
Computer Methods and Programs in Biomedicine 221 (2022) 106865 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

PhageCocktail: An R package to design phage cocktails from 

experimental phage-bacteria infection networks 

María Victoria Díaz-Galián 

a , Miguel A. Vega-Rodríguez 

a , ∗, Felipe Molina 

b 

a Escuela Politécnica, Universidad de Extremadura (https://ror.org/0174shg90), Avda. de la Universidad s/n, Cáceres, 10 0 03, Spain 
b Facultad de Ciencias, Universidad de Extremadura (https://ror.org/0174shg90), Avda. de Elvas s/n, Badajoz, 06006, Spain 

a r t i c l e i n f o 

Article history: 

Received 16 September 2021 

Revised 18 April 2022 

Accepted 7 May 2022 

Keywords: 

Phage therapy 

Phage cocktail 

Phage-bacteria infection network 

R package 

a b s t r a c t 

Background and objective: Phage therapy is a resurgent strategy used in medicine and the food industry 

to lyse bacteria that cause damage to health or spoil a food product. Frequently, phage-bacteria infection 

networks have a large size, making it impossible to manually study all possible phage cocktails. Thus, this 

article presents an R package called PhageCocktail to automatically design efficient phage cocktails 

from phage-bacteria infection networks. 

Methods: This R package includes four different methods for designing phage cocktails: ExhaustiveSearch, 

ExhaustivePhi, ClusteringSearch, and ClusteringPhi. These four methods are explained in detail and are 

evaluated using 13 empirical phage-bacteria infection networks. More specifically, runtime and expected 

success (fraction of lysed bacteria) are analyzed. 

Results: The four methods have variations in terms of runtime and quality of the results. ExhaustiveSearch 

always provides the best possible phage cocktail, but its runtime could be long. ExhaustivePhi only fo- 

cuses on one cocktail size, the one estimated as the best; thus, its runtime is less than ExhaustiveSearch, 

but it can produce cocktails with more phages than necessary. ClusteringSearch and ClusteringPhi are 

very fast (generally, less than one millisecond), providing always immediate results due to clustering 

techniques, but their accuracies can be lower, yielding cocktails with lower expected successes. 

Conclusions: The larger the phage-bacteria infection network is, the more complex its analysis is. Thus, 

this tool eases this task for scientists and other users while designing phage cocktails of good quality. 

This R package includes four different methods; therefore, users may choose among them, considering 

their preferences in speed and accuracy of results. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The discovery of penicillin in 1928 began the golden age of 

ntibiotics for treating infectious diseases. Antibiotics frequently 

how a wide spectrum of activity, which makes many modern 

edical procedures, such as complex surgery, possible [1] . How- 

ver, at the dawn of the third millennium, the decline in antibiotic 

iscovery and the evolution of multidrug-resistant bacteria have 

ed to a global antimicrobial resistance crisis. Additionally, the in- 

erest in maintaining a healthy intestinal microbial ecosystem bal- 

nce (eubiosis) and the required preservation of bacterial species 

nvolved in fermenting foods limit the use of antibiotics. These is- 
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ues have elicited renewed worldwide interest in using phages as 

 viable alternative approach for the clinical management of bacte- 

ial infections [2] and for reducing bacterial loads in raw and pro- 

essed foods [3] . 

Virulent phages are viruses that specifically infect and destroy 

acteria while concurrently releasing their progeny into the en- 

ironment. In addition to this rapid exponential proliferation, the 

elective toxicity of phages spares useful microbiota in animals 

nd foods [4] . Félix d’Herelle discovered phages in 1917 and soon 

peculated that they were responsible for the frequent recovery 

rom diarrhea due to their antibacterial activity. However, the 

idespread availability of antibiotics and the narrow host range 

f phages undermined the enthusiasm for phage therapy by the 

940s [5] . Because many antibiotic discovery programs in major 

harmaceutical companies are currently being discontinued [6] , 

hage therapy merits a second chance. 
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Phage therapy is based on phage cocktails, which are combina- 

ions of phages that can lyse target bacteria [7] . The manual design 

f efficient phage cocktails is difficult or impossible because many 

hage-Bacteria Infection Networks (PBINs) are large in size. Thus, 

his paper presents an R package to automatically design phage 

ocktails. The primary contributions of this study can be summa- 

ized as follows: 

• Presentation and explanation in detail of four computer meth- 

ods (ExhaustiveSearch, ExhaustivePhi, ClusteringSearch, and 

ClusteringPhi) to design phage cocktails considering a given 

PBIN. 
• Clustering ∗ methods are very fast (generally, less than one 

millisecond), but their accuracy can be less. Conversely, 

Exhaustive ∗ methods take more time, but their accuracy is the 

highest possible. Additionally, as will be explained, some meth- 

ods use the φ (Phi) estimation value. 
• The four methods have been included in an R package that is 

available for any user. 
• A complete experimental study that evaluates and compares 

the runtime and expected success (fraction of lysed bacteria) 

for the obtained cocktails. 
• Analysis of the impact when additional phages are included in 

the cocktail, from both viewpoints: runtime and biological qual- 

ity, also including additional insights. 

This paper is structured in the following way. Section 2 reviews 

elated literature. Section 3 explains the four proposed methods to 

esign phage cocktails. Section 4 is devoted to the experiments 

erformed in this study, which analyze the four methods from 

oth viewpoints (runtime and expected success; fraction of lysed 

acteria) and include additional insights. Finally, Section 5 con- 

ludes this study. 

. Related work 

Phage therapy is typically used by formulating a “cocktail” com- 

osed of a variable number of phages. Phage cocktails are or can be 

seful in many applications, such as treatment of human tubercu- 

osis [8] or respiratory infections [9] , prevention of contamination 

n food (e.g., Salmonella in milk and chicken meat [10] ), improve- 

ents in agriculture [11] , quality improvement of drinking water 

12] , etc. 

Although phages comprise the most prevalent and genetically 

iverse biological entities on Earth, the antagonistic interactions 

nd fast coevolution with their bacterial hosts hamper the perma- 

ent prediction of which phages can infect which bacterial strains, 

xplaining why metagenomics tools cannot stably predict these in- 

ections [13] . Thus, new empirical data [14] are continuously col- 

ected as bipartite phage-bacteria infection networks that must be 

nalyzed to generate phage cocktails. 

Additionally, because broad host range phages face “life” his- 

ory trade-offs, such as lower virulence [15] , long-term biocontrol 

trategies might necessitate time-structured phage cocktails or cy- 

ling of cocktails [16] . Thus, computer methods for designing phage 

ocktails are required for different purposes. 

Regarding the computer methods proposed for phage cocktails, 

he structure of PBINs relies on the coevolutionary dynamics of 

hages and bacteria [17,18] and has been used recently to esti- 

ate the size of phage cocktails [19] . However, the proposed met- 

ic ( φ) does not consider every edge on phage-bacteria networks or 

enerate the minimum cocktail size. These are two important con- 

ributions of this study, together with the detailed explanation of 

our computer methods to design phage cocktails, their inclusion 

n an R package, and a complete experimental study, which ana- 

yzes runtime, biological quality, and the impact when additional 

hages are included in the cocktail. 
2 
. Material and methods 

This R package designs the best phage cocktail for a given 

hage-bacteria infection network. Therefore, the corresponding 

BIN will be an input parameter in the form of an input host range 

atrix. Also, the user must select one of the four possible meth- 

ds for designing the phage cocktail: ExhaustiveSearch, Exhaus- 

ivePhi, ClusteringSearch, and ClusteringPhi. Once the parameters 

ave been supplied, the program performs preprocessing of the in- 

ut matrix and, afterwards, executes the specific method chosen. 

his R package is freely available in CRAN ( https://cran.r-project. 

rg/package=PhageCocktail ). 

.1. Input parameters 

To execute PhageCocktail, some parameters must be given. The 

rst one is the path of the input host range matrix (PBIN) in.xlsx 

ormat, whose rows and columns are the bacteria and phages, re- 

pectively. The first row must be devoted to the names/codes of 

he phages. In the same way, the first column must be devoted to 

he names/codes of the bacteria. Only 0 and 1 are considered to 

escribe the infection relationship between involved phages and 

acteria (0 = does not lyse; 1 = lyses). Thus, the infection rela- 

ionship can be represented by the names of phages and bacteria 

nd by the position of the value (0 or 1) in the matrix. 

Other parameter indicates the method selected to design 

he phage cocktail: ExhaustiveSearch ( Section 3.3 ), ExhaustivePhi 

 Section 3.4 ), ClusteringSearch ( Section 3.5 ), and ClusteringPhi 

 Section 3.6 ). 

The input host range matrix and the method to use are the 

ost important input parameters, but there are others, such as the 

lename of the output, just when is chosen to generate the results 

nto an output file. This output file eases the subsequent analyses. 

o finish, a limit value can be established. Thus, the phage cocktail 

ize is limited to this value. This parameter is useful in situations 

here the runtime is high (very large PBINs). Additionally, it is im- 

ortant to highlight that phage cocktails lysing the same bacteria 

ith fewer phages are preferred because large phage cocktails can 

roduce problems such as horizontal transfer of undesired genes, 

ysbiosis or high manufacturing costs [19] . Thus, the limit param- 

ter can be useful in some situations. 

.2. Preprocessing 

Before explaining the four possible methods for designing 

hage cocktails, there is a previous common step of preprocessing. 

he pseudocode of this preprocessing is detailed in Algorithms 1 

lgorithm 1 Pseudocode of the preprocessing for bacteria. 

nput: NumRows : number of rows (bacteria) in the matrix. 

utput: MaxBacteria : number of bacteria that can be lysed. 

onlysedBacteria : list with nonlysed bacteria. lysedBacteria : list 

ith lysed bacteria. 

1: MaxBacteria ← NumRows 

2: nonlysedBacteria ← ∅ 
3: lysedBacteria ← ∅ 
4: for each Bacterium ∈ NumRows do 

5: # Is this bacterium lysed by any phage? 

6: if size (P hages [ Bacterium ]) = 0 then 

7: MaxBacteria ← MaxBacteria − 1 

8: nonlysedBacteria ← nonlysedBacteria ∪ { Bacterium } 
9: else 

0: lysedBacteria ← lysedBacteria ∪ { Bacterium } 
11: end if 

2: end for 

https://cran.r-project.org/package=PhageCocktail
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for bacteria) and 2 (for phages). In this step, all rows and columns 

lgorithm 2 Pseudocode of the preprocessing for phages. 

nput: NumColumns : number of columns (phages) in the matrix. 

utput: MaxP hages : number of useful phages. nonuse f ulP hages : 

ist with nonuseful phages. use f ulP hages : list with useful 

hages. 

1: MaxP hages ← NumColumns 

2: nonuse f ulP hages ← ∅ 
3: use f ulP hages ← ∅ 
4: for each P hage ∈ NumColumns do 

5: # Does this phage lyse any bacterium? 

6: if size (Bacteria [ P hage ]) = 0 then 

7: MaxP hages ← MaxP hages − 1 

8: nonuse f ulP hages ← nonuse f ulP hages ∪ { P hage } 
9: else 

0: use f ulP hages ← use f ulP hages ∪ { P hage } 
11: end if 

2: end for 

f the input host range matrix are inspected to reduce their di- 

ensions (line 4 in Algorithms 1 and 2 ). The preprocessing checks 

f there is any zero vector in the matrix, which indicates that a 

acterium is not lysed by any phage or that a phage does not lyse 

ny bacterium (line 6 in Algorithms 1 and 2 ). Then, zero rows 

nd columns are removed from the matrix, and these bacteria 

nd phages are grouped into two lists: the list of non-lysed bac- 

eria and the list of non-useful phages, respectively (lines 7–8 in 

lgorithms 1 and 2 ). 

In addition, two more lists are created storing lysed bacteria 

nd useful phages (line 10 in Algorithms 1 and 2 ). Once the matrix

s preprocessed, it is ready for the next step, which depends on the 

ethod chosen for designing the phage cocktail. 

.3. ExhaustiveSearch 

The first method proposed is ExhaustiveSearch, in which all 

seful phages will be considered. The pseudocode for this method 

s detailed in Algorithm 3 . Using this method, the program returns 

lgorithm 3 Pseudocode of the ExhaustiveSearch method. 

nput: MaxP hages : number of useful phages. MaxBacteria : number 

f bacteria that can be lysed. Matrix : host range matrix. limit: 

imit of cocktail size. 

utput: Result: vector with the designed phage 

ocktails and the bacteria lysed by those cock- 

ails. 

1: Result ← ∅ 
2: for i ← 1 to 7 do 

3: (P hageC ocktail, LysedBact eria ) ← Search (i, MaxP hages, 

M axBacteria, M atrix ) 

4: Result ← Result ∪ (P hageC ocktail, LysedBact eria ) 

5: if (LysedBacteria = MaxBacteria ) or (i = MaxP hages ) or (i = 

limit) then 

6: return 

7: end if 

8: end for 

he best phage cocktails from size 1 to 7 in an orderly manner (line

 in Algorithm 3 ). Within a cocktail size, the best phage cocktail is

he one that lyses the highest number of bacteria. This method will 

nly stop before reaching size 7 if some previous cocktail size can 

yse all the bacteria, if there are not more phages to use, or if the

imit indicated in the calling is reached (line 5 in Algorithm 3 ). 
3 
The ExhaustiveSearch method is based on the Search function 

line 3 in Algorithm 3 ). The first parameter of this function indi- 

ates the size of the search to perform. As an example, Algorithm 4 

lgorithm 4 Pseudocode of the Search_Size4 function. 

nput: MaxP hages : number of useful phages. MaxBacteria : number 

f bacteria that can be lysed. Matrix : host range matrix. 

utput: P hageCocktail: final set of phages. 

ysedBacteria : final set of bacteria lysed by phages at 

 hageCocktail. 

1: P hageCocktail ← ∅ 
2: LysedBacteria ← ∅ 
3: for i ← 1 to MaxP hages − 3 do 

4: for j ← i + 1 to MaxP hages − 2 do 

5: for k ← j + 1 to MaxP hages − 1 do 

6: for l ← k + 1 to MaxP hages do 

7: bacteria ← lyse _ bacteria (phage [ i ] , phage [ j] , phage [ k ] , 

phage [ l] , Matrix ) 

8: if size (bacteria ) > size (LysedBacteria ) then 

9: P hageCocktail ← { phage [ i ] } ∪ { phage [ j] } ∪ 

{ phage [ k ] } ∪ { phage [ l] } 
0: LysedBacteria ← bacteria 

11: if size (LysedBacteria ) = MaxBacteria then 

2: return 

3: end if 

4: end if 

5: end for 

6: end for 

17: end for 

18: end for 

hows the pseudocode for a search of size 4. The pseudocodes are 

imilar for other sizes. As shown in Algorithm 4 , a combinatorial 

earch is performed, evaluating all the possible combinations of 

hages within a set of that size (lines 3–7 in Algorithm 4 ). If a

ombination of phages lyses a higher number of bacteria than the 

est one found until this moment (line 8 in Algorithm 4 ), then 

he new best phage cocktail is saved (lines 9-10 in Algorithm 4 ). 

f the new phage cocktail lyses the possible bacteria (line 11 in 

lgorithm 4 ), then the search is finished. 

.4. ExhaustivePhi 

The ExhaustivePhi method works with all the useful phages as 

xhaustiveSearch, but there is a previous step in which an esti- 

ator of phage cocktail size is calculated, called φ [19] . There- 

ore, ExhaustivePhi only provides the best phage cocktail of size 

. Algorithm 5 shows the pseudocode of this method. 

Before calculating φ, other parameters, such as the nestedness 

emperature ( T ) and the fill ( f ) of the host range matrix, must

e calculated. Nestedness temperature (0–100 ◦) indicates the nest- 

dness level, where low values are related to a nested network, 

hile high values reflect an increase in disorder or a deviation 

rom perfect nestedness [20] . This value is calculated by the Bin- 

atNest program using a binary presence-absence matrix (i.e., the 

ost range matrix; line 1 in Algorithm 5 ) [21] . The other parame-

er is fill, which is the percentage (0–100%) of successful infections 

hroughout the matrix (line 2 in algorithm 5 ) [19] , such as 100%

eans that all the phages lyse all the bacteria. 

Once both parameters, nestedness temperature and fill, have 

een determined, φ is calculated (line 3 in Algorithm 5 ), as shown 

n Eq. (1) : 

= log 2 

(
b · T 

f 
+ 2 

)
, (1) 
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Algorithm 5 Pseudocode of the ExhaustivePhi method. 

Input: NumP hages : original number of phages. NumBacteria : orig- 

inal number of bacteria. MaxP hages : number of useful phages. 

MaxBacteria : number of bacteria that can be lysed. Matrix : host 

range matrix. limit: limit of cocktail size. 

Output: Result: vector with the designed phage cocktail and the 

bacteria lysed by that cocktail. 

1: T emperature ← BinM atNest(M atrix ) 

2: F ill ← 100 · Count In fect ions (Mat r ix ) / (NumBacter ia ·
NumP hages ) 

3: φ ← P hiF or mula (NumBacter ia, T emperature, F ill) (Equation 1) 

4: if MaxP hages < φ then 

5: φ ← MaxP hages 

6: end if 

7: if limit < φ then 

8: φ ← limit 

9: end if 

10: Result ← Search (φ, MaxP hages, MaxBacter ia, Matr ix ) 
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here b is the number of bacteria, T is the nestedness tempera- 

ure, and f is the fill of the host range matrix. 

However, the phage cocktail size can be less than the φ value 

or two reasons. The first occurs when the number of useful phages 

 MaxP hages ) is less than φ (line 4 in Algorithm 5 ), and the second

ccurs when the limit value is less than φ (line 7 in Algorithm 5 ).

n these cases, φ is readjusted. Finally, this method obtains the best 

hage cocktail of size φ (line 10 in Algorithm 5 ) calling the Search 

unction ( Algorithm 4 ). 

.5. ClusteringSearch 

This method does not search the result using all the useful 

hages because they are previously clustered according to their 

bility and similarity to lyse bacteria. The pseudocode of this 

ethod is shown in Algorithm 6 . 

lgorithm 6 Pseudocode of the ClusteringSearch method. 

nput: NumP hages : original number of phages. NumBacteria : origi- 

al number of bacteria. MaxBacteria : number of bacteria that can 

e lysed. Mat rix : host range matrix. limit : limit of cocktail size. 

utput: Result: vector with the designed phage 

ocktails and the bacteria lysed by those cock- 

ails. 

1: T emperature ← BinM atNest(M atrix ) 

2: F ill ← 100 · Count In fect ions (Mat r ix ) / (NumBacter ia ·
NumP hages ) 

3: φ ← P hiF or mula (NumBacter ia, T emperature, F ill) (Equation 1) 

4: DistanceMatrix ← EuclideanDistance (Matrix ) 

5: Dendrogram ← Hierarchical Cl ustering(DistanceMatrix ) 

6: NumC lust ers ← ElbowM ethod(M atrix ) 

7: if NumC lust ers < φ then 

8: NumC lust ers ← φ
9: end if 

0: C lust ers ← CutDend rogram (Dend rogram, NumC lust ers ) 

11: BestP hages ← ∅ 
2: for each C lust er ∈ C lust ers do 

3: BestP hages ← BestP hages ∪ Sel ectBestP hage (Cl uster, Matrix ) 

14: end for 

5: C lust er ingMatr ix ← Select Columns (Mat rix, Best P hages ) 

6: NumC lust eringP hages ← NumC lust ers 

17: Resul t ← Exhausti v eSearch (NumCl usteringP hages, MaxBacteria, 

C lust er ingMatr ix, limit) 
4 
In this method, a distance matrix is calculated (line 4 in 

lgorithm 6 ) by considering the Euclidean distance between pairs 

f phages [22] . Then, using this distance matrix and Ward’s 

ethod, agglomerative hierarchical clustering is performed (line 

 in Algorithm 6 ) [23–25] . Then, the optimal number of clusters 

ust be determined. The objective is to define clusters such that 

he intracluster variation (i.e., the “Within-cluster Sum of Squares”, 

SS) is minimized. For this task, a heuristic method, known as the 

lbow method, is performed (line 6 in Algorithm 6 ). This method 

ompares different values for the number of clusters, consider- 

ng the WSS for each one, and selects (as the optimal number of 

lusters) the one that is the bend in the knee (or elbow) of the 

urve relating the values for the number of clusters with their cor- 

esponding WSS [26–28] . If the number of clusters is less than 

, then the number is readjusted to be equal to φ (lines 7–9 in 

lgorithm 6 ). 

After dividing the phages into clusters (line 10 in Algorithm 6 ), 

he next step is the selection of only one phage (the most virulent 

hage) per cluster (lines 11–15 in Algorithm 6 ). Thus, this method 

educes the number of phages to study considerably, and the com- 

inatorial search is also considerably reduced. Then, the method 

eturns the best phage cocktails from size 1 to 7 in an orderly 

anner as in ExhaustiveSearch (lines 16–17 in Algorithm 6 ). The 

rimary difference between ClusteringSearch and ExhaustiveSearch 

s the reduction in the number of phages to study thanks to the 

lustering process. 

.6. ClusteringPhi 

This method is a combination of ExhaustivePhi and Cluster- 

ngSearch. The pseudocode of this method is shown in Algorithm 7 . 

lgorithm 7 Pseudocode of the ClusteringPhi method. 

nput: NumP hages : original number of phages. NumBacteria : orig- 

nal number of bacteria. MaxBacteria : number of bacteria that can 

e lysed. Mat rix : host range matrix. limit : limit of cocktail size. 

utput: Result: vector with the designed phage cocktail and the 

acteria lysed by that cocktail. 

1: T emperature ← BinM atNest(M atrix ) 

2: F ill ← 100 · Count In fect ions (Mat r ix ) / (NumBacter ia ·
NumP hages ) 

3: φ ← P hiF or mula (NumBacter ia, T emperature, F ill) (Equation 1) 

4: DistanceMatrix ← EuclideanDistance (Matrix ) 

5: Dendrogram ← Hierarchical Cl ustering(DistanceMatrix ) 

6: NumC lust ers ← ElbowM ethod(M atrix ) 

7: if NumC lust ers < φ then 

8: NumC lust ers ← φ
9: end if 

0: C lust ers ← CutDend rogram (Dend rogram, NumC lust ers ) 

11: BestP hages ← ∅ 
2: for each C lust er ∈ C lust ers do 

3: BestP hages ← BestP hages ∪ Sel ectBestP hage (Cl uster, Matrix ) 

4: end for 

5: C lust er ingMatr ix ← Select Columns (Mat rix, Best P hages ) 

6: NumC lust eringP hages ← NumC lust ers 

17: if limit < φ then 

18: φ ← limit 

9: end if 

0: Resul t ← Search (φ, NumCl usteringP hages, MaxBacteria, 

C lust er ingMatr ix ) 

The first steps of the method calculate φ (lines 1–3 in 

lgorithm 7 ), which is the size of the phage cocktail to design. 

hen, the phage clustering process is performed (lines 4–15 in 

lgorithm 7 ), which considerably reduces the number of phages 
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Table 1 

13 phage-bacteria infection networks used in the experimentation. 

Reference Year Bacteria Phages T ( ◦) Fill (%) φ

Origin No. Origin No. 

Gunathilaka et al. [29] 2017 Laboratory 12 Sewage 29 10.2 49.4 2 

Magare et al. [30] 2017 Air 5 Air 25 31.0 15.2 3 

Romero-Suarez et al. [31] 2012 Walnut 16 Walnut 26 12.6 71.6 2 

Sajben-Nagy et al. [32] 2012 Laboratory, 34 Mushroom 16 12.8 36.9 3 

mushroom 

Wandro et al. [33] 2019 Human feces 15 Sewage 22 5.8 72.4 1 

Vu et al. [34] 2019 Vegetable, 31 Prophage 42 11.5 21.7 4 

seafood, 

livestock 

Murphy et al. [35] 2013 Dairy 20 Dairy 24 37.3 31.5 4 

Brady et al. [36] 2017 Beehive 40 Beehive 57 7.7 40.7 3 

Jackel et al. [37] 2017 Laboratory 113 Prophage 19 11.6 6.3 7 

Petsong et al. [38] 2019 Livestock 47 Livestock 36 10.0 14.7 5 

Gencay et al. [39] 2019 Pork meat 72 Prophage 41 13.7 22.2 5 

Korf et al. [40] 2019 Clinical, 64 Poultry, 50 17.3 18.5 5 

poultry sewage 

Mathieu et al. [41] 2020 Feces 75 Feces 167 2.8 6.1 5 

t

(

c

p

m

t

s

4

e

p

e

4

b

a

p  

o

r

t

w

e

f

a

4

i

w

3

i

(

4

t

t

Table 2 

Runtime evaluation (in milliseconds, median ±quart ile _ de v iat ion ) of the four methods for 

designing the phage cocktails of the 13 phage-bacteria infection networks. 

Reference ExhaustiveSearch ExhaustivePhi 

Gunathilaka et al. [29] 0.020 ±0 . 0035 0.035 ±0 . 0035 

Magare et al. [30] 0.201 ±0 . 0111 0.036 ±0 . 0071 

Romero-Suarez et al. [31] 0.109 ±0 . 0075 0.101 ±0 . 0196 

Sajben-Nagy et al. [32] 0.182 ±0 . 0093 0.193 ±0 . 0233 

Wandro et al. [33] 0.021 ±0 . 0018 0.034 ±0 . 0045 

Vu et al. [34] 10.647 ±1 . 4220 8.036 ±0 . 3864 

Murphy et al. [35] 65.330 ±3 . 1075 42.545 ±1 . 1298 

Brady et al. [36] 148.767 ±2 . 4866 130.846 ±2 . 8624 

Jackel et al. [37] 683.218 ±5 . 5714 314.712 ±2 . 0703 

Petsong et al. [38] 7584.093 ±41 . 1329 6715.142 ±69 . 6707 

Gencay et al. [39] 35425.187 ±108 . 8692 30651.298 ±150 . 0567 

Korf et al. [40] 90736.713 ±218 . 8998 83227.954 ±148 . 0530 

Mathieu et al. [41] 7083198.000 ±170974 . 4162 6677424.000 ±81327 . 3691 

Reference ClusteringSearch ClusteringPhi 

Gunathilaka et al. [29] 0.017 ±0 . 0023 0.034 ±0 . 0022 

Magare et al. [30] 0.059 ±0 . 0063 0.036 ±0 . 0070 

Romero-Suarez et al. [31] 0.044 ±0 . 0025 0.039 ±0 . 0022 

Sajben-Nagy et al. [32] 0.060 ±0 . 0045 0.051 ±0 . 0064 

Wandro et al. [33] 0.019 ±0 . 0023 0.028 ±0 . 0044 

Vu et al. [34] 0.100 ±0 . 0112 0.043 ±0 . 0025 

Murphy et al. [35] 0.205 ±0 . 0112 0.041 ±0 . 0033 

Brady et al. [36] 0.086 ±0 . 0045 0.045 ±0 . 0027 

Jackel et al. [37] 2.773 ±0 . 0735 0.080 ±0 . 0071 

Petsong et al. [38] 0.330 ±0 . 0092 0.050 ±0 . 0040 

Gencay et al. [39] 0.682 ±0 . 0303 0.067 ±0 . 0055 

Korf et al. [40] 0.636 ±0 . 0180 0.067 ±0 . 0014 

Mathieu et al. [41] 0.693 ±0 . 0071 0.072 ±0 . 0030 

a

w

[  

e  

i

c

u

t

c

p

s

w

l

h

o study. Its steps are as follows: calculating the distance matrix 

line 4), performing agglomerative hierarchical clustering (line 5), 

alculating the optimal number of clusters (lines 6–9), dividing the 

hages into clusters (line 10), and selecting the best phage (the 

ost virulent one) per cluster (lines 11–15). 

Then, calling the Search function ( Algorithm 4 ), this method re- 

urns the best phage cocktail with size φ, considering the phages 

elected in the clustering process (lines 16–19 in Algorithm 7 ). 

. Results and discussion 

In this section, the four methods to design phage cocktails are 

valuated. They are compared from two viewpoints: quality of the 

hage cocktails and runtime. The following subsections detail the 

xperimentation performed. 

.1. Datasets 

The four methods were evaluated using 13 empirical phage- 

acteria infection networks. These PBINs are described in Table 1 

nd were chosen to have variability in terms of nestedness tem- 

erature ( T ), fill, φ, origin of the bacteria and phages, and number

f bacteria and phages. Thus, many diverse solution scenarios are 

eproduced when designing phage cocktails. Nestedness tempera- 

ure and fill indicate how the corresponding host range matrix is, 

hile φ and the number of phages and bacteria can be used as 

stimators of how long the execution might take. Most PBINs are 

rom the last few years, although there are also some from as long 

go as 2012. 

.2. Experimental settings 

The software was programmed in R using RStudio. More specif- 

cally, 4.0.4 R version and 1.4.1106 RStudio version. Experiments 

ere performed on a computer with a CPU Intel Core i7-8700 at 

.20 GHz and 32 GB of RAM under the Windows 10 Pro operat- 

ng system. The R package can be freely downloaded from CRAN 

 https://cran.r-project.org/package=PhageCocktail ). 

.3. Runtime evaluation 

Table 2 shows the median and quartile deviation of the run- 

ime (in milliseconds) used by the four methods when designing 

he phage cocktail for each phage-bacteria infection network. To 
5 
ssure the statistical reliability of the results, 31 independent runs 

ere performed for every experiment. 

In the case of high-dimensional PBINs (such as Brady et al. 

36] , Jackel et al. [37] , Petsong et al. [38] , Gencay et al. [39] , Korf

t al. [40] , and Mathieu et al. [41] ), there is an important difference

n runtime between using Exhaustive ∗ or Clustering ∗ methods be- 

ause the number of combinations that the program has to eval- 

ate for designing the phage cocktail is higher using Exhaustive ∗

han Clustering ∗ methods. Exhaustive ∗ methods look for the phage 

ocktail that lyses the highest number of bacteria using all useful 

hages, while Clustering ∗ methods only use a small set of phages 

elected after the clustering process. Thus, Clustering ∗ methods al- 

ays provide immediate results (generally, in less than one mil- 

isecond). 

Some differences were also observed between executing Ex- 

austiveSearch or ExhaustivePhi when φ and the number of 

https://cran.r-project.org/package=PhageCocktail
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Table 3 

Evolution of the runtime (in milliseconds, median ±quart ile _ de v iat ion ) for ExhaustiveSearch and ClusteringSearch when 

designing phage cocktails of increasing size for the high-dimensional PBINs. 

Reference Cocktail size ExhaustiveSearch ClusteringSearch runtime (ms) 

Runtime (ms) � (times) 

Brady et al. [36] 1 0.101 ±0 . 0037 – 0.020 ±0 . 0013 

2 13.940 ±1 . 5927 138.020 0.039 ±0 . 0022 

3 134.258 ±3 . 1679 9.631 0.027 ±0 . 0015 

Jackel et al. [37] 1 0.044 ±0 . 0 0 04 – 0.029 ±0 . 0016 

2 1.171 ±0 . 0249 26.614 0.250 ±0 . 0046 

3 8.813 ±0 . 3112 7.526 0.680 ±0 . 0187 

4 38.406 ±0 . 7602 4.358 0.933 ±0 . 0197 

5 107.109 ±1 . 8927 2.789 0.727 ±0 . 0160 

6 209.389 ±2 . 1920 1.955 0.316 ±0 . 0189 

7 317.326 ±2 . 9628 1.515 0.064 ±0 . 0031 

Petsong et al. [38] 1 0.055 ±0 . 0 0 09 – 0.020 ±0 . 0015 

2 3.691 ±0 . 1145 67.109 0.074 ±0 . 0022 

3 77.438 ±1 . 3427 20.980 0.117 ±0 . 0020 

4 815.534 ±12 . 0949 10.531 0.085 ±0 . 0022 

5 6684.574 ±56 . 7644 8.197 0.030 ±0 . 0013 

Gencay et al. [39] 1 0.111 ±0 . 0014 – 0.026 ±0 . 0020 

2 13.957 ±1 . 3440 125.739 0.155 ±0 . 0051 

3 270.487 ±2 . 6962 19.380 0.259 ±0 . 0078 

4 3405.080 ±14 . 8109 12.589 0.182 ±0 . 0062 

5 31724.127 ±105 . 5093 9.317 0.055 ±0 . 0016 

Korf et al. [40] 1 0.124 ±0 . 0026 – 0.026 ±0 . 0014 

2 18.222 ±2 . 0649 146.952 0.147 ±0 . 0054 

3 454.034 ±5 . 3054 24.917 0.239 ±0 . 0066 

4 7125.837 ±36 . 5867 15.695 0.171 ±0 . 0048 

5 83122.426 ±187 . 3052 11.665 0.052 ±0 . 0016 

Mathieu et al. [41] 1 0.321 ±0 . 0454 – 0.025 ±0 . 0012 

2 104.722 ±3 . 6473 326.237 0.162 ±0 . 0047 

3 6279.769 ±107 . 1102 59.966 0.272 ±0 . 0039 

4 240852.769 ±8132 . 6212 38.354 0.189 ±0 . 0051 

5 6831400.000 ±240852 . 7694 28.363 0.057 ±0 . 0019 
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hages and bacteria were high. ExhaustivePhi is faster because it 

nly returns the phage cocktail of size φ, while ExhaustiveSearch 

eturns all the phage cocktails from size 1 to size 7. 

Considering that a limit value can be configured, this can be 

sed to avoid performing high cocktail size searches that could 

ave a high computational cost. Another application of the limit 

alue is to restrict the output in those cases in which users do 

ot want a higher phage cocktail size. Table 3 shows the evolu- 

ion of the runtime in the high-dimensional PBINs when different 

ocktail sizes are used. As shown, the impact in ClusteringSearch is 

ow because the number of phages to study is reduced. However, 

n the case of ExhaustiveSearch, the impact is high (see column “�

times)” in Table 3 ). Regardless, the exact impact depends on the 

eatures of each PBIN, primarily its number of phages and bacte- 

ia. For example, the increment in runtime is higher in the PBIN 

rom Mathieu et al. [41] than in the PBIN from Jackel et al. [37] .

lso, due to the combinatorial procedure itself, this increment is 

maller step by step (i.e., as the cocktail size increases). 

.4. Quality of the phage cocktails 

Table 4 shows the size of the phage cocktails generated by the 

our methods, the bacteria lysed by these cocktails, and the max- 

mum number of bacteria that could be lysed. ExhaustiveSearch is 

he best option because the user will obtain the best possible com- 

ination of phages (i.e., the best phage cocktail), which is the one 

hat lyses more bacteria with the least number of phages. There- 

ore, when users want to be sure about getting the best result, Ex- 

austiveSearch must be executed. 

When the ∗Search and 

∗Phi methods are compared, the estima- 

ion given by φ is not optimal in all cases. In some cases, the same

umber of bacteria can be lysed with a smaller phage cocktail; this 

esult occurs in 3 out of 13 cases in these experiments, in Gunathi- 

aka et al. [29] , Sajben-Nagy et al. [32] , and Vu et al. [34] . There are
6 
BINs whose φ number is higher than the maximum phage cock- 

ail size required. Therefore, users must determine if they prefer 

 faster solution that is likely to be the best one ( ∗Phi method) or

he best one with absolute reliability ( ∗Search method). Conversely, 

Search methods provide the list of lysed bacteria and used phages 

s the phage cocktail size increases, and this information can be 

seful to have a better understanding and analysis. 

When the Exhaustive ∗ and Clustering ∗ methods are compared, 

able 4 shows that the Exhaustive ∗ methods obtain better results 

i.e., lyse more bacteria) in 6 out of 13 phage-bacteria infection 

etworks (i.e., in all the high-dimensional PBINs). This compari- 

on is described in more detail in Table 5 , where ExhaustiveSearch 

nd ClusteringSearch are compared when the phage cocktail size 

ncreases. In most cases (4 out of 6) of high-dimensional PBINs, 

lusteringSearch cannot improve its solution, even by increasing 

he phage cocktail size, as in Brady et al. [36] , Jackel et al. [37] ,

etsong et al. [38] , and Gencay et al. [39] (see Table 5 ). These re-

ults indicate that the clustering process can remove phages that 

an later be useful for lysing new bacteria as the phage cocktail 

ize increases. In the remaining cases (2 out of 6, PBINs from Korf 

t al. [40] and Mathieu et al. [41] ), the number of lysed bacteria 

ncreases with the phage cocktail size, but the results are worse 

han in ExhaustiveSearch, even with a phage cocktail of size 2 (see 

able 5 ). Conversely, ExhaustiveSearch always improves the result 

s the phage cocktail size is increased, and its result is always the 

est possible result. Thus, users must select between an immediate 

olution with Clustering ∗ methods and a possibly better solution 

ith Exhaustive ∗ methods. 

.5. Additional insights 

After analyzing the advantages and disadvantages of using each 

ethod, this subsection tries to provide a broader vision of the ad- 

itional knowledge that is possible to achieve with this R package. 
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Table 4 

Bacteria lysed by the phage cocktails designed with the four methods for the 13 phage-bacteria infection 

networks. 

Reference Cocktail size Bacteria lysed Maximum (%) 

ExhaustiveSearch ExhaustivePhi 

Gunathilaka et al. [29] 1 2 12 (100.00%) 100.00% 

Magare et al. [30] 3 3 4 (80.00%) 80.00% 

Romero-Suarez et al. [31] 2 2 16 (100.00%) 100.00% 

Sajben-Nagy et al. [32] 2 3 18 (52.94%) 52.94% 

Wandro et al. [33] 1 1 14 (93.33%) 93.33% 

Vu et al. [34] 3 4 20 (64.52%) 64.52% 

Murphy et al. [35] 4 4 20 (100.00%) 100.00% 

Brady et al. [36] 3 3 39 (97.50%) 97.50% 

Jackel et al. [37] 7 7 52 (46.02%) 46.90% 

Petsong et al. [38] 5 5 26 (55.32%) 59.57% 

Gencay et al. [39] 5 5 64 (88.89%) 94.44% 

Korf et al. [40] 5 5 56 (87.50%) 98.44% 

Mathieu et al. [41] 5 5 70 (93.33%) 93.33% 

ClusteringSearch ClusteringPhi 

Gunathilaka et al. [29] 1 2 12 (100.00%) 100.00% 

Magare et al. [30] 3 3 4 (80.00%) 80.00% 

Romero-Suarez et al. [31] 2 2 16 (100.00%) 100.00% 

Sajben-Nagy et al. [32] 2 3 18 (52.94%) 52.94% 

Wandro et al. [33] 1 1 14 (93.33%) 93.33% 

Vu et al. [34] 3 4 20 (64.52%) 64.52% 

Murphy et al. [35] 4 4 20 (100.00%) 100.00% 

Brady et al. [36] 3 3 36 (90.00%) 97.50% 

Jackel et al. [37] 7 7 50 (44.25%) 46.90% 

Petsong et al. [38] 5 5 20 (42.55%) 59.57% 

Gencay et al. [39] 5 5 49 (68.06%) 94.44% 

Korf et al. [40] 5 5 53 (82.81%) 98.44% 

Mathieu et al. [41] 5 5 62 (82.67%) 93.33% 

Table 5 

Evolution of the bacteria lysed for ExhaustiveSearch and ClusteringSearch when 

designing phage cocktails of increasing size for the high-dimensional PBINs. 

Reference Cocktail size Bacteria lysed 

ExhaustiveSearch ClusteringSearch 

Brady et al. [36] 1 36 (90.00%) 36 (90.00%) 

2 37 (92.50%) 36 (90.00%) 

3 39 (97.50%) 36 (90.00%) 

Jackel et al. [37] 1 32 (28.32%) 32 (28.32%) 

2 40 (35.40%) 40 (35.40%) 

3 46 (40.71%) 46 (40.71%) 

4 48 (42.48%) 48 (42.48%) 

5 50 (44.25%) 50 (44.25%) 

6 51 (45.13%) 50 (44.25%) 

7 52 (46.02%) 50 (44.25%) 

Petsong et al. [38] 1 15 (31.91%) 15 (31.91%) 

2 19 (40.43%) 18 (38.30%) 

3 22 (46.81%) 19 (40.43%) 

4 24 (51.06%) 20 (42.55%) 

5 26 (55.32%) 20 (42.55%) 

Gencay et al. [39] 1 40 (55.56%) 40 (55.56%) 

2 49 (68.06%) 45 (62.50%) 

3 56 (77.78%) 48 (66.67%) 

4 61 (84.72%) 49 (68.06%) 

5 64 (88.89%) 49 (68.06%) 

Korf et al. [40] 1 34 (53.13%) 34 (53.13%) 

2 44 (68.75%) 43 (67.19%) 

3 50 (78.13%) 48 (75.00%) 

4 54 (84.38%) 52 (81.25%) 

5 56 (87.50%) 53 (82.81%) 

Mathieu et al. [41] 1 50 (66.67%) 50 (66.67%) 

2 61 (81.33%) 57 (76.00%) 

3 67 (89.33%) 60 (80.00%) 

4 69 (92.00%) 61 (81.33%) 

5 70 (93.33%) 62 (82.67%) 
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or example, scientists could be interested in comparing the num- 

er of lysed bacteria among different sizes of phage cocktail and 

hoosing the best one according to their preferences. 
7 
Bacteria can grow exponentially with a generation time as short 

s 20 min. Thus, the addition of a single bacterial strain lysed in a 

ommunity by increasing the cocktail size with one phage could 

e relevant for biocontrol in both the medicine and food indus- 

ries. For example, when the new bacterium is highly pathogenic 

nd resistant to antibiotics, or it is the primary factor causing food 

poilage. In both cases, although the percentage of lysed bacteria 

s nearly identical, the phage cocktail that lyses the new bacterium 

ould be chosen. 

Conversely, phage specificity would ensure that the beneficial 

icrobiota remains intact during phage therapy because they are 

nnocuous to eukaryotic and all prokaryotic cells outside their host 

ange. This fact allows highly specific cocktails to be tailor for suit 

ermented foods such as dairy products that require lactic acid 

acteria and probiotic strains. Smaller phage cocktails could entail 

ower production costs, and thus, their implementation would be 

ore profitable. 

In addition, experimental results verify that the same number 

f bacteria lysed in ClusteringSearch for a certain cocktail size can 

e lysed with a smaller number of phages in ExhaustiveSearch. 

herefore, although ClusteringSearch is faster (generally less than 

ne millisecond), ExhaustiveSearch provides scientists the guaran- 

ee of obtaining the maximum economic and biological yield. 

Conversely, it is relevant to consider the list of bacteria that are 

ot lysed by any phage to search for phages infecting these bacte- 

ia. The list of non-useful phages should be the subject of further 

esearch about their inefficacy, or they can be used to investigate 

he coevolution between bacteria and phages, yielding more viru- 

ent phages and more resistant bacteria. Therefore, both lists pro- 

ide users with additional knowledge. 

. Conclusions 

This article presents a new R package called PhageCocktail. The 

oal of this software is to automatically design phage cocktails that 

re appropriate for the biocontrol of bacteria. The best phage cock- 
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ail is the one that lyses the most bacteria with the fewest phages. 

he package includes four different methods for designing phage 

ocktails. The four methods have been explained in detail, and each 

ethod has its own advantages. To determine the efficiency and 

untime of these methods, 13 empirical phage-bacteria infection 

etworks were investigated experimentally. 

The experiments show that the best phage cocktail is always 

ound by ExhaustiveSearch. However, its runtime can be high (ap- 

roximately 1–2 h) when PBIN has a large number of phages (e.g., 

67 phages in these experiments for PBIN from Mathieu et al. [41] ). 

or the rest of the PBINs, the runtime is approximately 90 s or 

ower. Conversely, ClusteringSearch always has a very reduced run- 

ime (generally less than one millisecond) and obtains good phage 

ocktails but sometimes cannot find the best phage cocktail; this 

esult occurs in 6 out of 13 cases in these experiments. 

The other two methods are ExhaustivePhi and ClusteringPhi. In 

hese methods, the size of the phage cocktail is estimated by calcu- 

ating the φ number ( Eq. (1) ). Therefore, both methods only focus 

n phage cocktails of size φ. The experiments show that φ per- 

orms a good estimation but is not the most accurate. For exam- 

le, in some cases, the same number of bacteria can be lysed with 

 smaller phage cocktail; this result occurs in 3 out of 13 cases in

hese experiments. However, it is also true that only focusing on 

ize φ improves the runtime. 

Thus, users can choose among the four methods based on their 

references in speed and accuracy of results. The parameter limit 

s also interesting because it can avoid a high runtime or phage 

ocktails that are larger than desired. 

Manually designing phage cocktails is tedious and time- 

onsuming, and because high-throughput screening is gaining pop- 

larity [42] , PhageCocktail will become increasingly useful. This R 

ackage provides scientists and other users with the tools to ob- 

ain appropriate phage cocktails depending on their requirements 

nd preferences. Also, the package provides the number of phages 

nd bacteria and their corresponding names, and relevant addi- 

ional knowledge, including a list of non-useful phages, bacteria 

hat cannot be lysed, and comparisons among phage cocktails of 

ifferent sizes, which are important when users want to interpret 

nd analyze in detail the data in this field. 
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