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Abstract
The development that quantum computing technologies are achieving is beginning to 
attract the interest of companies that could potentially be users of quantum software. Thus, 
it is perfectly feasible that during the next few years hybrid systems will start to appear 
integrating both the classical software systems of companies and new quantum ones pro-
viding solutions to problems that still remain unmanageable today. A natural way to sup-
port such integration is Service-Oriented Computing. While conceptually the invocation of 
a quantum software service is similar to that of a classical one, technically there are many 
differences and technological limitations, which refer to platform independence, decou-
pling, scalability, etc. To highlight these differences and the difficulties to develop quality 
quantum services, this paper takes a well-known problem to which a quantum solution can 
be provided, integer factorization, making use of the Amazon Braket quantum service plat-
form. The exercise of trying to provide the factorization as a quantum service is carried out 
following the best practices, design patterns and standards existing in the implementation 
of classical services. This case study is used to highlight the rough edges and limitations 
that arise in the integration of classical-quantum hybrid systems using service-oriented 
computing. The conclusion of the study allows us to point out directions in which to focus 
research efforts in order to achieve effective quantum service-oriented computing.

Keywords  Quantum services · Classical services · Hybrid classical-quantum software · 
Quality

1  Introduction

Quantum computing is starting to establish itself as a commercial reality (MacQuarrie 
et  al.,  2020). Several major computing corporations have already built working quantum 
computers, there are tens of quantum programming languages and simulators, and real 
quantum computers can already be used by the general public through the cloud. All this is 
motivating software development companies to take the first steps by launching their own 
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proposals for the integral development of quantum software (Pérez-Castillo & Piattini, 2020; 
Wille et al., 2019; Bergholm et al., 2018; Piattini et al., 2021; Pérez-Castillo et al., 2021). 
All of these signals are an urgent call to software engineers to prepare and enroll to sail the 
quantum seas.

It is generally assumed that on the way to a new world in which software systems are 
mostly quantum, there will be a transition time in which classical and quantum systems 
must not only coexist but collaborate by interacting with each other (Sodhi, 2018). This is 
what has been called classical-quantum hybrid systems (McCaskey et al., 2018, 2020). The 
advances provided by software engineering in the last two decades allow us to affirm that 
a natural way to approach such collaborative coexistence is by following the principles of 
service engineering and service computing.

Among the reasons for this, two can be highlighted. On the one hand, as hardware tech-
nology matures and achieves more affordable costs, it is reasonable to think that compa-
nies will be inclined to use quantum infrastructure and quantum software as a service, as 
they are used to do nowadays with classical computing resources. This has already hap-
pened with classical computing services, companies such as Amazon, Microsoft, IBM, 
and Google that have started approaching the world of quantum computing Digital Journal 
(2022). And it is not unreasonable to think that these same companies will offer both clas-
sical and quantum computing services indiscriminately.

On the other hand, it is reasonable to think that at least initially, quantum systems will be 
used to solve only those parts of problems that cannot be solved by classical architectures, 
while those parts of problems that are already efficiently solved by classical architectures will 
continue to be treated as before. For example, in the field of health, it will be possible to 
accelerate the discovery of new medicines, perform simulations of molecules for pharmaceu-
ticals, and enable the development of new medicines easier and faster (Zinner et al., 2022); 
in the financial domain, it could help analyze all possible scenarios and compare risks and 
optimize a financial portfolio Pistoia et al. (2021); it could also help us decrypt cryptographic 
security systems, optimize travel routes and logistics, model climate change, etc. (Cheng 
et al., 2021).

A natural way to achieve these quantum solutions is by consuming quantum services.
Conceptually, the invocation of a quantum program is similar to that of a classical ser-

vice. A piece of software needs a result to be produced by a quantum system and to do so 
it consumes a service. For the sake of service engineering principles, such an invocation 
should even be agnostic of whether the service that will return the result is quantum or 
not. Technically, however, the invocation of a quantum service is very different from that 
of classical service and still poses a challenge today. This is due to the inherent nature 
of quantum computing, meaning that a quantum service differs from classical services in 
which it includes entanglement and superposition of solutions, and will collapse to a single 
solution when interacting with the external world, leading to having a probability ampli-
tude associated to the results obtained upon observations of the quantum system.

Servitizing a quantum piece of software, namely converting it into a service endpoint 
that can be invoked through a standard service request, is possible with the existing tech-
nology. However, in the current status of quantum software, it means eliminating most of 
the advantages that made service-oriented computing a commercial success, especially, 
those related to software quality like composability, modularity, maintainability, reusabil-
ity, etc. (Ravichandran & Rai, 2000).

The reasons for this are multiple. First and foremost, the specificity of each architecture 
makes quantum algorithms and their parameters dependent on the specific quantum hard-
ware in which they will be executed. But also, the return of the result of a quantum process 
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is subject to errors or does not support the intermediate verification of results (due to the 
system collapse). Thus, different quantum architectures require very different skillsets. For 
example, circuit-based quantum programming requires developers to know the details of 
quantum gates (Wille et al., 2019), while quantum annealing programming requires adapt-
ing the problem to that specific metaheuristic (Boixo et al., 2013). Consequently, invoking 
a quantum program in an agnostic way is impossible today and violates all the principles of 
service engineering. All of the above highlights the need for the development of Quantum 
Service Engineering (Piattini et al., 2020).

In this paper, we explore the current state of quantum software engineering from a service-
oriented point of view. The integer factorization problem (Nielsen & Chuang,  2002; Jiang 
et al., 2018) is used to illustrate the different problems that arise when a quantum piece of code 
is tried to be used as a service. Amazon Braket1, the quantum computing service offered by 
Amazon as part of their AWS suite, is used as the services platform. Amazon is globally rec-
ognized as the leader company in services technology, and through Braket, they offer access 
to quantum computers from three different hardware providers. Using this platform as the 
basis for quantum services development, we identify the problems and limitations of current 
technology using the lessons learned from service-oriented computing. The paper provides an 
exploration of the problems to be addressed pointing out different research directions for the 
development of a future quantum service engineering.

In order to do that the rest of the paper is organized as follows. Section 2 details this 
work background in both fields of service-oriented computing and quantum software 
development. Section 3 describes one of the possible ways to implement a classic service 
following best practices, design patterns, and existing standards. Section 4 addresses the 
servitization of quantum software using Amazon Braket. Section 5 lists the main limita-
tions found in today technology that limits the benefits of quantum services. And finally, 
Sect. 6 presents the paper conclusion and future works.

2 � Background

Service-oriented computing is a paradigm that utilizes services as the fundamental elements 
for developing software (Papazoglou, 2003). One of its pillars is service-oriented architec-
ture (SOA) that proposes the implementation of complex software solutions through the use 
of a set of services that are composed and choreographed (Endrei et al., 2004). The basic 
composition mechanism is the service call that allows a service to be invoked from another 
piece of code (potentially another service) agnostically with respect to the place, technol-
ogy, or architecture of the invoked service. The services can thus be maintained, evolved, 
replaced, and reused independently without affecting the software that invokes them. It is 
precisely these properties that make them especially attractive to create quality software. 
Over the last two decades, service-oriented computing and SOA in general, and web ser-
vices in particular, have been at the center of intense research (Bouguettaya et  al.,  2017) 
leading to monolithic software being gradually replaced by service-based software run in 
the cloud (Mazlami et al., 2017; Haugeland et al., 2021).

The success of service-oriented computing has been possible, to a great extent, thanks 
to the development of cloud computing as a paradigm that aims to provide reliable and 

1  https://​aws.​amazon.​com/​braket/

https://aws.amazon.com/braket/
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customized dynamic computing environments (Wang et al., 2010). Some of the main rea-
sons behind the success of the cloud include: the ability for companies to better control 
their costs since they do not have to buy, upgrade and maintain expensive hardware and 
only pay for their use; and the flexibility and scalability provided by cloud vendors that 
allow companies to instantly increase or decrease their hardware capabilities according to 
their needs. These have made the cloud one of the most successful business models of the 
last decades. Recent estimations calculate that in the USA only, cloud computing contrib-
uted approximately 214 billion dollars in value-added to the GDP and 2.15 million jobs in 
2017 Hooton (2019).

Given these numbers are not a surprise that current quantum computers, which are still 
very expensive hardware to build and operate, are being offered following this model. In 
its current form, most quantum computers can be accessed through the cloud in a model 
called by some researchers quantum computing as a service (QCaaS) (Rahaman & 
Islam, 2015). This model can be compared to the classical Infrastructure as a service (IaaS) 
model offered in cloud computing. QCaaS allows developers to access some of the world’s 
existing quantum computers; nevertheless, this access is very dependent on the specific 
hardware and developers must have great proficiency in Quantum Computing to benefit 
from its advantages.

To increase the abstraction level of QCaaS, there are multiple ongoing research efforts. 
From a commercial perspective, platforms like the above-mentioned Amazon Braket pro-
vide a development environment for quantum software engineers or, like QPath2, an eco-
system that covers a wide range of possible applications by integrating the software classi-
cal and quantum worlds in a quantum development and application life cycle platform for 
high-quality quantum software.

From a more academic perspective, a significant number of works are starting to appear 
in the field of quantum software engineering (Zhao,  2020; Piattini et  al.,  2020). These 
works focus on translating the lessons learned in classical software engineering to improve 
the quality of quantum software. However, as far as the authors know, very few works 
focus on the perspective of service engineering for quantum and hybrid software.

However, some works are starting to appear in this domain, like Barzen et al. (2021) 
where quantum application as a service (QaaS) is proposed to narrow the gap between 
classical service engineering and quantum software. Works like this reveal the need to 
focus on a service-oriented approach for the development of quantum services.

3 � A good classic service implementation

Before starting to discuss the proposed case study and the limitations found, we will 
describe one of the possible ways to manage the entire life-cycle of a classic service, start-
ing with the implementation, followed by its deployment and its subsequent monitoring 
and maintenance. For this purpose, we will follow existing best practices, design patterns, 
and standards.

Figure 1 shows how a good classical version of the implementation, deployment, and 
maintenance of a service could look like. We would like to point out that there is no sin-
gle best way to define a classic service and that it can be developed following different 

2  https://​www.​quant​umpath.​es/

https://www.quantumpath.es/
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approaches. However, we have tried to follow some of the most accepted best practices, 
design patterns, and standards that have become very relevant in recent years for the defini-
tion and development of classical services. Among them, we followed the models defined 
by Newman (2021) (one of the early pioneers of microservice architecture), the microser-
vices design patterns of Richardson (2019) (a renowned and well-respected microservices 
expert), and the guide of Wolff (2019) (a renowned software architect who has written sev-
eral books on microservices).

In this regard, Fig. 1 is split vertically in two. On the left side can be seen the service 
client (which can be a service itself). In the case study, which will be detailed in Sect. 4, 
this would be the cryptographic decryption service. And on the right side, the invoked ser-
vice can be seen, in the commented case study, it would be the algorithm for calculating 
the factorization of integers.

Horizontally, the same Fig.  1 is split into three layers that represent different phases 
in the service life cycle. On the top, the implementation phase of the service can be seen, 
where the service is developed. In the middle, the deployment phase of the service can be 
seen, where it is published so that it can be invoked. And at the bottom, the monitoring 
phase can be seen where the service is being used. For each of these phases, some of the 
most relevant standards and best practices in classic services will be discussed.

For the implementation of a classical service, a developer needs to combine two main 
aspects. The business logic of the service, which is specific to each service and imple-
mented ad hoc, and the service API. For the definition of the service API, the OpenAPI3 
specification can be used. This specification defines a standard, language-agnostic interface 
to RESTful APIs which allows both humans and computers to discover and understand 
the capabilities of the service without access to source code, documentation, or through 
network traffic inspection. An OpenAPI definition can then be used by code generation 
tools like Swagger to generate servers and clients in various programming languages. 
Using OpenAPI, for our case study, the integer factorization service can be defined with 
its input and output parameters. From this definition, a code stub can be generated, for 
example in Python, in which the business logic of the service can be added. By following 
this approach, the service could be accessed using a REST request and JSON to provide 
the input parameters.

Fig. 1   A good classic version of a implementation of a service

3  https://​www.​opena​pis.​org/

https://www.openapis.org/
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Once the service is implemented, it must be deployed so clients can access it. For this 
deployment, in most cases, a cloud computing solution is used in which we deploy our API 
project in hardware provided by a third party. Depending on the level of control, we require 
over the hardware, there are several alternatives ranging from IaaS solutions, like Amazon 
Elastic Cloud Computing (EC2)4, where we have complete control over a virtual machine, 
to the use of containers like Docker5 or to serverless approaches like Amazon Lambda6, 
where no control over the underlying infrastructure is provided to the service creators. 
Independently of the deployment approach followed the proposed service will have some 
coupling with the operating system in which it is deployed.

At the same level, one of the most used design patterns in the deployment of classical 
services is the API Gateway. To put it simply, the API Gateway takes all API requests from 
a client, determines which services are needed, and combines them into a unified, seamless 
experience for the user. For the proposed case study, the service would invoke the prime 
number factorization service through the API Gateway of the back-end. The API Gateway 
would transmit the petition to the appropriate service and provide the response once it has 
been computed.

Finally, once the service is deployed and is being invoked by users it must be monitored 
by the DevOps team to ensure that the service can deal with the demand. To address this, 
usually, a Load Balancer can be used in combination with the API Gateway. Additionally, 
monitoring rules can be defined in combination with tools like Graphite7 or CloudWatch8 
to obtain fine-grained information of the service status. This would allow us to control the 
status of the prime number factorization service, the number of requests, how much are we 
going to pay for the infrastructure at the end of the month, etc.

As can be seen, even for a “simple” service like the prime number factorization ser-
vice the development, deployment, and monitoring process are quite complex. It could be 
thought that most of the components in Fig. 1 are not really necessary for a simple service. 
However, all of them are there for a reason. Service-oriented computing has adopted these 
patterns and good practices because all of them contribute to the benefits provided by ser-
vice orientation. The most relevant of these benefits are:

•	 Platform independence. By using a REST API, which in turn is based on HTTP, IP, 
and the rest of internet protocols, services can be invoked from any platform indepen-
dently of the language of the service, the language of the client, and the platforms in 
which both are run. Similarly, by using JSON, data can be transferred between services 
regardless of the implementation languages. Finally, by using the OpenAPI specifica-
tion, an independent, well-formed API will be defined that can be easily consumed by 
any client.

•	 Location independence. Classical services are also independent of the location in 
which they are deployed. This independence can be considered at two levels:

7  https://​graph​iteapp.​org/
8  https://​aws.​amazon.​com/​cloud​watch

4  https://​aws.​amazon.​com/​ec2
5  https://​www.​docker.​com/
6  https://​aws.​amazon.​com/​lambda

https://graphiteapp.org/
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/ec2
https://www.docker.com/
https://aws.amazon.com/lambda
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–	 Physical independence. This is provided by REST, HTTP, and DNS which allow 
service developers to use a URL to access a service independent of where it is 
deployed.

–	 Logical independence. Meaning the independence of a given service inside a more 
complex project is provided by an API Gateway that hides this complexity from the 
service clients.

•	 Decoupling. Three different types of decoupling must be taken into account:

–	 Decoupling between services. The decoupling between different services of a single 
API is provided by the API Gateway which can communicate services without the 
services knowing each other.

–	 Decoupling between services and hardware. The decoupling between services and 
hardware and operating systems is provided by the platform in which the services 
are deployed (EC2, Docker, Lambda, etc.).

–	 Decoupling between services and programming language. The decoupling between 
the services and the programming language in which they are written is provided by 
the OpenAPI Specification and code generation tools that are able to generate the 
service stub in different programming languages.

•	 Scalability. Services are also resilient and developers are able to scale to address 
changes in the demand. The most common way to provide this scalability, without 
incurring high economic costs from the cloud provider, is the use of elastic platforms 
and a load balancer that is able to start and stop new instances of the service as needed.

•	 Composability. Services also have to be composable, so a set of simple services can 
be composed to provide solutions to complex problems. This composability can be pro-
vided by the API Gateway that can decompose a single invocation into calls to different 
services without the services knowledge.

•	 Reliability. Services have to be reliable in the broadest sense of the word, including 
security, maintainability, accountability, and many other X-abilities. To achieve this, a 
complete set of monitoring and analytic tools are needed that provide all the informa-
tion needed about the services.

To achieve all these benefits a complex infrastructure, like the one shown in Fig.  1, is 
needed. However, as far as the authors know, there is no support to obtain the benefits of 
service-oriented computing if one of the services of an API is implemented as a quantum 
service.

4 � Quantum servitization

There are some problems that cannot be solved efficiently using classical computation, and 
a clear example is that of factoring prime numbers. This is where quantum computing can 
offer the greatest benefits. But without forgetting all the knowledge acquired in classical 
service-oriented computing. Where being able to distribute and servitize a development 
has offered benefits already known to all.

To address the current state of quantum services, in this paper, we have decided to use 
Amazon Braket. Amazon defines Braket as a fully managed quantum computing service. 
Specifically, Braket provides a development environment to build quantum algorithms, 
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test them on quantum circuit simulators, and run them on different quantum hardware 
technologies.

Given that Amazon is currently the global leader regarding cloud computing and ser-
vices technologies through AWS, Braket seems a good alternative to develop quantum ser-
vices. Nevertheless, since the state of quantum software development is roughly the same 
in the different existing platforms, we expect similar results to the ones presented in this 
paper if the quantum services were developed on a different platform.

The basic building block of service-oriented computing is a service, defined as a self-
describing, platform-agnostic computational element that supports rapid, low-cost compo-
sition of distributed applications (Papazoglou, 2003). However, Braket is not directly pre-
pared to offer the developed quantum algorithms as services that can be invoked through 
an endpoint to compose a more complex application.

This shortcoming can be addressed by wrapping the quantum algorithm in a classical 
service. This implies including a classical computer to run the classical service that, in 
turn, invokes the quantum computer. As far as the authors know, there is currently no way 
of directly invoking a quantum algorithm as a service. Figure 2 shows an example of this 
approach. One of the simplest and well-known quantum circuits, the one used to create 
Bell states between two qubits is wrapped by a Flask9 service. This Flask service can be 
deployed in a classical computer and provides a simple way to include quantum algorithms 
in a complex service-oriented solution.

Next, we present a more complex quantum algorithm used as a case study to identify the 
problems and limitations of current technology from the perspective of Service-Oriented 
Computing.

4.1 � Integer factorization case study

In order to make the analysis as broad and interdisciplinary as possible, we have decided 
to select a problem well-known by the scientific community working in quantum com-
puting. At the same time, the selected problem is simple enough to be comprehended by 
any newcomer. Between the several applications that satisfy both conditions, we have 
decided to tackle Integer Factorization, more precisely with a particular application of 
the later denoted Prime Factorization. As we all know, although this fundamental prob-
lem in number theory is computationally hard, it is not believed to belong to the NP-
hard class of problems (Jiang et al., 2018). Nonetheless, it is a problem that has been 
used as a basic hardness assumption for cryptographic algorithms, such as the famous 
RSA algorithm. Thus, integer factorization and identification of new methods to address 
this task acquire an important role in information security.

There are multiple proposals and algorithms for the solution of this problem, being 
the most famous Shor’s algorithm Nielsen and Chuang (2002). This algorithm is nor-
mally described in terms of quantum gates and circuits, suitable for development and 
execution on machines such as IBM’s Q computing chip Haring et al. (2011), but when 
considering other approaches to quantum computing, such as Adiabatic Quantum Com-
puting based on concepts such as quantum annealing, it is not possible to implement 
Shor’s algorithm directly. Nonetheless, other algorithms have been proposed for prime 

9  https://​flask.​palle​tspro​jects.​com/

https://flask.palletsprojects.com/
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factors, such as the case of the algorithm proposed by Wang et al. in (2020). Thus, in the 
studies conducted on this paper, these will be the algorithms proposed for integer fac-
torization: Shor’s algorithms for quantum machines programmed with quantum circuits 
and gates, such as Rigetti’s Motta et al. (2020) and IonQ’s Kielpinski et al. (2002); and 
integer factorization based on quantum annealing for adiabatic quantum machines such 
as D-Wave’s Hu et al. (2019).

These algorithms also serve as an illustration of a problem derived from the rela-
tive novelty of quantum computing and its different existing implementations. Namely, 
the nonexistence of algorithms with do-it-yourself characteristics. This is mainly due to 
the complex nature of the problems addressed by quantum computing and to the prox-
imity of the algorithms with the underlying hardware used. This context is producing 
problems similar to those of the 60s software crisis Moguel et  al. (2020), where each 
algorithm was designed for each particular computing hardware, many times having to 
recreate the algorithms for each new machine or even for each new increment of the 
problem. A reminiscent of this is found, for example, when having to generate a new 
circuit in Shor’s algorithm for primes to be factorized. Although this could be done 
through the use of algorithms to generate these circuits automatically, for the great 
majority of possible users of quantum computing, the ability to be able to create these 
types of “meta-algorithms” is beyond their capabilities, complicating the expansion 
of quantum computing usage out of the specialized field. Thus, it is necessary to offer 
solutions to non-specialized users for the utilization of quantum computing, such as the 
case of deployment of quantum services which allow hiding the complexity to users, 
only providing with entry end-points and returning the results of the execution.

Fig. 2   Quantum algorithm wrapped by a classical service
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4.2 � Integer factorization in Amazon Braket

To illustrate the actual situation of quantum services that can be developed on Amazon 
Braket, we have translated the above-mentioned integer factorization algorithms to this 
platform.

At the moment of writing this manuscript, Braket supports three different quantum 
computer simulators and real quantum computers from three different hardware vendors. 
Specifically, the supported quantum computers include two vendors whose development is 
based on quantum circuits, Rigetti and IonQ, and one vendor based on quantum annealing, 
D-Wave. The integer factorization algorithms have been tested in all supported quantum 
machines and simulators.

Since the supported simulators are also based on quantum circuits, Shor’s algorithm has 
been used in both, simulators and quantum circuits hardware. Figure 3 shows a fragment 

Fig. 3   Fragment of the quantum circuit needed to run Shor’s algorithm in Amazon Braket
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of the quantum period-finding subroutine of Shor’s algorithm implemented using Amazon 
Braket. The complete circuit for Shor’s algorithm can be executed without changes in the 
three simulators and the two circuit-based computers supported by Braket. Nevertheless, 
is interesting to note that the measurement and reinitialization of qubits supported by many 
other existing simulators, and that can be therefore found in public implementations of 
Shor’s algorithm, are not supported by Braket. In the figure, this part of the algorithm is left 
commented as an example. Shor’s algorithm can be adapted to avoid the use of these opera-
tions which means additional efforts to adapt one of the most well-known algorithms to the 
specifics of a given quantum platform.

This difference with other existing solutions causes that the implementation presented 
here only works on certain occasions. For our study, the result obtained or that the integer 
factorization algorithm does not work in all executions is not of great relevance because 
our interest is the study and analysis of the behavior of the quantum algorithm from the 
point of view of service-oriented computing.

Although the quantum circuit would be the same regardless of the quantum hardware 
or simulator used, the way in which the algorithm is invoked changes depending on where 
it will be run. Figure 4 shows the Braket invocation code for the three simulators and the 
two quantum computers supported. As can be seen in the figure, using the local simulator 
is the most straightforward invocation. To run the algorithms in the other simulators an s3 
(Amazon simple storage system) destination has to be defined, where results will be stored, 
alongside a timeout for polling these results (if the polling timeout is too short, results may 
not be returned within the polling time). Finally, for running the algorithm on real quan-
tum computers, a recovery task has to be defined. The quantum algorithm execution is an 
asynchronous operation and the developer is in charge of consulting the results when ready.

Finally, to execute integer factorization on an adiabatic quantum machine, such as 
D-Wave, one would have to completely rewrite the algorithm, since they are based on the 
adiabatic theorem closely related to quantum annealing. Thus, the mapping challenge dif-
fers from gate-based machines rendering quantum circuits inappropriate. Figure 5 shows 
the Braket code to factorize the number 21 using a D-Wave quantum machine.

These examples, although small, are enough to remark the current limitations of quan-
tum software from the point of view of service-oriented computing.

Fig. 4   Fragment of the Amazon Braket code to invoke the Shor’s algorithm in different devices
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5 � Quantum service implementation and its current limitations

After developing the described service, the algorithm was tested to execute on all the 
defined machines and simulators, and different metrics were used to evaluate its perfor-
mance and the limitations of including a quantum service in a hybrid system. The follow-
ing were evaluated: number of qubits, since it is one of the main limitations of current 
quantum computers, and this directly affects the ability to execute the service; the number 
of shots, due to the problems that arise from the characteristics of real quantum computers, 
mainly noise in the state of the qubits, the experiments must be performed several times or 
“shots” to be statistically consistent; the precision of results, since there is some discrep-
ancy in the results obtained on different machines; the response times, this measure cor-
responds to the time elapsed between sending the request and receiving the result; and the 
economic cost of invoking each solution.

To proceed with the evaluation, several HTTP requests were made from the Postman 
API client tool10, which allows making requests to REST APIs and taking the described 
metrics.

The analysis carried out during and after the experiments allows us to conclude that 
there is some roughness, limitations, and problems that arise when a quantum piece of 
software is expected to be provided as a service. The mentioned limitations are not related 
to the fact that quantum services cannot be built but to the fact that, by implementing quan-
tum services with current service technologies, the potential benefits of Service-Oriented 
Computing are lost.

For the case study proposed above in Sect. 4, the prime number factorization service, it 
is not viable to make use of traditional algorithms, but it is possible to take advantage of 
the benefits offered by quantum computing.

In traditional service-oriented computing, replacing a service with another, even if it is 
deployed on different hardware architecture, is mostly trivial (at least mostly trivial if all 
the infrastructure is in place such as the Fig. 1 shows). However, what happens if there is a 
need to replace a classical service with a quantum service?

Following a similar approach to that described in the definition of classical services, an 
attempt will be made to replicate the classical architecture by transferring it to the quantum 
world in order to maintain the quality attributes provided by service-oriented computing. 
Each aspect of a hybrid classical-quantum architecture will then be analyzed.

Taking into account the early stage of quantum software engineering, as shown in Fig. 6, 
most of the boxes are empty. Regarding the implementation layer of a quantum service, 
the service business logic must be implemented, as we did for the classic service. But then, 

Fig. 5   Fragment of the Amazon Braket code to run the integer factorization algorithm in a D-Wave device

10  https://​www.​postm​an.​com/

https://www.postman.com/
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we have no support or standardization mechanism for the definition of APIs for quantum 
endpoints. Similarly, there are no tools for code generation at the quantum service level.

In this layer, following a traditional implementation, services must be platform inde-
pendent. To achieve this, a REST API (based on HTTP, IP and all other well-known Inter-
net protocols) is used to ensure that the services can talk to each other. Similarly, JSON is 
used as a way to transfer data between services regardless of implementation languages. 
The use of the OpenAPI specification also helps achieve this independence by providing 
a way to define a well-formed API that can be easily consumed. However, for a quantum 
implementation, no communication protocols have been defined, no formatted ways exist 
for communicating classical services with quantum services, and no specifications even 
exist for defining an API to achieve service independence. Although there are already 
researchers who have begun to consider these issues, such as Cuomo et al. (2020) who give 
an overview of the main challenges and open problems that arise in the design of a distrib-
uted quantum computing ecosystem from the perspective of communications engineering; 
or Rojo et al. (2021) who address the challenge of giving an implementation in the form of 
a quantum microservice to a well-known problem such as the traveling salesman problem.

Another important feature of service-oriented computing is decoupling. At the imple-
mentation layer, the decoupling must be between the services and the programming lan-
guage in which they are written. In the development of a classic service, this is provided 
by the OpenAPI specification and code generation tool such as Swagger that are able to 
generate the Stub of the service in different programming languages. However, in design-
ing a quantum service there are no specifications and code generation tools to generate 
the stub structure of an API project. Although some work is found such as Dreher and 
Ramasami (2019) in which they have developed a prototype container-based system that 
allows a developer to prototype, test and implement quantum algorithms with greater agil-
ity and flexibility.

The situation does not improve in the deployment layer. At the moment, we have some 
commercial platforms in which we can execute quantum algorithms. For example, Amazon 
Braket allow us to run quantum algorithms in different simulators or quantum processors. 
However, Braket does not offer any control over the platform in which the quantum ser-
vices will be executed (only one quantum task can be placed in the queue of a quantum 
processor and wait for a response). Similarly, the API Gateway is not prepared to deal with 
quantum services.

Fig. 6   A hybrid classical-quantum architecture version of a implementation of a service
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At this layer, it is also important that services are independent of the location where 
they are deployed. And from a classic service design perspective, this independence can 
be considered at two levels. At the physical level, location independence is provided 
by REST, HTTP, and DNS, which allow us to use a URL to access a service regardless 
of where it is deployed. At the logical level, location independence for a given service 
within a more complex project is provided by the API gateway that hides this com-
plexity from clients. But from the point of view of a quantum service, there is no con-
crete definition, although there are already some works that address these aspects, as 
in Kumara et al. (2021) that present a vision of Quantum Service-Oriented Computing 
(QSOC), being a model to build hybrid business applications by placing in collabora-
tion developers of classical services and developers of quantum services; or as Garcia-
Alonso et al. (2021) that propose a Quantum API Gateway following the traditional API 
Gateway pattern and adapting it to the quantum world. Moreover, this Quantum API 
Gateway recommends the best quantum computer to execute a given quantum service at 
runtime.

Continuing at the deployment layer, another important feature of service-oriented com-
puting is decoupling. From a classical service design perspective, two different types of 
decoupling are considered. First, decoupling between different services of the same API. 
This is provided by the API gateway, which can communicate the services without the 
services being aware of each other. And second, decoupling between services and hard-
ware and operating systems. This is provided by the platform on which the services are 
deployed (EC2, Docker, Lambda, etc.). But from the point of view of a quantum service, 
there is no concrete definition on these decoupling aspects, but there is some work starting 
to work on this path, as in Grossi et al. (2021) who describe an architectural framework 
that addresses the problems of integrating an API-exposed quantum provider into an exist-
ing enterprise architecture and provides a minimum viable product (MVP) solution that 
actually merges classical quantum computers into a basic scenario with reusable code in a 
GitHub repository.

Finally, at the monitoring layer, the situation is even worse. In classical service moni-
toring, there are countless tools, for example Graphite or CloudWatch; however, there 
is no support in current tools for monitoring quantum services. The development of this 
type of tools can offer great benefits to obtain detailed information on the state of quantum 
services.

In essence, services should be resilient and able to scale to address client demand. The 
most common way to provide this scalability, without incurring high economic costs on 
the part of the cloud provider, is the use of elastic platforms and a load balancer that is 
capable of starting and stopping new instances of the service as needed. But the technol-
ogy to develop this feature in the quantum world does not yet exist. There are incipient 
works in this line, such as Sete et al. (2016) in which they describe a functional architecture 
based on a planar lattice of qubits that allows experimental tests of quantum error correc-
tion schemes.

Services should also be composable, so that a set of simple services can be composed to 
provide a solution to a complex problem. In traditional service development, this compos-
ability can be provided by the API Gateway, which can decompose a single invocation into 
a call to different services without the services knowing about it. However, there is no for-
mal definition for the composability of quantum services. Although there are already dif-
ferent works in this line, such as Wild et al. (2020) in which they introduce two deployment 
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modeling styles based on the Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) standard to automate the deployment and orchestration of quantum appli-
cations; or such as Barzen et al. (2020) in which they present a collaborative platform for 
problem solving with quantum computers; or as Cohen et al. (2020) in which they define 
a platform for designing quantum control protocols for a wide range of quantum hardware 
and define how to optimize their performance.

In addition, services must also be reliable, including security, maintainability, accounta-
bility, and many other capabilities. In classical services, there is a complete set of monitor-
ing and analysis tools that provide us with all the necessary information about the services. 
However, in quantum services, there is no progress in this aspect. There is a nascent work, 
in which researcher You (2020) proposes a framework based on quantum computation for 
reliability assessment of complex systems.

6 � Conclusion and future work

In this paper, and based on what we already know about classical service-oriented comput-
ing, we have presented an analysis of current quantum software from the point of view of 
service-oriented computing. We have used Amazon Braket to deploy quantum services by 
wrapping them on a classical service and used the integer factorization problem to show 
the differences of running the same service on different quantum hardware, even when 
doing it under the common umbrella of Braket.

We have presented a possible implementation of a classical service following the best 
practices, design patterns, and existing standards. Taking this implementation as a refer-
ence, we have developed a replica using a quantum services. This has allowed us to clearly 
present the current limitations, the proposals that are emerging and the possibilities that 
we have for the development of quantum services. Given the existing limitations, we have 
argued that intensive research efforts are needed to bring the benefits of service-oriented 
computing to the quantum world.

Due to the young nature of quantum software engineering, most areas in this discipline, 
including service-oriented computing, are still giving their first steps. Nevertheless, the 
paradigm change that underlies quantum computing implies that there cannot be a direct 
translation of proposals and techniques. Running quantum algorithms as traditional ser-
vices is not enough to bring the benefit of service-oriented computing to the quantum era. 
There needs to be an effort to generate new techniques, methodologies, and tools that bring 
all these benefits, already shown by cloud and service computing, to quantum software and 
services.
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