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1. INTRODUCTION

The knowledge of naturally graded Lie algebras of a particular Lie algebras
class gives a valuable information about the structure of the rest of algebras
of that class. In 1970, Vergne [9] obtained the classification in finite arbitrary
dimension, n, for the case of filiform (nilindex n — 1). In [8, 7] Goze and
Khakimdjanov gave the geometric description of the characteristically nilpo-
tent filiform Lie algebras using the naturally graded filiform Lie algebras. In
[6] Gomez and Jiménez-Merchan, obtained the classification in finite arbitrary
dimension for the case 2-filiform (nilindex n — 2). There are two subcases for
the nilindex n — 3: 3-filiform Lie algebras and the Lie algebras with charac-
teristic sequence (n — 3,2,1). In [4, 5], Cabezas, Gémez and Pastor gave the
classification of naturally graded p-filiform Lie algebras.

Consistently, for nilindex n —3, only rest to study the case of characteristic
sequence (n — 3,2,1). In this work we offer the classification in arbitrary
finite dimension of the family of naturally graded Lie algebras g with the
above characteristic sequence such that the dimension of the derived ideal is
minimum, that is, with dim[g, g] =n — 3.

The two first acceptable dimensions are 5 and 6, but the general situation
occurs only for n > 7.

T This paper has been partially supported by the PAICYT, of Junta de Andalucfa (Spain),
and by the Ministerio de Ciencia y Tecnologia (Spain), ref. BEM 2000-1047
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2. PRELIMINARIES

The descending central sequence of a Lie algebra g is defined by (C(g)),
i € NU {0}, where C°(g) = g and C(g) = [g,C""!(g)].

A Lie algebra g is called nilpotent if there exists k € N such that C*(g) =
{0}. The smallest integer verifying this equation is called the nilindex of g.

A Lie algebra g, with dim(g) = n, is called filiform (or 1-filiform) if it
verifies dim(C*(g)) =n—i—1for 1 <i < n— 1. These algebras have maximal
nilindex n — 1. The Lie algebras with a nilindex n — 2 are called quasifiliform
(or 2-filiform ) and those whose nilindex is 1 are called abelian.

Let g be a nilpotent Lie algebra of dimension n.

For all X € g—[g,9], ¢(X) = (c1(X),c2(X),...,1) is the sequence, in
decreasing order, of the dimensions of the characteristic subspaces of the nil-
potent operator ad(X), where the adjoint operator of an element X € g,
ad(X), is defined by

ad(X):g — g
Y — [X,Y].

The finite sequence c(g) = sup{c(X) : X € g — [g, 9]} is called the char-
acteristic sequence or Goze invariant of the nilpotent Lie algebra g. The
filiform, quasifiliform and abelian Lie algebras of dimension n have as their
Goze invariant (n — 1,1), (n — 2,1,1) and (1,1,...,1), respectively. The Lie
algebras with characteristic sequence (n — p,1,...,1) are known as p-filiform
Lie algebras [3]. We know the classification of p-filiform for the integer values
of p between n—>5 and n—2 (]2, 1]). Remark that, for nilindex n— 3, there are
two families with Goze invariant (n — 3,1,1,1) and (n — 3,2, 1) respectively.

Note that a complex Lie algebra g is naturally filtered by the descending
central sequence. This result leads to associate any Lie algebra g with a graded
Lie algebra, gr g with equal nilindex:

grg =P gi =C"(g)/C'(g).

1€Z

By nilpotency, the above graduation is finite, that isgrg = g1 ®go®- - - D gk
with [g;, g;] C g+, for i+j < k. A Lie algebra g is said to be naturally graded
if gr g is isomorphic to g, what will be denoted henceforth by gr g=g.

Let {Xo, X1,..., X,—3,Y1, Y2} be an adapted basis of g. We study the case
where the dimension of the derived ideal is minimum, consistently dim[g, g] =
n — 3. Thus, Y] is not in [g, g] and, consequently, Y7 € g;. In general, if we
denote as r to the position of the vector Y7 into the subspaces of the natural
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graduation, we observe that the value of r is » = 1. We remark that the
position of Y3 is previously determined because we have that [Xo, Y] = Y
and that implies Y5 € g, with 1 <r <n — 4. Then, in this case Y5 € gs.

From now, Jacobi identity for the vectors X,Y,Z will be denoted as
Jac(X,Y, Z) and the laws of the algebras, g, of dimension n such that dim|g, g]
is minimum will be denoted as pu,.

3. STRUCTURE THEOREM

In this section, we will obtain a first approximation to the structure of
naturally graded Lie algebras with Goze invariant (n — 3,2, 1).

Let g be a naturally graded Lie algebra of Goze’s invariant (n—3,2,1) and
let {Xo, X1,...,X,-3, Y1, Y2} be an adapted basis of g, that is:

(X0, X = X1 (1<i<n-—4),
[Xo, Xn—3] =0,

[Xo, V1] = Yz,
[Xo,Y2] =

where X € g — [g,g]. That implies

Cl<g) ) <X27X37 oo 7Xn—37Y'2>7
C'(9) D (Xit1, Xigo, ..., Xpo3) (2<i<n—4).

LEMMA 3.1. Let g be a Lie algebra of dimension n and Goze’s invariant
(n—3,2,1) and let {Xg, X1,..., X,—3,Y1,Ya} be an adapted basis of g. Then,

X1 ¢CYg), Xns3€Z2(g), Y1¢C" o), YagC"(g).

Proof. Obviously, X,,—3 € Z(g), Y1 ¢ C"*(g) and Y2 ¢ C"3(g) because,
otherwise, g could not be of characteristic sequence (n — 3,2,1). It is easy
to prove that X; ¢ [g,g] supposing that X; € [Y1,Y3], or X € [X;,Y)],
1<i<n—-41<j<2 o0 X €[X;,X;],1<i<j<n-3-i and
obtaining contradiction. 1

Remark 3.2. We identify each vector with its class, and we call p(n, ) the
family of laws of Lie algebras with Goze invariant (n — 3,2,1) where n is the
dimension and r is the position of Y7 in the subsets of the natural gradation.
We remark that the position of Y5 is previously determined because we have
that [Xo,Y1] = Y, and that implies Y2 € g,41 with 1 <7 <n —4.
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Remark 3.3. It is easy to see that g; D (Xo,X1) and g; D (X;), 2 <i <
n—3.

Now, we obtain the general structure of laws of naturally graded Lie al-
gebras of characteristic sequence (n — 3,2, 1) in arbitrary dimension. At first,
we prove that if Y] € g,, then r is odd.

LEMMA 3.4. If r is even, the case u(n,r) is not admissible in any dimen-
sion.

Proof. Let g be a naturally graded Lie algebra of Goze invariant (n —
3,2,1), let {Xo, X1,..., X,—3,Y1, Yo} be an adapted basis of g, and let Y7 € g,
be with r even. It is easy to prove that Y7 ¢ [g,g] so Y1 € g1 and this is
impossible because r is even. |

THEOREM 3.5. (STRUCTURE THEOREM) Any complex naturally graded
Lie algebra g of dimension n > 5, with Goze invariant (n—3, 2, 1) is isomorphic
to one whose law can be expressed in an adapted basis {Xo, X1,..., Xn_3,
Y1,Ya} by:

e lfr=1

[Xo, Xi] = Xit1 (1<i<n-—4),

[X07}/1]:Y2a

[Xi,Xj]:aini+j (1§z<y§n—3—z)
e If 3<r §T5 r odd

;

[Xo, Xi] = Xit1 (I<i<n-4),
[Xo,Y1] = Y2,
[(Xi, X;] = a;j Xiy; (i+j¢{r,r+1}, 1<i<j<n—-3-1),
[Xi, Xo—i] = aip—i X, + (—1)7'1) (1<i<t),
[X’L7XT'+1 z] = Qir41- er+1+(_1)i_1%Y2 (1§i§ %)7

| X, ] = eXpp (1<i<n—3—7),

with e € {0,1}.
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oIf%STSﬂ—él,TOdd

[Xo, Xi] = Xita1 (1<i<n-—4),
[Xo,Y1] = Y2,

[Xi,Xj]:aZJXZ+J (t+j¢{r,r+1},1<i<j<n-3-1),
(X, Xo—i] = aip—i X, 4+ (1)1 (1<i<t),

[

Xi, Xog1-i] = @ipr1-iXr41

+(—1) T 2y, (1<i<rsh),
[Xi, V1] = (e1 — (i = 1)ea) Xy (1<i<n-3-—r<ns2)
(X, Vo] = coXopy144 (1<i<n—4—r<nst)
[¥1,Y2] = hXp—3 (h =0 if r # 254),

with c1,co € C.

Proof. 1f g is in the condition of theorem, then a first general expression
of g is given by:

[Xo, Xi] = Xit1 (1<i<n-—4),
[Xo,Y1] = Y2,

X X)) = aijXee; (i+j¢{rr+1}, 1<i<j<n—3—1),
[Xi, Xpi] = aip—iXr + bV (1<i<rgh),

[(Xi, Xrp14] = aipp1-iXoq1 + bi2Yo (1<i<Hhy,
[(X1,Y1] = c11 X1 +dYa,

(X, V1] = i1 Xppq 2<i<n-3-r),

[Xi, Yo] = coXot14i (1<i<n-—4-r7),
V1, Y] = hXopyy (si r < 25%).

Some elementary changes of basis jointly with Jacobi identity implies that:
oIf1 <r< ”T_5 the coefficients can be expressed by
ci=c (1<i<n-3-r) and ci2=0 (1<i<n—4-r).
o If "7_4 < r < n — 4 the coefficients can be expressed by
ci=c—(i—1)cgc 1<i<n—-3-r) and c¢o=cy (1<i<n—4-r).
By using Jacobi identity it is posible to obtain that

Gnr+1-2i, |
2 1 ==y

bio = (—1)
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Furthermore, by # 0 (in other case Y7 ¢ C'(g) and then Y; ¢ g, =< X,., Y] >
with r > 3). Next, an easy change of basis allows to suppose by = 1. Then,

e If3 < r < ”7_5 As by # 0, if ¢; # 0 an easy change of basis allows to

suppose ¢; = 1, and consistently ¢; € {0, 1}.

e If r = 1, the case must be studied separately. |

4. DIMENSIONS n =5 AND n = 6.

Even if our main aim is to study the case of dimension n finite arbitrary,
the low dimensional cases are special and we will study them previously. The
lowest cases are for dimensions n = 5 and n = 6 and they have a special
treatment.

THEOREM 4.1. Any complex naturally graded Lie algebra of dimension 5
with Goze invariant (2,2,1) is isomorphic to one whose law can be expressed
in an adapted basis {Xo, X1, X2, Y1, Y2} by:

[Xo, X1] = X2,
Hs -
[Xo,Y1] =Y5.

Proof. The proof is trivial. |

THEOREM 4.2. Any complex naturally graded Lie algebra of dimension 6
with Goze invariant (3,2,1) is isomorphic to one whose law can be expressed
in an adapted basis { X, X1, X2, X3, Y1,Y2} by:

[Xo, Xi] = Xit1 (1<i<2),
M% : [XOa Yl] - Y2 )

| {[Xo,Xi]sz (1<i<2),
X1, Xa] = X3

Ug -
07\ [Xo, V1] = Ya,

Proof. In dimension six the graduation is
(X0, X1, Y1) @ (X2, Y2) @ (X3),

and by Theorem 3.5 the laws of these algebras are the following:

(X0, X1] = X2,
[Xo, Xo] = X3,
(X0, V1] =Y>,
[
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By using a generic change of basis we prove that nullity of coefficient aio is
an invariant.

o If ajo # 0, it is easy to obtain the algebra of law p2.

e If 1o = 0, we obtain the algebra of law ué. |

5. DIMENSION n > 7.

Now, we present the classification of the naturally graded Lie algebras with
Goze invariant (n — 3,2,1), dimension n > 7 and dim|g, g] minimum, that is,
equal to n — 3. The first expression of this family is given by the following
lemma:

LEMMA 5.1. Let g be a naturally graded Lie algebra with Goze invariant
(n —3,2,1), dim(g) = n > 7 and dim[g,g] = n — 3. Then, there exists
a characteristic vector Xy and an adapted basis {X¢, X1,..., X,—3,Y1, Yo},
which lead us to express the laws of g by:

[X0>Xi]:Xi+1 (1§’L§7’L—4),
py 8 [Xo, Y1) = Yo,
(X1, Xi]=aX;11 (2<i<n-—4),

if n is odd, or

[Xo, Xi] = Xina (1<i<n—4),
[Xo,Y1] = Y3,
pdl (X, X)) = aXi (2<i<n-5),
(X1, X4l =(a+b)X,—3,
| (X, Xnosi] = ()X, 5 (2<d <254,

if n is even.

Proof. By using Teorema 3.5 it follows that, in this case (r = 1), there
exists a characteristic vector Xy and an adapted basis, {Xo, X1,..., X3,
Y7,Y3}, such that the laws of the algebra are given by

[(Xo, Xi] = Xitn  (1<i<n-—4),

Mn ¢ [X07Y1] — }/27
[leXi] :ainHj (2§’L<j Sn—?)—z)
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Now, we use an inductive procedure on n.
DIMENSION n = 7: In dimension seven the graduation is
(X0, X1,Y1) ® (X2, Y2) @ (X3) ® (Xy),
and by using the Jacobi identity in the family ;7 we obtain uf.

DIMENSION n = 8: Analogously, by using the Jacobi identity it is easy
to obtain that ug is ug’b.

The inductive procedure is realized in function of the parity of the dimen-
sion. That is the reason why we study the cases of dimension n even and n
odd separately.

DIMENSION n > 7, n ODD : If we suppose that the result is true for n = k
even, we will prove it for n = k + 1 odd. If k is even, we suppose that it is
possible to express g by

[Xo, Xi] = Xit1 (1<i<k-—4),
[Xo, V1] = Y2,

a8 (X1, Xi] = aXi 2<i<k-5),
(X1, Xna] = (a+0) X3,
[Xi Xnsoi] = (“1)F 10X,y (2<i< kst

By using Jacobi identity we prove the result.

DIMENSION n > 8, n EVEN: We suppose that the result is true for n = k
odd and we will prove it for n = k + 1 even. If k is odd, we suppose that it is
possible to express ui by

[Xo, Xi] = Xip1 (1<i<k-—4),
pi g [Xo, Y1l =Yz,
[Xl,XZ'] = CLXZ'_H (2 S 1 § k — 4) .
For n = k 4 1 it is necessary to add the same brackets as in the odd case and
analogously we obtain the result. 1
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6. CLASSIFICATION THEOREM

Finally, we give the theorem of classification for naturally graded Lie al-
gebras with Goze invariant (n — 3,2,1), r =1 and n > 7.

THEOREM 6.1. Any complex naturally graded Lie algebra of dimension
n, n > 7, with Goze invariant (n — 3,2,1) and laws pu(n) is isomorphic to one
whose law can be expressed in suitable adapted basis by

“%nf?),z,l) : { [(Xo, Xi] = Xit1 (1<i<n-—4),

(n >5) [Xo,Y1] =Y5;
2 [Xo, Xi] = Xin1 (1<i<n-—4),
(1173,2,1) : [XO, Yl] = YQ s

(n even, n > 6)

XX = (11X (12 < 250,

3 [(Xo, Xi] = Xit1 (1<i<n—4),
(32l ] Ko =Ye,

>
=7 (X1, Xi] = Xitn (2<i<n—4);

[Xo, Xi] = Xit1 (1<i<n-—4),

/114(1”_3,271) . [X(h YI] = YQ,
(neven, n>8) | [X1,Xi] = Xii1 (2<i<n-5),

[Xi, Xn—3—i] = (-1)'X,_3 (2 <i<254);

( [Xo, Xi] = Xita (1<i<n-—4),

5 X07Y1] Y27

(n even, n > 8)
X n 4] —2Xn 3

[

p [
(=321 . ) X}, Xi] = Xint (2<i<n-5),

[
X Xus i = (C1)H X, s (2<i< Sl

Proof. By using the above lemma we will obtain the result. In function of
the dimension of the algebra it is necessary to consider two different cases.
Let g be a naturally graded Lie algebra of dimension n odd, n > 7, with
Goze invariant (n— 3,2, 1) and laws p,,. Then, the natural graduation is given
by
(X0, X1,Y1) © (X2, Y2) (X3) @ --- @ (Xp_3) -
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e Case 1: n even, n > 8. If n is even the laws of the algebra can be
expressed by

([ [Xo, Xi] = Xita (I<i<n-—4),
[Xo,Y1] = Y2,
p? (X, Xi] = aXig (2<i<n-5),
(X1, Xn—a] = (a+ b) X3,
\ [XZ,Xn 3] = (-1)1bX, 3, (2<i< 254

The general change of basis implies three generators, Xy, X1 and Y7:

n—3
X=> PXi+ Py Y1+ Py 1Ya,

=0
n—3

=) QiXi+ Qu2Y1 + Qn1Y2,
n 3

=Y RiXi+ Ry-aY1 + Ro1Ya.
1=0

By using the condition of the family we obtain that

Qo=0
Ri=0 (0<i<n—5).
Finally, the admisible changes of basis are
Xy =P Xo+ P X1+ PoXo+ -+ Py Xp_a+ Pr3Xn_3
+ P, oY1+ P, 1Y,
X1 =Qi X1+ Qo2Xo+ 4+ Qn-aXn-a+ Qn-3Xn-3+ Qn-a¥1 +Qn1Ya,
X5 =Py Xo + (PoQ2 + a(PiQ2 — P2Q1)) X3+ - + (PyQn—s
+ G(P1Qn 5 — Po5Q1))Xn—a+ (PoQn-a + a(P1Qn—v — Pr—aQ1))

+ Z DY PQu3-i — Pu3-iQi)bXn 3+ (PoQn_2 — Pr2Qo)Ya,

Xé = P(](Po + aPl)Qng + (PO + aPl)(PoQQ + a(P1Q2 — PQQl))X4 =+ ...
+ (Po+aP1)(PoQn—6 + a(P1Qn—6 — Pn6Q1))Xn—4
+ (Po + aPl)(. .. )Xn,g y
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X

4= Po(Py+aP)" Q1 X4
+ ((Po+ aP)" " (Po + (a4 b)P1)((PoQ2 + a(P1Qa—— P2 Q1)) X3,
X!, _3=Po(Po+aP)" 5Q1(Py+ (a+b)P1)X,_3,
Y =Ry 4Xn_4+ Ry 3X,_3+ Ry2Y1 + R,1Ya,
Yy = (Po+ (a+b)P1)Ry-4Xpn—3 + PyRy-2Y2,
with the following restrictions
Py#0, Q1#0, R, 2#0, Py+aPi#0, Py+(a+bP #0.
The nullity of @ and b are invariant, because

/ — Qla‘ and b/ — POle
PO—I—aP1 (P0+aP1)(P0+(a+b)P1) ’
Furthermore, we obtain that the nullity of a + b is invariant, because
a4 = Q1(a +b)
Po + (CL + b)Pl '

We consider the following cases:

a

- Case 2.1: a = b = 0. Trivially, we obtain M%n—?; 21"

- Case 2.2: a # 0 and b = 0. By choosing Py, Q1 and P;, we obtain ”%n—3,2,1)'

- Case 2.3: a =0 and b # 0. As in the above case, we obtain “?n—3,2,1)'
- Case 2.4: a # 0, b # 0 and a+ b = 0. By choosing Py, @1 and P;, we obtain

/‘z(ln—s,m)-
- Case 2.5: a#0,b# 0 and a+ b # 0. It is possible to choose Py, 1 and P;

for to obtain the algebra M?nf3,2,1)'
Furthermore, the above results prove that the algebras M%n—?) 91y ,u%n_g 21y

3 4 5 . . . .
Hin—321) Mn—321) Y Hin_321) are pairwise no isomorphic for n even.

e Case 2: nodd, n > 7. As follows from the above lemma we obtain that
an algebra of this kind is isomorphic to one whose law can be expressed by

[Xo, Xi] =Xit1 (1 <i<n-—4),
[Xo,Y1] = Y2,
(X1, Xi]=aXit1 (2<i<ji<n—-3-1).
Since, the odd case is equal to even case considering b = 0. An analogous

treatment of Case 1 proves that the nullity of a is an invariant and from here,
the result is obtained. |
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