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Abstract
The adjusted Rand index (ARI) is commonly used in cluster analysis to measure the
degree of agreement between two data partitions. Since its introduction, exploring the
situations of extreme agreement and disagreement under different circumstances has
been a subject of interest, in order to achieve a better understanding of this index.
Here, an explicit formula for the lowest possible value of the ARI for two clusterings
of given sizes is shown, and moreover a specific pair of clusterings achieving such a
bound is provided.

Keywords Adjusted Rand index · External clustering evaluation · Minimum
agreement

Mathematics Subject Classification Primary 62H30 · Secondary 62H17

1 Introduction

The adjusted Rand index is one of the most commonly used similarity measures
to compare two clusterings of a given set of objects. Indeed, it is the recommended
criterion for external clustering evaluation in the seminal study ofMilligan and Cooper
(1986). Nevertheless, many other measures for external clustering evaluation were
recently surveyed in Meilă (2016).

Initially, Rand (1971) considered a similarity index between two clusterings (the
Rand index) defined as the proportion of object pairs that are either assigned to the same
cluster in both clusterings or to different clusters in both clusterings. However, Morey
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and Agresti (1984) noted that such an index does not take into account the possible
agreement by chance, andHubert andArabie (1985) introduced a corrected-for-chance
version of the Rand index, which is usually known as the adjusted Rand index (ARI).

Exploring the situations of extreme agreement, as measured by the ARI, has been
a subject of interest since the very inception of this index. Indeed, Hubert and Arabie
(1985) posed the problem of finding the maximum ARI subject to given clustering
marginals; i.e., when constrained to havefixed, given cluster sizes in each of the cluster-
ings. Numerical algorithms to tackle this problemwere developed initially byMessatfa
(1992), and later by Brusco and Steinley (2008) and Steinley et al. (2015), and an
explicit solution for clusterings of size two has been recently shown inChacón (2021b).

A related but different problem concerns the obtention of lower bounds for the ARI
of two clusterings of given sizes. According to Meilă (2016, p. 631), “the lower bound
is usually hard to calculate”. It should be noted that, due to the correction for chance,
the ARI may take negative values for extremely discordant clusterings. This happens
when the agreement between the two clusterings is less than the expected agreement
when the clusters assignments are made at random, keeping the given marginals.
Hence, finding the minimum possible ARI value allows quantifying how extreme is
the discordance between two clusterings of given sizes.

Moreover, if the interest is to measure discordance instead of agreement, the ARI
can be transformed into a semimetric by consideringARD = 1−ARI (Chacón 2021a).
Thus, perfect agreement corresponds to null discordance, or ARD = 0, and the case
of less agreement than random assignment is related to values of ARD > 1. However,
in general, when dealing with semimetrics for measuring clustering disagreement it
is useful to normalize them so that they take values in [0, 1]; for instance, Charon
et al. (2006), Denœud (2008, Section 2.4) and Meilă (2016, Section 27.4) explored
such a normalization for different distances between partitions. Therefore, obtaining
the minimum ARI value makes it possible to define a normalized version of the ARD.

The main contribution of this paper is to find a lower bound for the ARI of two
clusterings of given sizes, and to show that this bound is indeed the best possible
one, since it is attained by an explicit pair of clusterings. More precise notation is
introduced in Sect. 2, where in addition the main result is rigourously stated. Two
numerical examples showing the possible applications of this result are presented in
Sect. 3, and the proofs of the main result and another auxiliar lemma of independent
interest are given in Sect. 5.

2 Notation andmain result

A clustering of a set X of n objects is a partition of X into non-empty, disjoint and
exhaustive classes, called clusters. The number of such classes is known as the size of
the clustering. Given two clusterings C = {C1, . . . ,Cr } and D = {D1, . . . , Ds}, of
sizes r and s, respectively, all the information regarding their concordance is registered
in the r × s matrix N whose (i, j)th element ni j records the cardinality of Ci ∩ Dj .
This matrix is usually known as confusion matrix or contingency table. Its row-wise
and column-wise totals, (n1+, . . . , nr+) and (n+1, . . . , n+s), with ni+ = ∑s

j=1 ni j
and n+ j = ∑r

i=1 ni j , give an account of the cluster sizes in C and D , respectively,
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and are commonly referred to as the marginals, or marginal clustering distributions.
Note that all cluster sizes must be strictly greater than zero in order to respect the
assumptions on the clustering sizes, which implies that n ≥ max{r , s}.

The Rand index is a summary statistic for N, based on inspecting the behaviour of
object pairs across the two clusterings. There are four possible types of object pairs,
formed by taking into account if: a) both objects belong to the same cluster in both
clusterings, b) they belong to the same cluster in C but to different clusters in D , c)
they belong to different clusters in C but to the same cluster in D , and d) they belong
to different clusters in both clusterings. The cardinalities of each of these categories
will be denoted a, b, c and d, respectively. They can be easily expressed in terms of
the entries of N and its marginals; for instance, Hubert and Arabie (1985) noted that

a =
( ∑r

i=1
∑s

j=1 n
2
i j

) − n

2
,

b =
∑r

i=1 n
2
i+ − ∑r

i=1
∑s

j=1 n
2
i j

2
,

c =
∑s

j=1 n
2+ j − ∑r

i=1
∑s

j=1 n
2
i j

2
,

d =
( ∑r

i=1
∑s

j=1 n
2
i j

) + n2 − ∑r
i=1 n

2
i+ − ∑s

j=1 n
2+ j

2
.

With this notation, the Rand index is obtained as RI = (a + d)/(a + b+ c+ d) =
(a+ d)/N where N = a+ b+ c+ d = (n

2

) = n(n− 1)/2 is the total number of pairs
of objects from X . It takes values in [0, 1], with 1 corresponding to perfect agreement
between the clusterings and 0 attained for the comparison of the two so-called trivial
clusterings: one with all the n objects in a single cluster, and the other one with n
clusters with a single object in each of them (see Albatineh et al. 2006).

One of the drawbacks of the Rand index is that it does not take into account the
possibility of agreement by chance between the two clusterings (Morey and Agresti
1984). Hence, Hubert and Arabie (1985) obtained E[RI], the expected value of this
index when the partitions are made at random, but keeping the same marginal cluster-
ing distributions, and suggested to alternatively use the ARI, a corrected-for-chance
version of the Rand index defined by ARI = (RI − E[RI])/(1 − E[RI]). Steinley
(2004) provided a concise formula for the ARI, which reads as follows:

ARI = N (a + d) − {(a + b)(a + c) + (c + d)(b + d)}
N 2 − {(a + b)(a + c) + (c + d)(b + d)} .

A careful inspection shows that the ARI is undefined if and only if r = s = 1 or
r = s = n (see the details in Sect. 5 below). The first case occurs in the degenerate
situation where both of the two compared clusterings have only one cluster (none
of them really involves a partition), whereas the second case corresponds to another
degenerate scenario, where both clusterings only comprise singleton groups. It is
assumed henceforth that none of these two degenerate situations holds.

These preliminaries allow us to formulate the main result of this paper, whose proof
is deferred to Sect. 5.
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Theorem 1 The minimum ARI for two clusterings of an arbitrary number of objects,
with given sizes r and s, respectively, can be explicitly written as

minARI =
[

1 − 1

2

(
r + s − 1

2

) {(
r

2

)−1

+
(
s

2

)−1
}]−1

(1)

ifmin{r , s} ≥ 2 andminARI = 0 ifmin{r , s} = 1. Such a minimum value is attained
for a comparison of precisely n = r + s − 1 objects, in which the r × s contingency
tableN has exactly one row of ones, exactly one column of ones and all the remaining
entries are zeroes.

The expression for the minimum ARI given in Theorem 1 is equivalent to, but
notably simpler than, the one previously conjectured in Chacón (2021a, p. 218).

If in addition the clustering sizes are allowed to vary, then it is easily seen that the
minimum possible value of the ARI is −1/2, which corresponds to a 2 × 2 matrix
with one entry equal to zero and all the remaining entries equal to one.

Furthermore, for r = s ≥ 2, Eq. (1) simplifies to−r/(3r −2), so it follows that for
r = s the range of possible ARI values approaches [−1/3, 1] as r increases.Moreover,
in order to get insight on the behaviour of the minimum ARI for large values of r and
s it is useful to note that, by means of the simple first order approximation

(r
2

) ∼ r2/2,
it is possible to express

min ARI ≈ − 2r2s2

r4 + 2r3s + 2rs3 + s4

as r and s increase.

3 Examples

3.1 A synthetic data example

Theorem 1 is useful to appreciate how extreme is the discordance between two distant
clusterings of given sizes.

For instance, let us consider the example presented in Table 3 in Steinley (2004),
which concerns the comparison of two partitions of n = 13 objects into r = s = 5
clusters. The 5 × 5 confusion matrix for this example is given by

⎛

⎜
⎜
⎜
⎜
⎝

1 0 1 1 0
0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎠
.

Chacón (2021a) noted that this example deals with two very distant clusterings.
More precisely, it is easy to check that for this comparison we have a = 0, b = c = 11
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and d = 56, so that ARI = −242/1474 � −0.164. The fact that ARI < 0 already
indicates that the agreement between these two partitions is less than the expected
agreement if the label assignments would have made at random, so that supports the
idea that the two clusterings are quite distant.

But one may wonder if two partitions with 5 clusters each can be made much
more distant that these two, and that is precisely the question that Theorem 1 solves,
since it shows that the minimum possible agreement for r = s = 5 is min ARI =
−5/13 � −0.385. Thus, for two clusterings of size 5 the range of possible ARI values
is [−0.385, 1], so the value −0.164 for the partitions in this example is indeed quite
close to the lower limit.

Moreover, Theorem 1 also shows that the lowest possible value of the ARI for two
clusterings of size 5 is attained for the comparison of two clusterings of 9 objects
whose confusion matrix is

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠
,

or any other that can be obtained by permuting the rows and/or the columns of the
former.

3.2 A real data example

While clustering comparisons are often made based on indices, some authors advocate
the advantages of using distances as dissimilarity measures (see Meilă 2016, p. 620).
Hence, as noted in the Introduction, another application of Theorem 1 is that it allows
normalizing the dissimilarity measure ARD = 1−ARI, dividing it by its maximum so
that it takes values in [0, 1], which makes it easier to appreciate the relative closeness
of two partitions with respect to a third one (see also Charon et al. 2006)

In this sense, let us consider the yeast data set introduced in Nakai and Kaneisa
(1991, 1992), a version of which is publicly available at the UCI machine learning
repository (https://archive.ics.uci.edu/). The data consist of 8 variables measured on
n = 1484 proteins. An additional label variable is available, that classifies these
proteins according to their cellular localization sites as CYT or ME3, which induces a
partition that can be thus viewed as the ground truth. Then, the goal is to compare the
partitions obtained by different clustering procedures against the true classification.

Gaussian mixture models (GMMs) and shifted asymmetric Laplace (SAL) mixture
models were applied in Franczak et al. (2014) to cluster this data set. The reported
fitted SAL mixture model has 2 clusters, with ARI = 0.81, whereas the fitted GMM
has 3 clusters and ARI = 0.56. The higher value of the ARI already seems to indicate
a better fit for the SAL mixture model but, in order to better appreciate the relative
gains of this method over the GMM, it is useful to calculate the normalized ARD,
which takes values in [0, 1]. By using Theorem 1, the normalized ARDs for the SAL
mixture model fit and the GMM fit can be computed to be 0.13 and 0.33, respectively,
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thus showing on a [0, 1] scale how the SAL mixture model fit is quite closer to the
true classification than the GMM fit.

Moreover, after aggregating the results for 25 model fits with a fixed number of
2 clusters, based on random initializations with 70 percent of the true labels taken
as known, the reported results yielded ARI values for the SAL and GMM cluster-
ings against the ground truth of 0.86 and -0.08, respectively. This shows that extreme
discordant results in terms of ARI can indeed occur in practice. And again, to better
appreciate on a [0, 1] scale the differences in performance between the twomethodolo-
gies, it is useful to note that the normalized ARDs for the SAL and GMM clusterings
against the ground truth were 0.09 and 0.72, respectively, thus showing a consider-
ably lower normalized dissimilarity for the SAL mixture model clustering against the
GMM partition.

4 Conclusions

The adjusted Rand index is one of the most commonly used measures to evaluate the
degree of agreement between twodata partitions, but, even so,manyof its properties are
still not fully known. The main contribution of this paper is to provide a precise result
showing its minimum value given the clustering sizes, and describing the clustering
configurations for which that minimum is attained.

Apart from its theoretical interest, which has been put forward in some Machine
Learning forums,1,2 the usefulness of this result is illustrated via two practical appli-
cations: first, knowledge of this lower bound helps appreciating how extreme is the
disagreement between two distant partitions; and second, such lower bound allows
normalizing the ARD semimetric so that it takes values in [0, 1], thus facilitating the
comparison of the dissimilarities of several clusterings with respect to a fixed refer-
ence partition, as noted in Charon et al. (2006). A real data example illustrating this
situation is included in Sect. 3.2.

Different constraint levels could be imposedwhen investigating theminimum value
of the ARI, and indeed two anonymous reviewers noted that it would be interesting
to find the minimum ARI for a fixed sample size n, in addition to the given clustering
sizes r and s. This represents a challenging open problem for further research.

5 Proofs

The proof of Theorem 1 makes use of the following result, which is of independent
interest. Intuitively, it shows that if a certain amount is to be distributed among several
parts, the configuration that yields the maximum sum of the part squares is that which
accumulates the highest possible quantity in one of the parts and keeps the remaining
ones to their minimum.

1 Adjusted Rand index bounds, https://github.com/scikit-learn/scikit-learn/issues/8166.
2 Lower bound for adjusted Rand index? https://stats.stackexchange.com/questions/254950.
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Lemma 1 Let a1 ≥ a2 ≥ · · · ≥ ap and t ≥ ∑p
i=1 ai be real numbers and consider

the region

A ≡ A(t; a1, . . . , ap) = {
(x1, . . . , xp) ∈ R

p : ∑p
i=1 xi = t

and xi ≥ ai for all i = 1, . . . , p
}
.

Themaximumof
∑p

i=1 x
2
i overA is attained for x1 = t−∑p

i=2 ai , x2 = a2, . . . , xp =
ap. Hence, max

{∑p
i=1 x

2
i : (x1, . . . , xp) ∈ A} = (

t − ∑p
i=2 ai

)2 + ∑p
i=2 a

2
i .

Proof The result follows by noting that if a ≤ b then a2 + b2 ≤ (a − c)2 + (b + c)2

for any c ≥ 0. 
�

Now we are ready to prove the main result of the paper. First note that minimizing
the ARI is equivalent to maximizing the semimetric ARD = 1 − ARI introduced in
Chacón (2021a), where it is also shown that it can be readily expressed as

ARD ≡ ARD(a, b, c, d) = N (b + c)

(a + b)(b + d) + (a + c)(c + d)
. (2)

This expression is undefined if the denominator is zero, and this happens if and only if
its two summands simultaneously equal zero, a fact that is equivalent to having either
a = b = c = 0 or b = c = d = 0. Albatineh et al. (2006) noted that b = c = 0 if
and only if there is only one strictly positive entry in each row and column of N; that
is, if r = s and N is a row (or column) permutation of a diagonal matrix. Moreover,
they also observed that a = 0 if and only if ni j ∈ {0, 1} for all i, j , and that d = 0
if and only if min{r , s} = 1. So b = c = d = 0 is equivalent to r = s = 1 and
a = b = c = 0 is equivalent to r = s = n, and those are the only two situations in
which the ARI is undefined, which are discarded in our subsequent analysis.

Proof of Theorem 1 It is clear that the roles of b and c in (2) are interchangeable, in the
sense that ARD(a, b, c, d) = ARD(a, c, b, d). The same is true for the roles of a and
d. Moreover, ARD is clearly a decreasing function of a and d, so its maximum value
is attained for the lowest possible values of a and d.

As noted above, a = d = 0 occurs when one of the clusterings consists of a
single cluster (so that d = 0), and the contingency table with maximum ARD is a
row or column vector of ones (so that a = 0). In this case, the resulting ARD = 1, so
minimum ARI = 0.

On the other hand, if min{r , s} ≥ 2 then necessarily d > 0, but it is equally possible
to have a = 0 if all the entries of N are just zeroes or ones, so this will be imposed
henceforth. Notice that this yields n ≤ rs, which means that the highest values of
the ARD are achieved when the number of objects is small. For a = 0 we have
d = N − (b + c), and the ARD simplifies to

ARD = N (b + c)

b2 + c2 + {N − (b + c)}(b + c)
= N

N − 2bc/(b + c)
, (3)
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which is an increasing function of b and c. So, to maximize it, we must find the
maximum possible values for b and c.

Since a = 0, it follows that b = (∑r
i=1 n

2
i+ − n

)
/2 and c = ( ∑s

j=1 n
2+ j − n

)
/2.

Hence, maximizing b is equivalent to maximizing the sum of the squared sizes of the
clusters of C , constrained to the facts that the total size is n and each cluster has size
greater than or equal to one (because degenerate, empty clusters are not allowed). This
is exactly the setting of Lemma 1 for p = r , a1 = · · · = ar = 1 and t = n. So for
n ≥ r (which is necessary to have r non-empty clusters in C ), the maximum value of
b is attained when there is a cluster in C with n − (r − 1) objects and the remaining
r − 1 clusters have one object each, so that

∑r
i=1 n

2
i+ = {n − (r − 1)}2 + r − 1.

Moreover, the fact that all ni j ∈ {0, 1} also implies that the maximum size of any
cluster inC is s so, since the configuration maximizing b has a cluster with n−(r −1)
objects, it must be n − (r − 1) ≤ s. Thus, if we define z = n − (r − 1) then the
maximum value of b is (z2 − z)/2. And that upper bound is maximized, among all
the sample sizes that satisfy the constraints 1 ≤ z ≤ s, by taking precisely z = s, that
is, n = r + s − 1. Hence, the confusion matrix that maximizes b must have one row
with all its entries equal to one, and each of the remaining rows having exactly one
entry equal to one and all the rest equal to zero. In principle, the nonzero entries of the
latter rows could be arbitrarily placed but, mimicking the above reasoning regarding
b, the value of c is maximized when there is a column with all its entries equal to one,
so the contingency table configuration that maximizes the ARD must be precisely the
one announced in the statement of the theorem.

In addition, it is straightforward to check that the configuration that maximizes the
ARD has a = 0, b = (s

2

)
, c = (r

2

)
and d = (n

2

) − (r
2

) − (s
2

) = (r − 1)(s − 1) since
n = r + s − 1. Hence, from (3) it follows that the maximum ARD is given by

[

1 − 2

(
r + s − 1

2

)−1(r

2

)(
s

2

)/ {(
r

2

)

+
(
s

2

)}]−1

so that the minimum ARI is as stated in the theorem. 
�
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