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Precision beekeeping combines technology and statistics aimed at managing an apiary

effectively and reducing the risk of situations that can lead to bee population losses. Da-

tabases of the we4bee project of three sensorised beehives were considered for analysis.

They contain interior sensor data (temperature, relative humidity, and weight) and data of

meteorological events. Static and dynamic vector autoregressive models and linear and

nonlinear regression models were constructed to predict the hives' internal variables. They

were compared by 100-fold cross-validation adapted for time series. In general, the dy-

namic vector autoregressive model provided the best predictions, with a feasible compu-

tational cost. Only in some specific cases did the static vector autoregressive version

produces smaller errors, although the differences were not statistically significant.

Generalised additive and dynamic linear models always provided less accurate results than

the dynamic vector autoregressive model. There is a need of integrating accurate predictive

models, such as the dynamic vector autoregressive one. This predictive model can be in-

tegrated into a decision support system to alert the beekeeper of out-of-the-ordinary sit-

uations in the hives, and thus aid in their efficient management.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Beekeeping is an important productive branch of agriculture

dedicated to the breeding and maintenance of bees, with the

harvesting of different products such as beeswax, propolis,

royal jelly, and, above all, honey. In addition, bees play a

fundamental environmental role. Being able to transport large

quantities of pollen, they are one of the world's main polli-

nators, facilitating plant reproduction and therefore the pro-

duction of fruits, nuts, and oils (Patel et al., 2021). Currently,

bee colonies are facedwith various challenges such as climate

change, pesticides, and land uses that affect their growth,
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reproduction, and sustainability (LeBuhn & Vargas Luna,

2021). The loss of bee colonies is a serious problem leading

to reductions not only in the production and quality of honey

but also in the pollination service bees provide to ecosystems,

with the consequent greater difficulty in maintaining native

plants. The assessment report on pollinators, pollination, and

food productionwarned that 37% of European bee populations

were declining (Intergovernmental Science-Policy Platform on

Biodiversity and Ecosystem Services, 2016). The most impor-

tant losses of honey bee colonies occur during hibernation,

causing losses of up to 30% in some European countries

(Hristov et al., 2020), and between 8% and 30% worldwide
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(Stara et al., 2019). The report entitled ‘The importance of bees

and other pollinators for food and agriculture’ warned that bees

and other pollinators are under threat, putting at 40% the total

proportion of invertebrate pollinator species, especially bees

and butterflies, that are at risk of extinction worldwide (Food

and Agriculture Organization of the United Nations, 2018).

There are also economic consequences since the production

of fruits and seeds of many plant species is directly related to

bee pollination (Rollin & Garibaldi, 2019).

Precision beekeeping emerged in response to the need to

manage beekeeping in an optimal way. It incorporates tech-

nology and statistical methods to assist beekeepers in un-

derstanding what is happening inside their hives without

opening them up and, hence disturbing the colony. The

incorporation of sensors into the hives and processing the

data they provide gives the beekeeper real-time information

about the state of the hives based on the relevant variables

without the need to travel to them. This facilitates decision

making and minimises the consumption of resources and

stress in the colony. Kviesis et al. (2020), for example, applied

fuzzy logic decision rules to parameters related to the internal

and external temperature of the hive and the season (spring,

summer, autumn, or winter) to determine its health status

(normal, extreme, or death). Data obtained from recordings of

sounds emitted by bees has been used to detect their health

status or different events that may take place in the hive, e.g.,

swarming, hornet attack, or varroa mite infection (Terenzi

et al. (2020) reviewed the state of the art of these ap-

proaches). Ramsey et al. (2020) studied bee vibrations to detect

swarming events. Video monitoring systems have also been

used to estimate traffic in and out of the hive and to detect

swarming events or varroa mite infection (Tashakkori et al.,

2021). Semiconductor gas-sensors can also provide relevant

information about the health status of a beehive. Szczurek

et al. (2019), for instance, used different kinds of semi-

conductor gas-sensors to find a direct relationship with the

varroa infestation rate of bee colonies.

Although there are sufficient technical resources and

hardware for the practical application of precision

beekeeping, the market penetration of decision support sys-

tems based on sensor data is still very low. Themain reason is

uncertainly about the economic benefit that using these sys-

tems could provide.

There are today several projects incorporating sensor

technology into different hives, but most have stayed at a

stage of descriptive analysis of the information recorded,

using it as a tool for the beekeeper to know the state of the

hive at a specific time (Ochoa et al., 2019). In particular, there

has been more research on the acquisition of sensor data and

its real-time analysis than on the application of robust sta-

tisticalmethods for prediction purposes (Zacepins et al., 2015).

The descriptive uses have not had the sufficient impact to

produce any real transformation of the sector.

The main focus of most of the studies that have applied

statistical methods to sensor data in this context has been on

classifying the hive into different classes of health status

(Braga et al., 2020), on detecting diseases such as varroa

(Szczurek et al., 2019), or on identifying specific events in the

hive such as swarming (Davidson et al., 2020). None of them

have sought to make predictions. Even though predictive
models could be used to anticipate possible changes in the

health of the hives, there lack studies in the scientific litera-

ture which address this problem. Temperature and relative

humidity have been used as indicators of possible changes in

hives. Braga et al. (2021) applied neural networks to internal

and external temperature, internal humidity, mean fanning,

mean colony noise, and weight features in order to make 2-,

10-, and 24-h predictions of the internal temperature. To the

best of the authors' knowledge, there have been no other

prediction-based studies conducted in this context.

The aim of this work is to implement and compare various

predictive models using beekeeping sensor data to forecast

the internal temperature and relative humidity of a hive as

well as its weight. To this end, endogenous (temperature,

relative humidity, and weight) and exogenous (the weather

conditions to which the hive is exposed) variables are

considered. Using these data, a model comparison is per-

formed, taking into account the goodness-of-fit and the

computation time as well as the quality of the predictions in a

cross-validation framework. Predictions are made at 1, 3, and

7 days so that the beekeeper has enough time to anticipate

and move in response to the different events that may occur,

for example, to identify significant weight reductions, loss of

thermoregulation or large humidity variations that could

endanger the health of the hive. They could also help to detect

favourable scenarios for the appearance of some diseases,

such as varroa, which are more frequent in certain tempera-

ture and relative humidity ranges. The highest reproduction

rate of varroa occurs in the temperature range of

32.5 �Ce34.5 �C, with no broods being found at temperatures

below 31.5 �C. Also, the optimal relative humidity range for the

reproduction of this disease is between 55% and 70%, with

only limited reproduction taking place when the relative hu-

midity is higher (Nazzi & Le Conte, 2016).

The rest of this article is organised as follows. Section 2

describes the motivating problem and the databases used.

Section 3 presents the predictive models, and section 4 the

results. Section 5 discusses the results, and finally section 6

presents the conclusions to be drawn from the study.
2. Motivating problem

Artificial intelligence can be applied to a broad set of relevant

variables obtained from sensors located in the hives in order

to predict their health status in a massive data analysis

environment. Accurate predictive models involving low

computation cost must be integrated into decision support

systems specifically designed and implemented for this

context. The predictive model would allow the anticipation of

different events in the hives.

This work uses data from three beehives of the we4bee

project (https://we4bee.org/) fitted with sensors. The we4bee

project has Kenya top bar hives, mainly located in schools and

educational institutions in Germany, with the aim of raising

awareness of bees and their importance to the ecosystem. The

hives are made of solid spruce wood and designed for mini-

mally invasive beekeeping rather than prioritising production.

Their approximate weight is 25 kg. They could harbour up to

about 30,000 bees and were constructed as a flatter and

https://we4bee.org/
https://doi.org/10.1016/j.biosystemseng.2022.06.006
https://doi.org/10.1016/j.biosystemseng.2022.06.006


b i o s y s t em s e ng i n e e r i n g 2 2 1 ( 2 0 2 2 ) 1 9e2 9 21
smaller alternative to the typical beehive used for honey

production. A decisive advantage of the low overall height lies

in the simpler handling of the honeycomb and reduced hon-

eycomb breakage, which makes handling easier. The bees

belong to the Apis mellifera species. Two of these hives are

located in the Bavarian region of southern Germany, and the

other one, is located in the North Rhine-Westphalia region of

north-west Germany. The first, located in Markt Indersdorf,

has data from 1 July 2019 to 14 April 2021. The second, located

in Vohburg an der Donau, has data from 17 July 2019 to 4 April

2021, and was later moved to a different location. The third,

located in Waltrop, has data from 1 May 2020 to 21 February

2022. The sensors provide information about internal hive

variables: temperature (�C), relative humidity (%), and weight

(kg). It is important to note that the sensor recording the in-

ternal temperature and relative humidity is fixed to the frame

of the hive, so the external temperature has a strong influence

on the corresponding measurements. Figure 1 shows the

recorded internal variables of the three hives analysed for

their whole-time range considered. Despite the large vari-

ability, the three hives show similar behaviour patterns.

Sensors also register the external weather conditions: tem-

perature, humidity, rainfall (ml), wind speed (m s�1), air

pressure (hPa), particulatematter (mgm�3), and brightness (lx).

Data from all the sensors were stored five times a day at

equally spaced time intervals, and were appropriately curated

to remove wrong data.

On the one hand, temperature, relative humidity, and

weight are variables of great interest to the beekeeper, so they

are present in most studies on sensorized hives. On the other,

hives are clearly influenced by external weather conditions

(Flores et al., 2019), which justifies the relevance of using the

variables considered as exogenous in this study.

Exogenous variables can be obtained in two ways: by

sensing at the hive itself (the case of the present study) or by

extracting the information provided by climatological models

since they provide high quality predictions of variables

outside the hive. Moreover, sensor data for exogenous vari-

ables could be replaced by meteorological data if external

sensors are unavailable; the possibility of eliminating external

sensors would reduce the costs of fitting sensors to the hive.

Another source of information of great interest is the

monitoring of actions that the beekeeper performs on the

hive, such as feeding, harvesting, application of treatments

against diseases or observation of swarming events, among

others. Unfortunately, this information is very sparse in the

hives analysed. Indeed, for the Markt Indersdorf hive there is

no information available on this type of action, the Waltrop

hive data only contain 7 comments on some actions carried

out on the hive, while the Vohburg hive is the one with the

most detailed monitoring with a total of 45 comments. The

comments included by the beekeepers give information on

the actions they carry out in the hive, such as feeding, appli-

cation of varroa treatment, harvesting or just to check that the

bees are fine. This information, although sparse, is very use-

ful. A more detailed monitoring of the activities carried out in

the hive would allow more accurate results to be obtained.

Themain objective of this study was to predict the internal

state of a hive, i.e., its temperature, relative humidity, and

weight, in order to provide the beekeeper with relevant
information about the situation of the hive so that they can

anticipate the different events that could lead to a reduction in

production. These predictions can be used in an early warning

system for different events. For example, there is evidence

that certain diseases such as varroa proliferate in cold and

humid environments (Harris et al., 2004). If temperature and

humidity predictions anticipate this kind of climate event, the

beekeeper can be alerted that the hive is at risk of suffering

from this disease. Also, it has been reported that there is a

significant decrease in hive weight when bees are infected by

varroa (No€el et al., 2020). Similarly, temperature and relative

humidity predictions are useful to anticipate swarming as it

has been shown that swarming is preceded by a decrease in

both temperature and relative humidity in the hive (Catania&

Vallone, 2020). After a swarming event, the daughter queen

bee and about 75% of the worker bees leave the hive, which

justifies the importance of anticipating this kind of event. The

predictions obtained for these internal features can be useful

for beekeepers to alert them to relevant changes in the hives

so that they can take action if necessary.
3. Methods

This section explains the models and tools used for model

fitting and forecasting the hives’ internal variables. It presents

the data preprocessing, the four statistical methods consid-

ered for prediction, the cross-validation technique, and the

evaluation metrics used for model comparison.

3.1. Preprocessing

The data were preprocessed before being fed into the predic-

tive models. On the one hand, unfeasible values due to sensor

malfunction and/or data acquisition errors were removed.

They were identified because they were outside the range of

possible values (e.g., negative weights, negative relative hu-

midities, non-realistic temperatures, …). On the other hand,

missing data were filled in by using the Multivariate Imputa-

tion by Chained Equations with Random Forest (MICE-Ranger)

procedure. This method imputes missing data using an iter-

ative system of predictive models (Wulff & Jeppesen, 2017).

3.2. Models

Let T be the time that n variables are observed, and let yt, xt,

and ct be the vectors corresponding to the response, predictor,

and covariate variables, respectively. When a vector is uni-

variate, it is denoted without using boldface, i.e., as yt, xt, and

ct.

3.2.1. Vector autoregressive models
A vector autoregressive model (VAR) is a generalisation of the

univariate autoregressive model for predicting time series. It

is one of the most efficient and flexible models for multivar-

iate time series analysis (Zivot & Wang, 2006b).

The vector autoregressivemodel of order pwith exogenous

variables is defined as follows:

yt ¼ nþA1yt�1 þ/þ Apyt�p þ Cct þ et; t ¼ pþ 1;…;T; (1)

https://doi.org/10.1016/j.biosystemseng.2022.06.006
https://doi.org/10.1016/j.biosystemseng.2022.06.006
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Fig. 1 e Time series of internal temperature (grey continuous line), internal relative humidity (grey dotted line), and weight

(black line) of the three hives analysed: Vohburg an der Donau (top), Markt Indersdorf (centre), and Waltrop (bottom). The

data were registered from July 2019 to April 2021 for the first two hives, and from May 2020 to February 2022 for the third

one. Temperature and weight (continuous lines) are located on the main axis (left), and relative humidity (dotted line) on the

secondary axis (right).
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where A1, …, Ap are fixed coefficient matrices, n the vector of

intercept terms, C the coefficient matrix of covariates, and et
the vector error term, with EðetÞ ¼ 0 and time invariant posi-

tive definite covariance matrix with Eðete0tÞ ¼ s (a white noise

process).

The order can be determined using different criteria such

as Akaike Information (AIC), Hannan-Quinn (HQ), Schwarz

(SC), or Forecast Prediction Error (FPE) (Ahmed et al., 2018).

The VAR model with dynamic coefficients or time-varying

VAR model (tvVAR) is a modification which assumes that the
coefficients involved in the response generating process are

dynamic. The tvVAR model can be defined as:

yt ¼ nt þA1tyt�1 þ/þAptyt�p þ Ctct þ vt; t ¼ pþ 1;…;T; (2)

where, in contrastwith the staticmodel, the coefficients nt,Ait,

and Ct vary over time. The time-varying coefficients are ob-

tained by combining the ordinary least squares (OLS) esti-

mator and the local polynomial kernel estimator, using one

bandwidth per equation automatically selected by leave-one-

out cross-validation (Casas et al., 2019).

https://doi.org/10.1016/j.biosystemseng.2022.06.006
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3.2.2. Dynamic linear model
The dynamic linear model (DLM) is a particular case of dy-

namic regression models which allows the regression co-

efficients to vary over time. Dynamic regression can be

formulated with a state space representation, so that a DLM

provides a generic framework in which to analyse time series

data (Laine, 2019, pp. 139e156). The univariate DLM model is

defined by:

yt ¼ Ztxt þ nt þ C1ct þ vt with vt � Nð0; rÞ;
xt ¼ Btxt�1 þ ht þ C2ct þ ut with ut � MVNð0;QÞ; (3)

where Zt is the vector of regression coefficients at time t, Bt is

the parameter evolution matrix, C1 and C2 are the matrices of

covariate coefficients, and nt and ht are parameters (scalar and

vector, respectively).

3.2.3. Generalised additive model
A generalised additive model (GAM) is a variation of general-

ised linearmodels in which the response variable is given by a

sum of smooth functions of at least some (and possibly all)

covariates. The smooth functions can take flexible forms and

allow for nonlinear relationships between the response vari-

able and the covariates (Wood, 2017). The model is defined as:

yt ¼ nþ f1ðc1tÞ þ/þ fmðcmtÞ þ vt; t ¼ 1;…;T; (4)

where fi(,) is a smooth function of exogenous variables.

Different types of smoothing functions can be chosen

depending on the data to be analysed. They are based on

splines: cubic regression splines, cyclic cubic regression

splines, P-splines, thin-plate regression splines, shrinkage

smoothers, or tensor product splines.

3.3. Cross-validation

A cross-validation framework is considered in the temporal

dimension, i.e., training and testing sets are formed consid-

ering the temporal component of the data. A rolling window

approach is used (Zivot & Wang, 2006a, pp. 313e360). Rolling

analysis is commonly used to back-test a statistical model on

historical data in order to assess stability and predictive

accuracy.

This cross-validation model works as follows: Initially, the

time series is split into a training sample and a test sample.

The model is then fitted using the training sample, and g-step

ahead predictions are made for the test sample and errors are

calculated. Next, the training sample is rolled ahead a given

increment d, and the estimation and prediction exercise is

repeated for the new data collection. This process is repeated

for a fixed number of k iterations (k-fold cross-validation) or

until no more g-step predictions are possible. Once each

prediction has been calculated, the error is summarised in the

form of the mean absolute error (MAE). Finally, the mean and

standard deviation of the MAE resulting from the k iterations

are reported.

3.4. Statistical test

To study whether the MAE differences between the four

models studied were statistically significant, KruskaleWallis

tests were used, since the applicability conditions (normality
and heteroskedasticity) of the one-way ANOVA could not be

assumed in any case. When the KruskaleWallis test was

statistically significant, nonparametric pairwise multiple

comparisons were performed considering a family-wise

Bonferroni correction. The results were considered statisti-

cally significant when the p-values were less than 0.05.

3.5. Implementation

The code necessary to run these models was written in the R

programming language (R Core Team, 2020). The libraries used

were the miceRanger package (Wilson, 2020) for missing data

imputation, and the packages vars (Pfaff, 2008), tvReg (Casas &

Fern�andez-Casal, 2019), MARSS (Holmes et al., 2020, pp.

219e229), and mgcv (Wood, 2017) to fit the VAR, tvVAR, DLM,

and GAM, respectively, and to make predictions.

The experiments were carried out on a compute node with

a processor Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz and

32 GB RAM.
4. Results

This section presents the experimental settings and the re-

sults of the differentmodels for fitting, computation time, and

prediction.

4.1. Experimental settings

Training series with a length of one year and four months

were run, i.e., a total of T ¼ 2425 values for each variable.

Following Subsection 3.3, a 100-fold cross-validation was

performed with a d ¼ 5 increment and g steps of 5, 15, and 35

for the 1-, 3-, and 7-day forecasts, respectively.

Knowledge of the external actions that the hives may

have been subjected to, such as the addition of food or har-

vesting (among others), is relevant information, but is not

included in the database. A new variable was therefore

constructed, representing extreme changes in weight. To

create this variable, the differences between two consecutive

weights was calculated. Then, a new time series, also of

length T, consisting of these differences was stored. The 2.5

and 97.5 percentiles were calculated, and all those values

outside this range were considered extreme weight varia-

tions, and we assumed that they were due to external causes

(feeding, harvesting, …). This variable was useful for cor-

recting the extreme weight variations.

The numbers of variables are s ¼ 3 for the endogenous

variables and m ¼ 8 for the exogenous ones. The information

provided by the sensors installed in the hives was used, but

the data related to the exogenous variables could be easily

obtainable from public meteorological databases (https://

www.dwd.de/EN/).

Measurement errors were considered to have occurred

when the measurements lay outside a reasonable or feasible

range, i.e., when the temperature is above 43 �C, the humidity

is greater than 100% or less than 0%, the weight is less than

0 kg, the rainfall is less than 0ml or greater than 1ml (the rain

sensor does not pick up values greater than this amount), the

wind speed is less than 0 m s�1, or air pressure is less than

https://www.dwd.de/EN/
https://www.dwd.de/EN/
https://doi.org/10.1016/j.biosystemseng.2022.06.006
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0 hPa. In all these cases, the stored values were considered to

be sensor failures, and were removed and replaced by

imputed values using the MICE-Ranger algorithm.

During certain time intervals, the sensors did not record

any data. In order to make efficient use of the MICE ranger

imputation method, we included the values of the exogenous

variables for that period frommeteorological data collected by

a nearby hive. This was the case for the Vohburg and the

Waltrop hives. The Vohburg hive had only one interval with

missing data for all variables, from 27 August 2020 at 09:36 am

to 5 September 2020 at 09:36 am, while the Waltrop one had

six different periods with missing data for all variables. The

first of these periods was the longest, running from 11 July

2021 at 09:36 am to 22 July 2021 at 04:48 am. The remaining

intervals with missing data for all sensors were shorter and

occurred in October andNovember 2021. In total, 1.53%, 0.02%,

and 3.48% of the data collected by the Vohburg, Markt

Indersdorf and Waltrop hive sensors, respectively, were

imputed.

The VAR model adjusts for both the trend and the con-

stant of the three response variables, whereas the tvVAR

model adjusts for the constant of the three response vari-

ables and uses the local constant polynomial kernel esti-

mator. In both models, the incorporation of seasonality did

not improve the results. Finally, the AIC was used as the lag

selection criterion.

In the case of the DLMmodel, thematrix Zt, which contains

the information of the hive's internal variables that act as

regressor variables, is a matrix with dynamic coefficients, i.e.,

whose values change over time. Thematrices C1, C2, and Bt are

set as unconstrained, i.e., each element of the matrix can be

different from the rest. Finally, the variance-covariance ma-

trix Q was set as a diagonal, unequal matrix, i.e., off-diagonal

values are zero and on-diagonal values can be different.

Finally, to fit the GLM model, thin-plate regression splines,

given by the negative log restricted maximum likelihood

(ReML) procedure, were used for each exogenous variable

individually, and a joint thin-plate regression spline for two of

the covariates (external temperature and external humidity).

4.2. Experimental results

This subsection will describe the results for the fit, the

computation time, and the prediction of the internal variables

for each hive studied. Firstly, Table 1 lists the means and

standard deviations of the MAE obtained in fitting themodels.

The results in terms of the fits to the temperature, relative

humidity, and weight time series are fairly robust regardless

of the hive analysed, i.e., the errors for the three hives are

relatively close within each method. The best fit is with the

tvVAR, and the poorest with GAM. There is no clear difference

between the VAR and DLM models, with the better of the two

depending on the variable and hive analysed.

Table 2 lists the computation times for model fitting. The

VAR model is the most efficient for all tree time series. It uses

less than one second to fit the internal variables of the Voh-

burg, Markt Indersdorf, and Waltrop hives (0.29, 0.43, and

0.42 s, respectively). The two slowest methods (taking about

20 min) are tvVAR and DLM. The table's ratio column shows

how much faster the VAR model is than the three others.
Considering both the goodness-of-fit (Table 1) and the

computation time (Table 2) results, one can see that the VAR

model achieves a good trade-off between accuracy and time.

However, most (more than 95%) of the computation time used

by the tvVAR model is spent in bandwidth estimation. If the

bandwidth parameters were fixed, the computation time

would be sharply reduced from around 20 min to less than

1 min (54.45, 36.49, and 27.8 s to fit the Vohburg, Markt

Indersdorf, and Waltrop internal conditions, respectively).

Note that these parameters could be updated with new data

from time to time. This would make tvVAR very competitive

since it would provide accurate fits at low computation cost.

The following results refer to the four models’ forecasting

performance. Table 3 lists the means and standard deviations

of the MAE, highlighting in grey those cells that, after per-

forming the KruskaleWallis tests and the pairwise compari-

sons, showed no significant differences with respect to the

model that gave the most accurate prediction (marked in

boldface).

In Table 3, it can be observed that, for temperature and

relative humidity, tvVAR provides themost accurate forecasts

and GAM the least accurate, while which of the other two

models is better depends on the hive analysed. After applying

the KruskalleWallis test, statistically significant differences

were observed between the MAEs given by the tvVAR and

GAM models in the prediction of temperature in all hives.

Practically the same is the case with relative humidity,

although for the Waltrop hive no significant differences were

detected between the MAE given by tvVAR and GAM. The MAE

values from the different models in the relative humidity

predictions are greater for the Waltrop hive than for the other

two. This can be explained by considering the large variability

of the data provided by the relative humidity sensor in this

hive, especially at the end of the time series, with fluctuations

between 0% and 75% relative humidity (see Fig. 1). In analysing

the weight, the poorest models in terms of forecasting accu-

racy are DLM (third ranked) and GAM (the worst), and VAR is

the best for the Vohburg hive in general and for the Markt

Indersdorf hive in the short-term (1-day) forecasts, while the

tvVAR model is the best in the longer-term (3- and 7-day)

forecasts for the Markt Indersdorf and the Waltrop hives. In

general, the results for the VAR and tvVAR models are fairly

similar, this is clearly seen in Table 3, since there are no sig-

nificant differences in the MAEs made by these two models

when estimating the weight.

Note that the computational time now plays no relevant

role since the forecasting itself, which simply applies the best

model parameters, is very straightforward computationally.

Figure 2 shows violin plots of the distribution of these er-

rors. To compare the three hives, their corresponding plots

have been superposed, shifting slightly the axes of each one so

that the differences can be appreciated. The lighter plot be-

longs to the Vohburg hive, the medium grey colour to the

Markt Indersdorf hive, and the darker one to theWaltrop hive.

The plots clearly show that the MAE distributions for weight

and temperature are very similar in the three hives, while

those for relative humidity are dissimilar, with this also being

the variable presenting the greatest dispersion in terms of

forecasting errors. The GAM model is clearly the poorest

performer in weight prediction, with a greater than 6 kg MAE

https://doi.org/10.1016/j.biosystemseng.2022.06.006
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Table 1 e Mean (standard deviation) of the MAE obtained by the different models in their fit to the Vohburg, Markt
Indersdorf and Waltrop hives’ internal variables over one year and four months.

VAR tvVAR DLM GAM

Vohburg Temperature (�C) 0.712 ± 0.661 0.565 ± 0.557 0.787 ± 0.800 1.380 ± 1.157

R. humidity (%) 2.628 ± 2.801 2.053 ± 2.506 2.595 ± 3.230 5.864 ± 5.948

Weight (kg) 0.097 ± 0.100 0.096 ± 0.098 0.384 ± 0.473 1.316 ± 1.276

Markt I. Temperature (�C) 0.748 ± 0.739 0.455 ± 0.485 0.642 ± 0.686 1.519 ± 1.521

R. humidity (%) 1.997 ± 2.440 1.359 ± 1.882 1.666 ± 2.486 5.179 ± 5.378

Weight (kg) 0.089 ± 0.089 0.079 ± 0.078 0.265 ± 0.295 1.216 ± 1.197

Waltrop Temperature (�C) 0.672 ± 0.780 0.463 ± 0.543 0.644 ± 0.811 1.241 ± 1.199

R. humidity (%) 5.898 ± 7.399 4.885 ± 6.375 6.530 ± 8.481 12.368 ± 11.421

Weight (kg) 0.059 ± 0.060 0.050 ± 0.052 0.240 ± 0.352 1.384 ± 1.471

Table 2 e Time (min) taken by each model to fit the
internal variables of each hive over a period of one year
and four months, and the computation time ratio relative
to the fastest model.

Vohburg Markt Indersdorf Waltrop

Time
(min)

Ratio Time
(min)

Ratio Time
(min)

Ratio

VAR < 0.01 1.00 < 0.01 1.00 < 0.01 1.00

tvVAR 23.71 4905.24 18.04 2517.51 14.24 2034.79

DLM 18.83 3895.41 18.80 2623.19 19.75 2821.12

GAM 2.29 472.24 1.49 207.51 1.66 237.71

Table 3 eMean± standard deviation of theMAE of the 1-, 3-, an
temperature, relative humidity, andweight of the Vohburg,Ma
cross-validationwith d¼ 5. Cells highlighted in grey represent t
best one (marked in boldface).

VAR

Vohburg Temp. 1 day 0.739 ± 0.414

3 days 0.831 ± 0.347

7 days 0.897 ± 0.309

R. hum. 1 day 3.760 ± 2.579

3 days 4.324 ± 2.179

7 days 4.959 ± 2.341

Weight 1 day 0.168 ± 0.142

3 days 0.289 ± 0.235

7 days 0.444 ± 0.328

Markt Indersdorf Temp. 1 day 0.929 ± 0.447

3 days 1.128 ± 0.453

7 days 1.426 ± 0.543

R. hum. 1 day 2.638 ± 1.506

3 days 3.881 ± 2.419

7 days 5.510 ± 3.328

Weight 1 day 0.170 ± 0.153

3 days 0.264 ± 0.240

7 days 0.413 ± 0.331

Waltrop Temp. 1 day 0.713 ± 0.452

3 days 0.922 ± 0.446

7 days 0.998 ± 0.366

R. hum. 1 day 9.745 ± 10.125

3 days 11.478 ± 10.216

7 days 13.386 ± 9.871

Weight 1 day 0.062 ± 0.041

3 days 0.114 ± 0.066

7 days 0.194 ± 0.115
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in some cases. Figure 3 displays the forecasts for all the time

points up to 7 days (the actual values are shownwith dots and

the different model forecasts with lines). The dates corre-

sponding to the forecasts are 31 March to 6 April 2021 for the

Vohburg hive, 8 to 14 April 2021 for the Markt Indersdorf hive,

and 15 to 21 February 2022 for the Waltrop hive. The pre-

dictions of the VAR and tvVAR models are very similar at the

beginning, and differ as time progresses, generally being good

(especially the 1-day predictions) for all three variables ana-

lysed. Overall, the behaviour shown in Fig. 3 is in agreement

with the results obtained both inmodel fitting and after cross-

validation evaluation of the predictions.
d 7-day forecasts given by the fourmodels for the variables
rkt Indersdorf andWaltrop hiveswhen performing 100-fold
hemodelswhoseMAE does not differ significantly from the

tvVAR DLM GAM

0.701 ± 0.403 0.897 ± 0.618 1.666 ± 0.963

0.802 ± 0.392 1.051 ± 0.715 1.749 ± 1.080

0.846 ± 0.314 1.147 ± 0.825 1.888 ± 1.211

3.386 ± 2.733 4.297 ± 2.805 4.997 ± 3.348

3.752 ± 2.212 4.926 ± 3.587 5.246 ± 3.968

4.349 ± 2.108 5.608 ± 4.366 5.634 ± 4.430

0.184 ± 0.157 0.418 ± 0.236 0.865 ± 0.312

0.324 ± 0.308 0.599 ± 0.364 0.963 ± 0.453

0.554 ± 0.461 0.872 ± 0.512 1.134 ± 0.607

0.562 ± 0.277 0.809 ± 0.541 1.382 ± 0.836

0.576 ± 0.217 0.850 ± 0.588 1.448 ± 0.892

0.588 ± 0.205 0.870 ± 0.638 1.543 ± 0.972

0.924 ± 0.564 1.359 ± 0.865 3.726 ± 2.167

1.108 ± 0.786 1.740 ± 1.145 3.997 ± 2.506

1.382 ± 1.086 2.117 ± 1.368 4.338 ± 2.923

0.172 ± 0.146 0.423 ± 0.258 1.068 ± 0.492

0.261 ± 0.202 0.555 ± 0.351 1.131 ± 0.632

0.381 ± 0.229 0.684 ± 0.430 1.239 ± 0.767

0.544 ± 0.364 1.127 ± 0.734 1.050 ± 0.611

0.692 ± 0.420 1.850 ± 1.125 1.101 ± 0.682

0.849 ± 0.538 2.530 ± 1.516 1.199 ± 0.740

7.039 ± 6.625 9.559 ± 6.438 11.371 ± 5.801

7.620 ± 5.764 10.790 ± 8.564 12.153 ± 7.752

7.958 ± 5.006 11.376 ± 10.301 12.905 ± 9.441

0.061 ± 0.038 0.598 ± 0.341 1.806 ± 0.340

0.101 ± 0.065 0.957 ± 0.539 1.936 ± 0.484

0.162 ± 0.123 1.301 ± 0.738 2.161 ± 0.635
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Fig. 2 e Distribution of the MAEs of the 1- (left), 3- (centre), and 7- (right) day forecasts for temperature (top), relative humidity

(centre), and weight (bottom) of the Vohburg, Markt Indersdorf and Waltrop hives. The means of the MAE distributions are

marked with a white triangle, a black circle or a grey square for the Vohburg, Markt Indersdorf and Waltrop hives,

respectively. The vertical axes of the violins corresponding to the different hives are slightly offset from each other so that

the difference between the three distributions can be better appreciated.
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In general, in terms of the model fitting, computation

time, and predictions given by the different models, tvVAR is

the most appropriate method for this kind of data. This is

supported by the KruskaleWallis test, whose results indi-

cated that tvVAR is the best model or there is no significant

difference between tvVAR and the best model. It was the best

at model fitting and prediction, and, despite requiring more

computation time, it is totally feasible since about 20min are

needed to complete the whole process if the bandwidth

parameter estimates have to be included, and less than 1min

otherwise.
In order to test the effect of the number of daily measure-

ments analysed, a study was carried out on the Markt Inders-

dorf hive, evaluating the results of the different models with 3,

5, 6, and 12 daily measurements. After carrying out this

experiment, no clear differences were detected among the er-

rors obtained for different numbers of measurements. The

model with most statistically significant differences was

tvVAR, where it can be observed that the model was most ac-

curate for estimating temperature when 12 measurements

were taken, although these differences were not so clear for

relative humidity and weight. It must be borne inmind that, as

https://doi.org/10.1016/j.biosystemseng.2022.06.006
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Fig. 3 e Forecasts resulting from the different models for temperature (left), relative humidity (centre), and weight (right)

recorded in the last seven days in the Vohburg (top), Markt Indersdorf (centre) and Waltrop (bottom) hives. Limits for 1, 3,

and 7 days are marked by vertical lines. The x-axis corresponds to the 35 forecasts (5 per day).
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the number of measurements increases, the required compu-

tational time to fit the models also increases.
5. Discussion

In this work, the tvVAR model was found to make fairly reli-

able predictions of internal hive variables, regardless of the

hive analysed. On average, after using cross-validation, the

MAEs of 1-day predictions of temperature, relative humidity,

and weight were less than 1 �C, 7.1%, and 200 g, respectively,

making the short-term predictions useful for the beekeeper.

Moreover, the 7-day prediction results were still quite good,

keeping the MAEs below 1 �C in temperature, 8% in relative

humidity, and 600 g mass.

With respect to temperature, there has been very little

work attempting to predict the internal temperature of a

beehive. So far, the only study to perform this task that we

found in the scientific literature is that by Braga et al. (2021).

This applied neural networks and walk-forward validation to

data collected every two hours. The longest prediction horizon

considered was 1 day. Observing the prediction graphs pro-

vided, we compared the hive for which they obtained a better

result inmaking 1-day predictions with our predictions for the

Markt Indersdorf hive. We could appreciate graphically that

their predictions had a MAE greater than the 0.562 �C that we

obtained using the tvVAR model. Furthermore, it was clear

that, unlike the predictionswe achievedwith thismodel, their
1-day predictions of internal temperature were not good fits to

the real values of the time series.

With respect to relative humidity or weight of a beehive,

we could find no work making predictions of these parame-

ters, so that we cannot make any comparison of the present

results with any others in the literature. Nonetheless, in ab-

solute terms, the results we have obtained for both relative

humidity and weight are good.

Another important feature of the tvVAR model is that it

performs the fit and the prediction process relatively quickly,

taking around 20 min if the bandwidths are to be calculated

automatically. Furthermore, if the bandwidth values for each

variable can be input instead of calculated, there is a major

reduction in computation time to less than 1 min, thus

allowing real-time predictions to be made. This option is

totally feasible since it is possible to obtain the bandwidth

values parametrically, and update themperiodically when the

beekeeper will not be affected, at night for instance. The fact

that a model takes a short time to fit the time series is of great

importance in an environment of massive data analysis,

especially when it comes to real-time forecasting since, if the

model is too slow, the user will be prevented from making

short-term predictions.

Therefore, the values obtained from the predictions of

temperature, relative humidity, andweight by the tvVARmodel

can be used to detect in advance different events thatmay take

place inside the hive, such as winter mortality or the risk of

varroa or nosema diseases. A direct extension of this study

https://doi.org/10.1016/j.biosystemseng.2022.06.006
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would be to collect data by applying a much finer grid. Then, it

would be necessary to apply Big Data techniques, which would

allow us to analyse and predict continuously over time. For

example, more complex events such as swarming could be

predicted, since it has been reported that the hive temperature

increases linearly in the first 20e60 min before swarming (Zhu

et al., 2019). Zacepins et al. (2021) found that remote hive

monitoring generates economic benefits for the beekeeper,

coming especially from detection of swarming events. Those

researchers created an application to estimate the economic

benefit of swarm detection as a function of the beekeeper's
distance from the apiary. Depending on the hive's geographical
location, the maximum benefit from swarm detection was be-

tween 50 and 170 euros approximately. This benefit decreased

as the distance to the apiary increased since, by 3 h after the

swarm formation, all the bees forming the swarm had usually

left the hive. This fact justifies the need to usemethods such as

the tvVAR model and to develop new models or adaptions of

existing ones to handle Big Data analysis, for example,

considering parallelisation or distributed computing. This may

help to accurately predict the hives' internal variables, thus

reducing the beekeeper's response time to events related with

the internal conditions and increasing economic profitability.

The sustainability of any sensor-based apiculture system

must take into account its scalability, efficiency, and eco-

nomic cost as well as the return on the investment. In the

scientific literature, there is a sparsity of articles addressing all

these topics simultaneously, since there are many factors

involved and systems that are difficult to compare. Hadjur

et al. (2022) described recent advances in precision

beekeeping as systems and as services. They estimated the

sustainability of the proposed solutions and showed that

there is a great variability in terms of scalability, efficiency,

costs, and benefits.

The present work has some limitations. On the one hand,

all colonies used in this study were located in Germany, so

that the applicability of the results to other locations with

different kinds of climate needs to be checked. Nevertheless,

the models are general enough to maintain their usefulness

and quality regardless of the location of the hive. And on the

other hand, it is important to note that there is hardly any

information on the beekeepers' actual management practices.

A detailed analysis of the processes carried out on the hives

would probably reduce the forecasting errors.
6. Conclusions

This article has addressed elements that had as yet been little

studied in the precision beekeeping field. Good predictions of

the internal variables of sensorized hives were achieved.

Vector autoregressive models proved to be reliable in making

predictions based on this type of data. It was observed that

both the tvVAR and the VARmodels give accurate predictions.

The computation time cost of the tvVAR model is really

manageable, especially when bandwidths are calculated

parametrically and then incorporated into themodel. The fact

that amodel performs the entire fitting and prediction process

in a short time is becoming increasingly important, especially

in big data environments.
The accuracy of these predictions makes these approaches

very useful for integration into a decision support system to

help beekeepers manage their hives effectively. Furthermore,

all the algorithms are easily extensible to accommodate other

factors, such as hive activity, types of crops near the hive,

flowering season of these crops, feeding, harvesting, etc.,

being sufficiently flexible to be adapted to any context the

beekeeper requires. Once implemented in a remote hive

monitoring system, they could help the beekeeper by

providing early warning of problems, for example, by identi-

fying sharp weight losses, significant falls in temperature, or

large variations in relative humidity that could endanger the

health of a hive. Such an alert system can be easily imple-

mented, thus extending the benefits of precision beekeeping,

and making it more attractive to beekeepers.

There is a need to apply predictive modelling in the

beekeeping industry, and to continue developing new pre-

dictive models, e.g., ones based on neural networks that could

improve the methods being applied. Another challenge is to

integrate these tools into decision making systems.

As a continuation of this research, it would be interesting

to collect data from our own experiment and adapt the

methodological approach to be capable of handling a Big Data

analysis environment. Collecting internal information of the

hives with a shorter temporal window (for example,

10e15 min) could contribute to providing more reliable and

detailed predictions of the evolution of the hives' behaviour.
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