 
a future smart campus. SmartPoliTech develops an innovative framework that facilitates communication between different 
systems, data visualization, consumption modeling, alert generation, and the awareness of sustainability and environmental 
issues. This framework is based on a Service-Oriented Architecture to control all processes, from hardware to decision-
making systems. This paper provides a sustainable and intelligent water management system to predict water consumption 
using Gaussian Mixture Models as day-, month- and even hour-dependent functions based on this Cyber-Physical System. 
The proposed solution can be used in any facility, with significant benefits being foreseen in metrics such as the minimiza-
tion of water wastage.
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1  Introduction

The concept of Smart Cities and Communities (S&CC) and 
its benefits for modern society will become a reality in the 
coming years. Technologies included in the term smartX, 
such as Cloud Computing, Big Data, Artificial Intelligence, 
and the Internet of Things (IoT), are increasingly evolving 
and integrated into the industry, public buildings, and, in 
recent years, universities. In the latter case, the concept of 
the SmartCampus encompasses different objectives depend-
ing on its design: optimize efficiency, comfort, safety, or 
security (Wang et al. 2017; Alghamdi and Shetty 2016).

The deployment of intelligent campuses requires uni-
versity management policies that invest in and support the 
above objectives. SmartCampuses present the same prob-
lems as Smart Cities: efficient use of the resources avail-
able or the development of high-quality IoT services for the 
community, but all at a reduced cost. In this sense, the safe, 
efficient, and functional use of public spaces is an urgent 
challenge with increasing priority in public administration 
agendas.

Most university facilities and public buildings misuse 
their resources, causing water and energy wastage, lack of 
comfort, and underutilization of spaces. For this reason, it 
is necessary to implement resource management systems so 
that the buildings that make up the smart campus are gradu-
ally more efficient and better adapted to the actual needs of 
their users. Typically, SmartCampuses works on building 
automation systems to integrate the facility’s core systems, 
such as heating, ventilating, air conditioning, lighting, power 
meters, or water meters (Alghamdi and Shetty 2016).

There has been a growing interest in recent years in the 
development of smart campuses and universities. From the 
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system architecture and the technologies involved to the ser-
vices and applications offered to users, numerous studies 
in the literature demonstrate the importance of this topic 
(two recent surveys are highlighted in Fernandez-Carames 
and Fraga-Lamas (2019), Muhamad et al. (2017)). Most of 
these works focus on specific solutions, not integrated into 
an architecture that provides a global solution to the multiple 
problems faced by the universities of the future. Motivated 
by current smart campus initiatives, this paper describes a 
new Cyber-Physical System (CPS): SmartPoliTech. Smart-
PoliTech is an IoT framework that provides tools and solu-
tions for sustainable and intelligent building management. 
The proposal includes as a main input: 

1.	 A CPS architecture for sustainable and smart campuses, 
including a detailed description of the subsystems, com-
munications, and specific decision-making applications. 
SmartPoliTech provides an integrated solution to solve 
most of the issues faced by sustainable smart campuses: 
energy and water consumption, security, safety, and 
resources optimization (Wang et al. 2017).

2.	 As a novelty, SmartPoliTech uses a Service-Oriented 
Architecture (SOA) for the communication and control 
of all processes, from the physical world to decision-
making systems. The main goal of the proposed CPS 
is to construct simplified models to achieve the optimal 
ability of the system to provide sustainable decision-
making.

3.	 A data system open and visible to all users of the Poly-
technic School or anyone interested in general. The users 
will always have in view all the data produced by the 
CPS through a system of screens distributed throughout 
the buildings, with the aim of raising awareness about 
the use of energy resources and thus reduce any bad 
habits that users may have.

4.	 To demonstrate the potential of the proposed CPS in the 
real world, this paper performs field experiments in the 
Engineering School at the University of Extremadura, 
site in Spain. In this experiment, the CPS is deployed in 
seven buildings, monitoring variables such as energy or 
water consumptions, temperature, and CO2 (see Fig. 1).

5.	 A case study that demonstrates the use of the SmartPol-
iTech CPS for optimizing the water consumption in the 
campus buildings. Data collected by physical devices are 
used to predict future water consumption using Gaussian 
Mixing Models (GMM). From these predictive models, 
following a user-centered philosophy, a warning system 
is developed, which is adaptive and detects anomalies 
and water leaks, and generates quick responses. The 
result also showed that the use of a mixture of Gauss-
ians is favorable for reducing water wastage.

The rest of the work is organized as follows. Section  2 pre-
sents a general overview of Cyber-Physical Systems and the 
related background of CPS on smart campus, as well as an 
analysis of IoT systems that are used to predict water con-
sumption in intelligent buildings. In Section 3 the general 
overview of the Cyber-Physical System SmartPoliTech is 
presented, which revolves around the different IoT infra-
structures, introducing the architecture and main services. 
Section 4 focuses on a specific use case for optimizing water 
consumption and, thus, making buildings more sustainable 
and efficient. From the previous points, Section 5 presents 
the experimental results and the main discussion on the les-
sons learned from this experience. Finally, Section  6 pre-
sents the main conclusions of this work as well as an outlook 
on future lines of research.

2 � General overview of CPS in SmartCampus

Modern IoT technologies are rapidly moving forward, 
engaging in more and more areas of life. The development 
of Cyber-Physical Systems has become a natural continua-
tion of the transition to a qualitatively new level of engineer-
ing and technology in different areas of interest. The litera-
ture uses the concept of Revolution 4.0 (Dimitrios 2018) to 
describe this new development. Industry 4.0, for example, 
directly depends on key topics related to CPS and IoT tech-
nologies, defining the future of manufacturing (Jamaludin 
and Rohani 2018). Although Industry is the activity that 
has been able to adapt more and better to the evolution of 
IoT technologies, there are other issues where the develop-
ment of CPS is being explored. IoT is also an integral part 
of Agriculture 4.0, Medicine 4.0, or Education 4.0 (Bhru-
gubanda 2015; Jamaludin and Rohani 2018). In all of them, 

Fig. 1   Aerial view of the Engineering School and its facilities. The 
Cyber-Physical System SmartPoliTech has been deployed in its seven 
buildings
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the advances of CPS are a crucial goal in developed socie-
ties. This section provides an overview of smart campus 
initiatives and CPS and their main characteristics.

2.1 � Smart campus initiatives

There is a growing literature on smart campus initiatives 
(see reviews Fernandez-Carames and Fraga-Lamas (2019), 
Muhamad et al. (2017)). Smart campuses and universities 
need to provide connectivity to IoT devices, deploy architec-
tures that make it possible to offer a communications range 
through the latest technologies. Most of the current state 
of-the-art works focus on these applications and the experi-
ence from the real-world IoT implementation. Some authors, 
such as (Fernandez-Carames and Fraga-Lamas 2019), pre-
sent an architecture for intelligent campuses based on the 
new Low Power Wide Area Network (LPWAN) technolo-
gies. This LPWAN has emerged as a promising solution to 
provide low-cost and low power consumption connectivity 
to distributed nodes in the deployed area. Specifically, these 
authors propose an architecture based on LoRaWAN, mak-
ing it possible to monitor energy sources in distant places. 
Other works are adopting smart grids or microgrids within 
their campuses (SMARTGRID) , taking a step towards oper-
ating the university network as a smart grid in response to 
increased energy demand, environmental protection, and 
the need to rely on renewable energy (Alghamdi and Shetty 
2016). Some universities are also opting for on the block-
chain to develop applications for SmartCampus (Fernandez-
Carames and Fraga-Lamas 2019) so that they can, for exam-
ple, guarantee the authenticity of educational certificates, 
manage digital copyright information or verify learning 
results, or improve interaction with e-learning. With the 
development of smart campuses, it is possible to propose 

different teaching methods and even to create a unified plat-
form that integrates various systems such as library man-
agement, student identification, access cards to buildings 
or transportation, or even attendance control (Majeed and 
Ali 2018).

Regarding sustainable campuses, the use of IoT for man-
aging water or energy consumption in their buildings is 
proving very useful. The most common idea in most of the 
works is an intelligent management system that uses real-
time data from sensors and actuators to monitor and improve 
resources management (Robles et  al. 2014). The above 
solution, for example, is a monolithic system containing all 
application functionality, mixing component roles such as 
data persistence, business logic, or user interface. Today’s 
systems offer new, more general perspectives, defining archi-
tectures derived from the Smart City concept. The following 
is a list of the last works that show solutions to the deploy-
ment of sustainable SmartCampus platforms. These initia-
tives aim for various purposes, including criteria related to 
Sustainable Development Goals. Tables  1, 2, 3 summarize 
the main features of these smart campuses comparing with 
our proposal.

In (Fortes et al. 2019), the authors describe a pioneer-
ing project that aims to apply the Smart-City concept into 
a smaller scale, providing an urban-lab for researchers and 
imposing the University of Málaga as a reference campus in 
environmental sustainability. The basis is a layered architec-
ture, from sensor and actuators (top layer) to the data analy-
sis. The system measures several parameters (electricity, 
water consumption, among others) and uses the communica-
tion layer to have data stored and managed by the European 
open-source initiative FIWARE. Some researchers have also 
proposed alternative paradigms for deploying smart cam-
puses. In (Simmhan et al. 2018), the authors describe the 

Table 1   Related works comparison by goals, technologies and devices

Smart campus Goals Technology Devices

Our proposal Improve energy resource efficiency Test 
new IoT technologies Provide high quality 
services to users Raise awareness of envi-
ronmental sustainability for users

LoraWAN/ Ethernet/ WiFi Arduino/ Raspberry/ Webee

(Fortes et al. 2019) Environmental Sustainability Test IoT 
OpenData technologies

WiFi/ Zigbee/ LoRaWAN Smart Meters Irrigation Control UMA-
HetNet UMAIoT / RAT s

(Simmhan et al. 2018) Intelligent energy management Water con-
sumption control Transport control

6LoWPAN LAN / WAN 
ZigBee BLE SubGHz / 
LORA

Different sensor hardware and firmware 
stacks

(Álvarez et al. 2019) Control, manage, handle and analyze geo-
graphic information. Automate services 
on the same platform. Smart emergency 
management and traffic restriction

Wi-Fi, Ethernet –

(Popescu et al. 2018) Integrate IoT and Cloud computing, Secu-
rity and confident

4G, Zigbee RFID labels, mobile devices, sensor 
equipment
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basis behind the Indian Institue of Science Smart Campus, 
a living lab that offers a platform to test different IoT tech-
nologies and services. The aim of this initiative is to manage 
the energy resources, specifically focusing on water man-
agement. The architecture follows the layered model that 
adds different functionalities at the top of the architecture, 
including several data analytics and visualization modules 
that help with a manual and fast automated decision-making 
about the water domain. The Polytechnic University is also 
developing a SmartCampus project that aims to improve the 
management of information coming from the university’s 
functioning (Álvarez et al. 2019). In this work, the authors 
detail applications that allow more agile and efficient man-
agement of resources, based on Artificial Intelligence for the 
calculation of optimal locations of buildings, as well as the 
implementation of the DOMOGIS System for automation, 
monitoring, and sensor data management. This idea of offer-
ing open access to users through a system of dashboards and 
interactive maps is also addressed in our project. The authors 
of (Haghi et al. 2017) propose a smart campus architecture 
based on cloud computing, which deploy a service-oriented 
architecture by using Commercial Off-the-Shelf hardware 
and Microsoft Azure cloud services. Sensor readings are 
processed by these cloud services responsible for carrying 

out storing, managing, and analyzing the data and making it 
available to developers to build applications. The technolo-
gies used for communication follow standards such as BLE, 
ZigBee, or 6LowPAN. More focus on ensuring a high level 
of security as well as high data confidentiality, in (Popescu 
et al. 2018) the authors describe a smart campus that inte-
grates the use of cloud computing and IoT in a five-layer 
architecture. This solution can conveniently recognize loca-
tions from access between teachers and students to access 
and share learning resources online in real-time.

2.2 � Cyber‑physical systems and smart campus

A CPS connects the physical world to the real world, pro-
viding a means to add more intelligence to social life. It 
integrates physical devices, such as cameras, sensors, and 
actuators, with cyber agents to form an intelligent system 
that responds to dynamic changes in real-world scenarios. 
Formally, a CPS is an integration of computation with physi-
cal processes whose behavior is defined by both cyber and 
physical parts of the system (Lee and Seshia 2017).

An important component of CPS is the integration of IoT 
technologies, Big Data and Cloud Computing. There exist 
different research lines working on CPS architectures, such 

Table 2   Related works comparison by measurement variables, architectures and databases

Smart Campus Measurement variables Architecture type Databases

Our proposal Electricity, wate and gas consumption, temperature, 
humedity, CO2, occupation

SoA, based on an ESB (Zato) InfluxDB (Time Series) 
Neo4J (graph data-
base)

(Fortes et al. 2019) Electricity, water, fire, irrigation, radiation, parking, 
and gases

Layered (5 layers) Based on FIWARE Based on FIWARE

(Simmhan et al. 2018) Flow meters, pressure pads, power meters, water level 
meters

Layered HBase HDFS Storm

(Álvarez et al. 2019) Data acquired through SIG2D-SIG3D files SoA PostgreSQL (PostGIS)
(Popescu et al. 2018) Layered – no

Table 3   Related works comparison by data type, open data capabilities, data visualization, SDG results and use case examples

Smart Campus Data Type OpenData Data visualization SDG Use Case Example

Our proposal TimeSeries Geospatial yes Dashboards based on Grafana Web-
Maps based on Javascript leaflet 
and mapbox

yes Prediction of water consumption 
Avoid leaks and excessive consump-
tion

(Fortes et al. 2019) Time Series yes – yes –
(Simmhan et al. 2018) Time Series Geospatial yes Dashboard using JavaScript plugins 

(D3.js and Rickshaw) Multilay-
ered geo-spatial

– water management

(Álvarez et al. 2019) GeoSpatial yes Javascript OpenLayers HTML-
based Web Macromedia Dream-
weaver

– management of information coming 
from the university’s functioning

(Popescu et al. 2018) Private/public cloud 
with steganography

– no – Smart teaching and research, services 
management
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as the architectures defined in (Lee et al. 2015; Nie et al. 
2014; Zhang et al. 2017) (an interesting review is provided 
by (Hu et al. 2012)). In (Lee et al. 2015), authors define a 
5-level CPS structure for developing and deploying a CPS 
for manufacturing applications, from the initial data acquisi-
tion to the final value creation. Each level of this architecture 
defines main functions and attributes. Other works, such as 
(Nie et al. 2014), use a three-level architecture: the physical 
layer, the network layer, and the decision layer. A CPS archi-
tecture for health applications is proposed in (Zhang et al. 
2017), where authors define an architecture of three layers, 
namely a data collection layer, data management layer, and 
application service layer. Each one of these architectures has 
been designed for a particular application; however, there 
is a consensus among most authors that these architectures 
should capture a variety of physical information, reliable 
data analysis, event detection, and security. Although many 
CPS architectures have been proposed in the literature, the 
number of them proposed for SmartCampus applications is 
very small. (Cecchinel et al. 2014) proposes an architecture 

for collecting sensor-based data in the context of the IoT, 
which is validated in a use case for SmartCampus, but it 
lacks the complete architectural framework. In (Sanchez and 
Oliveira 2018), the authors propose an IoT framework whose 
main goal is to monitor water consumption in university 
buildings. However, their architecture fails to address some 
important issues, such as security, privacy, and other high-
level services. Fig. 2 depicts a CPS for SmartCampus con-
ceived based on this literature to facilitate further discussion 
in subsequent sections of this paper. Table  4 summarizes the 
main features of a set of representative CPSs proposed for 
various applications that have been analyzed in this work.

Regarding the SmartCampus applications, the research on 
CPS is still in its early stages. Over the last few years, differ-
ent universities have contributed to making their campuses 
more intelligent, most of them to improve the experience of 
their users in terms of comfort (Alghamdi and Shetty 2016; 
Fortes et al. 2019) and the optimization of their resources, 
such as the distribution of parking spaces (Sari et al. 2017), 
space reservation or security (Abdullah et al. 2019), or for 

Fig. 2   General view of a Cyber-
Physical System for Smart-
Campus

Table 4   Main features of different CPSs proposed for various real applications

Domain Application Features

Agriculture Precision agriculture (Nie et al. 2014), crop control 
(Rad et al. 2015), irrigation system (Dong et al. 2013), 
precision farming (Antonopoulos et al. 2019)

Minimal energy consumption, adaptation to bad weather 
conditions and timely response

Industry Monitoring of industrial processes (Chen et al. 2015) High computing power, accurate data, service architecture
Environmental monitoring Ambient condition in Indoor or outdoor spaces at 

remote locations (Mois et al. 2016)
without human intervention, low power consumption, 

accurate data collection
Healtcare Statistics, monitoring knowledge and prediction (Zhang 

et al. 2017), eHealth (Lounis et al. 2012)
Interoperable systems, integration of technologies such 

as medical equipment, people monitoring, service 
architectures

SmartCampus comfort (Alghamdi and Shetty 2016; Fortes et al. 2019), 
energy consumption, security (Abdullah et al. 2019)

precise and reliable control, service architecture, integra-
tion of IoT technologies
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remote teaching and learning. However, all these works pro-
pose specific solutions without a general framework with the 
characteristics of a CPS. In Wang et al.’s work, (Wang et al. 
2017) a SmartCampus IoT framework is described to address 
issues related to energy consumption, classroom functional-
ity, safety, and cyber-security. Although the authors describe 
many possible functionalities, the final implementation of 
the system consists of three main devices: a smart outlet, 
an intelligent switch, and a sensor hub. The possibilities of 
expanding all the SmartCampus functionalities using the 
advances of the IoT and the CPS are considerable, and that 
is the main objective of this article.

2.3 � Consumption prediction for smart buildings

Predicting energy or water consumption in smart buildings 
has become a significant challenge in creating sustainable 
cities and communities. Cyber-Physical Systems facilitate 
these predictions thanks to the deployment of sensor net-
works and IoT infrastructure, which has led different authors 
to develop and implement solutions on the data stored in 
these systems.

Traditionally, load analysis has been the main objective in 
most works. (Nizar et al. 2006) presents a proposal to detect 
the best load profiling techniques and data mining meth-
ods to classify and predict non-technical losses in the elec-
tric distribution sector. In (Chicco et al. 2006), the authors 
try to cluster similar customer consumption behaviors and 
compare various unsupervised methods, such as hierarchical 
clustering, K-Means, and fuzzy k-means. They also include 
principal component analysis (PCA) for dimensionality 
reduction. In (Prahastono et al. 2007), the authors compare 
several clustering techniques (e.g., hierarchical, K-means, 
fuzzy K-means, follow the leader, and fuzzy relation) and 
their main characteristics for the generation of electric load 
profiles based on a previous classification of customers. In 
general, most authors agree on the importance of a careful 
selection of the clustering algorithm since each one has its 
peculiarities that must match the data characteristics (Pra-
hastono et al. 2007).

Regarding water consumption prediction, several works 
address this issue in recent years. In (de Souza Groppo et al. 
2019), authors review several methods for predicting water 
demand employing artificial intelligence, which demon-
strates how the use of big data techniques has grown con-
siderably in recent years. Predicting long-term water demand 
has been studied the long term in several approaches using 
neural networks and econometric models, (Donkor et al. 
2014; Ghalehkhondabi et al. 2017; Zhu and Chen 2013), 
where most approaches conclude that this demand depends 
on the expected vegetative growth, the socioeconomic and 
climatic variables, and geographic expansion. In the case of 
short-term water demand forecasting (e.g.,  water demands 

from 1 to 24h later), other approaches also based on artificial 
intelligence have been proposed (Gagliardi et al. 2017; Can-
delieri et al. 2015; Zubaidi et al. 2018), which usually try to 
understand the behaviors and dynamics of consumers using 
historical water consumption data. The common denomi-
nator of the studies carried out by the authors presented is 
the use of sets presented as a time series. These time series 
(time-stamped data) are mostly made up of data collected in 
the months before the studies, and in some cases, they not 
only use water consumption data but cross-match them with 
meteorological data.

Automatic detection of anomalies using big data tech-
niques has also been applied in the scientific community. 
This approach helps build energy/water management sys-
tems that reduce operating costs and time by reducing 
human monitoring and providing the in-time diagnosis 
of false warnings. In (Khan et al. 2013), for instance, the 
authors apply three data mining techniques (classification 
regression tree, K-means, and DB-SCAN) to detect anoma-
lous lighting energy consumption in buildings using hourly 
recorded energy consumption and peak demand (maximum 
power) data.

The work described in this paper uses a Gaussian Mix-
ture Model to predict both short-term and long-term water 
consumption. In (Melzi et al. 2017), the authors use a large 
amount of data collected by physical devices to understand 
consumer behavior better and optimize electricity consump-
tion in smart cities. They present an unsupervised classifica-
tion approach to extract typical consumption patterns from 
data generated by smart city electric meters. Similar to the 
approach described in this paper, in their work, a constrained 
Gaussian Mixture Model, whose parameters vary accord-
ing to the day type (weekday, Saturday or Sunday), is used 
and evaluated according to a real dataset collected by smart 
meters in households for a year. The use of a Gaussian mix-
ture applied to this problem is not new; however, in this 
paper, we present a use case in which water consumption is 
estimated based on Gaussian mixture models.

2.4 � Key finding

The literature review related to Smart Campus points out 
that proposed architectures differ widely, although most ini-
tiatives aim to meet sustainable development goals, improve 
energy resource efficiency and provide campus users with 
high-quality services. This article presents an easily rep-
licable and scalable SmartCampus architecture with dif-
ferentiating characteristics concerning other architectures 
analyzed. SmartPoliTech is based on cyber-physical system 
architectures, distinguishing a tangible and physical part 
of the architecture such as the different sensors deployed 
and another digital part. In our work, we describe the whole 
communication process, the data storage and visualization, 
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and the services provided to the users. A cyber-physical sys-
tem vision is a modern solution adapted to Industry 4.0 and 
linking with twin digital models for predicting anomalous 
situations and efficiently managing its resources.

Most of the solutions in the literature describe layered 
architectures or use proprietary service buses. Unlike them, 
in our proposal, both the communication of sensors to store 
the data collected in databases and the services offered 
to users is managed by an open-source service bus (Zato 
framework). This SOA architecture solves the growth of ser-
vices and devices within a campus, making it necessary to 
develop connectors that allow the different applications to 
communicate. The possibility of using a service bus facili-
tates communication between systems over any protocol and 
device, i.e., it becomes a gateway, which translates from one 
language to another. This last ensures the scalability of the 
system.

Related works generally use time-series databases, col-
lecting sensor readings for further analysis and visualization. 
This solution allows for improvements, such as geolocation 
within the campus. In our proposal, we study graph-based 
databases, which open up multiple possibilities, storing all 
attributes in a structure of nodes and links. These attributes 
range from the type of communication they use, the type 
of sensor, and the location and campus building they are 
located in. Thanks to this type of database, we have created 
the first specific application to visualize sensor readings. 
However, the possibilities for creating new applications are 
multiple. For example, the database establishes close rela-
tionships between sensor readings located in the same build-
ing, thus detecting changes in the use of energy resources or 
directly analyzing consumption patterns taking into account 
other parameters such as temperature or humidity.

Finally, the idea of the intelligent campus infrastructure 
being a living laboratory for testing technologies is shared 
in many of the papers reviewed. One of the main objectives 
of SmartPoliTech is to make the information generated by 
the project available to all users, and for this purpose, as is 
done in other smart campuses analyzed, an open-data sys-
tem is created. This last also opens up new opportunities 
and initiatives related to smart citizenship and is outlined 
in this article. The SmartPoliTech proposal deploys a set of 
visualization systems on campus accessible to students and 
teachers to raise awareness of sustainable resource use. In 
the case described in this paper, if there is an anomaly in 
water consumption, any user can be aware of it in real-time, 
know the location of the fault, and act to solve it.

3 � Cyber‑physical system for SmartCampus: 
SmartPoliTech

A Cyber-Physical System (CPS) is a distributed, networked 
information system that fuses computational processes (i.e.,  
cyber world) with the physical world. A SmartCampus is a 
typical example of a cyber-physical system, where a set of 
sensors acquires real-time information about the environ-
ment (physical world) to create and synchronize an informa-
tion system (cyber world) used by the university community. 
A CPS requires, among other subsystems, a communications 
infrastructure, a data storage system, the interconnection of 
all systems, processes, services, and tools to access and man-
age the stored data. The architecture of SmartPoliTech is 
shown in Fig. 3. Most of the technologies in the diagram are 
closely connected to IoT.

Fig. 3   IoT framework for 
SmartPoliTech CPS
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The CPS presented here comprises several independ-
ent systems. Some of them are simple devices that acquire 
data, and others are complex modules that work together to 
achieve a common goal. Following a similar nomenclature 
as the one used in recent works found in the literature (Alam 
and El Saddik 2017), the CPS SmartPoliTech, � , consists 
of the following subsystems: physical world � , responsible 
for acquiring information from the environment and storing 
the data in local servers, � . The set of functionalities that 
the CPS provides, ℚ , is managed through a service-oriented 
architecture. Finally, the system includes data visualization 
�  . Therefore, � = (𝕎,𝔻,ℚ,𝕍 ) . The following subsections 
describe in detail each of these elements.

3.1 � Introduction to SmartPoliTech

SmartPoliTech (Sánchez et al. 2017) is a CPS under devel-
opment at the School of Engineering of the University of 
Extremadura in Spain. Its aim is to transform its facilities 
into a large experimental ecosystem, a living lab for the 
design, implementation, integration, and validation of sys-
tems capable of creating and managing intelligent environ-
ments. SmartPoliTech relies on IoT technologies to encour-
age better energy and water consumption habits by users 
while also improving energy and consumption efficiency in 
its facilities. The School of Engineering, which was built 
more than 40 years ago, presents a series of anomalies in 
energy and water consumption due to aging and the lack 
of adaptation of the buildings that comprise it. Some of the 
anomalies in the surroundings are as follows:

–	 Excessive consumption of sanitary water, of which many 
liters are wasted. Currently, around 4000 cubic meters of 
water are consumed per year.

–	 Inefficient consumption of electrical energy or gas oil. In 
one year, around 60 cubic meters of diesel is consumed.

–	 Bad quality of the interior air due to lack of ventilation 
results in high concentrations of CO2.

–	 Lack of thermal control in spaces, alternating freezing 
periods with others that are too hot.

This university complex has about 1500 users and consists 
of seven buildings of more than 20,000 m2 , distributed on 
three floors (including the ground floor). In all of them, a 
set of sensors have been deployed to measure energy, water, 
and gas consumption, among others. Similarly, some sensors 
measure temperature, humidity, CO2 in the classrooms, and 
occupation. Combining the existing historical data gener-
ated by the sensors (from 2013) with the analysis thereof 
using artificial intelligence algorithms makes it possible to 
establish a roadmap towards a CPS for intelligent and sus-
tainable buildings.

3.2 � Designing the physical world

A SmartCampus requires data to be collected from the 
physical world � through a network of specific sensors. 
Firstly, our system must previously analyze factors such as 
the orientation of the buildings, the location of critical points 
concerning thermal conditions, the selection of meters, stop-
cocks, and essential points of the energy system of the sur-
rounding pavilions. These physical objects (sensors) will be 
able to acquire data from the environment and have built-in 
communication capabilities. In addition, the physical world 
must incorporate access to data storage systems to use com-
puting capabilities to predict future scenarios.

In the proposed CPS, the physical world � consists of 
a set of physical sensors, which are classified as follows: 
(i) ambient temperature sensors ( wt ∈ � ), (ii) relative 
humidity sensors ( wh ∈ � ), (iii) stopcock ( ws ∈ � ), (iv) 
presence and location sensors ( wp ∈ � ), (v) temperature 
sensors in boilers(wb ∈ � ), (vi) gas consumption sensors 
( wg ∈ � ), (vii) window status (open or closed) ( ww ∈ � ), 
electricity consumption sensors ( we ∈ � ) and CO2 sensors 
( w

CO2
∈ �).

Therefore, � can be expressed according to 1. This sub-
system is not closed and can be extended with new sensors 
if needed. Fig. 4 shows a diagram of the physical system 
implemented in the buildings of the EPCC campus.

Each sensor wi ∈ � is defined by a list of components 
wi = (Rw, Yw,Xw, Tw)i . Rw is the component responsible for 
capturing the real-world events, Yw the component respon-
sible for adapting those events to the physical variables in 
which they are measured, Xw the component responsible for 
connecting the sensor to the internet and providing it with 
data transmission capacity, and Tw the component responsi-
ble for sending that information through a query in ℚ to the 
� layer of the databases.

Each device is named by a unique identifier which 
includes information about both its location and the type 
of sensor1 is associated with a temperature, humidity, and 
CO2 device - SEN_001_THC - located in a research lab - 
LAB001 - on the zero floor - P00 - of the computer science 
building - INF - in the Campus facilities - UEXCC -). This 
unique identifier is essential for the subsequent design and 
implementation of both the database storage system and the 
queries services in the � and ℚ layers, respectively.

These sensors constantly acquire a certain amount of 
information stored in a virtualization server that also sup-
ports the reception, processing, and display of data. The 

(1)� = (wt,wh,ws,wp,wb,wg,ww,we,wCO2
)

1  for instance, UEXCC_INF_P00_LAB001_SEN_001_THC
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sensors make use of the q
w
j
���→D

i

 service available on the ℚ 
service bus to send the information to the databases. Sensors 
use this service by making a call to its URL and introducing 
the JSON field with the data to be sent. The following attrib-
utes generally define this JSON:

–	 Info: structure of the JSON which collects the static data 
from the sensor to be sent, and which consists of:

–	 Apikey: unique key associated with each sensor
–	 Device: unique identifier for each sensor

–	 Data: structure of the JSON that collects the dynamic 
data (physical variables measured by the sensor) It con-
sists of all those variables measured by the sensor.

–	 Variable 1
–	 Variable 2
–	 etc.

Although not every type of sensor has generated the same 
amount of data, since they were not all placed at the same 
time, an average of the total number of samples generated 
by each sensor is shown in Table 5. Thus, the system is in a 
public cloud infrastructure that anyone can access via a web 
browser. The data can also be downloaded in JSON format 
using different APIs available in several languages (Python, 
MatLab, ...).

3.3 � Designing the cyber world

The long-term objectives in designing the cyber world 
for the SmartCampus are to create a strong link with the 
physical world to support users in performing various spe-
cific tasks and also to provide real entities (e.g., humans, 

machines, or software agents) with a wide range of applica-
tions and services. Therefore, it is necessary to provide it 
with capabilities to access the physical world at a given time 
and store data, process it and offer services to different users 
through different channels. The design of the cyber world 
for the SmartCampus requires the different subsystems that 
are described below.

3.3.1 � Data storage subsystem

To improve control efficiency and minimize expenses when 
installing new devices or recovering from system failures, 
the proposed CPS strives to optimize the system for storing 
data acquired by the physical world � . The most impor-
tant asset is data availability, persistence, and relevance 
which are the key factors to success. In addition, a correct 
and efficient design of data storage systems is essential for 
future CPS-controlled SmartCampus, where the number of 
devices is very high, and there is a permanent need to extend 
it with new elements. In this sense, scalability becomes a 
crucial feature, so the system can maintain its effectiveness 
and throughout even if there are additions or expansions 
of devices. With this premise, the data storage system � is 
made up of two open-source databases with different and 
complementary features: the time series database Influxdb 

Fig. 4   Physical world in the 
proposed CPS

Table 5   Mean of total samples 
collected by each type of sensor

Sensor Samples

wt 182534
wh 182534
ws 194811
wb 178611
wg 178611
wCO2 182534
we 1821510
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(InfluxData 2021), Di ∈ � ; and the graph database Neo4j 
(Neo4j 2021), Dn ∈ � (see Fig. 4).

–	 Time series databases: Time series databases, such as 
Influxdb are optimized for time-stamped or time-series 
data and are built specifically for handling metrics and 
events or measurements that are time-stamped (Influx-
Data 2021). This feature makes this Di database an ideal 
instrument to store the data series that are acquired in the 
physical layer � by the sensor network.

	   Di stores data as time series with a variable number of 
measurements. In our CPS, each physical device is asso-
ciated with a one of these series, D

i
=

{

D
1

i
, ...,D

j

i

}

 , 
where Dj

i
 is the series associated with the sensor wj ∈ � . 

D
j

i
 is defined as (timestamp, [label, value]n ). The CPS Di 

accepts queries through an API using mathematical oper-
ations and time groupings that facilitate data analysis and 
information gathering from the smart campus. Also, 
Influxdb is easily integrated with open-source visualisa-
tion environments such as Grafana, which is also part of 
� (Grafana 2021).

–	 Graph database: A graph database stores structures where 
semantic queries can be used. Graphs are composed of 
nodes, edges, and properties to represent and store data 
and its relationships. Our CPS uses the graph database 
Neo4J, Dn , to hold and stores the rich spatial structure of 
the university complex. Neo4J is also capable of index-
ing geographical information (i.e., coordinates) associ-
ated with the nodes. This feature provides a direct way 
to locate all elements included in the physical layer sub-
system �.

	   The SmartCampus facilities have been organized as a 
hierarchical tree with N nodes and E edge, GEPCC(N,E) . 
A node ni represents a physical element at different lev-
els of the hierarchy. The parent node corresponds to 
SmartCampus, EPCC, and the rest of the nodes hang 
as subsets in different levels and categories (buildings, 
classrooms, laboratories, sensors, ...). The first level, 
B =

{

B1,B2, ...,BK

}

 is associated with the set of K 
buildings and similar facilities. Each element Bk ∈ B is 
defined by a series of attributes, such as its identifier, 
its geo-location, and many optional elements like spatial 
structures (GeoJSON and Well-Known Text textual attrib-
utes).

	   Edges E in GEPCC(N,E) are associated with the rela-
tionship ’HAS’, i.e., the parent node ni has the nj child 
node. Therefore, from each node Bk ∈ B hangs the set of 
L nodes F =

{

F1,F2, ...,FL

}

 associated with the number 
of floors of the building Bk . Also from the Fl ∈ F node 
hangs the set of M nodes R =

{

R1,R2, ...,RM

}

 , which 
are associated to the number of rooms (e.g., classrooms, 

offices, laboratories, ...) of the floor Fl . Nodes Fl and Rm 
are defined by the same list of attributes as the node Bk.

	   Finally, the last level represents the � subsystem, i.e., 
the set of devices that have been installed in the CPS. 
Each sensor wi ∈ � is related to each room or space in 
which it is located (i.e.,  HAS relationship), and therefore 
the device wi is in Rm . In order to identify which sensor wi 
belongs to each room Rl , the identifier explained in Sec-
tion  3.2 has been used. In the G(N, E) tree, other levels 
represent physical elements, such as furniture or people, 
hanging from the Rl level following the same logic as in 
the other levels. The list of attributes is similar to other 
nodes in the tree, adding a link to its temporal series 
database and the open-source visualization environments 
Grafana. Figure  5 illustrates a simple example of tree 
EPCC(N, E) with only one building, two floors with 
different rooms, and only one device. Figure 6 shows a 
partial view of the whole tree centered in the Computer 
Science building EPCC(N, E).

	   Graph database Dn represented as a tree G
EPCC

(N,E) 
describes the SmartCampus’ CPS according to a geo-
metric point of view, associating each level with geo-
localized physical elements. The hierarchical division 
into levels, starting from buildings and going down to 

Fig. 5   Hierarchical structure of the EPCC(N,  E) tree. Each node is 
associated with a level in the hierarchy and is characterized by a list 
of attributes
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the devices responsible for data acquisition and the list 
of attributes of each node, facilitates future queries and 
visualization of CPS data.

3.3.2 � Information handling and processing using 
enterprise service bus

Information is a critical factor in delivering services across 
CPSs. In the system described in this article, dynamic data 
obtained from readings in physical devices along with static 
data coming from blueprints, schedules, or inventories. It 
constitutes the core of the information system. This data 
is made available to SmartCampus users and machine-to-
machine connections. This high number of interactions 
between devices, humans, and the CPS must be organized 
in a scalable, efficient, and reliable way. The choice here has 

been to use a Service-Oriented Architecture (SOA), where 
multiple services are provided through the open-source 
Enterprise Service Bus (ESB) Zato (Zato 2021). An ESB 
facilitates communication between software agents (Chaud-
hari et al. 2017) while integrating and managing multiple 
information sources with different access methods.

Let ℚ be the set of N services ℚ =
{

q1, q2, ..., qN

}

 pro-
vided by CPS. Each service qi ∈ ℚ implements a function 
fi and has a maximum activation rate �i which denotes the 
frequency at which this service qi is requested (e.g., physi-
cal devices use a specific service for storing data in each 
period). Each service qi uses the HTTP protocol by creating 
a specific plain HTTP channel ci that accepts synchronous 
HTTP service invocations. Specifically, with Zato, several 
REST channels are used, which requires an identifier and the 
path to mount this channel on, urlpath, in the URL ip:port/
urlpath. Plain HTTP channels in Zato do not expect the data 
to be in any particular format; it can be anything that can be 

Fig. 6   Example of the graph 
database D

n
 centered on the 

Computer Science Building



	 S. Barroso et al.

1 3

transferred over HTTP, including JSON. Figure  7 illustrates 
an overview of how services are managed in this proposal.

Creating services in an SOA is not a complex task. One 
of the main advantages of this system is its high scalability 
and flexibility when new services are required. The follow-
ing are examples of some of the key services deployed by 
the Zato EBS:

–	 physical device to time series database ( q
w
j
���→D

i

 ): this 
service is intended to generalise the insertion of data 
from the � subsystem to the � data storage system, in 
particular, to the temporal series database Di . Using the 
service q

w
j
���→D

i

 , physical devices make a request to the 
channel c

w
j
���→D

i

 at rate �
w
j
���→D

i

 using only an URL and their 
last measurement.

–	 users to time series database ( q
u
j
←� D

i
 ): This service is 

intended to allow users or other software agents in CPS 
to access the data stored in � in a simple and generalised 
way. The service q

u
j
←� D

i
 uses the specific channel c

u
j
←� D

i
 

and obtains data from Di by means only of an URL, a 
sensor identifier and the date of interest. Due to the asyn-
chronous nature of these queries, �

w
j
←� D

i
 is not defined in 

these services.
–	 viewer service ( q�←� � ): This service is intended to allow 

users to access the data generated by the CPS in real-time 
through an interactive map or viewer. The service q�←� � 
uses the channel c�←� � , but unlike the previous services, 
it does not directly access any of the databases in � but 
load an interactive map of the CPS into the browser. This 
interactive map allows users to move around it so that 
the browser displays a map area defined by coordinates 
at a rate defined by ��←� � . Then, a request is made to Dn 
looking for all those nodes whose coordinates are within 
the coordinates that define the displayed map zone. The 
nodes found are arranged based on their label or level 
(Building, Floor, Room, Device) and then depicted in the 
map along with their attributes.

One of the critical features of this ℚ is that precisely 
the same service qi can be displayed over multiple chan-
nels without any changes to the service’s implementation. 
Besides, ESB improves the security of all communications 
by avoiding the shipping of sensitive data between physi-
cal devices and the data storage system and by limiting the 
number of queries to databases. The ℚ system also allows 
changes in the CPS set-up without re-implementing services 
(e.g.,  change IP addresses of the servers or changes in the 
structure of the data storage system).

3.3.3 � Visualization system

One of the main goals of the CPS described in this work, 
apart from collecting data on the variables that affect energy 
efficiency in the SmartCampus, is to make this data avail-
able to the users of the buildings. The fact that people in the 
SmartCampus can know in real-time their use of critical 
resources (e.g.,  water consumption or electricity consump-
tion) can be used to make them aware of their responsibility 
and contribution to environmental sustainability, helping 
to transform SmartCampus users into intelligent citizens 
(Sánchez et al. 2017).

Generally, a well-designed visualization system facilitates 
high-level application designs. Among these design issues, 
the system must monitor physical devices and infrastructure 
to ensure stable and proper operation (e.g., measurements, 
communications, among others). It also needs support real-
time decision making by combining multiple data sources 
into a specific viewer. For this reason, the CPS for Smart-
Campus proposed in this paper defines the visualization sys-
tem �  , which consists of two different viewer tools. The first 
one is based on the open-source visualization tool Grafana, 
specific for monitoring and analyzing time-series (Grafana 
2021). The second one is based on an interactive map viewer 
of the SmartCampus facilities. Access to both viewer sys-
tems is made through their corresponding services defined 
in ℚ . Figure 8 shows both viewers. Figure  8a shows the 

Fig. 7   Overview of the services 
management in Zato Enterprise 
Service Bus
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water consumption in the different buildings of the Smart-
Campus. In Fig. 8b, a fragment of the SmartCampus map is 
illustrated, showing the energy consumption of the building.

–	 Grafana viewer: The organisation of the different data 
visualization that can be built in Grafana is done in dash-
boards. In this proposal, the available physical devices 
have been organized in different sections: water con-
sumption, environmental data, access points, energy con-
sumption (electricity, gas), and cameras. In this way, any 
interested user can access the data freely, since the tool 

is publicly accessible2. Additionally, this viewer is also 
periodically displayed on several smart-TVs distributed 
throughout the different buildings of the SmartCampus.

–	 Interactive map viewer: this visualization tool uses spe-
cific ℚ services to display a map of the SmartCampus 
in the user’s browser, with access to measurements of 
all the physical devices. This interactive viewer allows 
navigation by the user (e.g.,  zoom in, zoom out or move 
around a specific region), as well as different types of 
interaction: real-time access to physical devices, such as 
visualization of camera streams in real-time, download-

Fig. 8   a Grafana viewer; and b 
Interactive map viewer

2  Grafana smartpolitech.unex.es:4000
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ing of selected data, among others. All these function-
alities are offered with different access levels to provide 
security and confidentiality according to the area of the 
map being visited3.

3.3.4 � Designing high‑level applications for sustainable 
SmartCampus

Previous sections have highlighted the importance of pro-
viding users with a wide range of high-level services and 
applications. In this sense, the data acquired in the physical 
world � is not only used to show the past and current state 
of the SmartCampus to the users in the visualization system 
�  , but also makes it possible to automatically detect energy 
problems, observe usage trends and propose improvement 
strategies. Analyzing the data makes it possible to create 
algorithms to detect abnormal energy consumption, predict 
future demands, or interrelate information from different 
sources.

Given the current state of most buildings built more than 
40 years ago, several severe anomalies have been detected 
that affect their efficiency and overall sustainability. Some 
of these problems are related to water leaks and excessive 
consumption of electricity and gas. These are clear examples 
where AI techniques embedded in a CPS can improve the 
working of its natural counterpart.

For instance, the SmartPoliTech project is currently car-
rying out a campaign to raise environmental awareness 
among users (students, teachers, teaching support staff) by 
displaying energy consumption data. The primary vehicle 
to achieve this now is the use of smart TVs connected to the 
CPS. These strategically placed screens display instantane-
ous, daily, and monthly consumption data easily and under-
standably. Graphics specially designed for the campaign 
show the cost in euros of keeping the buildings functioning 
hour by hour. In addition, they are accompanied by mes-
sages primarily addressed to the university community based 
on the analysis of a team of psychologists and sociologists. 
They have based these campaigns on techniques to motivate 
users and improve their commitment to the sustainability 
cause.

4 � Use case: optimization of water 
consumption in smart buildings

As a practical example of the application of the CPS pre-
sented in this paper, we describe here how it can be used 
to reduce and optimize water consumption in the Smart-
Campus. The process begins with the modeling of water 

consumption in the different buildings. In this estimation 
problem, it is important to note that water consumption 
may vary depending on the day of the week (e.g.,  work-
day or weekend) or the month (e.g.,  work month or holi-
days), resulting in different averages and standard deviations 
(Melzi et al. 2017). The proposal described in this article is 
based on a Gaussian mixture model, which is a well-known 
method for estimating unknown distributions of data (McLa-
chlan and Peel 2000). Historical data is used to create time-
dependent models in this work, identifying hours, time slots, 
or higher consumption and lower consumption days. Finally, 
once the model is available, its prediction is directly com-
pared with actual consumption measured by the installed 
sensors.

4.1 � Use case definition

This use case evaluates the CPS proposed in this article for 
the specific objective of optimizing water consumption in 
buildings on a smart and sustainable Campus. The Computer 
Science Building has been chosen from all the facilities that 
make up the SmartCampus. Among other reasons, because 
it is currently the most sensorized building and the most 

Fig. 9   Computer Science building. It consists of two floors and differ-
ent classrooms, offices and laboratories

3  Interactive map viewer is accessible in http://​smart​polit​ech-​servi​
ces.​unex.​es:​11223/​mapvi​ewer

http://smartpolitech-services.unex.es:11223/mapviewer
http://smartpolitech-services.unex.es:11223/mapviewer
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visited by users. This building is approximately 4000 m2 
distributed over two floors. It currently houses more than 
one hundred physical devices that acquire and store data in 
real-time on physical servers. Figure 9 shows 3D models of 
the two floors of the building, where classrooms, laborato-
ries, and offices are also labeled. The layout of the sensors 
that measure the water consumption in the EPCC facilities 
can be seen in Fig. 10. There are twelve sensors distributed 
throughout the six buildings. In this same figure, the Com-
puter Science building, where the tests of the study will be 
carried out, is labeled. The name of each sensor in the CPS 
implementation, the place where it is located, and the start 
date for data collection are shown in Table 6.

Following the definition of the CPS, 𝕊 = {𝕎,𝔻,ℚ,𝕍} , 
and considering the Computer Science building, B1 , as an 
independent system, �B1 ⊂ � , is the CPS definition for the 
use case. In this scenario, only �B1 ⊂ � is considered as 
the set of 12 sensors responsible for of measuring water 
consumption, �B1 =

{

w
1

w
,w2

w
, ...w12

w

}

 . Each physical device 
�wj consists of the sensor, in this case a commercial IWM-
PL3 sensor, plus a list of software components defined in 
Sect. 3.2. IWM-PL3 is an electronic pulse emitter module 
for multi jet water meters, whose output is one pulse every 
10 litres. The rest of the software components have been 
programmed in Python language.

Information acquired by these sensors is independently 
stored in the data storage subsystem �B1 . On the one hand, as 
described in Sect. 3.3, for each sensor �j

w the data is stored 
in a time-series database D�

j
w

i
 . As indicated in Table 6, in 

some cases, there is water consumption stored data since 
2016. On the other hand, Graph database Dn is defined in 
this particular case as GB1

EPCC
(N,E) ⊂ GEPCC(N,E) , which is 

composed of the 2 levels F =
{

F1,F2

}

 associated to the two 

floors of the building, as well as the set of nodes R associated 
with all the classrooms, laboratories and offices4.

For the use case described in this article, the following 
services qi ∈ ℚ have been implemented:

–	 q
�
j

w ���→D
�
j

w

i

 , responsible for inserting data in Di.

–	 q
u
�
j

w←� D
�
j

w

i

 , responsible for recovering data from �B1 and 

generate alarm signals. This data is used in a software 
component u�

j
w , implemented in Python, which is part of 

the AI of the proposed CPS to detect anomalies.
–	 q

u
�
j

w

���→m
 , which is responsible for sending a warning mes-

sages to the different stakeholders when there are anom-
alous values, being m the communication channel of this 
alarm signal;

The overall structure of the q
u
�
j

w←� D
�
j

w

i

 service is outlined in 

the Algorithm 1. This service is the basis of the use case 
described in this work. First, this algorithm uses the water 
consumption prediction of the sensor �j

w in a time window 
t, by using a Gaussian Mixture Model, Cp(t) , and then com-
pares this prediction with the actual measured value in the 
same time window, Cc(t) . In this comparison, the security 
margin �m is added to Cp(t) to minimize the number of false 
positives. In case of anomalies, that is, 

|(Cp(t) + �m) − Cc(t)| ≥ 0 , 
a warning signal, sm is generated and the anomaly is 
addressed using the service q

u
�
j

w

���→m
 . In the proposed system, 

�m is a percentage of the water consumption predicted by the 
model Cp(t) . 

Table 6   List of water consumption sensor deployed in the Computer Science building

Device Location Start Date

1 UEXCC_ATE_P00_CUA003_SEN001_WAT Common area—Architecture building 07/06/2017
2 UEXCC_ATE_P00_LAB003_SEN001_WAT Architecture building—Lab. 1 21/11/2016
3 UEXCC_ATE_P00_LAB018_SEN001_WAT Architecture building—Lab. 18 24/11/2016
4 UEXCC_INF_P00_SE003_SEN001_WAT Computer Science building. Women toilet 23/11/2016
5 UEXCC_INF_P00_COM048_SEN003_WAT Computer Science building. Men toilet 23/11/2016
6 UEXCC_INF_P00_CUA002_SEN002_WAT Common area—Computer Science building 24/08/2016
7 UEXCC_OPU_P00_CUA002_SEN001_WAT Common area—Civil engineering building 17/10/2016
8 UEXCC_INV_PS1_CUA002_SEN001_WAT Research building 17/10/2016
9 UEXCC_TEL_P00_CUA027_SEN001_WAT Telecommunication building 07/06/2016
10 UEXCC_OPU_P00_LAB022_SEN001_WAT Civil engineering building—Lab. 22 04/04/2017
11 UEXCC_OPU_P00_LAB016_SEN001_WAT Civil engineering building—Lab. 16 04/04/2017
12 UEXCC_SCO_P00_CUA012_SEN001_WAT Restaurant 13/10/2016

4  All nodes in GB1

EPCC
(N,E) are not described in this article due to 

their high number. A fragment of the Computer Science building D
n
 

can be seen in Fig. 6



	 S. Barroso et al.

1 3

Algorithm 1 q
uω

j
w←−D

ω
j
w

i

service. Input: time window, t; se-

curity margin, θt; physical device(s), ωj
w.

1: Cp ←− GMM(ωj
w, t)

2: repeat

3: Cc ←− Cc +D
ωj

w

i

4: until t
5: if abs((Cp + θm) - Cc) ≥ 0 then
6: qu

ω
j
w−→m

←− sm

7: end if

4.2 � predictive models for water consumption 
in smart buildings based on mixture 
of Gaussians

A Gaussian Mixture Model (GMM) is a parametric prob-
ability density function described by a convex weighted 
linear combination of Gaussian density functions (McLa-
chlan and Peel 2000). Using an adequate number of mixture 
components makes it possible to approximate almost every 
continuous probability density function. The GMM is then 
defined as

 where x is a d-dimensional random variable, N(x|�i,�i) is 
a normal distribution with mean �i ∈ ℝd and covariance �i , 
and where �i are the mixing coefficients for the i components 
of the distribution p(x) which have to satisfy 0 ≤ �i ≤ 1 and 
∑

�[0,k) �i = 1 (McLachlan and Peel 2000).
A mixture of Gaussians is seen in the literature as a com-

bination of Gaussian features providing a good model for 
clusters of points: each cluster corresponds to a Gaussian 
density whose mean is located about the centroid of the clus-
ter and whose covariance matrix estimates the spread of that 
cluster. Therefore, given a set of points in ℝd , it is possible 
to find the mixture of Gaussian functions f (x|�,�) that best 
fits those points. In the use case discussed in this article, 
GMMs are used to model and predict water consumption 
in a specific time window based on consumption patterns 
in the buildings of the SmartCampus; that is, inputs of our 
algorithm correspond to water consumption values in dif-
ferent points of time of the historical data depending on the 
specific model.

A classical method to derive the GMM from training data 
is the iterative two-step Expectation-Maximization (EM) 
algorithm. This algorithm finds the maximum likelihood 
solution in a very efficient way (Figueiredo and Jain 2002). 

(2)f (x|�,�) =
∑

i�[0,k)

�iN(x|�i, �i) (x ∈ ℝ
d)

The E-step computes the expectation of the log-likelihood 
evaluated using the current parameter estimates followed by 
the M-step step, which estimates parameters that maximize 
the expected log-likelihood found by the E-step. Applied to 
water consumption prediction in the CPS proposed in this 
paper, the mixture of Gaussian is inferred as:

where c ∈ ℝ corresponds to real water consumption values 
in the building Bi in a time window t, which were acquired 
using the physical device �j

w and later stored in Di and Dn by 
using the service q

�
j

w ���→D
i

.

(3)p(ci|�, �) =
∑

i�[0,k)

�iN(c|�i, �i)(c ∈ ℝ)

Fig. 10   Layout of water consumption sensors deployed in the Smart-
Campus facilities

Fig. 11   Water consumption on Monday during the different hours of 
the day. In the figure, water consumption every Monday of the same 
month, in this case, February, is indicated
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5 � Experimental results and discussion

This section presents the main results of the CPS Smart-
PoliTech for the use case described in this article, aiming 
to progress in sustainable campuses. Firstly, the predictive 
models obtained with the mixture of Gaussians are outlined. 
Next, the results obtained by using these models to generate 
warning messages that reduce the liters wasted are broken 
down. Throughout the section, these results and the possible 
decision-making that improves the whole system’s perfor-
mance are also discussed.

Figure 11 illustrates real water consumption values of the 
Computer Science building, which is the sum of the water 
consumption of the three physical devices �j

w ∈ �B
1
 (see 

Fig. 10). These measurements are associated with different 
days in the same month. In this example, the time window, 
t, is 60 minutes. As shown in the figure, the mean for each 
hour of water consumption is similar. Figure 12 illustrates 
daily consumption during February and shows how con-
sumption from Monday to Thursday is also similar, while 
consumption on Friday decreases and weekends is usually 
minimal. This trend is also repeated in other months during 
the academic year.

The mixture of Gaussians obtained from the model at 
April at 12:00pm is shown in Fig. 13. predicting the water 
consumption at this time and on this date. In this case, the 
Gaussian mixture model provides a curve with two prob-
ability maximums, c1 and c2 , respectively. If these two 
probability peaks are identified as the two most likely con-
sumption values during that time in April, it is possible to 

Fig. 12   Daily consumption in February. Water consumption on week-
ends is usually next to zero. During the week, water consumption fol-
lows a similar trend

Fig. 13   Water consumption prediction at noon in April. This curve 
has been obtained using the Gaussian Mixture Model described in 
this paper

Table 7   Real and estimate 
water consumption at 12:00pm. 
Relative errors are also shown

Best model in terms of error values are shown in bold

Day Day of the week Real (l) c1 (l) c2 (l) Error % c1 Error % c2

1 Monday 110 58 120 83,33 8,33
2 Tuesday 60 58 120 0 50
3 Wednesday 120 60 120 100 0
4 Thursday 150 60 120 150 25
5 Friday 100 60 120 66,67 16,67
8 Monday 120 60 120 100 0
9 Tuesday 130 60 120 116,67 8,33
10 Wednesday 100 60 120 66,67 16,67
11 Thursday 160 60 120 166,67 33,33
12 Friday 50 60 120 16,67 58,33
24 Wednesday 120 60 120 100 0
25 Thursday 100 60 120 66,67 16,67
26 Friday 50 60 120 16,67 58,33
29 Monday 160 60 120 166,67 33,33
30 Tuesday 100 60 120 66,67 16,67
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use these values as an adaptive threshold �i for generating 
an alarm signal in case of anomalies. Two possibilities are 
analyzed in this paper: firstly, if the real water consumption 
provided by the physical device is compared with the two 
most probable consumption values provided by the model 
and this consumption value is less, then it can be considered 
adequate; secondly, if real water consumption acquired by 
the physical device is higher than the highest consumption 
value provided by the model, then there is something wrong, 
and a warning message is generated.

Figure 14 illustrates the real water consumption on dif-
ferent days in a week (only working days are shown). Most 
of the days have global maximum consumption at 10:00am, 
and local maximum at 04:00pm. Figure 14 also shows the 
predictive model (using the time window, t = 60 minutes), 
considering: (i) water consumption prediction if the maxi-
mum probability, c1 , is used (black line); and (ii) water con-
sumption prediction if the second maximum probability c2 , 

is used (fuchsia line). This predictive model has been used to 
generate warning messages only in case of higher real water 
consumption. Figure  14 indicates the fixed threshold, which 
has been chosen at 200 liters. As shown in the figure, the use 
of an adaptive threshold allows CPS to save water faster in 
case of anomalies.

Results of the system in several real scenarios are summa-
rized in Table 7, where real water consumption and output 
of both predictive models, c1 and c2 , are presented, as well as 
the relative errors between real and estimated consumption. 
All values correspond to the same hour, in this example at 
noon. From the predictive model, c1 = 120 litres and c2 = 60 
litres, as is shown in Table 7. Table 7 describes the actual 
consumption in April 2019, from which the non-school days 
have been omitted for Easter, as well as Saturdays and Sun-
days. Several conclusions can be drawn from this table: the 
first is that of the 15 days analyzed, 13 of them show an error 
below 20% , and only on two of the days an error above 30% 
is obtained, that is, all the analyzed real consumption values 
are adjusted to the two estimated consumption values. The 
results also show that a model is better than another depend-
ing on the day of the week. Higher water consumption (i.e.,  
from Monday to Thursday) is better modeled using the pre-
diction labeled as c1 . On the contrary, water consumption 
on Friday is better modeled by the prediction c2 . A logical 
decision between using c1 or c2 to model water consumption 
in a day is currently straightforward, but more complex deci-
sions are being analyzed in the context of the proposed CPS.

These relatively low error percentages are similar in the 
rest of the hours tested in April 2019, so it is possible to use 
the estimated consumption values c1 to generate an adaptive 
threshold �t at each hour i of the day. �t from which it is pos-
sible to send warning messages that indicate an abnormal 
water consumption. �t is generated by adding a 30% margin 

Fig. 14   Real water consumption in the Computer Science building in 
a week (only work-days are drawn). The figure shows the output of 
the predictive model based on mixture of Gaussians

Table 8   Comparison of water 
consumption savings using a 
fixed threshold and an adaptive 
threshold based on estimated 
consumption

Hour � (L) �
t
 (L) Rc1(L) Rc2 (L) Rc3 (L) Saved �

t
(L) Saved �.(L)

07 200,00 45,5 30,00 40,00 40,00 0 0
08 200,00 91 100,00 40,00 40,00 9 0
09 200,00 130 170,00 100,00 100,00 40 0
10 200,00 156 110,00 60,00 60,00 0 0
11 200,00 130 60,00 80,00 80,00 0 0
12 200,00 65 60,00 40,00 40,00 0 0
13 200,00 65 20,00 70,00 70,00 10 0
14 200,00 39 50,00 20,00 20,00 11 0
15 200,00 52 90,00 90,00 90,00 114 0
16 200,00 65 20,00 110,00 110,00 90 0
17 200,00 71,5 20,00 40,00 40,00 0 0
18 200,00 39 20,00 20,00 20,00 0 0
19 200,00 45,5 20,00 20,00 20,00 0 0

Total 274 0
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to reduce the number of false alarms. For instance, if the 
estimated maximum consumption at 12:00 pm is 120 liters, 
the maximum consumption threshold is 156 liters. Accord-
ing to this �12∶00pm value, and using the data shown in 7, the 
number of warning messages generated by the service is 2 
(11th and 29th , April), while these messages number is zero 
in case of a threshold fixed at 200 liters.

Table 8 summarizes a comparative study between two dif-
ferent warning systems during three consecutive days. The 
first one uses a fixed threshold, � = 200 liters. The other 
warning system uses the adaptive threshold �t , which is 
obtained by using the water consumption prediction c1 plus 
a security margin. Table 8 shows real water consumption 
from 07:00 to 19:00h for each day of the comparative study 
Rci , as well as the liters saved by using one warning system 
or another. Only the hours of the day where consumption is 
usual in the EPCC are shown, omitting those related to the 
night-time schedule. In summary, using the adaptive thresh-
old during these 3 days would have resulted in a saving of 
274 liters, while using a fixed threshold, the saving would 
have been 0 liters, without considering possible leaks that 
would have occurred during night-time hours.

6 � Conclusion

The deployment of digital technologies on a SmartCampus 
to improve socially essential aspects such as comfort, energy 
efficiency, or sustainability is becoming a reality thanks to 
technological advances such as the Internet of Things, data 
science, and cloud computing. The future of the universi-
ties is to equip their facilities with a good set of devices -the 
physical world-, to provide users with monitoring tools to 
increase their security, optimize the use of spaces and time, 
and provide solutions that make the buildings more sus-
tainable and efficient. In this context, Cyber-Physical Sys-
tems are conceived as a powerful tool that integrates most 
of the above technologies to create an ideal framework to 
achieve these objectives. These CPSs have made the leap 
from the industry to other sectors, such as agriculture, medi-
cine, transport, and in recent years, although at a very slow 
speed, to universities. This article describes a general CPS 
for SmartCampus, SmartPoliTech, which has been success-
fully deployed at the School of Engineering of the University 
of Extremadura, a complex of more than 40, 000m2 consist-
ing of seven buildings and more than 1500 users.

This paper describes, following a similar nomenclature to 
other papers, the proposed CPS, detailing each of the com-
ponents and agents that make up the complete system. As a 
novelty, the proposal uses a Service Oriented Architecture, 
integrating two-way communications and IoT services on an 
enterprise service bus.

The description of the CPS is not complete if it is not vali-
dated against a use case that requires the interaction of the 
different components and services. For this reason, this work 
presents a use case where the IoT infrastructure is used to 
optimize water consumption in buildings. For this purpose, 
the data collected by the sensors is used to detect abnormal 
water consumption -due, for example, to losses in the sup-
ply network or occasional failures in toilets- and to generate 
warning messages that reduce the liters consumed. Further-
more, this alarm system implements predictive algorithms 
based on Gaussian mixing models and efficiently creates 
long-and short-term water consumption predictions that are 
later used to create consumption alarms.

This work could be expanded on in various ways. For 
instance, use cases can be redefined to improve the sustain-
ability and efficiency of buildings concerning electricity or 
gas consumption. The CPS described in this paper has been 
in use since 2016, and the historical data is extensive. The 
CPS currently has data on environmental variables ( CO2 , 
temperature, humidity, among others), but also data on 
water, energy, and gas consumption. By combining all this 
data with, for example, building occupancy, it is possible to 
improve predictive models and thus create even more sus-
tainable and intelligent buildings.
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