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Abstract
We compute the mean square displacement (MSD) of intruders immersed in a freely cooling granular gas made up of smooth 
inelastic hard spheres. In general, intruders and particles of the granular gas are assumed to have different mechanical 
properties, implying that non-equipartition of energy must be accounted for in the computation of the diffusion coefficient 
D. In the hydrodynamic regime, the time decay of the granular temperature T of the cooling granular gas is known to be 
dictated by Haff’s law; the corresponding decay of the intruder’s collision frequency entails a time decrease of the diffusion 
coefficient D. Explicit knowledge of this time dependence allows us to determine the MSD by integrating the correspond-
ing diffusion equation. As in previous studies of self-diffusion (intruders mechanically equivalent to gas particles) and the 
Brownian limit (intruder’s mass much larger than the grain’s mass), we find a logarithmic time dependence of the MSD as 
a consequence of Haff’s law. This dependence extends well beyond the two aforementioned cases, as it holds in all spatial 
dimensions for arbitrary values of the mechanical parameters of the system (masses and diameters of intruders and grains, 
as well as their coefficients of normal restitution). Our result for self-diffusion in a three-dimensional granular gas agrees 
qualitatively, but not quantitatively, with that recently obtained by Blumenfeld [arXiv: 2111.06260] in the framework of a 
random walk model. Beyond the logarithmic time growth, we find that the MSD depends on the mechanical system param-
eters in a highly complex way. We carry out a comprehensive analysis from which interesting features emerge, such a non-
monotonic dependence of the MSD on the coefficients of normal restitution and on the intruder-grain mass ratio. To explain 
the observed behaviour, we analyze in detail the intruder’s random walk, consisting of ballistic displacements interrupted 
by anisotropic deflections caused by the collisions with the hard spheres. We also show that the MSD can be thought of as 
arising from an equivalent random walk with isotropic, uncorrelated steps. Finally, we derive some results for the MSD of 
an intruder inmersed in a driven granular gas and compare them with those obtained for the freely cooling case. In general, 
we find significant quantitative differences in the dependence of the scaled diffusion coefficient on the coefficient of normal 
restitution for the grain-grain collisions.

Keywords  Mean square displacement · Inelastic hard spheres · Logarithmic law

1  Introduction

Everyday life examples of granular media include both 
monodisperse and polydisperse systems composed of mac-
roscopic particles (e.g. sand, rice, coffee, etc.). However, 
the physics of granular materials still holds on much larger 
spatial scales, e.g., those typical of astrophysical systems 
such as interstellar clouds [1], populations of asteroids [2], 
or planetary rings [3]. This diversity of sizes makes granular 
matter of great interest in many different contexts. In particu-
lar, granular media provide the opportunity of studying dif-
fusive transport at macroscopic scale [4–6]. At such a scale, 
thermal fluctuations -the intrinsic source of stochasticity in 

 *	 Vicente Garzó 
	 vicenteg@unex.es

	 Enrique Abad 
	 eabad@unex.es

	 Santos Bravo Yuste 
	 santos@unex.es

1	 Departamento de Física Aplicada, Instituto de Computación 
Científica Avanzada (ICCAEx), Universidad de 
Extremadura, 06800 Mérida, Spain

2	 Departamento de Física, Instituto de Computación Científica 
Avanzada (ICCAEx), Universidad de Extremadura, Avda. de 
Elvas s/n, 06006 Badajoz, Spain

http://orcid.org/0000-0002-1765-409X
http://orcid.org/0000-0001-8679-4195
http://orcid.org/0000-0001-6531-9328
http://crossmark.crossref.org/dialog/?doi=10.1007/s10035-022-01256-0&domain=pdf


	 E. Abad et al.

1 3

111  Page 2 of 19

mesoscopic diffusive systems-, do not play any significant 
role. This irrelevance of thermal noise facilitates the tuning 
of the different system parameters and the ultimate control 
of typical transport characteristics such as diffusivities and 
diffusion exponents [6].

The dissipative character of the collisions suffered by the 
elementary units of granular matter imply that their diffusive 
motion will eventually stop in the absence of an external 
energy input. Therefore, studies of diffusion in such inher-
ently non-equilibrium systems are often carried out in driven 
steady states exhibiting sustained particle motion [7–11]. 
However, diffusion can also be studied in freely (undriven) 
cooling systems, well before major disruptions like clus-
tering instabilities start to occur [12, 13]. Relaxation phe-
nomena in this so-called homogeneous cooling state (HCS) 
continue to pose great theoretical and practical challenges 
for researchers. In this context, the detailed characterization 
of diffusive transport both for monocomponent and multi-
component systems is an important aspect with some as yet 
unsolved questions.

A deceivingly simple object of study is the HCS of a 
monocomponent granular gas of inelastic smooth hard 
spheres. Here, the inelasticity in collisions is only accounted 
for by the (positive) coefficient of normal restitution � . This 
quantity measures the ratio between the magnitude of the 
normal component of the relative velocity (oriented along 
the line separating the centers of the two spheres at con-
tact) before and after a collision. In the simplest case, the 
coefficient � is taken to be constant. Despite the apparent 
simplicity of the HCS, the exact analytic form of its time-
dependent velocity distribution function is not known to 
date. An intruder moving inside one such cooling granu-
lar gas collides inelastically with the surrounding particles, 
and it consequently loses kinetic energy in the course of 
time. This energy loss entails a drastic slowing-down of the 
intruder’s motion, to the extent that its diffusion becomes 
ultraslow [14–16]; in other words, the mean square displace-
ment (MSD) is of the form ⟨����2(t)⟩ ∝ [ln(c1 + c2t)]

� , thus 
exhibiting a time decay slower than any power law. The 
quantities c1 and c2 depend on the mechanical properties 
of the system. For the above HCS system, we will see that 
one has � = 1 . The mechanism leading to ultraslow diffusion 
here is fundamentally different from those present in other 
systems with diverse values of � ; in those systems, the slow-
ing-down of the motion arises notably from crowding [17], 
energy trapping [18], spatial disorder [19], a combination of 
the latter with many-body interactions [20], or the interplay 
between a harmonic force and a medium that expands at a 
suitably chosen rate [21].

To the best of our knowledge, the study of the intruder’s 
MSD has focused on two limit cases, i.e., self-diffusion 

(intruder mechanically equivalent to gas particles) and 
Brownian limit (intruder’s mass much larger than the mass 
of the gas particles). For self-diffusion in gases of smooth 
inelastic hard spheres with constant � , previous studies 
[22–24] have shown that Haff’s law leads to a diffusion 
coefficient whose long-time decay is inversely proportional 
to time, resulting in the aforementioned logarithmic time 
growth of the MSD. For such systems, Brey et al. [22] per-
formed a comparison between theoretical results for the self-
diffusion coefficient in the first Sonine approximation and 
DSMC simulations; they found excellent agreement even for 
moderately strong inelasticity. At about the same time, Bril-
liantov and Pöschel [23] also mentioned that a logarithmic 
time dependence of the MSD arises in the self-diffusive case 
without writing this quantity in full detail. More recently, 
Bodrova et al. [24] gave explicitly the expression for the 
MSD of a given particle in a three-dimensional gas of hard 
spheres.

In the Brownian limit, a purely logarithmic time growth 
of the intruder’s MSD is also observed after a short transient 
regime [25]. The ultimate reason for this not entirely intui-
tive finding is once again Haff’s law, which only refers to the 
mechanical properties of the granular gas.

The above findings strongly suggest that the logarithmic 
behaviour of MSD found in the HCS system considered 
above holds beyond the specific cases of self-diffusion and 
the Brownian limit, and that it is therefore insensitive to the 
details of the intruder’s mechanical properties as long as � 
remains constant (the logarithmic time dependence breaks 
down for viscoelastic gases with velocity-dependent restitu-
tion coefficients, see e.g. Refs. [24] and [26]). The theoretical 
verification of this conjecture and the derivation of an explicit 
expression for the MSD via a Boltzmann-Enskog approach 
is one of the goals of the present work. However, we will go 
well beyond this first objective in that (i) we will compare 
our results to those recently obtained by Blumenfeld [27] in 
the framework of a random walk model for the self-diffusive 
case in three dimensions, (ii) we will perform a comprehensive 
study of the dependence of the MSD on the different system 
parameters in the general case, and (iii) we will provide physi-
cal explanations for the observed behaviour. A pivotal element 
in such explanations is the idea that the main properties of the 
intruder’s motion (viewed as an isotropic random walk) are 
intimately connected with the way in which the granular gas 
cools down. In fact, Blumenfeld showed in a straightforward 
fashion that a minimal random walk model leading to a loga-
rithmically increasing MSD naturally yields the qualitative 
time decrease prescribed by Haff’s law for the mean kinetic 
energy of the granular gas [27]. Our goal here is to enrich this 
view with some missing quantitative details and to extend it to 
more general situations. Such an endeavour calls for a rigor-
ous, overarching framework relating kinetic theory to the ran-
dom walk approach. We therefore hope that the present paper 
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(along with previous works such as Ref. [27]) will provide 
additional motivation for further exploring the connections 
between these two approaches.

The remainder of this paper is organized as follows. In 
Sect. 2, we perform kinetic theory calculations to find a for-
mula for the MSD in terms of the mechanical properties of the 
intruder and of the gas particles. In Sect. 3, we obtain explicit 
expressions for the MSD in the first-Sonine approximation 
and show that they are consistent with previous results for the 
elastic case, the self-diffusive case, and the Brownian limit. 
Section 4 provides a random walk description of the intruder’s 
motion. Section 5 is devoted to the self-diffusive case; a sig-
nificant part of this section is devoted to a detailed comparison 
between our results and those obtained in the framework of 
Blumenfeld’s approach. In particular, for a fixed, sufficiently 
large time, we find a non-monotonic �-dependence of the 
MSD, which we explain with physical arguments based on our 
random walk approach. Section 6 addresses the general case, 
in which one no longer has energy equipartition between the 
intruder and the granular gas particles (in what follows we will 
also refer to the latter as “hard spheres” or “grains”). In this 
case, we will show that the MSD displays a non-monotonic 
dependence on the intruder-grain mass ratio. In Sect. 7, we 
derive some results for the MSD of an intruder inmersed in 
a driven granular gas and discuss similarities and differences 
with respect to the HCS. Finally, in Sect. 8 we summarize our 
main conclusions and discuss some possible implications for 
experiments.

2 � Diffusion equation. Mean square 
displacement

We consider a freely cooling granular gas of mass m, diam-
eter � , and (constant) coefficient of normal restitution � . As 
said in the Introduction, the coefficient � measures the ratio 
between the magnitude of the normal component (along the 
line of separation between the centers of the two spheres at 
contact) of the pre- and post-collisional relative velocities 
of the colliding spheres [28]. We assume that the granular 
gas (modeled as a gas of smooth inelastic hard spheres) is in 
the HCS. In this state, the number density n and the granu-
lar temperature T are homogeneous; the mean flow velocity 
� vanishes, but the granular temperature T(t) decreases in 
time due to the fact that the binary collisions between grains 
become inelastic as soon as 𝛼 < 1.

According to the kinetic theory of gases, all the relevant 
information on the state of the system is provided by the 
one-particle velocity distribution function f (�;t) . For mod-
erately dense gases, the distribution function f obeys the 
(inelastic) Enskog–Boltzmann kinetic equation (for homo-
geneous states, except for the presence of the pair correlation 

function, the Enskog equation is identical to the Boltzmann 
equation). From this kinetic equation, the time evolution of 
the granular temperature

can be derived. It is given by [28]

In Eqs. (1) and (2), d is the dimensionality of the system 
( d = 2 for hard disks and d = 3 for hard spheres),

is the number density of granular gas particles, and

is the cooling rate. Here, J[f,  f] is the (inelastic) 
Enskog–Boltzmann collision operator, whose explicit 
form is well-known (see, e.g., Ref. [28]). The cooling rate 
� provides the rate of energy dissipation due to inelastic 
collisions, and turns out to be proportional to 1 − �2 [28]. 
Although the explicit computation of � requires knowledge 
of the one-particle velocity distribution function f (�;t) , 
dimensional analysis shows that �(t) ∝

√
T(t) , and so the 

integration of Eq. (2) can be easily performed. The result is

where T(0) is the initial temperature and �(0) denotes the 
cooling rate at t = 0.

Equation (5) is known as Haff’s cooling law for the HCS 
gas [29]. Of course, Haff’s law holds only as long as the sys-
tem remains homogeneous; note, however, that a well known 
characteristic of freely evolving granular gases is the sponta-
neous formation of velocity vortices and density clusters [12, 
13]. Such instabilities arise from the inelastic character of 
the collisions, and their main features are well captured by a 
linear stability analysis of the corresponding hydrodynamic 
equations. As it turns out, a critical length Lc (usually associ-
ated with the vortex instability) emerges from the analysis, 
implying that the system becomes unstable as soon as its 
linear size exceeds Lc [30–34]. Conversely, in small enough 
systems, the aforementioned instability is suppressed. More 
precisely, for the particular case of dilute granular gases, the 
values of Lc [in units of the mean free path � , see Eq. (16) 
below] for � = 0.9 , 0.8, and 0.7 are 25.3, 18.8, and 16.18, 
respectively [31]. Thus, in order to ensure that the system’s 

(1)T(t) =
1

dn ∫ d� m v2 f (�;t)

(2)
�T

�t
= −�(t)T(t).

(3)n = ∫ d�f (�;t)

(4)�(t) = −
1

dnT(t) ∫ d� m v2 J[f , f ]

(5)
T(t) =

T(0)(
1 +

1

2
�(0)t

)2
,
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homogeneity is preserved, one must limit oneself to time 
scales on which the MSD remains smaller than L2

c
.

Let us now assume that an impurity or intruder of mass 
m0 and diameter �0 is added to the granular gas. The pres-
ence of the intruder does not have any effect on the state of 
the granular gas, and thus the HCS is still preserved. Let us 
denote by �0 the coefficient of restitution for intruder-gas 
collisions. Since the intruder and the gas particles are in 
general mechanically different, one has � ≠ �0 . The intruder 
may freely lose or gain momentum and energy in its interac-
tions with the gas particles; therefore, these quantities are 
not invariants of the (inelastic) Boltzmann–Lorentz collision 
operator [28]. Only the number density of intruders n0 is 
conserved. This hydrodynamic field is defined as

where f0(�, �;t) is the one-particle velocity distribution func-
tion of the intruder. The continuity equation for n0 can be 
easily obtained from the Boltzmann–Lorentz kinetic equa-
tion. It is given by1 [35]

where

is the intruder particle flux.
The expression for �0 can be obtained by solving the 

Boltzmann–Lorentz kinetic equation with the Chap-
man–Enskog method [36]. To first order in ∇n0 , the consti-
tutive equation for �0 is

where D(t) is the diffusion coefficient. Substitution of Eq. (9) 
into Eq. (7) yields

where c = n0∕n is the concentration of the intruder particles.
In contrast to the usual diffusion equation for molecular 

(elastic) gases, Eq. (10) cannot be directly integrated in time 
because of the time dependence of the diffusion coefficient 
D. In the hydrodynamic regime (that is, for times much 
longer than the mean free time), D(t) depends on time only 

(6)n0(�;t) = ∫ d�f0(�, �;t),

(7)
�n0
�t

= −∇ ⋅ �0,

(8)�0(�;t) = ∫ d� � f0(�, �;t)

(9)�0 = −D∇n0,

(10)
�c

�t
= D(t)∇2c,

through its dependence on the granular temperature T(t) [28, 
35, 37]. In addition, kinetic theory calculations show that 
D(t) can be expressed as follows [35]:

The (dimensionless) diffusion transport coefficient D∗ 
depends on the parameter space of the system given by the 
mass ratio m0∕m , the diameter ratio �0∕� , and the coeffi-
cients of restitution � and �0 . The second quantity on the 
right hand side,

is proportional to the diffusion coefficient for molecular 
gases. In Eq. (12), we have introduced the average frequency 
of collisions between grains (see Appendix A)

where � is the pair correlation function for grain-grain colli-
sions at contact and �th(t) =

√
2T(t)∕m is the thermal veloc-

ity of gas particles. An explicit, albeit approximate, expres-
sion for the reduced diffusion coefficient D∗ can be obtained 
by considering for instance the first Sonine approximation 
to the Chapman–Enskog solution [36] (this approximation 
consists in retaining only the leading term in a Sonine poly-
nomial expansion of f0 ). Its explicit form will be provided 
in Sect. 3.

Equations (12) and (13) show that D0(t) ∝
√
T(t) . As 

discussed in several previous works [22, 25, 38], the time 
dependence of the diffusion equation (10) can be eliminated 
by introducing a set of appropriate dimensionless time and 
space variables. One such set is given by

Clearly, the dimensionless time variable s is the number of 
collisions per gas particle in the time interval between 0 and 
t. An explicit formula for s(t) is readily obtained by making 
use of Haff’s law (5) in the expression (13) of �(t) in terms 
of �th(t) . The time integral defining s(t) then gives

w h e r e  �(0) = (
√
2�(d−1)∕2∕� (d∕2))n�d−1��th(0)  a n d 

t∗ = �(0)t is the time in units of the initial intercollisional 
time �(0)−1 of the gas particles. The unit length

(11)D(t) = D0(t)D
∗.

(12)D0(t) =
T(t)

m0�(t)
,

(13)�(t) =

√
2�(d−1)∕2

�
�

d

2

� n�d−1��th(t),

(14)s = ∫
t

0

dt��(t�), �� =
�

�
.

(15)s(t) = 2
�(0)

�(0)
ln

(
1 +

1

2

�(0)

�(0)
t∗
)
,

1  Note that, for notational convenience, we define here the flux and 
diffusion coefficient of the intruder particles in terms of their concen-
tration and not of their mass, as opposed to the definitions used in 
Ref. [35].



On the mean square displacement of intruders in freely cooling granular gases﻿	

1 3

Page 5 of 19  111

is the mean free path in a molecular gas of hard spheres [36]. 
Here, � is the average speed modulus of a molecular gas at 
equilibrium, i.e.,

For a three-dimensional gas ( d = 3 ), one gets the well-
known result for hard spheres � = 1∕(

√
2��n�2).

In terms of the variables s and �′ , the diffusion equation 
(10) becomes

where ∇2
��

 is the Laplace operator in the �′ coordinate and D̃ 
is the dimensionless diffusion coefficient

where

Equation (18) is thus a standard diffusion equation with a 
time-independent diffusion coefficient D̃ . It follows that the 
MSD of the intruder’s position r′ after a time interval s is 
(see also the end of this section) [39]

with ��� ≡ ��(s) − ��(0) . Then,

In terms of the original variables � and t [see Eq. (14)], one 
has

Equation (22) can be seen as a generalization of the Einstein 
formula relating the diffusion coefficient to the MSD. From 
Eqs. (15), (19), and (21), one finds that the expression of 
⟨����2(t)⟩ can be written in terms of the unit length � as

(16)� =
�(t)

�(t)
=

�
�

d+1

2

�
√
2�(d−1)∕2

1

n�d−1�

(17)�(t) =
�
(

d+1

2

)

�
(

d

2

) �th(t).

(18)
�c

�s
= D̃∇2

��
c,

(19)D̃ =
1

2

⎡⎢⎢⎢⎣

�
�

d

2

�

�
�

d+1

2

�
⎤⎥⎥⎥⎦

2

D̃∗,

(20)D̃∗ =
m

m0

D∗.

(21)⟨�����2(s)⟩ = 2dD̃s,

(22)
�

�s
⟨�����2(s)⟩ = 2dD̃.

(23)
�

�t
⟨����2(t)⟩ = 2d

T(t)

m0�(t)
D∗.

Under the assumptions made (hydrodynamic solution 
restricted to first-order in ∇n0 ), this equation is exact and 
very general, but D∗ and �(0) need to be explicitly deter-
mined from the specific parameters of the system at hand; in 
this context, simplified explicit expressions can be obtained 
by means of approximations, typically one based on a Sonine 
polynomial expansion.

In the elastic limit ( � → 1 ),  �(0) ∝ 1 − �2
→ 0 , 

ln (1 + �(0)t∗∕2�(0)) ≈ �(0)t∗∕2�(0) , and so,

This is the expected result for molecular gases (normal diffu-
sion where the MSD is a linear function of time). In passing, 
we mention that the prefactor of t∗ obtained by accounting 
for different orders of the Sonine polynomial expansion and/
or for density effects can be compared with previous results 
for particular realizations of elastic hard-sphere systems (see 
e.g. Ref. [40] for the case of self-diffusion in a system of 
hard disks).

For inelastic collisions ( � ≠ 1 and �0 ≠ 1 ), Eq.  (24) 
shows that the MSD increases logarithmically with time, 
and hence the diffusion turns out to be ultraslow. In other 
words, it is even slower than the typical case of subdiffu-
sion with a MSD ⟨����2(t)⟩ ∝ t� with 0 < 𝛽 < 1 [14]. Equa-
tion (24) applies for arbitrary values of the masses (m and 
m0 ) and particle diameters ( � and �0 ), the coefficients of 
normal restitution ( � and �0 ), and the dimensionality d 
of the system (the dimensionless coefficient D̃∗ depends 
on all these parameters). Note, however, that the time-
dependent argument of the logarithm only involves quanti-
ties associated with the granular gas and not mechanical 
properties of the intruder. The reason for this is clear: the 
time dependence of the MSD is exclusively dictated by 
s(t) [cf, Eqs. (15) and (21)]; as shown by Eqs. (14), (13), 
this quantity is directly obtained from the Haff’s cooling 
law, which only depends on gas properties via the initial 
cooling rate �(0) and is not influenced by the intruder’s 
mechanical properties.

In the self-diffusion limit case (namely, when m = m0 , 
� = �0 , and � = �0 ), the intruder becomes a gas particle like 
any other, and Eq. (25) agrees with the MSD expression 
derived by Bodrova et al. [15, 24] for a granular gas with 

(24)
⟨����2(t)⟩ = d

⎡⎢⎢⎢⎣

�
�

d

2

�

�
�

d+1

2

�
⎤⎥⎥⎥⎦

2

2�(0)

�(0)
D̃∗

× ln

�
1 +

�(0)

2�(0)
t∗
�
�
2.

(25)⟨����2(t)⟩ = d

⎡⎢⎢⎢⎣

�
�

d

2

�

�
�

d+1

2

�
⎤⎥⎥⎥⎦

2

D̃∗
�
2 t∗.
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constant coefficient of restitution � . More recently, Blumen-
feld [27] has also derived a logarithmic time dependence 
of the MSD with the help of a simple random walk model. 
However, the parameters appearing in Eq. (24) in the self-
diffusion case differ from those reported in Ref. [27]. A com-
parison between both results will be carried out in Sect. 5.

It is worth noting that, from Eq.  (18), it is not only 
possible to obtain the second-order moment of |��| [see 
Eq. (21)], but also any other moment of arbitrary order. 
The solution of Eq. (18) for the delta-peaked initial con-
dition c(��, 0) = �(�� − �(0)) is the d-dimensional Gaussian 
distribution

From this expression one finds

with k = 1, 2,… . When k = 1 , Eq. (27) leads to Eq. (24).
Before closing this section, it is also convenient to intro-

duce the average intruder-grain collision frequency �0 . It is 
given by (see Appendix A)

where

Here, we have defined � = (� + �0)∕2 ; the symbol �0 
denotes the pair correlation function for intruder-grain col-
lisions at contact, and

is the ratio between the respective mean square velocities of 
intruders and grains. By analogy with Eq. (16), the intruder’s 
mean free path is defined as

where �0 denotes the intruder’s average speed modulus. To 
compute this average, one has to take into account that the 
intruder’s mean kinetic energy is different from its coun-
terpart for gas particles. This means that T0 ≠ T  , where the 
partial temperature T0 is a measure of the intruder’s mean 
energy. It is defined as

(26)c(��, s) =
1

(4�D̃s)d∕2
e−|��−��(0)|2∕(4D̃s).

(27)

⟨�����2k(s)⟩ =∫ d�� �����2kc(��, s)

=
�
�
k +

d

2

�

�
�

d

2

� (4D̃s)k,

(28)�0(t) = � �(t),

(29)� =

(
�

�

)d−1�0

�

(
1 + �

2�

)1∕2

.

(30)� ≡ m0T

mT0

(31)�0 =
�0(t)

�0(t)
,

In principle, the evaluation of the quantity

requires access to the unknown tracer distribution f0(�0;t) . 
In practice, a good estimate for �0 can be obtained by using 
the Maxwellian approximation

for the computation of the integral on the right hand side of 
Eq. (33). One is then left with

Finally, substitution of Eqs. (28) and (35) into Eq. (31) leads 
to a relationship between the mean free paths of the two 
particle species:

3 � First‑Sonine approximation to D̃∗

In order to obtain the explicit dependence of the MSD on 
the space parameters of the problem, one still needs an 
explicit expression for the (dimensionless) diffusion coef-
ficient D̃∗ . In a way similar as for elastic collisions [36], 
the form of D∗ is given in terms of the solution of a linear 
integral equation which can be approximately solved by 
considering the first few terms of a Sonine polynomial 
expansion. Usually, only the leading term in this Sonine 
expansion (the so-called first Sonine approximation) is 
retained to estimate D̃∗ . In spite of the simplicity of this 
approach, it generally agrees excellently with Monte Carlo 
simulations, even for moderately strong inelasticities (see 
for instance, Figs. (6.2)–(6.5) of the textbook [35]).

The expression of the reduced coefficient D̃∗ in the first-
Sonine approximation can be written as [38, 41]

(32)T0(t) =
1

dn0 ∫ d� m0 v
2f0(�;t).

(33)�0 =
1

n0 ∫ d�0 �0 f0(�0;t)

(34)f0,M(�0;t) = n0

(
m0

2�T0(t)

)d∕2

exp

(
−

m0�
2
0

2T0(t)

)

(35)�0(t) =
�
�

d+1

2

�

�
�

d

2

� �−1∕2�th(t) =
�(t)√
�
.

(36)�0 =
�

�
√
�
.

(37)D̃∗ =
1

�(�∗
D
−

1

2
�∗)

,
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where

Here, � = m∕(m + m0) . For dilute granular gases ( n�d
→ 0 ), 

� = �0 = 1.
In general, the temperature ratio T0∕T is different from unit 

(breakdown of energy equipartition). It is obtained from the 
condition

where �∗ is given by Eq. (39), and the “partial” (dimension-
less) cooling rate �∗

0
 characterizing the rate of energy dis-

sipation for intruder-grain collisions is [35]

Insertion of Eqs. (39) and (41) into Eq. (40) leads to a cubic 
equation for � with three different solutions. Among these, 
we choose the one allowing us to recover the correct value of 
� for elastic collisions (i.e., � = m0∕m if � = �0 = 1 ). When 
intruder and grains are mechanically equivalent ( m = m0 , 
� = �0 , � = �0 ), the requirement �∗

0
= �∗ yields T = T0 

(energy equipartition). Beyond the self-diffusion limit 
case, the inequality T ≠ T0 resulting from the breakdown of 
energy equipartition turns out to have a significant impact on 
the properties of diffusive transport [35, 38, 41].

Equation (39) tell us that, in the first Sonine approxima-
tion, �(0)∕�(0) = (1 − �2)∕d . We can use this result to obtain 
explicit expressions for the number of collisions per gas par-
ticle (cf. Eq. (15))

and the scaled intruder’s MSD (cf. Eq. (24))

3.1 � Elastic collisions

For elastic collisions ( � = �0 = 1 ), �∗ = 0 , T0 = T  , one 
obtains the following diffusion coefficient:

(38)�∗
D
=

2

d
�(1 + �0)� ,

(39)�∗ =
�(t)

�(t)
=

1 − �2

d
.

(40)�∗
0
= �∗,

(41)
�∗
0
=
2
√
2

d
�
�0

�

�
�

�

�d−1�
1 + �

�

�1∕2

(1 + �0)

×
�
1 −

1

2
�(1 + �)(1 + �0)

�
.

(42)s(t) =
2d

1 − �2
ln

(
1 +

1 − �2

2d
t∗
)
,

(43)
⟨����2(t)⟩

�2
= 2

⎡⎢⎢⎢⎣

d�
�

d

2

�

�
�

d+1

2

�
⎤⎥⎥⎥⎦

2

ln
�
1 +

1−�2

2d
t∗
�

�
�
�∗
D
−

1−�2

2d

��
1 − �2

� ,

The expression (44) of D agrees with the known result for 
molecular mixtures of hard spheres [36].

3.2 � Self‑diffusion

As already mentioned, in the self-diffusion limit case 
( m = m0 , � = �0 , � = �0 , and � = �0 ), T0 = T  and Eq. (37) 
reads

Hence, the self-diffusion coefficient D is

This expression agrees with the one obtained in Refs. [22] 
and [42].

3.3 � Brownian diffusion

The Brownian diffusive regime is characterized by the con-
ditions m0 ≫ m and T0∕T finite. In this case, the partial cool-
ing rate �0 = �∗

0
� can be written as

where

Taking Eq. (47) into account, the condition � = �0 for deter-
mining the temperature ratio T0∕T  gives

whose solution is

The expression (50) agrees with the results derived by Brey 
et al. in their study of Brownian motion in a granular gas 
[25].

In addition, it is straightforward to prove that in the 
Brownian limit the scaled diffusion coefficient is

(44)D =
d�

�
d

2

�

4
√
2�(d−1)∕2

1

n�
d−1

�0

�
(m + m0)T

mm0

.

(45)D̃∗ =
2d

(1 + �)2
.

(46)D(t) =
d�

(
d

2

)

�(d−1)∕2

1

(1 + �)2
1

n�d−1�

√
T

m
.

(47)�0 =2a

(
1 − a

T

T0

)
�e,

(48)a =
1 + �0

2
, �e(t) =

4�(d−1)∕2

d�
(

d

2

) �0

m

m0

n�
d−1

√
2T(t)

m
.

(49)� = 2a

(
1 − a

T

T0

)
�e,

(50)
T0

T
=

a

1 − �e
, �e =

�

2a�e
.
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To derive Eq. (51), we have taken into account Eq. (50). 
Thus, the diffusion coefficient D in the Brownian limit is

Equation (52) is consistent with the results obtained in Ref. 
[25].

It is worth mentioning that there is a “nonequilibrium” 
phase transition [43, 44] in the limit of a very massive 
intruder, m0∕m → ∞ , which corresponds to an extreme 
violation of energy equipartition. More precisely, there is 
a region in parameter space where �−1 ≡ m0T∕(mT0) tends 
to infinity as m0∕m → ∞ , while T0∕T  remains finite [44]. 
In this Brownian diffusive regime, the diffusion coefficient 
remains finite. However, there is another region where the 
limit m0∕m → ∞ implies the divergence of T0∕T  [44] and 
formally yields an infinite value of the diffusion coefficient. 
This behaviour reflects the onset of a ballistic regime and 
the breakdown of the diffusive description arising from the 
Boltzmann-Lorentz framework.

A formal description of the Brownian diffusive regime is 
provided by a Fokker-Planck equation [45] and the corre-
sponding Langevin equation (Brownian motion with inertia)
[46, 47]. The effective damping coefficient in this Langevin 
equation [written in terms of the dimensionless time s(t)] 
turns out to be equal to a�e∕� , and is directly related to the 
inverse of the characteristic decay time of the intruder’s 
velocity autocorrelation function.

4 � Intruder’s motion as a random walk

Until now, the treatment of intruder diffusion has been based 
on the Chapman-Enskog solution to the Boltzmann kinetic 
equation. This is the most usual (and successful) way of deal-
ing with the diffusion problem in molecular and granular 
gases. Though much less common and successful, there is 
an alternative approach to study molecular gases: free-path 
theory. In this approach, the motion of gas particles is regarded 
as a succession of random flights between collisions, and one 
treats the diffusive problem as a random walk problem. This 
approach provides a simple and intuitive physical picture of 
transport phenomena in gases [48–50], hence its appeal. On 
the other hand, when correctly applied to molecular gases, 
free-path theory yields results identical to those obtained from 
the Chapman-Enskog solution [49, 51, 52].

At a microscopic level, the intruder’s motion can be seen 
as a succession of ballistic displacements �i interrupted by 

(51)D∗ =
�(t)

�e(t)

1

(1 − �e)
2
.

(52)D(t) =
T(t)

m0�e(t)

1

(1 − �e)
2
.

collisions with the gas particles. This type of motion belongs 
to the class of random walks called random flights: the intruder 
is identified with a random walker that moves ballistically and 
changes its direction randomly every time a collision takes 
place. The intruder’s displacement after N collisions is

Correspondingly, the MSD of the random walker reads

where ⟨𝓁2⟩ ≡ ⟨𝓁2
1
⟩ = ⟨𝓁2

2
⟩ = ⋯.

If one assumes that the changes of direction are drawn from 
an isotropic distribution, then ⟨�i ⋅ �j⟩ = 0 ; the intruder’s 
MSD can then be approximated by ⟨���(N)�2⟩ = N⟨�2⟩ or, in 
terms of time, by the expression

Here, s0(t) denotes the average number of steps of the ran-
dom walker (or, equivalently the average number of intrud-
er’s collisions) up to time t [50]. In the self-diffusive case 
( m = m0 and � = �0 ) of molecular gases ( � = 1 ), Eq. (42) 
yields s0(t) = s(t) = t∗ ≡ �(0)t = t�∕� , and so ⟨�2⟩ = 2�2 , 
according to the elementary kinetic theory of gases [53]. 
From this relation, one finds

This is in fact the expression provided by the elementary 
kinetic theory of gases for the MSD [50]. On the other hand, 
for elastic collisions, Eq. (23) yields

where use has been made of the fact that the intruder and the 
gas particles are mechanically equivalent. From Eqs. (56) 
and (57), one can identify the form of the self-diffusion coef-
ficient D:

However, it is well known that the result (58) is poor: it is 
smaller than the value of the first-Sonine approximation [see 
Eq. (46) when � = 1 ] by a factor of 16∕9� ≈ 0.566 for d = 3.

The reason for the above discrepancy is clear: Equation 
(55) was obtained by assuming that the intruder’s deflec-
tions due to collisions are isotropically distributed, so 
that ⟨�i ⋅ �j⟩ = 0 . Of course, this assumption is in general 
not true, since there is a correlation between the pre- and 
the post-collisional directions of the particle velocities. 
This necessarily implies ⟨�j ⋅ �j+1⟩ ≠ 0 . For instance, in 

(53)�� =

N∑
i=1

�i.

(54)⟨���(N)�2⟩ = N⟨𝓁2⟩ +
N�
i≠j

⟨�i ⋅ �j⟩,

(55)⟨����2(t)⟩ = s0(t)⟨�2⟩.

(56)⟨����2(t)⟩ = 2��t.

(57)⟨����2(t)⟩ = 2dDt,

(58)D =
1

d
��.
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the self-diffusion problem, when the collisions are elastic 
the average fraction of the initial velocity that survives 
after a collision (a quantity known as persistence) is about 
0.406 for d = 3 [36]. In other words, forward collisions 
are more likely than backward ones, and consequently 
⟨�j ⋅ �j+1⟩ > 0.

However, after a few collisions, the intruder’s velocity 
(or equivalently, its displacement �i ) becomes uncorre-
lated with the initial one, and so the overall random motion 
is isotropic on sufficiently large length and time scales. 
Thus, after a short initial regime, the particle’s motion is 
well described by the isotropic diffusion equation (10).

Including the correlation terms ⟨�i ⋅ �j⟩ , Eq. (54) can 
be rewritten as

where

In terms of time (or the number of steps s0(t) ), Eq. (59) reads

Interestingly, the MSD obtained from this diffusion equation 
can be viewed as resulting from an equivalent random walk 
with isotropic steps of size �e . This fictitious random walk 
yields the same MSD as the actual random walk, which is 
characterized by strongly anisotropic changes in direction 
as a result of the collision rules for smooth hard spheres. 
However, the effective length �e of the displacements 
between consecutive steps of the isotropic walk differs from 
the intruder’s mean free path �0 owing to the persistence 
induced by the microscopic collision rule (forward colli-
sions are more likely than backward ones). In this sense, �e 
is a measure of the persistence of the actual random walk.

An evaluation of the effective step length �e based on 
microscopic arguments is not at all easy, even for the sim-
plest case of self-diffusion with elastic collisions [49, 51]. 
However, we can get �e as a byproduct of Eq. (43). Indeed, 
from Eqs. (15) and (28), we find

whe re  u se  ha s  been  made  o f  t he  r e su l t 
�(0)∕�(0) = (1 − �2)∕d . The expression of �2

e
 can be easily 

identified by inserting Eq. (62) into the right hand side of 
Eq. (61) and comparing the resulting equation with Eq. (43). 
One is then left with

(59)⟨���(N)�2⟩ = N�2
e
,

(60)𝓁
2
e
= ⟨𝓁2⟩ + 1

N

N�
i≠j

⟨�i ⋅ �j⟩.

(61)⟨����2(t)⟩ = s0(t)�
2
e
.

(62)
s0(t) =∫

t

0

�0(t
�)dt�

=� s(t) =
2� d

1 − �2
ln

(
1 +

1 − �2

2d
t∗
)
,

where the explicit form of �  [see Eq. (29)] has been used.
In the particular case of self-diffusion, simplified expres-

sions are obtained, namely, s0(t) = s(t) and

In the Brownian diffusive regime ( m ≫ m0 and T0∕T  finite), 
�e reads

Since the temperature ratio remains finite in the diffusive 
regime, so does �e too. In contrast, in the region where 
T0∕T → ∞ , the effective length �e tends to infinity as 
expected.

Beyond the above two limiting cases, the dependence of 
�
2
e
 and s0 on the parameter space will prove useful for the 

physical discussion in Sects. 5 and 6.

5 � Self‑diffusion problem. Comparison 
with Blumenfeld’s results

Before considering the general case, we study in this section 
the MSD when the intruder and gas particles are mechani-
cally equivalent (self-diffusion case). In particular, we seek 
to obtain a close comparison with recent results derived by 
Blumenfeld [27] by means of a random walk model. To this 
end, we will consider the system studied by Blumenfeld 
[27], i.e., a dilute ( � = �0 = 1 ) granular gas of hard spheres 
( d = 3 ). In the self-diffusion case ( m = m0 , � = �0 , and 
� = �0 ), T0 = T  , and so � = 1 . Thus, Eq. (43) yields

Note that this result also follows by inserting Eqs. (64) and 
(62) into Eq. (61), then taking into account that � = 1 for 
self-diffusion, and eventually setting d = 3.

To make a clean comparison with Blumenfeld’s results 
for the MSD [27], one first has to note that he performs a 
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mean field analysis of self-diffusion in a gas of identical 
particles subject to hard-core interactions. Blumenfeld’s ran-
dom walk model uses the mean free path l0 ≈ 0.55396n−1∕3 , 
which corresponds to the mean distance between nV points 
that are randomly scattered in a volume V. For a fixed value 
of the initial velocity modulus �0 , Blumenfeld’s expression 
for the MSD is as follows:

where

and � denotes the (constant) ratio between the pre-collisional 
and the post-collisional velocity moduli. Note that � and � 
are different quantities, since the latter refers to the ratio of 
the normal components of the velocities

In order to compare Eq. (67) with Eq. (66), we must first 
evaluate the average ⟨ln(1 + ��0)⟩ over the Maxwellian dis-
tribution fM(�0):

where

T(0) being the initial temperature. Some technical details 
regarding the computation of the average (69) are pro-
vided in Appendix B. As it turns out, the average of 
ln(1 + ��0) over such a distribution is very well approxi-
mated from above by ln(1 + ��0) [the initial average velocity 
�0 ≡ �(0) =

√
8T(0)∕(�m) is obtained by setting d = 3 in 

Eq. (17)]. In fact, the relative deviation of these two quanti-
ties as a function of � never exceeds 4% , and one can show 
that ⟨ln(1 + ��0)⟩ → ln(1 + ��0) as � → ∞ (or, equivalently, 
as t → ∞ when the rest of parameters are fixed) [see Appen-
dix B]. With the aforementioned approximation, Eq. (67) 
becomes

The next step to achieve a fair comparison between Eq. (66) 
and Blumenfeld’s result is to replace the mean free path l0 
in Eq. (71) with the mean free path for a molecular gas of 
hard spheres � = 1∕(

√
2�n�2) [cf. Eq. (16) with d = 3 ]. We 

hereby aim to account for effects related to the finite size of 
the spheres within the limitations imposed by a mean field 
approach.

(67)
⟨����2⟩

l2
0

=
3

ln(1∕�)
ln(1 + ��0),

(68)� ≡ �(�, t) =
1 − �

� l0
t,

(69)⟨ln(1 + ��0)⟩ = 1

n0 ∫ d�0 ln(1 + ��0) fM(�0),

(70)fM(�0) = n0

(
m

2�T(0)

)3∕2

exp

(
−

m�2
0

2T(0)

)
,

(71)
⟨����2⟩

l2
0

=
3

ln(1∕�)
ln

�
1 −

1 − �

�

�
�0
l0

�
t

�
.

Furthermore, while the (constant) parameter � introduced 
in Blumenfeld’s model accounts for the loss of momentum 
of each colliding particle, the coefficient of normal restitu-
tion � accounts for the reduction of the magnitude of the 
normal component of the post-collisional relative velocity 
with respect to its pre-collisional counterpart. To express � 
in terms of � , we fix the value of � by requiring that Blumen-
feld’s formula for Haff’s law coincide with ours [Eq. (5)]. 
This choice yields � = 6∕(7 − �2) . Inserting this expression 
into Eq. (71) and making the replacement l0 → � in the 
resulting equation, we find

where we have made use of the relation �(0) = �
0
∕� [cf. 

Eq. (16)] and of the definition t∗ = �(0)t.
We are now in the position to make a fair comparison 

between Blumenfeld’s model and our result (66). For elastic 
collisions ( � → 1 ), Eq. (72) yields

while in the elastic limit, Eq. (66) yields

Equation (74) differs from Blumenfeld’s result (73), but is 
consistent with the known results for molecular gases [36].

Figure 1 shows the dependence of the (scaled) MSD 
R∗ ≡ ⟨����2⟩∕�2 on the (reduced) time t∗ for two different 
values of the coefficient of normal restitution � . Solid and 
dashed lines are obtained from Eqs. (66) and (72), respec-
tively. Clearly, there are significant quantitative differ-
ences between our results and those based on Blumenfeld’s 
approach [27].

To complement Figs. 1, 2 shows R∗ versus � for t∗ = 102 . 
Solid and dashed lines refer to the theoretical results 
obtained form Eqs. (66) and (72), respectively. Symbols cor-
respond to the DSMC results obtained by replacing in the 
expression (24) D̃∗ with its corresponding simulation value 
(reported in Ref. [22]). An excellent agreement between 
the present theory and DSMC simulations is found. It is 
important to note that the (scaled) diffusion coefficient D∗ 
(recall that D̃∗ = D∗ in the self-diffusion problem) is meas-
ured in the simulations [22, 25, 38] through the relation-
ship (23); the linear relation between the intruder’s MSD 
⟨���′�2⟩ after a “time” interval s confirms the validity of 
the logarithmic law (24). While Blumenfeld’s expression 
for R∗ exhibits a monotonic dependence on the inelasticity 
parameter ( R∗ decreases with decreasing � ), in our case R∗ 
depends non-monotonically on � . Notwithstanding this, it 
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⟨����2(t∗)⟩
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is quite remarkable that Blumenfeld’s mean field model is 
able to capture the correct qualitative time dependence of 
the MSD (given by a logarithmic law fully consistent with 
Haff’s law) just by making use of a few simple assumptions.

It is interesting to note that the qualitative behaviour 
depicted by the solid line in Fig. 2 only holds as long as 
t∗ > 6 . Otherwise, the minimum is suppressed, and Eq. (66) 
yields a monotonically decreasing R∗ with increasing � . For 
t∗ = 6 , the �-derivative of R∗ vanishes at �min = 1 , whereas 
at longer times �min is shifted towards smaller values that 

tend to �min = 1∕2 as t∗ → ∞ . Thus, regardless of the value 
of t∗ , in the �-range [0,0.5] the MSD always decreases with 
increasing �.

The R∗(�)-behaviour displayed in Fig. 2 can be intuitively 
understood by noting that there are two competing effects. 
On the one hand, since the root-mean-square velocity is 
proportional to 

√
T(t) , one expects that R∗ will decrease as 

the collisions become more inelastic, i.e., when � decreases. 
Note that this reduction in the speed of the particles implies 
a reduction in the number of collisions that occur up to a 
time t, that is, a reduction in s0(t) . The dependence of s0(t) 
on � is mainly described by the factor (1 − �2)−1 of Eq. (42). 
On the other hand, when collisions become more inelastic, 
the average angle between the velocity of a particle before 
and after the collision is reduced, which makes its trajec-
tory straighter. In other words, as inelasticity increases, the 
dispersion is less effective (i.e., more persistent), result-
ing in an increased MSD [28]. This effect explains the 
increase of �2

e
 as � decreases, in agreement with Eq. (64) 

since �2
e
∝ (1 + �)−2 . Therefore, depending on which of 

these two effects prevails, ⟨����2⟩ = s0(t)�
2
e
 will increase or 

decrease with increasing inelasticity. Figure 2 shows that 
the first effect is dominant for a not too strong inelastic-
ity ( 𝛼 > 𝛼min ≈ 0.5 ), while the second effect prevails for 
𝛼 < 𝛼min ( the larger t is, the closer �min gets to 1/2.).

6 � Diffusion problem

In the general case, the parameter space includes the respec-
tive mass and diameter ratios m0∕m and �0∕� , the coeffi-
cients of normal restitution � and �0 , the reduced density 
n�d , and the dimensionality d. Because of the many param-
eters involved, for our purposes a full presentation of the 
obtained results would result in an excessive level of detail. 
As done in Sect. 5, we therefore focus again on the case of a 
dilute granular gas ( � = �0 = 1 ) of hard spheres ( d = 3 ). In 
spite of these restrictions, we show below that the observed 
phenomenology is already quite intricate in this particular 
case.

The dependence of the (scaled) MSD R∗ on the (com-
mon) coefficient of restitution � = �0 is shown in Fig. 3 
for t∗ = 102 , �0∕� = 2 and four different values of the 
mass ratio m0∕m . DSMC results obtained in Ref. [38] for 
m0∕m = 8 are also plotted. As in the case of Fig. 2, the the-
ory agrees very well with the simulation results, thereby 
confirming the accuracy of the first Sonine approximation 
to D∗ for this case. For a given value of the mass ratio, R∗ 
again exhibits a non-monotonic dependence on �.

On the other hand, Fig. 3 also shows that, for any given 
value of � (the common coefficient of normal restitution), 
the scaled MSD always increases with increasing m0∕m as 

Fig. 1   MSD scaled with the squared mean free path R∗ ≡ ⟨����2⟩∕�2 
versus the (reduced) time t∗ for two different values of the coefficient 
of normal restitution � . The solid lines refer to the results derived 
here [Eq.  (66)], while the dashed lines correspond to the results 
obtained by Blumenfeld [Eq. (72)]. Intruders and grains are assumed 
to be mechanically equivalent

Fig. 2   Plot of the MSD scaled with the squared mean free path 
R∗ ≡ ⟨����2⟩∕�2 as a function of the coefficient of normal restitution 
� for t∗ = 10

2 when intruders and grains are assumed to be mechani-
cally equivalent. The solid line is the result obtained from Eq.  (66), 
while the dashed line represents the result (72) obtained from Blu-
menfeld’s approach. The symbols refer to the results obtained from 
Monte Carlo simulations
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long as m0 > m (for m0 < m we find that this is no longer 
the case).

In view of our previous discussion for the self-diffu-
sive case, it seems natural to enquire to what extent this 
behaviour at fixed t∗ is related to the mass dependence of 
the respective collision frequencies. Figure 4 shows the 
intruder-grain collision frequency ratio �0∕� as a function 
of � for the systems considered in Fig. 3. For not too strong 
inelasticity ( 𝛼 ≳ 0.6 , say) the frequency ratio �0∕� increases 
with decreasing m0∕m , but the opposite happens for very 
inelastic systems. However, in spite of the different depend-
ence of �0∕� on m0∕m for different � , we already know from 
Fig. 3 that, for any fixed value of � , the scaled MSD R∗ 
always increases with increasing mass ratio when m0∕m > 1 . 
Thus, the mass dependence of �0∕� does not seem to play 
a major role in the qualitative behaviour observed for small 
enough � (for m0∕m > 1 , even though the collision frequency 
increases with increasing mass ratio, the MSD grows).

We ascribe this behaviour to the increasing deviation 
from energy equipartition (measured by the departure of the 
temperature ratio T0∕T  from unity) with increasing mass 
ratio m0∕m [54]. A larger value of T0∕T  implies an aug-
mented persistence of the intruder’s motion and the corre-
sponding increase of R∗ with growing m0∕m . Thus, beyond 
the impact of the relative collision frequency on R∗ , the iner-
tia generated by the difference in kinetic energy between the 
intruder and the gas particles appears to be the dominant 
effect here.

Let us now rationalize the behaviour depicted in Fig. 3 
in terms of the effective step length �2

e
 and of the number 

of steps s0 of the equivalent isotropic random walk. As one 
can see in Fig. 5, when m0 ≥ m , the step length (in units of 

�
2 ) decreases monotonically with increasing � . This reflects 

the fact that collisions become more dispersive with increas-
ing � , since deflection angles get larger when the collisions 
become less dissipative (we already discussed this point in 
Sect. 5).

We also see in Fig. 5 that �2
e
 increases with increasing 

mass ratio m0∕m . This is the expected behaviour, since 
the deflection of intruders due to their collisions with gas 
particles is less pronounced (and the intruders’ motion 
more persistent) when the mass of the intruder is increased 
with respect to the mass of the gas particles. Figure 5 also 

(a)

(b)

(c)

(d)

Fig. 3   Plot of the MSD scaled with the squared mean free path of the 
3d granular gas R∗ ≡ ⟨����2⟩∕�2 as a function of the coefficient of 
normal restitution � = �

0
 for �

0
∕� = 2 , t∗ = 10

2 , and four different 
values of the mass ratio: m

0
∕m = 1∕2 (a), m

0
∕m = 5 (b), m

0
∕m = 8 

(c), and m
0
∕m = 10 (d). The symbols refer to the results obtained 

from Monte Carlo simulations for m
0
∕m = 8

(a)
(d)

(c)

(b)

Fig. 4   Plot of � = �
0
∕� as a function of the coefficient of normal 

restitution � = �
0
 for the cases depicted in Fig.  7, i.e., m

0
∕m = 1∕2 

(a), m
0
∕m = 5 (b), m

0
∕m = 8 (c), and m

0
∕m = 10 (d). In all cases, 

�
0
∕� = 2

(a)
(b)

(c)

(d)

(e)

Fig. 5   Plot of the square effective length �2

e
∕�2 scaled with the mean 

free path of the gas particles versus the (common) coefficient of nor-
mal restitution � = �

0
 . The solid lines correspond to the four differ-

ent cases depicted in Fig. 3, namely, m
0
∕m = 0.5 (a), m

0
∕m = 5 (b), 

m
0
∕m = 8 (c), and m

0
∕m = 10 (d). In all four cases, the diameter 

ratio is �
0
∕� = 2 . The dashed line (e) corresponds to the self-diffu-

sion case with m
0
∕m = 1 and �

0
∕� = 1
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highlights the strong increase of �2
e
 with the mass ratio for 

very strong inelasticities.
On the other hand, for not too strong inelasticity ( 𝛼 ≳ 0.8 , 

say), the number of steps s0 increases very fast with increas-
ing � (see Fig. 6). In contrast, its �-dependence becomes 
significantly weaker at smaller �-values.

The net effect is that, in the region of small �-values 
(extreme inelasticity), the (scaled) MSD R∗ = s0(t

∗)(�2
e
∕�2) 

increases when � decreases; the fastest increase corresponds 
to the highest mass ratio considered. It is essentially due to 
the steep behaviour of �2

e
 in this region. In contrast, for large 

enough values of � (nearly elastic spheres), the behaviour of 
the MSD is dominated by the steep increase of s0(t) , which 
overcomes the relatively weak decrease in the effective step 
length as � increases. This competition between the effects 
of � on both �2

e
 and s0 and the resulting dependence of the 

MSD on inelasticity turns out to be quite similar to the one 
discussed in Sect. 5 for the self-diffusive case.

Having studied the impact of changes in the mass ratio 
m0∕m on the MSD, we now turn to further assessing the 
effect of inelastic collisions on this quantity. To study this 
aspect, we set m = m0 , � = �0 but � ≠ �0 (of course, if one 
takes � ≠ �0 , the self-diffusion results discussed above are 
recovered). The difference between � and �0 entails that 
there is no energy equipartition here either ( T0∕T ≠ 1 ). This 
setting is actually relevant for the analysis of inelasticity-
driven segregation [55–58]. Figure 7 shows R∗(�0)-curves 
for three different values of � at t∗ = 102 . A detailed calcu-
lation of the scaled MSD R∗ as a function of �0 reveals that 
it decreases monotonically for 𝛼 ≲ 0.6 , and that it increases 

monotonically for 𝛼 ≳ 0.94 , whereas in the intermediate 
range 0.6 ≲ 𝛼 ≲ 0.94 , R∗(�0) first drops and then raises. 
We also find that, for a given value of �0 , the scaled MSD 
decreases with decreasing � except in a small region with �0
-values around 0.1 or smaller. In this region, the curve for 
� = 0.5 lies above its counterpart for � = 0.7.

7 � MSD in driven granular gases

In the previous sections, we have analyzed the problem of 
tracer diffusion in a homogeneously cooling granular gas. 
However, it goes without saying that the HCS is a rather 
idealized state, since in real situations one has to externally 
inject energy into the system to keep it under rapid flow 
conditions. When the energy added to the granular gas com-
pensates for the energy lost by collisions, a non-equilibrium 
steady state is attained.

In real experiments, the steady state can be e.g. reached 
by injecting energy at the system boundaries (which includes 
shearing or vibrating its walls [59, 60]), but also by bulk driv-
ing as in air-fluidized beds [61, 62], or by the action of an 
interstitial fluid [63–65]. In practice, these ways of supplying 
energy involve almost unavoidably the formation of strong spa-
tial gradients in the bulk, thereby driving the system beyond 
the regime of validity of the Navier-Stokes hydrodynamic 
description. To circumvent this difficulty, it is quite usual in 
computer simulations to homogeneously heat the system by 
the action of an external driving force or thermostat. However, 
thermostats do not play a neutral role in the dynamics; the 
thermostat indeed modifies the transport coefficients of the 
granular gas, and it does so in a way which depends on the 
details of the heating mechanism at hand.

In view of the above, it is of interest to characterize the 
similarities and differences between the results derived for the 

(a)

(b)

(d) (c)

(e)

Fig. 6   Plot of the number of steps s
0
 versus the (common) coefficient 

of normal restitution � = �
0
 . Solid lines correspond to the four dif-

ferent cases depicted in Fig.  3, namely, m
0
∕m = 0.5 (a), m

0
∕m = 5 

(b), m
0
∕m = 8 (c), and m

0
∕m = 10 (d). In all four cases, the diam-

eter ratio is �
0
∕� = 2 . The dashed line (e) corresponds to the self-

diffusion case with m
0
∕m = 1 and �

0
∕� = 1 . For all curves one has 

t∗ = 10
2

Fig. 7   Plot of the MSD scaled with the squared mean free path 
R∗ ≡ ⟨����2⟩∕�2 as a function of the coefficient of normal restitution 
�
0
 for m

0
∕m = �

0
∕� = 1 , t∗ = 10

2 , and three different values of �
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intruder’s MSD in the HCS and for their counterparts in the 
driven granular gas. To this end, we first note that Eq. (21) 
is still valid for a driven gas. In this case, s(t) = �t , as � no 
longer depends on time, since the granular temperature T is 
kept constant by the thermostat. As a result of this, the MSD 
becomes a linear function of time. In units of the mean free 
path � , one has

where t∗ = �t , with � defined by Eq. (13). The expression of 
the (dimensionless) diffusion coefficient D̃∗ depends on the 
sort of thermostat used to heat the system. In the framework 
of our random walk approach, one can easily identify the 
quantities s0(t) y �2

e
 by setting Eq. (75) equal to Eq. (61). 

Taking into account that s0(t) = � t∗ [with �  defined by 
Eq. (29)], one finds

Equations (75) and (76) hold for any sort of thermostat. 
The thermostat only changes the explicit dependence of the 
temperature ratio T0∕T and the (dimensionless) diffusion coef-
ficient D̃∗ on the system parameters. To illustrate this depend-
ence, we assume that the granular gas is driven by a Langevin 
force given by a Gaussian white noise with zero mean and 
finite variance. The particles are randomly kicked between 
successive collisions under the action of this stochastic force 
[66, 67]. In the case of a binary granular mixture (tracer plus 
gas particles), the covariance of the stochastic acceleration is 
chosen to be the same for both species [68–70]. In the first 
Sonine approximation, the expression of D̃∗ when the system 
is driven by the stochastic thermostat is [69, 70]

where �∗
D
 is given by Eq. (38), and the temperature ratio is 

obtained from the condition

where �∗ and �∗
0
 are given by Eqs. (39) and (41). The relation 

(78) is a cubic equation for � . As in Sect. 5, the physically 
meaningful root is the one which yields the correct value of 
� = m0∕m in the limit of elastic collisions.

Figure 8 shows the dependence of the (scaled) diffusion 
coefficient D(�)∕D(1) = D̃∗(�)∕D̃∗(1) on the (common) 

(75)
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��∗
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,

(78)
m0

m
�∗ =

T0

T
�∗
0
,

coefficient of normal restitution � = �0 for d = 3 and two dif-
ferent mixtures: m0∕m = �0∕� = 2 (a) and m0∕m = 0.5 and 
�0∕� = 1 (b). Here, D(1) refers to the diffusion coefficient 
for elastic collisions. In both cases, the solid volume fraction 
is � ≡ (�∕6)n�3 = 0.2 . For the present case of hard spheres, 
� is well approximated by the following expression [73]:

Similarly, in the case of �0 one has [74]

It is quite apparent from Fig.  8 that the influence of 
the thermostat on D is very weak in the particular case 
m0∕m = �0∕� = 2 , since the HCS results practically coin-
cide with those for the thermostatted system. This agreement 
between both approaches is clearly confirmed by the DSMC 
results, even for quite extreme values of inelasticity.

However, when m0∕m = 0.5 and �0∕� = 1 , significant 
quantitative differences between the theoretical results for 
the HCS and for the thermostatted system arise. This is the 
expected result, since in general the impact of the heating 
mechanism on transport properties is important. In par-
ticular, the effect of inelasticity on the intruder’s diffusion 
coefficient is more relevant in the HCS than in the case 
of a driven gas. We also observe that, in the latter case, 

(79)� =
1 −

1

2
�

(1 − �)2
.

(80)

�0 =
1

1 − �
+ 3

�0
� + �0

�

(1 − �)2
+ 2

(
�0

� + �0

)2
�2

(1 − �)3
.

(a)

(b)

Fig. 8   Plot of the scaled diffusion coefficient D(�)∕D(1) as a function 
of the (common) coefficient of normal restitution � = �

0
 for two dif-

ferent systems: m
0
∕m = �

0
∕� = 2 (a) and m

0
∕m = 0.5 , �

0
∕� = 1 (b). 

In both cases, the solid volume fraction � = 0.2 . Here, D(1) refers to 
the value of the diffusion coefficient for elastic collisions. The solid 
lines correspond to the results obtained when the granular gas is 
driven by the stochastic thermostat, while the dashed lines refer to the 
results obtained in the HCS. The symbols correspond to the DSMC 
results reported in Refs. [71] and [72] for undriven (squares) and 
driven (circles) granular gases, respectively
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the diffusion coefficient exhibits a monotonic dependence 
on � . Thus, according to Eq. (75), the intruder’s MSD 
becomes a monotonic function of the coefficient of restitu-
tion. This dependence contrasts with the non-monotonic 
behaviour found in the HCS.

The above conclusion (valid for the stochastic ther-
mostat) cannot be generalized to other types of thermo-
stats; in particular, when the granular fluid is driven by 
a stochastic bath with friction, Sarracino et al. [47] find 
a non-monotonic dependence of the diffusion coefficient 
on � in the Brownian limit [75]. Consequently, the MSD 
exhibits a non-monotonic dependence on � , as it is found 
for the HCS. Exploring the possible relationship between 
the HCS [in the stationary representation defined by the 
scaled time s(t)] and the driven case studied by Sarracino 
et al. requires a more detailed study.

As a complement to Fig. 8, in Fig. 9 we plot the (scaled) 
square effective length �2

e
∕�2 against the (common) coef-

ficient of restitution � = �0 for the case in which the granu-
lar gas is driven by the stochastic thermostat. We see that 
the qualitative dependence of �2

e
∕�2 on � is quite similar 

to that found in the freely cooling case (cf. Fig. 5). From a 
quantitative point of view, the influence of inelasticity on 
the effective length is found to be more pronounced in the 
undriven case than in the driven one.

8 � Conclusions

In summary, starting from the Enskog–Boltzmann kinetic 
theory, we have derived a general expression for the MSD 
of an intruder immersed in a granular gas. Although 
intruder and gas particles are in general assumed to be 
mechanically different, our approach includes self-diffu-
sion as an interesting special case. The MSD has been 
found to grow logarithmically in time for any choice of 
the system parameters; in this sense, the time dependence 
is very robust and can be ascribed solely to the collisional 
properties of the gas particles. Homogeneously cooling 
granular gases were already known to be examples of 
ultraslow anomalous diffusion; in this context, the self-
diffusion case [14] and the Brownian limit [25] have been 
well characterized. However, to the best of our knowledge, 
no explicit expression valid over the full parameter range 
has been given so far for the MSD, nor has the behaviour 
of this quantity as a function of the mass ratio m0∕m , the 
diameter ratio �0∕� , and the respective coefficients of nor-
mal restitution � and �0 been discussed comprehensively 
as in the present work.

As we have seen, the prefactor of the logarithmic func-
tion exhibits a nonlinear dependence on the characteristic 
system parameters (masses and diameters, and coefficients 
of normal restitution). For self-diffusion (namely, when 
intruder and gas particles are mechanically identical), our 
results agree qualitatively with results recently obtained 
by Blumenfeld in the framework of a random walk model 
[27]. This agreement is quite remarkable given the minimal 
amount of assumptions involved in Blumenfeld’s model, and 
may retrospectively be regarded as further evidence sup-
porting the robustness of the logarithmic time growth of 
the MSD. Nevertheless, the quantitative differences between 
both results illustrated by Figs. 1 and 2 may become relevant 
for comparison with both simulation and experiments.

We are not aware of any experimental work where the 
logarithmic time dependence of the MSD has been con-
firmed, but a microgravity set-up similar to that of Ref. [76] 
might prove suitable for this purpose. Admittedly, any real 
experiment will face the inevitable challenge of dealing with 
the nonequivalence of ensemble- and time-averaged MSD 
exhibited by the ultraslow diffusion process under study. In 
principle, this is an important limitation when the number 
of available trajectories is small, which is the most common 
situation in experiments. A recent analysis suggests that, 
for the class of diffusion processes studied here, ergodicity 
breaking is strongly mitigated at lag times comparable with 
the trajectory length [15]. Unfortunately, this is precisely 
the regime where the shortage of statistics due to the limited 
number of windows involved in the computation of the time 
average is most severe.

(a)

(b)

(c)

(d)

(e)

Fig. 9   Plot of �2

e
∕�2 versus � = �

0
 for a driven granular gas. The 

solid lines correspond to the cases m
0
∕m = 0.5 (a), m

0
∕m = 5 (b), 

m
0
∕m = 8 (c), and m

0
∕m = 10 (d). In all four cases, the diameter 

ratio is �
0
∕� = 2 . The dashed line (e) corresponds to the self-diffu-

sion case with m
0
∕m = 1 and �

0
∕� = 1
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In this context, we note that explicit use of Haff’s law 
(5) in Eq. (24) leads to an exponential relation between 
the granular temperature of the gas and the intruder’s 
MSD, T = T(0) exp (−R∗∕C) , where C is the prefactor of 
the logarithm in Eq. (24). Thus, the intruder’s MSD may 
in principle be used as a “thermometer” for the whole 
granular gas. While this parameter has the advantage of 
involving the motion of only a single particle, the draw-
back is the aforementioned typical limitation in the num-
ber of trajectories available in experiments. On the other 
hand, one concludes from the linear theory of error propa-
gation that the error �T  arising from any uncertainty �R∗ 
in the MSD will be strongly dampened by the negative 
exponential.

One of the most interesting features borne out by our 
analysis is the non-monotonic �-dependence of the MSD. 
This behaviour (not present in Blumenfeld’s model) can 
be understood as a trade-off between two competing 
effects; on the one hand, the decrease of the collision 
frequency with decreasing elasticity entails an increase of 
the MSD, as each collision is a source of antipersistence; 
on the other hand, decreasing � results in a smaller root-
mean-square velocity, which is detrimental to transport. 
For 𝛼 < 𝛼min , the first effect has been found to prevail over 
the second one.

The aforementioned non-monotonic �-dependence of 
the MSD at sufficiently long times can also be rational-
ized by considering a random walk with isotropic and 
uncorrelated steps that is equivalent to the actual one in 
the sense that it yields the same MSD. This MSD can be 
written as a product of the square effective step length 
�
2
e
 and the step number s0 . The first quantity decreases 

monotonically with increasing � , but the second one 
increases strongly with � for large enough values of this 
parameter.

Finally, for mechanically different intruders with 
�0∕� = m0∕m = 1 , we see that the MSD behaves non-
monotonically both as a function of �0 for a fixed � and 
as a function of � for a given �0 . In contrast, the m0∕m

-dependence of the MSD has been found to be mono-
tonic in the explored parameter range ( m0 > m ). The fact 
that one can minimize the mobility of an intruder after 
a given time by a convenient choice of its coefficient of 
restitution is not particularly intuitive and awaits experi-
mental confirmation. As we have seen, this finding does 
not carry over to all driven systems, since the dependence 
of the MSD on � can be monotonic or non-monotonic 
depending on the kind of thermostat chosen. In this con-
text, studying the behaviour of the velocity correlations 
for both driven [77] and freely cooling systems [78–80] 
might shed further light on some salient features of the 
observed phenomenology, such as backscattering and 
aging effects.

A Collision frequency of the intruder

For hard spheres, the (average) collision frequency �0 associ-
ated with the intruder is defined as

where f (�1;t) and f0(�2;t) are the velocity distribution func-
tions of the granular gas and the intruders, respectively. In 
addition, �̂ is a unit vector along the line of the centers of the 
two spheres at contact, � is the Heaviside step function, and 
�12 = �1 − �2 is the relative velocity. The integrals appearing 
in Eq. (81) are evaluated here by considering the Maxwellian 
approximations to f and f0 , namely,

where �th =
√
2T∕m , �i = �i∕�th , and � = m0T∕(mT0) . Thus, 

�0 can be rewritten as

where we have introduced the dimensionless integral

Here, �∗
12

= �12∕�th . The integral I� can be performed by 
the change of variables � = �1 − �2 , � = �1 + ��2 , with the 
Jacobian (1 + �)−d . The integral I� gives

where Sd = 2�d∕2∕� (d∕2) is the total solid angle in d dimen-
sions, a ≡ �(1 + �)−1 , b ≡ (1 + �)−1 and use has been made 
of the result [67]

The integral I� gives

and hence, �0 can be finally written as

(81)
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When the intruder and gas particles are mechanically equiv-
alent, � = � , �0 = � , � = 1 , and Eq. (88) yields

The expression (89) agrees with Eq. (13). When the intruder 
and gas particles are different, Eq. (88) leads to Eq. (28).

B Average of ln
(
1 + ��0

)
 over the initial 

velocity distribution

In what follows, we compute explicitly the Boltzmann 
average of ln

(
1 + ��0

)
 , i.e., the integral

where fM(�0) is given by Eq.  (70). Introducing now the 
dimensionless quantities �̂0 = �0∕𝜐th(0) and 𝜆̂ = 𝜐th(0)𝜆 , we 
get

with

The integral I  has been computed by using a computer pack-
age of symbolic calculation. Its expression is given in terms 
of the hypergeometric functions. However, since the above 
expression of I  is quite cumbersome, its explicit form is 
omitted here. For large 𝜆̂ (or, equivalently, large t), the corre-
sponding expansion yields a much simpler asymptotic form:

where C1 = 1 − ln(2) − (�E∕2) , C2 = ln(2) − (1∕2) ln(�) , and 
�E ≃ 0.5772 denotes the Euler-Mascheroni constant. Thus, 
at long times,

In other words, the convergence of I  towards ln
(
1 + 𝜆𝜐̄0

)
 in 

the long-time limit is dictated by an inverse logarithmic law.

(88)�0(t) =
�(d−1)∕2

�
(

d

2

) n�
d−1

�0

(
1 + �

�

)1∕2

�th(t).

(89)�0(t) =

√
2�(d−1)∕2

�
�

d

2

� n�d−1��th(t).

(90)I ≡ 1

n0 � d�0 ln(1 + ��0) fM(�0),

(91)I = ∫
∞

0

d𝜐̂0 ln
(
1 + 𝜆̂𝜐̂0

)
f̂M(𝜐̂0),

(92)f̂M(𝜐̂0) =
4√
𝜋
𝜐̂2
0
e−𝜐̂

2
0 .

(93)I =

(
ln(𝜆̂) + C1

ln(𝜆̂) + C2

+O(𝜆̂−1 ln−1 𝜆̂)

)
ln
(
1 + 𝜆𝜐̄0

)
.

(94)I ≈ [1 − (C2 − C1) ln
−1(𝜐th(0)𝜆)] ln

(
1 + 𝜆𝜐̄0

)
.
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