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Abstract
Nowadays, data processing applications based on neural networks cope with the 
growth in the amount of data to be processed and with the increase in both the depth 
and complexity of the neural networks architectures, and hence in the number of 
parameters to be learned. High-performance computing platforms are provided with 
fast computing resources, including multi-core processors and graphical processing 
units, to manage such computational burden of deep neural network applications. A 
common optimization technique is to distribute the workload between the processes 
deployed on the resources of the platform. This approach is known as data-paral-
lelism. Each process, known as replica, trains its own copy of the model on a dis-
joint data partition. Nevertheless, the heterogeneity of the computational resources 
composing the platform requires to unevenly distribute the workload between the 
replicas according to its computational capabilities, to optimize the overall execu-
tion performance. Since the amount of data to be processed is different in each rep-
lica, the influence of the gradients computed by the replicas in the global param-
eter updating should be different. This work proposes a modification of the gradient 
computation method that considers the different speeds of the replicas, and hence, 
its amount of data assigned. The experimental results have been conducted on het-
erogeneous high-performance computing platforms for a wide range of models and 
datasets, showing an improvement in the final accuracy with respect to current tech-
niques, with a comparable performance.
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1 Introduction

Deep neural networks (DNNs) architectures [15, 29] have leveraged important 
advances in research fields as image processing [12] and classification [31], nat-
ural language processing [24], medicine [19] and satellite observational studies 
[11], among others. DNNs are universal function approximators composed of 
neurons disposed in stacked layers. DNNs have the ability to learn relationships 
between input data as they propagate through the layers of the network to the 
output expected results. Each layer computes intermediate features using a set of 
internal trainable parameters, which are learned based on gradient optimization 
techniques, as stochastic gradient descent.

Taking the example of a supervised image classification algorithm, the opti-
mization procedure works as follows. The objective of the supervised-based 
approaches is to learn a mapping function f (⋅,Θ) of the images in the input data-
set � to the corresponding labels yi ∈ �  . Input dataset is composed of examples 
xi ∈ ℝ

h×w×c , where h is the height, w the width and c the number of channels of 
the images. By applying the map function f, each input image xi ∈ � is assigned 
with an expected label ŷi ∈ �  . The distance between the expected ( ̂y ) and actual 
(y) labels is measured by a loss function L(Θ) , and then it is used to adjust the 
model parameters Θ . The common method to update the network parameters 
reducing that distance is gradient descent, which computes the new values of the 
parameters using the gradient of the loss function as Θ� = Θ − � g , where � is the 
learning rate, Θ� and Θ the current and previous parameter values, respectively, 
and g is the gradient vector of the loss function, computed as g = ∇ΘL(Θ).

Current large-scale DNNs architectures trained on large datasets and with a 
huge number of parameters have increased models training complexity [6]. Thus, 
the improvement of the performance and the accuracy of the models have become 
major challenges in this area. High-performance computing (HPC) platforms 
composed of resources with different computational capabilities (e.g., multi-core 
CPUs or GPUs) have addressed these challenges. Two main schemes are used 
to train DNN models in HPC platforms: model-parallelism and data-parallelism. 
Model parallelism scheme splits the model between the available computational 
resources, and each part is trained using the entire set of data examples. Con-
versely, data parallelism distributes disjoint partitions of the dataset between the 
processes running on the computational resources, known as replicas, training a 
copy of the model.

This work focuses on the data parallelism scheme. Each data partition Xp ∈ � 
assigned to a replica p ∈ P is composed of subsets of data examples called 
batches. A batch passes through the model layers to perform a training iteration. 
Then, replicas compute the gradient vector and communicate each other to update 
the global parameter values Θ� . Parameter values are stored in centralized param-
eter servers, or distributed using collective communications [25]. An epoch is a 
complete pass of the batches in a data partition.

The heterogeneity of in HPC platforms is an issue that should be consid-
ered in order to efficiently train models under the data-parallelism scheme. The 
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resources that compose the platforms have different computational capabilities, 
which lead to uneven replica training times. The consequence is that assuming 
collective communication at the communication stage, faster processes wait for 
slower processes, highly degrading performance. Parameter servers together with 
the asynchronous SGD (ASGD) [9] technique partially solve the performance 
problem of processes synchronization at the communication stages. Nevertheless, 
as the training progresses, faster replicas will compute their gradients using an 
obsolete version of the global parameters. The distance between local parameters 
employed to compute gradients in a replica and their global values is called stale-
ness. While staleness reduces the performance impact of the communication in 
the overall training performance, the fact is that it has an impact in the final accu-
racy of the model.

Our approach is to unevenly distribute the data between the replicas according 
to its relative computational speed [22]. This mechanism ensures similar training 
times in each replica, and hence, it diminishes the waiting times at communica-
tion stages, and furthermore, it avoids staleness. Each replica p is assigned with 
a data partition Xp proportional to its computational speed. We establish a global 
batch size B as an hyperparameter to the training. The size of the batch (number 
of examples) feeding the model in each replica is computed as bp = B × sp , hence, 
proportional to the relative speed of the replica sp . The total size of the parti-
tion assigned to each replica is Xp = X × sp . Note that the number of iterations 
per epoch in each replica is constant, and equal to Xp∕bp . A decisive step is to 
figure out the relative speeds of the replicas sp in the platform. As example, the 
FuPerMod tool [8] represents the performance profile of P processes as a vec-
tor S = {s1, s2,… , sP} , with sp the inverse of the time spent in the execution of a 
benchmark provided by the user. The benchmark should reflect the computation 
performed in the actual training code, and hence it is usually a subset of the entire 
model.

While former approach have demonstrated to improve performance of train-
ing models in heterogeneous HPC platforms, the fact is that replicas use a dif-
ferent amount of data to train its local models, and compute the gradients based 
on different feature information. Thus, replicas should contribute unevenly 
to the parameters updating. A main contribution of this work is to introduce a 
methodology to improve the accuracy of the models based on weighted gradi-
ent computations, according to the speeds of the replicas involved in the training 
process. Assuming a dedicated heterogeneous HPC platform, the overall meth-
odology is as follows. Data are distributed between replicas according to their 
relative speeds. Such speeds are figured out in a previous stage to the training 
and the amount of data assigned to each replica is computed. Then, replicas train 
its copies of the model on assigned data avoiding waiting times at communica-
tion stages. Collective communication operations are used to share the gradients. 
Parameter updating is achieved using weighted gradient computations, ensuring 
that each replica have an proportional impact on the weights depending on its 
speed.

As a summary, the proposed work implements the following solutions to the 
described problems.
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• To speed up the computation phase, the distribution of the workload has been 
measured based on the speeds of each resource using popular methods available 
in the literature.

• To improve the accuracy of the model, a methodology is proposed to ensure that 
the training information obtained in each replica has an impact relative to the 
assigned data workload. In this way, it is controlled that the replicas with low 
amount of data does not interfere negatively in the steps of training and weight 
updating.

• In order to evaluate the proposed method, two heterogeneous platforms com-
posed of multicore CPUs and GPUs have been tested. We compare the method 
with a baseline unweighted gradient computation using several scientific data-
sets, as CIFAR-10, CIFAR-100 and Mini-ImageNet. The proposed method 
obtains a higher accuracy than the baseline approach with a comparable perfor-
mance for a variety of simple and deeper networks.

The organization of the paper is as follows. Section 2 explores related approaches 
proposed in the literature. Section 3 describes the proposed weighted gradient meth-
odology. Section  4 evaluates the method in different platforms and datasets, and 
analyze the obtained results showing the viability of the proposal. Finally, Sect. 5 
concludes.

2  Related work

The convergence of high-performance computing and deep learning model train-
ing, together with the development of parallelization techniques, has been studied 
in multiple works [16, 32]. In [18], both model and data parallelism techniques are 
proposed as main schemes of parallelization for deep neural networks on HPC plat-
forms. A thorough study and evaluation of the such parallelization techniques is 
performed in [2]. Model parallelism enhancements have been proposed for particu-
lar platforms in the literature [21]. Meanwhile, data parallelism have gained inter-
est in different scientific research fields due to the performance improvements and 
its ease of use for different research fields. As examples, the work [11] enumerates 
the possibilities of the distributed data parallelism schemes over HSI image clas-
sification for different synchronous or asynchronous approaches, and the work [23] 
evaluates the performance of the data parallel approach in pattern recognition appli-
cations. HSI classification methods has been greatly enhanced due to the signifi-
cant improvements in image processing and analysis techniques. Nevertheless, these 
techniques should be efficiently parallelized in order to optimize their performance. 
For instance, Danfeng et  al. [13] proposed a multimodal deep neural architecture 
for feature representation learning using fully connected (FCs) and convolutional 
(CNNs) networks to extract relevant pixel-wise and spatial information, respectively. 
Meanwhile, the work proposed by Danfeng et al. [14] extracts detailed spectral rep-
resentations using a sequential network to learn group-wise spectral information of 
the different HSI materials.
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Particular aspects of the data parallelism scheme have been addressed in sev-
eral contributions. The work [26] evaluates the impact on the distributed training 
for different hyperparameter configurations. The work [17] proposes the Stale Syn-
chronous Parallel method to address the problem of the staleness on homogeneous 
data distributions using stochastic gradient descent (SGD) as optimizer. In addition, 
the staleness issue has been addressed in other works. The work [20] proposes an 
asynchronous SGD (ASGD) approach to reduce the variance of the gradient val-
ues during the optimization process, while [10] proposes to modify the learning rate 
depending on the current staleness value for ASGD. In the former work, a discus-
sion is performed about the feasibility of modifying different hyperparameters of 
the model and its impact on the training. Authors in [7] propose to avoid excessive 
staleness impact on the model accuracy by benefiting the gradients from the fastest 
processes, discarding slower processes ones. Nevertheless, this approach causes a 
significant loss of information from slower processes.

Regarding workload distribution in data-parallelism scheme, a dynamic workload 
distribution scheme is proposed in [5], to adapt the assigned batch size to each rep-
lica in every iteration. A recurrent neural network (RNN) is used in order to measure 
the speed of each replica. On the other hand, static load balancing approaches are 
used to avoid the impact of the speed calculation time in every training iteration. In 
this sense, the work [22] performs a unique workload distribution computation in a 
prior stage to the training stage.

Notwithstanding heterogeneous data partitioning improves training performance 
on heterogeneous platforms, its impact on the accuracy of the final model is not 
addressed extensively in the literature. The work [30] proposes a method called 
TernGrad based on scaling down the gradient norms in order to improve the con-
vergence and speed up of training. Method convergence and performance have been 
evaluated using SGD under a parameter localization scheme. In this scheme, work-
ers holds its own copy of the parameters locally. Additionally, it proposes the use of 
ternary values to reduce communication. Ternary values quantifies gradients (32-
bits) before being communicated using a ternary vector with values ∈ {−1, 0, 1} that 
reduces the communication volume by a ‘x’ factor of x = 32∕ log2(3).

The reduction in the communications is studied in [28] using different gradient 
quantization techniques in the loss calculation step for the MNIST and CIFAR-10 
datasets. The work [30] improves former quantization in each computation element 
for more complex Imagenet dataset. The relationship between the quantization of 
the gradients and the accuracy obtained in the model is evaluated in [1].

In brief, most of the works refer to the management of the gradient focusing on 
performance. Since the performance problem has been solved using computational 
balancing techniques, weighting methods gained importance to improve accuracy, 
by computing model parameters based on the replicas gradient directions. The 
importance of weighting methods for DNNs is deeply studied in the literature dem-
onstrating how these methods influence the convergence and network predictions 
[3]. Additionally, weighted methods are also used to differently assigning a weight 
to each dataset class [4].

In this sense, our proposal addresses data-parallelism models training on het-
erogeneous data partitions. Gradient contributions from each replica to the global 
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parameter computations are weighted using the speed of each replica. Therefore, our 
objective in terms of performance and specially final accuracy is to outperform cur-
rent baseline method with an unweighted gradient computation.

3  Hetgrad optimization methodology

This section details the methodology followed to solve the described problems 
derived from the pointed challenges. In this context, the implemented method pro-
poses a static mapping technique to distribute the data among the available resources 
prior to the execution of the deep neural model, seeking for the static workload 
balancing and introducing a new loss balancing to compensate the heterogeneous 
partitioning previously performed. The introduced balanced (or weighted) gradient 
calculation considerably improves the convergence of the neural model during the 
training phase, which conducts a more accurate parameter tuning, leading to a better 
accuracy.

Following previous research [22], the strategy for the performance optimization 
of deep networks has been based primarily on data parallelization approaches, where 
a replica of the full model is loaded and run by each computational resource using 
non-overlapped data subsets. While in those clusters with homogeneous resources, 
data partitioning is done directly, giving the same partition size to each resource, 
in heterogeneous clusters, a fair partitioning must be done. Indeed, at equal parti-
tion, differences in the computational capacities of the resources on current hetero-
geneous platforms can induce long waiting times when synchronously combining 
gradients, leading to a degradation of overall performance. In order to overcome 
this drawback, the data partitions have to balance the load between the different 
resources according to their computational capacities (particularly in proportion to 
the speed of the computing device), minimizing the computational time.

Emphasizing to divide the data into fair partitions that balance the workload of 
the heterogeneous cluster, a prior analysis of the computational features of the clus-
ter should be conducted in order to determine the amount of data (i.e., the percent-
age of data) that each resource is capable of handling. Several techniques can be 
taken into account, such as the widely used FuPerMod framework [8]. This general-
purpose data partitioning framework performs accurate and efficient benchmarking 
to obtain the relative speed of the resources that constitute the cluster, providing the 
load measurements for each element that optimize execution time. Also, other cri-
teria could be taken into account to determine these measurements [5]. In this par-
ticular case, the resource speed is used to define the heterogeneity of the platform, as 
explained in the following Sect. 4.3 and implemented in the work [22]. As a result, a 
vector of measurements is obtained � = {c1, c2,… , cD} , which is normalized taking 
into account the slowest device or the device with the most limited computational 
capability, providing a metric appropriate to the target problem. Indeed, the normal-
ized vector � is providing unit of capability. Based on these measurements, the data 
partitioning is conducted, splitting the training data N into non-overlapped parti-
tions with different sizes P1,P2,… ,PD . To accomplish this, N is divided between 
the sum of units of capability, obtaining the number of samples per unit of capability 
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Ñ = N∕
∑D

i=1
ci . Then, the i-th partition is obtained as Pi = Ñ ⋅ ci . If Pi is not an 

integer, the data is rounded down, which may appear to disregard the remaining 
samples. Nevertheless, with each gradient update, data are shuffled and the parti-
tions are refilled, thus all samples are processed at the end.

At this point, it is important to decide on the synchronization strategy. Indeed, 
deep neural networks optimize their parameters through the back-propagation of the 
gradient signal within an iterative process guided by the optimization algorithm. In 
particular, they conduct several training epochs, where in each epoch, the optimiza-
tion algorithm pass all the training data through the network. To avoid complica-
tions in model convergence, the data passing is done iterative, grouping the training 
data into non-overlapped batches of identical size B that are processed separately by 
the network. As a result, to complete an epoch, all batches must have been processed 
by the neural model, so each epoch is defined by a series of iterations determined 
by M = N∕B , where N indicates the number of training samples, B the batch size 
and M the number of iterations/batches. By having several distributed replicas, the 
gradients obtained by each replica must be combined in order to compose a global 
gradient that can be transmitted to the replicas to update their parameters. Although 
asynchronous communication of gradients has been proposed, it its hampered by 
the so-called staleness problem, complicating also the control mechanisms to obtain 
a suitable global gradient. In this sense, the proposed method considers a synchro-
nized communication between the working nodes. This introduces a slight constraint 
when organizing the data in each partition. In fact, the number of batches required to 
complete an epoch M must be the same on all devices to ensure the synchronization. 
Thus, for each partition Pi , a batch size Bi = Pi∕M is set, ∀i ∈ [1,D] . Furthermore, 
the set of all batches in each partition must cover the total training data. This is 
done by introducing a global batch size G, which acts mimicking the total number of 
training data N. While setting the size of each partition is done by Pi = Ñ ⋅ ci , batch 
sizes are obtained as Bi = G̃ ⋅ ci , where G̃ = G∕

∑D

i=1
ci is the number of batches per 

unit of capability. Once again, if Bi is not an integer, is rounded to obtain the desired 
M iterations.

Once parameters {P1,P2,… ,PD} , M and {B1,B2,… ,BD} have been determined, 
replicas are trained for M iterations, using completely different training samples. 
This avoids the same data being involved several times in the same parameters 
update. Furthermore, data shuffling is implemented, ensuring that all replicas are 
trained with the entire dataset. Focusing on the training stage, each replica performs 
the calculation of its gradient as a function of the loss (i.e., classification error) 
obtained by the model. In this regard, at the k-th iteration, the i-th replica obtains the 
loss of its batch �[k] according to its current parameters �k

i
 . As a result, each replica 

obtains its gradient vector Lk(�)i and communicates it through Open-MPI allReduce 
collectives so that the gradients are combined as shown in Eq. (1).

Once the gradient combination is done, Lk(�)global is sent to the replicas, which 
accordingly update their parameters using the defined learning rate. In this context, 

(1)L
k(�)global =

1

D

D
∑

i=1

L
k(�)i
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Eq.  (1) considers the contributions of the replicas at the same level, giving them 
equal weight in the final calculation of the global gradient as shown in Fig.  1a. 
As a result, the global gradient has been obtained disregarding the amount of data 
involved in the calculation of the local gradients. Nevertheless, this is not fair as 
each replica employs a different partition size. Therefore, replicas with less data 
contribute the same as replicas with more data, potentially hampering the gradient 
calculation.

To properly avoid this problem, the proposed method introduces the weighted 
gradient calculation, which aligns the contribution of each replica to the parti-
tion size it receives. This adjustment is performed during the calculation of the 
global gradient as Eq. (2) indicates:

Therefore, the gradients of each partition are scaled according to the computational 
capability of the device, as shown in Fig. 1b. This provides more weight to those 
gradients calculated with a larger number of samples, which are more robust and 
accurate than those calculated in smaller partitions, indeed. Consequently, the global 
gradient will take a more appropriate direction, avoiding local minima and stag-
nation introduced by small partitions, resulting in a better parameter fit and in an 
improved classification result. As a consequence, the floating points operations are 
defined as:

where Dim defines the (height × width × f ilters) data at the input of each layer l, k 
is the kernel size of the convolutions and G is the size of the gradient vector Lk(�)i 
that represents one multiplication for each gradient value.

(2)L
k(�)global =

D
∑

i=1

L
k(�)i ⋅ ci

(3)FLOPS =

(

Layers
∑

l=0

B × k2 × Dim

)

+

G
∑

g=0

1,

Fig. 1  Gradient hyper-plane. Red arrow represent the gradient direction of the obtained total gradient 
��⃗∇T after sharing replica gradients ��⃗∇p . The weighted gradient for each process is represented as �p . Angle 
direction of the gradients is represented as �p (color figure online)



13463

1 3

Heterogeneous gradient computing optimization for scalable…

4  Experimental results

4.1  Benchmark datasets

The experimentation have been conducted on three different datasets, i.e., (1) 
CIFAR-10, (2) CIFAR-100, and (3) Mini-ImageNet. The former is composed of 
60,000 RGB images of size 32 × 32 × 3 , with the images belonging to 10 differ-
ent classes. The second one is similar to CIFAR-10, where the number of classes 
rises to 100, and hence, the complexity is higher. The last one is composed of 
60,000 RGB images of size 84 × 84 × 3 resized to 256 × 256 × 3 , and center 
cropped to 224 × 224 × 3 before the training step. Similar to CIFAR-100, Mini-
ImageNet is composed of 100 different classes.

4.2  Platform description

The used platform for the experiments is the modular supercomputer architec-
ture (MSA) that has been developed by the European project Dynamical Exascale 
Entry Platform-Extreme Scale Technologies (DEEP-EST) [27]. The MSA is an 
innovative HPC architecture that can integrate an arbitrary number of modules 
with heterogeneous hardware components. In this work, two modules have been 
used. The first one is known as Data Analytics Module (DP-DAM), which is com-
posed of 16 nodes communicated with an EXTOLL network of 100 Gb/s. In turn, 
each DP-DAM node is composed of two Intel Xeon “Cascade Lake” Platinum 
8260M CPU running at 2.40 GHz with 24 physical cores per CPU and a Nvidia 
V100 Tesla GPU of 32  GB HBM2. The second module is the Extreme Scale 
Booster (DP-ESB) which is composed of 74 nodes. Each DP-ESB node is com-
posed of an Intel Xeon “Cascade Lake” Silver 4215 CPU running at 2.50 GHz 
with 8 physical cores and a Nvidia V100 Tesla GPU with 32 GB HBM2. Nodes 
are connected through a 100 Gb/s EDR Infiniband network.

Conducted experiments use four nodes from the DP-DAM module for Experi-
ments 1 and 3. Meanwhile, for Experiment 2, eight nodes have been used from 
the DP-ESB module.

4.3  Experimental settings

A data-parallel scheme is assumed and a heterogeneous workload partitioning is 
performed. In order to perform the data partitioning step, each replica is defined 
by the computing speed based on its computational capabilities. As a conse-
quence, speeds are different for each replica. Thus, the speed is used to assign 
an input data portion to the replicas. This means that acceleration speedups are 
determined by the differences between resource speeds. In the experimentation, 
five repetitions of three experiments have been conducted.
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4.4  Experimental discussion

4.4.1  Experiment 1: Initial performance insights

The first experiment compares the obtained accuracy from the baseline unweighted 
gradient computation with the HetGrad proposal, using the DP-DAM module with 
CIFAR-10 and CIFAR-100. Experiments are conducted for the VGG16, ResNet18, 
ResNet50 and DenseNet121 models. The objective of this experiment is to obtain 
initial insights on the HetGrad accuracy. Furthermore, an evaluation of the speedup 

Table 1  Average accuracy ( % ) 
after five Monte Carlo runs for 
CIFAR-10 and CIFAR-100

Bold text indicates the best result obtained between both methods

VGG16 ResNet18 ResNet50 DenseNet121

CIFAR-10
HetGrad 91.77±0.14 92.69±0.18 93.01±0.10 93.46±0.16
Baseline 89.87±0.32 90.98±0.20 90.63±0.26 92.25±0.24
CIFAR-100
HetGrad 67.02±0.31 71.28±0.30 73.08±0.32 73.39±0.19
Baseline 56.24±0.16 68.58±1.32 68.70±1.83 71.81±1.92

Fig. 2  Accuracy per epoch using CIFAR-10
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obtained by the heterogeneous partitioning of the workload according to the 
speeds of the processes has been conducted and compared with a homogeneous 
partitioning.

Obtained results from the first experiment are detailed by Table 1 and depicted by 
Figs. 2 and 3 considering CIFAR-10 and CIFAR-100, respectively. As it is appreci-
ated, positive results have been obtained for both datasets. Attending to CIFAR-10, 
the accuracy improvement is similar for all models, where DenseNet121 presents 
the higher accuracy gain, from 92.25%±0.24 to 93.46%±0.16. Regarding CIFAR-
100, accuracy improvements are more significant since the complexity of the dataset 
is higher. The model with the highest accuracy gain is VGG16 with an accuracy 
improvement from 56.24%±0.16 to 67.02%±0.31. Meanwhile, DenseNet121 is the 

Fig. 3  Accuracy per epoch using CIFAR-100

Table 2  Speedup and epoch 
time (in seconds) using CIFAR-
100

Bold text indicates the best result obtained between both methods

VGG16 ResNet18 ResNet50 DenseNet121

CIFAR-100
Balanced 25.87s 32.10s 86.45s 80.01s
Unbalanced 194.67s 314.56s 1014.25s 952.34s
Speedup 7.82 9.79 11.73 11.90
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most accurate model, with an improvement from 71.81%±1.92 to 73.39%±0.19. As 
we can observe, HetGrad proposal obtains a higher final accuracy for all models and 
datasets, through boosting the accuracy in early epochs.

Finally, obtained speedups with HetGrad are provided by Table 2, where the het-
erogeneous workload balance provides a notable improvement in terms of perfor-
mance for the training step of DNNs.

4.4.2  Experiment 2: Deep models and scalability

In this experiment, both baseline and HetGrad models are also compared using DP-
ESB module on the Mini-ImageNet dataset. Other evaluated models are ResNet18, 
ResNet50 and ResNet101. Since DP-ESB increments the number of nodes in the 
platform to eight with respect to the former experiment, this experiment includes a 
scaling factor to support deeper ResNet models.

Table  3 details the obtained results. As shown, the accuracy improves for all 
evaluated ResNet models. Focusing on deep complex models as ResNet101, the 
accuracy increases from 60.94±4.01 to 69.37±0.13. Note that a complex dataset as 
Mini-Imagenet does not improves the accuracy for deeper models in the baseline 
proposal, which stagnates in around ≃ 60%. Meanwhile, it is demonstrated that the 
proposed HetGrad obtains notable improvements in terms of scaling for complex 
datasets and models. Such complex datasets and models require more processes to 
improve the performance of the training, which includes heterogeneity in the com-
putational resources that are used. This fact highly benefits our proposal, since het-
erogeneity is a main factor impacting the parameter updating.

4.4.3  Experiment 3: Optimizers performance analysis

Finally, different optimizers have been evaluated to complete the evaluation of the 
proposal using CIFAR-100. In particular, these optimizers are SGDM, RMSprop, 
Adam, AdamW and AdaBelief. Two models have been selected to conduct this 
experiment, i.e., VGG16 and ResNet18.

Results from Fig.  4 report that every optimizer works better using the pre-
posed HetGrad. Focusing on ResNet18 model, the best accuracy is obtained using 
AdamW, with a 68.52%±1.66 for the baseline and 71.69%±0.40 for the HetGrad 
proposal. In VGG16, AdaBelief obtains the best accuracy for the HetGrad pro-
posal with 68.01%±0.22 and 62.59%±0.24 for the baseline. Regarding optimizers, 
the overall conclusion is that optimizers with regularization methods, as decoupled 
weight decay in AdamW, work better for complex models. In addition, the HetGrad 

Table 3  Accuracy (in %) for 
mini-ImageNet using ResNet 
models

Bold text indicates the best result obtained between both methods

ResNet18 ResNet50 ResNet101

Mini-ImageNet
HetGrad 65.02±1.89 66.59±2.42 69.37±0.13
Baseline 60.47±4.33 60.16±5.75 60.94±4.01



13467

1 3

Heterogeneous gradient computing optimization for scalable…

proposal obtains significantly better accuracy results than the baseline. These results 
get minimized at the convergence of the model but a significant improvement in 
accuracy is maintained.

5  Conclusions

In this paper, a weighted gradient calculation for data-parallel DNNs in scalable 
heterogeneous HPC platforms is presented. The proposed approach significantly 
reduces the impact in the global gradient calculation from replicas with a low 
amount of data. This is achieved using the speed of each replica in the step of global 
gradient calculation. Thus, in these calculations, each replica contributes propor-
tionally to its assigned data and speed. The conducted experiments using benchmark 
datasets, reveal that the proposed HetGrad approach achieves better accuracy results 
for early epochs, providing a better final accuracy compared with the original gradi-
ent calculation while accelerate training. Furthermore, complex datasets and models 
have been proved to obtain major accuracy improvements in the proposed method 
under a scaling factor. Additionally, the data-parallelism scheme is used where the 
amount of data distributed for the replicas is obtained using heterogeneous workload 
partitioning, providing a significant time reduction. As future works, the implemen-
tation of more sophisticated optimization methods based on the heterogeneity of the 
resources for Federated Learning (FL) or the adaptation of the proposed method for 
HSI classification could obtain beneficial results.
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