
E extracta mathematicae Vol. 20, Núm. 1, 43 – 50 (2005)
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Introduction

The following theorem is the main result of the paper: Let X be a complex
Banach space and T ∈ L(X). Suppose that 0 lies at the unbounded component
of the set of those λ such that λI − T is a Fredholm operator. Let Y be a
dense subspace of the dual space X ′ and S be a closed operator from Y to X
such that T ′(Y ) ⊂ Y and TSy = ST ′y for each y ∈ Y . Then for each vector
x ∈ X ′, T ′x ∈ Y if and only if x ∈ Y .

The paper is motivated by requirements of the integral equation method
used in solving boundary value problems for partial differential equations. The
solution is looked for in the form of a suitable potential. On the Banach space
X of boundary conditions we get a bounded linear operator T . The potential
corresponding to x ∈ X is a solution of the boundary value problem with the
boundary condition y if and only if Tx = y. In the classical situation, when
we study the boundary value problem on a domain G with smooth boundary,
the operator T has a form 1

2I +K, where I is the identity operator and K is a
compact operator on X. If we stop to suppose that G has smooth boundary
the situation changes dramatically. We only know that T is Fredholm or that
0 lies in the unbounded component of Φ(T ), the set of all λ ∈ C for which
λI − T is a Fredholm operator. There are two moments when we need to
know that the solution x ∈ X of the problem Tx = y is an element of some
subspace Y of the Banach space X. First situation is when we prove the
uniqueness of the problem. In the classical situation we use Green’s formula
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for the proof of the uniqueness of the solution. If the boundary conditions
are too general (for example real measures) the corresponding potentials are
not smooth enough we can use Green’s formula. So, we must show that the
solution x of Tx = 0 lies in some subspace Y of X, what ensures that the
potential corresponding to x is smooth enough Green’s formula can be used.
J. Král in [2] is in this situation when he studies the solution of the Neumann
problem for the Laplace equation. I. Netuka was in the similar situation in
[4], when he studied the third problem for the Laplace equation. In both
articles Y is a dense subspace of X, T (Y ) ⊂ Y and there are a bounded linear
operator T̃ on a Banach space X̃ such that T is the adjoint operator of T̃ and
T̃ Sy = STy for each y ∈ Y . So, our result solves quickly the problem.

The second situation, when we need to know that the solution x ∈ X of
the problem Tx = y is an element of some subspace Y of the Banach space
X, is if we study the behaviour of solutions of boundary value problems.
When I looked for necessary and sufficient conditions the weak solution of the
Neumann problem for the Laplace equation to be continuous on the closure of
the domain I knew that the solution has a form of a single layer potential where
the corresponding real measure ν is a solution of the equation T ′ν = µ and µ is
the boundary condition. Moreover, I knew that ν = µ+

∑
(I−2T ′)j(2I−T ′)µ.

Using this fact I proved that the single layer potential corresponding to the
real measure ν is continuous on the closure of the domain if and only if the
single layer potential corresponding the real measure µ is continuous on the
closure of the domain (see [3]). But in general situation we are not able
to calculate the solution of the problem. We only know that the solution
has a form of an appropriate potential where the corresponding real measure
is a solution of the equation T ′ν = µ where µ is the boundary condition.
Moreover, we know that T ′ is the adjoint operator of some operator T on a
Banach space X, λI −T is a Fredholm operator for each nonnegative number
λ and the space Y of all real measures, for which the corresponding single
layer potential has the required property, is dense in the space of all boundary
conditions. Moreover, the single layer operator is a closed operator from Y
to X such that TSy = ST ′y for each y ∈ Y . Therefore our result solves the
problem.

1. Conditions for T−1(Y ) ⊂ Y

Let X be a complex Banach space and T ∈ L(X), the algebra of all
bounded linear operators on X. We denote by KerT the kernel of T , by σ(T )
the spectrum of T , by ρ(T ) = C \ σ(T ) the resolvent set of T , by X ′ the dual
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space of X and by T ′ the adjoint operator of T . Denote by I the identity
operator. The operator T is called Fredholm if the dimension of KerT and
the codimension of T (X) are both finite. Denote by Φ(T ) the set of all λ ∈ C
for which λI − T is a Fredholm operator. The ascent of T , p(T ), and the
descent of T , q(T ) are given by

p(T ) = inf
{
n ∈ N0 : Ker(Tn) = Ker(Tn+1)

}
,

q(T ) = inf
{
n ∈ N0 : Tn(X) = Tn+1(X)

}
,

where inf ∅ = +∞.
Inspired by [2] we introduce the following terminology: We say that T , T̃ ,

S form Plemejl’s triplet of operators with respect to X, X̃ and Y , if X and X̃
are Banach spaces, Y is a subspace of X, T ∈ L(X), T̃ ∈ L(X̃), S is a closed
linear operator from Y to X̃, T (Y ) ⊂ Y , and T̃ Sy = STy for each y ∈ Y .

Lemma 1. Let X, X̃ be Banach spaces, T ∈ L(X), T̃ ∈ L(X̃), Tn ∈ L(X),
T̃n ∈ L(X̃), n ∈ N , be such that Tn → T , T̃n → T̃ as n → ∞. If Tn, T̃n,
S form Plemejl’s triplet of operators with respect to X, X̃ and Y for each n
then T , T̃ , S form Plemejl’s triplet of operators with respect to X, X̃ and Y .

Proof. Fix y ∈ Y . Then Ty = limTny, Tny ∈ Y and limSTny =
lim T̃nSy = T̃ Sy. Since S is closed we have Ty ∈ Y , the domain of S,
and STy = T̃ Sy.

Lemma 2. Let X, X̃ be complex Banach spaces, T , T̃ , S form Plemejl’s
triplet of operators with respect to X, X̃ and Y . Let Ω be a component of
ρ(T ) ∩ ρ(T̃ ). If there is λ ∈ Ω such that (λI − T )−1, (λI − T̃ )−1, S form
Plemejl’s triplet of operators with respect to X, X̃ and Y , then (µI − T )−1,
(µI − T̃ )−1, S form Plemejl’s triplet of operators with respect to X, X̃ and Y
for each µ ∈ Ω.

Proof. Denote by U the set of all µ ∈ Ω for which (µI−T )−1, (µI− T̃ )−1,
S form Plemejl’s triplet of operators with respect to X, X̃ and Y . We show
that U is open. Suppose that µ ∈ U , ν ∈ Ω, |ν − µ| < min(‖(µI − T )−1‖−1,
‖(µI − T̃ )−1‖−1). According to [5, Chapter VI, Theorem 3.9] we have

(νI − T )−1 =
∞∑

k=1

(µ− ν)k−1[(µI − T )−1]k ,
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(νI − T̃ )−1 =
∞∑

k=1

(µ− ν)k−1[(µI − T̃ )−1]k .

Since (µ− ν)k−1[(µI − T )−1]k(Y ) ⊂ Y and S(µ− ν)k−1[(µI − T )−1]ky =
(µ − ν)k−1[(µI − T̃ )−1]kSy for each y ∈ Y and k ∈ N , Lemma 1 gives that
(νI − T )−1, (νI − T̃ )−1, S form Plemejl’s triplet of operators with respect to
X, X̃ and Y . Thus ν ∈ U .

Since the mappings ν 7→ (νI − T )−1, ν 7→ (νI − T̃ )−1 are continuous in
Ω (see [6, Chapter VIII, §1]), Lemma 1 yields that U is closed in Ω. Since U
is a nonempty open and closed subset of the connected set Ω, we obtain that
U = Ω.

Lemma 3. Let X, X̃ be complex Banach spaces, T , T̃ , S form Plemejl’s
triplet of operators with respect to X, X̃ and Y . Let Ω be an unbounded
component of ρ(T ) ∩ ρ(T̃ ). Then (µI − T )−1, (µI − T̃ )−1, S form Plemejl’s
triplet of operators with respect to X, X̃ and Y for each µ ∈ Ω.

Proof. Suppose that |λ| > max(‖T‖, ‖T̃‖). According to [6, Chapter VIII,
Theorem 3] we have

(λI − T )−1 =
∞∑

k=1

λ−k(T )k−1 ,

(λI − T̃ )−1 =
∞∑

k=1

λ−k(T̃ )k−1 .

Since λ−kT k−1(Y ) ⊂ Y and Sλ−kT k−1y = λ−kT̃ k−1Sy for each y ∈ Y and
k ∈ N , Lemma 1 shows that (λI − T )−1, (λI − T̃ )−1, S form Plemejl’s triplet
of operators with respect to X, X̃ and Y . Lemma 2 yields that (µI − T )−1,
(µI − T̃ )−1, S form Plemejl’s triplet of operators with respect to X, X̃ and Y
for each µ ∈ Ω.

Lemma 4. Let X, X̃ be complex Banach spaces, T , T̃ , S form Plemejl’s
triplet of operators with respect to X, X̃ and Y . Let Ω be a component of
Φ(T ) ∩ Φ(T̃ ) such that there is λ ∈ Ω ∩ ρ(T ) ∩ ρ(T̃ ) for which (λI − T )−1,
(λI − T̃ )−1, S form Plemejl’s triplet of operators with respect to X, X̃ and
Y . Let Γ be a smooth Jordan curve in Ω ∩ ρ(T ) ∩ ρ(T̃ ). Denote

P =
1

2πi

∫

Γ
(tI − T )−1 dt , P̃ =

1
2πi

∫

Γ
(tI − T̃ )−1 dt .
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Then P , P̃ , S form Plemejl’s triplet of operators with respect to X, X̃ and
Y .

Proof. Let γ(t), 0 ≤ t ≤ 1, be a smooth parametrization of the curve Γ.
Since the mapping t 7→ (tI − T )−1 is continuous by [6, Chapter VIII, §1], the
integral P is the limit of the Riemann’s sums

Rn =
1

2πi

n∑

k=1

1
n

γ′(k/n)(γ(k/n)I − T )−1.

Similarly, the integral P̃ is the limit of the Riemann’s sums

R̃n =
1

2πi

n∑

k=1

1
n

γ′(k/n)(γ(k/n)I − T̃ )−1.

According to Lemma 2 we see that Rn, R̃n, S form Plemejl’s triplet of operat-
ors with respect to X, X̃ and Y . Lemma 1 shows that P , P̃ , S form Plemejl’s
triplet of operators with respect to X, X̃ and Y .

Theorem 5. Let X, X̃ be complex Banach spaces, T , T̃ , S form Plemejl’s
triplet of operators with respect to X, X̃ and Y . Denote by Ω the unbounded
component of Φ(T ) ∩ Φ(T̃ ). Let µ ∈ Ω be such that Ker(T − µI)n ⊂ Y for
each n ∈ N . If x, y ∈ X, (T − µI)x = y then x ∈ Y if and only if y ∈ Y .

Proof. If x ∈ Y then y ∈ Y . Suppose that y ∈ Y . Since Ω∩ (σ(T )∪σ(T̃ ))
is an isolated set in Ω (see [1, Satz 51.3 and Satz 51.2]), the set Ω∩ρ(T )∩ρ(T̃ )
is an unbounded domain. If µ ∈ Ω∩ρ(T )∩ρ(T̃ ) then (µI−T )−1, (µI− T̃ )−1,
S form Plemejl’s triplet of operators with respect to X, X̃ and Y by Lemma 3
and thus x ∈ Y . Therefore we can suppose that µ ∈ σ(T ) ∪ σ(T̃ ). Since µ
is not an accumulated point of σ(T ) ∪ σ(T̃ ) there is r > 0 such that {λ; 0 <
|λ− µ| < r} ⊂ ρ(T ) ∩ ρ(T̃ ). Put Γ = {λ; |λ− µ| = r/2},

P̃ =
1

2πi

∫

Γ
(tI − T̃ )−1 dt , P =

1
2πi

∫

Γ
(tI − T )−1 dt .

Since P , P̃ , S form Plemejl’s triplet of operators with respect to X, X̃ and
Y by Lemma 4, the operators I − P , I − P̃ , S form Plemejl’s triplet of
operators with respect to X, X̃ and Y . Therefore Ỹ = (I − P )Y ⊂ Y . Put
Z = (I − P )X, Z̃ = (I − P̃ )X̃. Then Ỹ ⊂ Z. If µ ∈ ρ(T ) (µ ∈ ρ(T̃ )) then
P = 0 (P̃ = 0), respectively. If µ ∈ σ(T ) (µ ∈ σ(T̃ )) then P (P̃ ) is the spectral
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projection corresponding to the spectral set {µ} and the operator T (operator
T̃ ), respectively. So, Z is a closed subspace of X and Z̃ is a closed subspace
of X̃ (see [5, p. 147]). Moreover, TP = PT , T̃ P̃ = P̃ T̃ by [5, Chapter VI,
Lemma 3.6], and T (Z) ⊂ Z, T̃ (Z̃) ⊂ Z̃, T (Ỹ ) ⊂ Ỹ . If z ∈ Ỹ ⊂ Z then
z = (I − P )z because I − P is a projection with the range Z. Since I − P ,
I − P̃ , S form Plemejl’s triplet of operators with respect to X, X̃ and Y we
have Sz = S(I − P )z = (I − P̃ )Sz ∈ Z̃ for z ∈ Ỹ . We now show that S is a
closed operator from Ỹ to Z̃. Let zn ∈ Ỹ , zn → z and Szn → w. Since S is
a closed operator from Y to X̃ we obtain that z ∈ Y and Sz = w ∈ X̃. Since
Szn ∈ Z̃ and Z̃ is a closed subspace of X̃ we deduce that Sz = w ∈ Z̃. Since
zn ∈ Z and Z is a closed subspace of X we have z ∈ Z. Since I − P is a
projection with the range Z we obtain z = (I − P )z ∈ Ỹ . Thus S is a closed
operator form Ỹ to Z̃. Hence T , T̃ , S form Plemejl’s triplet of operators with
respect to Z, Z̃ and Ỹ .

According to [5, Chapter VI, Theorem 4.1] we have Ω ∪ {µ} ⊂ ρ(T |Z) ∩
ρ(T̃ |Z̃). (Here I|Z denotes the restriction of the operator T onto Z.) Since T ,
T̃ , S form Plemejl’s triplet of operators with respect to Z, Z̃ and Ỹ Lemma 3
yields that ((µI − T )|Z)−1(Ỹ ) ⊂ Ỹ . If µ ∈ ρ(T ) then P = 0, Ỹ = Y and
x = (T − µI)−1y ∈ Y . Suppose now that µ ∈ σ(T ). Then P is the spectral
projection corresponding to the spectral set {µ} and the operator T . Since
p(µI − T ) = q(µI − T ) < ∞ by [1, Theorem 51.1], there is n ∈ N such that
P (X) = Ker(T −µI)n ⊂ Y by [1, Satz 50.2]. Then Px ∈ P (X) ⊂ Y and (T −
µI)Px ∈ Y . Thus (T−µI)(I−P )x = y−(T−µI)Px ∈ Y . Since (I−P )x ∈ Z
we have (T −µI)(I−P )x ∈ Z. Since (I−P ) is a projection with the range Z
we have (T −µI)(I−P )x = (I−P )(T −µI)(I−P )x ∈ (I−P )(Y ) = Ỹ . Thus
(I −P )x = ((T −µI)|Z)−1[(T −µI)(I −P )x] ∈ ((µI −T )|Z)−1(Ỹ ) ⊂ Ỹ ⊂ Y .
Since Px ∈ Y we obtain x = Px + (I − P )x ∈ Y .

Definition 6. Let X, Y be normed spaces, b(x, y) be a bilinear form on
X × Y . We say that X, Y , b form a dual system if b(x, y) = 0 for all y ∈ Y
implies x = 0 and b(x, y) = 0 for all x ∈ X implies y = 0.

Theorem 7. Let X be a complex Banach space, T ′, T , S form Plemejl’s
triple of operators with respect to X ′, X and Y . Suppose that X, Y and the
bilinear form b(x, y) = y(x) form a dual system. If µ lies in the unbounded
component of Φ(T ) then Ker(µI − T ′)n ⊂ Y for each n ∈ N .

Proof. Denote by Ω the unbounded component of Φ(T ). Then Ω \ σ(T ) is
the unbounded component of ρ(T ), because Ω∩σ(T ) is an isolated set in Ω by
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[1, Satz 51.3 and Satz 51.2]. According to Lemma 3 the operators (λI−T ′)−1,
(λI − T )−1, S form Plemejl’s triple of operators with respect to X ′, X and Y
for each λ ∈ Ω \ σ(T ). Let now µ ∈ Ω ∩ σ(T ). Since Ω ∩ σ(T ) is an isolated
set in Ω, there is a smooth Jordan curve Γ in Ω \ σ(T ) so that µ is the only
point of σ(T ) in the interior of Γ. Denote

P =
1

2πi

∫

Γ
(tI − T )−1 dt

the spectral projection corresponding to the spectral set {µ} and the operator
T . Since p(µI − T ) = q(µI − T ) < ∞ by [1, Theorem 51.1],

P (X) = Ker(µI − T )k

for some k by [1, Satz 50.2]. Since µI−T is Fredholm, the operator (µI−T )k is
Fredholm too (see [5, Chapter V, Theorem 2.3]) and m = dim Ker(µI−T )k <
∞. Choose x1, . . . , xm ∈ X the base of P (X) = Ker(µI − T )k. Then there
are y1, . . . , ym ∈ X ′ so that

Px =
m∑

j=1

yj(x)xj

for each x ∈ X. This gives

P ′z =
m∑

j=1

z(xj)yj (1)

for each z ∈ X ′.
Since X, Y , b form a dual system, [1, Satz 15.1] implies that there are

ỹ1, . . . , ỹm ∈ Y so that ỹj(xl) = δjl for j, l = 1, . . . ,m. (Here δlj means
the Kronecker’s delta.) We conclude from (1) that yj = P ′(ỹj) ⊂ P ′(Y ) for
j = 1, . . . , m and hence P ′(X ′) ⊂ P ′(Y ). Since

P ′ =
1

2πi

∫

Γ
(λI − T ′)−1 dλ

is the spectral projection corresponding to the spectral set {µ} and the op-
erator T ′ (see [5, Chapter VI]), p(µI − T ′) = q(µI − T ′) < ∞ by [1, The-
orem 51.1],

P ′(X ′) = ∪∞n=1 Ker(µI − T ′)n

by [1, Satz 50.2] and so Ker(µI − T ′)n ⊂ P ′(X ′) ⊂ P ′(Y ). Since P ′(Y ) ⊂ Y
by Lemma 4 we have Ker(µ− T ′)n ⊂ Y .
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Corollary 8. Let X be a complex Banach space, Y be a dense subspace
of X ′ such that T ′, T , S form Plemejl’s triple of operators with respect to X ′,
X, Y . Let µ lies in the unbounded component of Φ(T ). If x, y ∈ X ′ such that
(T ′ − µI)x = y, then x ∈ Y if and only if y ∈ Y .

Proof. X, Y and the bilinear form b(x, y) = y(x) form a dual system
because Y is a dense subspace of X ′. Theorem 7 shows that Ker(µI−T ′)n ⊂ Y
for each n ∈ N . Therefore x ∈ Y if and only if y ∈ Y by Theorem 5.
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