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1. Introduction

The results and techniques of Differential Geometry, and in particular of
the theory of jet–bundles of the fiber bundle t : V → R with 1–dimensional
base usually known as the Classical Space–Time bundle, are by this time
known as powerful instruments to investigate and rationalize several aspects
of time–dependent Classical Mechanics.

Nevertheless, possibly due to its intrinsic non–smooth nature, Impulsive
Mechanics and system subject to impulsive constraints seemed to be not in-
clined to be framed in a differential geometric setup, and till few years ago only
few works ([4], [1]) could be found in literature on the argument. The results
became even fewer restricting our attention to time–dependent description of
impulsive problems ([2]). Only recently ([6]) a proposal of a formal geometric
environment for frame–independent description of time–dependent Impulsive
Mechanics was presented. The new context allows a fruitful rationalization
of the basic concepts of Impulsive Mechanics, such as the definition of active
impulse itself, and a detailed analysis of the motion of impulsive systems in
presence of bilateral constraints, independently on their positional or kinetic
nature, and on their permanent or instantaneous one ([6], [7]).

The classical formulation of Carnot’s theorem on impulsive constraints
(see, e.g. [5], [9]) should then find a natural collocation in the new frame-
work. Unfortunately, an intrinsic frame–independent description of Classical
Mechanics, and in particular the description of Impulsive Mechanics presen-
ted in [6], [7], implies a structural loss of meaning of the kinetic energy as
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a mechanical quantity associated to the system. A well posed definition of
kinetic energy is, of course, indissolubly related to the assignment of a frame
of reference for the system ([8]). Then Carnot’s theorem can be presented fol-
lowing two possible lines. One consists in fixing a priori a frame of reference
for the system in a more or less explicit way. Consequently, a diffeomorphism
V ' R×Q is determined by the frame of reference, with Q denoting the usual
configuration manifold of the system, and the kinetic energy of the system
is then a well defined quadratic function defined on R × T (Q). This line of
presentation has been pursued in [3], even in the more general case of one–
sided impulsive constraint, and Carnot’s theorem can be deduced essentially
by algebraic properties of quadratic forms. The other line of presentation con-
sists in working in the general frame–independent description of the system
and investigating the class of frames of reference where the Carnot’s theorem
holds. This approach and its results are the arguments of this paper. It will
be proved that Carnot’s theorem holds only in a restricted class of frames,
and that, once the constitutive characterization of the constraints is chosen,
this class is determined by the constraints itself.

The paper is divided into three main sections. In Section 2, also in order to
fix notation, we briefly describe the usual geometric environment generated
by the Space–Time bundle t : V → R of Classical Mechanics and its jet–
extensions, and we recall the concepts of frame of reference H, of kinetic
energy related to H, of impulse acting on the system and of kinetic impulsive
constraint. In Section 3 we discuss the statement of Carnot’s theorem for
inert impulsive constraints in the considered geometric context, showing that
the theorem holds only for a restricted class of frames, whose wideness is
determined by the codimension of the constraint. In Section 4 we exhibit a
simple mechanical system admitting two frames of reference, one in the class
where Carnot’s theorem holds, the other outside the class. Moreover we show
with a simple example that some other classical results regarding the kinetic
energy balance in Impulsive Mechanics hold in the new geometric context
independently of the frame of reference, and then have an “absolute” value.

2. Preliminaries

In Classical Mechanics, the configuration space–time of a mechanical sys-
tem with a finite number of degrees of freedom is a fiber bundle π : V → E1,
where V is an (n + 1)–dimensional differentiable manifold and E1 is the 1–
dimensional euclidean line. If t is the global cartesian coordinate on E1, the



on carnot’s theorem 89

projection t ◦ π : V → R, that, with a slight abuse of notation, will also
be denoted by t, is the embodiment of the Absolute Time Axiom in this
context. The projection t selects both the family of admissible coordinates
(t, q1, . . . , qn) having t as first coordinate, and the subgroup

{
t = t + const.

qk = qk(t, qi)

of the group of coordinate transformations leaving dt and the fibres invariant.
Moreover it determines also the n–dimensional distribution Vert of space–like
vectors, given by those vectors which are tangent to the fibres, and the vertical
vector bundle π : V (V) → V.

The Absolute Space Axiom is introduced in this context by assigning a
riemannian metric Φ on each fiber of t : V → R, i.e. a differentiable positive
definite scalar product on Vert. We denote with

gij(p) = Φ

((
∂

∂qi

)

p

,

(
∂

∂qj

)

p

)
, p ∈ V

with the functions gij taking intrinsically into account, as usual, the massive
properties of the system.

A (global) frame of reference in V consists of a (complete) vector field H
of the form

H =
∂

∂t
+ H i(t, q)

∂

∂qi
, i = 1, . . . , n ,

or, that is the same, a (global) section of the affine bundle J1(V), the first
jet–extension of the bundle V. The affine structure of J1(V), modelled on the
vertical vector bundle V (V), can be pointed out by introducing admissible
coordinates (t, q1, . . . , qn, q̇ 1, . . . , q̇ n) in J1(V), subject to the transformation
rules 




t = t + const.

qk = qk(t, qi)

q̇
k =

∂qk

∂q i
q̇ i +

∂qk

∂t

(1)

The affine linearity of the transformation rules of the q̇ variables will play a
crucial role in the following, distinguishing the analysis of the problem based
on jet–bundles by the one based on the product manifolds R×Q and R×T (Q).
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In fact, in this second case, one can introduce in R×T (Q) the so called bundle
coordinates (t, x1, . . . , xn, ẋ1, . . . , ẋn) that are subject to transformation rules





t = t + const.

xk = xk(xi)

ẋ
k =

∂xk

∂xi
ẋi

(2)

The outcome of the difference between the transformation rules (1) and (2) is
cleared by the following

Definition 2.1. Let H be an assigned frame of reference. Then:

i) the velocity of p = (t, q1, . . . , qn, q̇ 1, . . . , q̇ n) ∈ J1(V) with respect to the
frame H is the vertical vector v ∈ V (V) such that

v = p−H(π(p)) =
(
q̇ i −H i(t, qk)

) ∂

∂q i
;

ii) the kinetic energy of the system with respect to H is the function
T : J1(V) → R such that

T (t, q k, q̇ k) =
1
2
Φ(v,v) =

1
2
gij(t, q k)

(
q̇ i −H i(t, q k)

)(
q̇ j −Hj(t, q k)

)
.

A straightforward calculation shows that the function T has the correct in-
variance behaviour with respect to (1). Moreover, the definition gives back the
natural interpretation of kinetic energy of the system as a mechanical quantity
related to an assigned frame of reference. The same invariance properties and
the same mechanical meaning can be given to the quadratic form

K(t, xk, ẋk) =
1
2

gij(t, xk)ẋiẋj

only by considering the transformation rules (2) in R× T (Q) and loosing the
frame independence of the analysis ([8]).

The geometric context of Impulsive Mechanics is based on the introduction
of two affine fiber bundles π : L1(V) → V and π : R1(V) → V, respectively
the left and right jet bundle of V, both diffeomorphic to J1(V), represent-
ing the possible left and right velocities of the system. Admissible coordinates
(t, q i, q̇ i

L) and ((t, q i, q̇ i
R), whose transformation rules are identical to (1), will
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be systematically assumed to describe the bundles L1(V), R1(V) respectively.
In analogy with Def. (2.1), we denote with vL,vR the vertical vectors repres-
enting the left and right velocities of elements in L1(V), R1(V) with respect
to an assigned frame of reference.

A free impulse acting on the system is the assignment of a pair (A, I),
where A is a suitable fibered submanifold of J1(V) and I : A → V (V) is
a fibered map assigning to each kinetic state p ∈ A a vertical vector I(p)
representing the jump of velocities of the system ([6]). Since I is a fibered
map, the condition π(p) = π(p + I(p)) holds for all p ∈ A, showing that
impulses affect the velocities of the system without changing its position.

A kinetic impulsive constraint acting on the system is the assignment of a
suitable pair (A1,A2) of fibered submanifolds, with A1 ⊂ L1(V), A2 ⊂ R1(V).
The properties of the submanifolds A1,A2 reflect the nature of the constraint,
distinguishing among kinetic impulsive constraints imposed on the system
depending on its position, its velocity or at an assigned instant. For example,
a cogwheel sliding on a line and impacting in a rack placed in a fixed position
of the line can be modelled with a submanifold ξ : S → V, that represents
the fixed position of the rack, and a submanifold A2 ⊂ R1(V), that represents
the kinetic constraint, obeying the condition π(A2) = S. This example will
be described in details in Section 4. Note however that, depending on the
dimension and the nature of S, the rack can consist of a single tooth, so
that the corresponding kinetic impulsive constraint can be thought of as an
instantaneous constraint, or the rack can have a strictly positive length, so that
the corresponding kinetic impulsive constraint can become a (thenceforth)
permanent kinetic constraint (see [7] for complete survey and classification).

Definition 2.2. An inert constraint is a kinetic impulsive constraint such
that A1 ≡ L1(V) and A2 admits a linear affine description

n∑

i=1

aµi q̇
i
R + bµ = 0, µ = 1, . . . , n− r. (3)

where the matrix aµi(t, q) is supposed, here and from now on, to be everywhere
of maximum rank. Once again, a straightforward calculation shows that the
representation (3) has the correct invariance behaviour with respect to (1).
Differently, a linear description

n∑

i=1

aµi q̇
i = 0, µ = 1, . . . , n− r
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is not invariant with respect to (1) but it is invariant using bundle coordinates
in a fixed frame. Then Def. (2.2) is the most natural adaptation to the frame
independent context of the classical definition of inert constraint ([5]).

A constitutive characterization of a kinetic impulsive constraint (A1,A2)
is a rule assigning to each p1 ∈ A1 an element of the set of vertical vectors

V (A1,A2) = {V = p2 − p1, s.t. p1 ∈ A1, p2 ∈ A2} ⊂ V (V),

where the use of the natural diffeomorphism between L1(V), R1(V) and J1(V)
is implicitly understood. The resulting map I : A1 → V (V) represents of
course the reactive impulse given by the constraint. The Gauss’s minimality
principle allows the definitions of a very natural constitutive characterization
and an ideality criterion for a wide class of impulsive constraints ([7]): later
on we systematically assume that impulsive constraints obey this ideality cri-
terion. Note that, independently of the choice of a frame of reference and of
a constitutive characterization, every impulse obeys the identity

I = vR − vL . (4)

3. Carnot’s Theorem

The imposition of an impulsive constraint (A1,A2) on a mechanical system
determines a reactive impulse I : A1 ⊂ L1(V) → V (V) and a corresponding
quadratic form

T ∆ : A1 ⊂ L1(V) → R s.t. T ∆ =
1
2
Φ(I, I) =

1
2

ghkI
hIk

The assignment of a frame of reference H allows the definitions of left and
right kinetic energy relative to H of the system

T L : L1(V) → R s.t. T L =
1
2
Φ(vL,vL) =

1
2

gij (q̇ i
L −H i)(q̇ j

L −Hj)

T R : R1(V) → R s.t. T R =
1
2
Φ(vR,vR) =

1
2

gij (q̇ i
R −H i)(q̇ j

R −Hj)

With the usual mild abuse of notation based on the natural diffeomorphism
between L1(V), R1(V) and J1(V), the three functions can be thought of as
defined on J1(V).
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An obvious calculation shows that, independently on the nature of the kin-
etic constraint and on the constitutive characterization chosen, the difference
∆T = T R−T L is intrinsically dependent on the frame H, and different frames
give different ∆T . On the contrary, the quadratic form T ∆ is independent of
the frame. Then relations of the form ∆T = −T ∆ (see [5]) or ∆T = αT ∆

with α ∈ R (see [3]) can be interpreted only as a property of the frame of
reference describing the system and not as an intrinsic property of the system
itself.

Lemma 3.1. For every assigned frame of reference, the relation

∆T = T R − T L = −T ∆ + Φ(vR, I)

holds.

Proof.

∆T =
1
2
Φ(vR,vR)− 1

2
Φ(vL,vL) =

1
2
Φ(vR,vR)− 1

2
Φ(vR − I, vR − I)

= −1
2
Φ(I, I) + Φ(vR, I) = −T ∆ + Φ(vR, I).

The lemma shows that, independently of the nature of the constraint and of
the constitutive characterization, the class of frames of reference where an
analogous of the Carnot’s theorem holds is selected by the condition

Φ(vR, I) = gij (q̇ i
R −H i) Ij = 0. (5)

Since both the kinetic status of the system and the reactive impulse due to the
impulsive constraint are independent of the frame of reference, condition (5)
has a clear geometric interpretation: the Carnot’s theorem holds for a frame
of reference H if and only if the corresponding right velocity vR of the system
turns out to be orthogonal to the reactive impulse.

We focus now our attention to the classical formulation of Carnot’s the-
orem (see, e.g. [5]). Let the system be subject to an inert constraint, and
let the constitutive characterization of the constraint be given by the Gauss’s
minimality principle. Then A2 can be described by coordinates (t, q1, . . . , qn,
z1, . . . , zr) such that

ϕ : A2 → R1(V) q̇ i
R = hi

αzα + ki. (6)
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Let V (A2,A2) be defined as

V (A2,A2) = {p2 − p2 | p2, p2 ∈ A2, π(p2) = π(p2)}

=
{

V ∈ V (V) | V = hi
αvα ∂

∂q i

} (7)

Due to the affine linear description of A2, the space V (A2,A2) is a vector
subbundle of V (V) with fiber dimension r. We have then the following

Theorem 3.1. The reactive impulse IGauss determined by the inert con-
straint is orthogonal to the vector subbundle V (A2,A2).

Proof. Taking into account (6), the reactive impulse is a vertical vector
field of the form

I = (hi
αzα + ki − q̇ i

L)
∂

∂q i

Denoting with Γ the restriction of the scalar product Φ to the subbundle
V (A2,A2) and with γαβ = gijh

i
αhj

β the corresponding non–singular matrix
with inverse γαβ, the minimum of Φ(I, I) is attained for the values zβ =
γαβgijh

i
α(q̇ j

L − kj) so that the corresponding reactive impulse is

IGauss =
(
hm

β γαβgij hi
α(q̇ j

L − kj) + km − q̇ m
L

) ∂

∂q m

Then, given any element V ∈ V (A2,A2) and taking into account the expres-
sion (7), we have

Φ(IGauss, V ) = gms ImV s

= gms (hm
β γαβgij hi

α(q̇ j
L − kj) + km − q̇ m

L )(hs
λvλ)

= gms hm
β hs

λ γαβgij hi
α(q̇ j

L − kj)vλ − gms hs
λ(q̇ m

L − km)vλ

= gij hi
λ(q̇ j

L − kj)vλ − gms hs
λ(q̇ m

L − km)vλ = 0

Note that, although foreseeable, the result expresses in the unique meaningful
way for Impulsive Mechanics the fact that the Gauss’s minimality principle
determines an orthogonal projector in the vertical vector bundle V (V) and it
strictly depends on the affine linear nature of A2. In fact, both the orthogon-
ality between the impulse and the constraint, and the orthogonality between
the impulse and the tangent space of the constraint, relating vectors belonging
to different vector spaces, are meaningless.
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Corollary 3.1. Let (L1(V),A2) be an inert constraints locally described
by eqs. (3) and let H = ∂

∂t + Hk(t, q) ∂
∂qk be a frame of reference obeying the

conditions
n∑

i=1

aµi H i + bµ = 0, µ = 1, . . . , n− r.

Then the Carnot’s theorem holds for the frame H. Moreover, if codim(A2) =
n− 1, then H is essentially unique.

Proof. The statement easily follows by condition (5), definition (7) and
theorem (3.1).

4. Examples

4.1. Example 1: the behaviour of different frames for a single
system. In the following simple example, we exhibit a mechanical system
subject to an inert constraint and two different frames having a different
behaviour regarding the Carnot’s theorem.

A cogwheel of assigned mass m, radius r and inertia momentum A = 1
2mr2

moving in a vertical plane slides along an horizontal straight guide and impacts
in a rack placed on the guide in a fixed position. Let the position x of the center
of mass and the orientation θ of the cogwheel be the lagrangian coordinates
describing the configuration of the system. The fixed position of the rack can
be represented by the submanifold S = {x ≥ x}, if we have an extended rack,
or by the submanifold S = {x = x}, if we have a single tooth. Independently
of the nature of S, we have that (see [7]):

• the vertical scalar product is locally given by the constant matrix gij =
diag(m,A);

• the space L1(V) is described by coordinates (t, x, θ, ẋL, θ̇L) and its ele-
ments can be represented in vector form as V = ∂

∂t + ẋL
∂
∂x + θ̇L

∂
∂θ ;

• the manifold A2 ⊂ R1(V) is defined by the condition A2 = {ẋR− rθ̇R =
0} and its elements can be represented in vector form as V = ∂

∂t +
rθ̇R

∂
∂x + θ̇R

∂
∂θ .

A straightforward calculation shows that the minimality criterion applied to
the quadratic form Φ(I, I) gives θ̇Rmin = 2ẋL+rθ̇L

3r , and then Igauss = −1
3(ẋL−
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rθ̇L) ∂
∂x + 2

3r (ẋL − rθ̇L) ∂
∂θ . It follows that, with the usual abuse of notation,

T ∆ =
1
6

m ẋ2 − 1
3

mr ẋ θ̇ +
1
6

mr2 θ̇2.

Let now H1 = ∂
∂t be the frame of rest of the rack; with obvious notation we

have

T H1

L =
1
2

m ẋ2 +
1
4

mr2 θ̇2 ;

T H1

R =
1
2

m

(
2ẋ + rθ̇

3r

)2

+
1
4

mr2

(
2ẋ + rθ̇

3r

)2

T H1

R − T H1

L = −
(

1
6

m ẋ2 − 1
3

mr ẋ θ̇ +
1
6

mr2 θ̇2

)
= −T ∆ .

Differently, let H2 = ∂
∂t + ẋ0

∂
∂x with ẋ0 fixed, be a frame moving with respect

to the rack with constant velocity; then:

T H2

L =
1
2

m (ẋ− ẋ0)2 +
1
4

mr2 θ̇2 ;

T H2

R =
1
2

m

(
2ẋ + rθ̇

3r
− ẋ0

)2

+
1
4

mr2

(
2ẋ + rθ̇

3r

)2

T H2

R − T H2

L = −1
6

m ẋ2 +
1
3

mr ẋ θ̇ − 1
6

mr2 θ̇2 +
1
3

mr ẋ0 ẋ− 1
3

mr ẋ0 θ̇

= −T ∆ +
1
3

mẋ0 (ẋ− rθ̇).

4.2. Example 2: a classical result holding in the new context.
The following example (see [5]) shows that, differently from the Carnot’s the-
orem, there are classical results regarding the kinetic energy balance in an
impulsive problem that holds independently of the frame of reference, and
then have an “absolute” meaning.

Theorem 4.1. In the free impulse problem, the increase of kinetic energy
is found by taking the scalar product of the impulse with the mean of left and
right velocities.



on carnot’s theorem 97

Proof. Taking into account eq. (4), we have

∆T = T R − T L =
1
2

Φ(vR,vR)− 1
2

Φ(vL,vL)

=
1
2

Φ(vR − vL,vR + vL)

= Φ
(
I,

vR + vL

2

)
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