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1. Introduction

Over the last decade, the importance of f -algebras in the theory of Riesz
spaces has steadily grown. It is only recently that other various lattice-
ordered algebraic structures have been getting more attention. For instance,
d-algebras, which were not so much studied previously, are the main purpose
of this paper.

This paper deals with two main results. In the first we present a result
about the connection between Riesz homomorphisms and algebra homomorph-
isms on f -algebras. Perhaps the most striking theorem in this direction, due
to Hager and Robertson [10], is that a Riesz homomorphism between two
Archimedean unital f -algebras that preserves identity is an algebra homo-
morphism. There are many results of this kind in the literature. We mention
other results in that direction. It is proven by van Putten in his thesis [16]
that the set of all Riesz homomorphisms between two Archimedean unital f -
algebras that preserve identity coincides with the set of extreme points of the
convex set of all Markov linear operators (i.e., positive linear operators that
preserve identity). We also mention the paper of Huijsmans and de Pagter
[13], in which the connection between Riesz homomorphisms and algebra ho-
momorphisms on f -algebras is considered in great detail. One of the major
results presented in [13] is that a Riesz homomorphism T from an Archimedean
f -algebra A with unit element e into an Archimedean semiprime f -algebra B
is an algebra homomorphism if and only if Te is idempotent (i.e., (Te)2 = Te)
(see [13, Theorem 5.4]).
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In the present paper we intend to make some contributions to this area.

It is known that every Riesz space A has a universal completion Au, i.e.,
there exists a unique (up to a Riesz homomorphism) universally complete
Riesz space Au so that A can be identified with an order dense Riesz subspace
of Au. Moreover, Au is furnished with a multiplication, under which Au is
an f -algebra with a unit element (see [1, Section 8]). In the second part of
this paper, we present a relationship between structure of a d-algebra and the
that of its universal completion. By means of the well-known features of the
multiplication of an f -algebra, we aim at obtaining more information about
the structure of a d-algebra.

We assume that the reader is familiar with the notion of Riesz spaces (or
vector lattices).

2. Preliminaries

For further details of terminology and properties of Riesz spaces and order
bounded operators not explained or proved in this paper, we refer the reader
to [1, 14, 17], to [2] for elementary `-algebra and d-algebra, and to [1, 17] for
f -algebra and orthomorphism theories.

A lattice ordered group (briefly an `-group) A is called Archimedean if
for each non zero f ∈ A the set {nf : n = ±1,±2, . . . } has no upper bound
in A. In order to avoid unnecessary repetition we will assume throughout
that all `-groups under consideration are Archimedean. An `-group A which
is simultaneously a ring with the property that fg ∈ A+ for all f, g ∈ A+

(equivalently, |fg| ≤ |f ||g| for all f, g ∈ A), where A+ is the positive cone of
A, is called a lattice ordered ring (briefly, an `-ring). In addition, if A is a
real Riesz space, then A is called an `-algebra.

Abstract f -ring theory and f -algebra theory have been studied by many
authors (see e.g. [1, 5, 7, 17]). Some of these authors (see e.g. §8 in the paper
[7] by Birkhoff and Pierce) define an f -ring as a lattice ordered ring with the
property that f ∧ g = 0 and h ∈ A+ implies fh ∧ g = hf ∧ g = 0. Others
(see e.g. Definition 9.1.1 in the book [5] by Bigard, Keimel and Wolfenstein)
define an f -ring as a lattice ordered ring which is isomorphic to a subdirect
union of totally ordered rings. It is often desirable to have the equivalence of
the two definitions available. However, any known equivalence proof is based
on arguments using Zorn’s lemma. If one uses the second definition, it will
be possible to prove a certain number of standard theorems on f -rings by
means of the “metamathematical” observation that any identity holding in
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every totally ordered ring holds in every f -ring.

We adopt in this paper the original Birkhoff-Pierce definition of an f -ring
(i.e., an `-ring with the additional property that f ∧ g = 0 and h ∈ A+

implies fh ∧ g = hf ∧ g = 0) as our starting point. An f -ring A is said to
be an f -algebra if A is also a real Riesz space. It was shown by Birkhoff
and Pierce in [7, Section 8] that any Archimedean f -ring is commutative,
but for a more elementary proof, due to Zaanen, we refer to [17, Theorem
140.10] or [5, Theorem 12.3.2]. If A is an f -ring then A has positive squares
and |fg| = |f ||g| for all f, g ∈ A. Every f -ring A with identity element is
semiprime (or reduced ), that is, 0 is the only nilpotent in A. If f, g are
elements in a semiprime f -ring A, then |f | ∧ |g| = 0 if and only if fg = 0. All
f -ring properties listed above are satisfied by any f -algebra. The `-algebra
A is called a d-algebra whenever f ∧ g = 0 and h ∈ A+ imply fh ∧ gh =
hf ∧ hg = 0 (equivalently, |fg| = |f ||g| for all f, g ∈ A). Any f -algebra is a
d-algebra, but not conversely (see [2]). Archimedean d-algebras neither need
to be commutative nor have positive squares (see [2]).

The relatively uniform topology on Riesz spaces plays a key role in the
context of this work. Let us therefore recall the definition and some elementary
properties of this topology. By N we mean the set {0, 1, 2, . . . }. Let A be an
archimedean Riesz space and u ∈ A+. A sequence (fn)n∈N of elements of A
is said to converge u-uniformly to f ∈ A whenever, for every ε > 0, there
exists a natural number Nε such that |f − fn| ≤ εu for all n ≥ Nε. This is
denoted by fn → f(u). The element u is called the regulator of convergence.
The sequence (fn)n∈N is said to converge relatively uniformly to f ∈ A if
fn → f(u) for some u ∈ A+. We shall write fn → f (r.u.) if we do not want
to specify the regulator. Relatively uniform limits are unique if and only if A
is Archimedean [14, Theorem 63.2].

The non empty subset D of A is called relatively uniformly closed whenever
it follows that if (fn)n∈N ∈ D and fn → f (r.u.) then f ∈ D. We emphasize
that the regulator does not need to be an element of D. The relatively uni-
formly closed subsets are the closed sets for a topology in A, the relatively
uniform topology.

The notion of relatively uniform Cauchy sequence is defined in the obvious
way. The Archimedean Riesz space A is called relatively uniformly complete
whenever every relatively uniform Cauchy sequence has a (unique) limit. We
refer to [14] for the relatively uniform topology. In the end of this paragraph,
we recall an important fact about unital f -algebras. Let A be an Archimedean
f -algebra with unit element e > 0. For every 0 ≤ f ∈ A, the increasing
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sequence 0 ≤ fn = f ∧ne converges relatively uniformly to f in A (for details
on this see, e.g., [1, Theorem 8.22]).

Let A and B be Riesz spaces. The operator π : A → B is called order
bounded if the image under π of an order bounded set in A is again an order
bounded set in B. The operator π is called positive if π(A+) ⊂ B+. The op-
erator π is called Riesz homomorphism (or lattice homomorphism) whenever
f ∧ g = 0 implies π(f) ∧ π(g) = 0. Obviously, every Riesz homomorphism
is positive. The order bounded operator π : A → A is called orthomorphism
if |f | ∧ |g| = 0 implies |π(f)| ∧ |g| = 0. The collection Orth(A) of all ortho-
morphisms on A is, with respect to the usual Riesz spaces and composition
as multiplication, an Archimedean f -algebra with the identity mapping IA on
A as a unit element (for details on this see, e.g., [1, Theorem 8.24]). Every
orthomorphism π of A is order continuous [1, Theorem 8.10]. If A is supposed
to be, in addition, an f -algebra, then for every f ∈ A the map πf , defined by
πf (g) = fg for all g ∈ A, is an orthomorphism of A. Furthermore, if A is an f -
algebra with unit element, then the mapping f → πf from A into Orth(A) is a
Riesz and algebra isomorphism. Therefore, for every π ∈ Orth(A) there exists
a unique element f ∈ A such that π = πf and π is a positive orthomorphism
if and only if f ≥ 0 (for details on this see, e.g., [1, Theorem 8.27]).

A Dedekind complete Riesz space is called universally complete whenever
every set of pairwise disjoint positive elements has a supremum. Every Riesz
space A has a universally completion Au, i.e., there exists a unique (up to
a Riesz homomorphism) universally complete (and therefore Dedekind com-
plete) Riesz space Au so that A can be identified with an order dense Riesz
subspace of Au. Moreover, Au is furnished with a multiplication, under which
Au is an f -algebra with unit element.

An `-algebra A is called von Neumann regular if for every f ∈ A, there
exists g ∈ A such that f = f2g. It is proved in [15] that Au is a von Neumann
regular f -algebra. More about von Neumann regular algebras can be found
in [12, 15].

Let B be a commutative `-algebra with positive squares, A an Archimedean
`-algebra, and T a positive operator from B into A. We say that the Cauchy-
Schwarz inequality is valid in A if

T (fg)2 ≤ T (f2)T (g2)

holds in A for all f, g ∈ B. The Cauchy-Schwarz inequality has been estab-
lished for Archimedean f -algebras. We give a short historical account.

In 1986, Huijsmans and de Pagter proved the Cauchy-Schwarz inequality
in Archimedean semiprime f -algebras [11]. Some years after, Bernau and
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Huijsmans in [3] generalized the Cauchy-Schwarz inequality to the case where
A is an arbitrary Archimedean f -algebra.

Let A be a Riesz space and f ∈ A. We denote by {f} the principal band
generated by f , and by {f}d its disjoint complement.

We end this section with an important proposition, which turns out to be
useful for later purposes.

Proposition 1. Let A be an Archimedean von Neumann regular f -alge-
bra and f ∈ A+. Then there exists ξ ∈ A+ such that the principal band {f}
of A generated by f is a sub-f -algebra of A with ξf as its unit element.

Proof. Let ξ ∈ A such that f = ξf2. Obviously, the band {f} in A is an
f -algebra on its own. We claim that fξ is the unit element of {f}. Indeed, if
g ∈ {f}, then the fact that {f} is a ring ideal in A implies that (g−gξf) ∈ {f}
for all g ∈ {f}. On the other hand, f(g− gξf) = 0 and thus (g− gξf) ∈ {f}d

(because A is semiprime). Consequently, g = gξf for all g ∈ {f}. Therefore,
ξf is the unit element of {f} and we are done.

3. A relationship between Riesz homomorphisms
and algebra homomorphisms

The next result is a generalization of a theorem due to Huijsmans and
de Pagter about the connection between Riesz homomorphisms and algebra
homomorphisms of f -algebras. The theorem in question is that if A is an
Archimedean f -algebra with unit element e and B is an Archimedean semiprime
f -algebra, then the Riesz homomorphism T from A into B is an algebra ho-
momorphism if and only if (Te)2 = Te (see [13, Theorem 5.4]). We give a
generalization of this result.

Theorem 1. Let A be an Archimedean f -algebra with unit element e,
B an Archimedean von Neumann regular f -algebra, and T : A → B a Riesz
homomorphism. Then there exists ξ ∈ B+ such that

T (fg) = ξT (f)T (g) for all f, g ∈ A .

Proof. In order to prove this theorem, it is obviously sufficient to show
that there exists ξ ∈ B+ such that

T (f2) = ξ(Tf)2 for all f ∈ A+ .
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First, suppose that 0 ≤ f ≤ e. Since B is a von Neumann regular f -
algebra, there exists ξ ∈ B+ such that Te = ξ(Te)2. It results from the
preceding proposition that {Te} is a sub-f -algebra of B with ξTe as its unit
element.

As shown in Corollary 3.3(i) in [13], the elements un defined by

un = sup
{

2αf − α2e : α =
k

n
, k ∈ {0, 1, . . . , n}

}

satisfy

0 ≤ f2 − un ≤ 1
n2

e ,

hence
0 ≤ T (f2)− Tun ≤ 1

n2
Te (n ∈ {1, 2, . . . }) .

So, the sequence (Tun)n converges uniformly to T (f2) and thus ξTun →
ξT (f2) (r.u.). On the other hand T is a Riesz homomorphism, so we have

Tun = sup
{

2αTf − α2Te : α =
k

n
, k ∈ {0, 1, . . . , n}

}
,

hence

ξTun = sup
{

2αξTf − α2ξTe : α =
k

n
, k ∈ {0, 1, . . . , n}

}
. (3.1)

Now, we can prove that T (A) ⊂ {Te}. For any g ∈ A+, it follows that
Tg ∧ nTe → Tg (r.u.) since g ∧ ne → g (r.u.) which implies that Tg ∈ {Te},
hence T (A) ⊂ {Te}. Since {Te} is an archimedean f -algebra with unit ξTe,
and T (A) ⊂ {Te}, then by applying Corollary 3.3(i) in [13] to (3.1) we have

0 ≤ (ξTf)2 − ξTun ≤ 1
n2

ξTe ,

so
ξTun → (ξTf)2 (r.u.) .

We conclude by uniqueness of relatively uniform limits that

ξT (f2) = (ξTf)2 .

Therefore ξT (f2) = ξ2(Tf)2. Since T (f2), (Tf)2 ∈ {Te}, multiplying by Te
the preceding equality we obtain T (f2) = ξ2Te(Tf)2 = ξ(Tf)2, so

T (f2) = ξ(Tf)2 .
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Now, let f ∈ A+. From f ∧ ne → f (r.u.) it follows by an easy limit
process that T (f2) = ξ(Tf)2, which implies

T (f2) = ξ(Tf)2 for all f ∈ A .

Let f, g ∈ A. From fg = (f+g)2−(f−g)2

4 it follows that

T (fg) = ξTfTg .

This is the desired result.

As an immediate application of the theorem above we obtain the following
result.

Corollary 1. Let A be an Archimedean unital f -algebra, B an Archime-
dean vector lattice, and T : A → B a Riesz homomorphism. The range T (A)
of T , which is a Riesz subspace of B, is an f -algebra with respect to the
multiplication ∗ defined in T (A) by

Tf ∗ Tg = T (fg)

for all f, g ∈ A. Moreover, if e is the unit element of A, then Te is the unit
element of T (A).

Proof. We have already mentioned in the preliminaries that Bu is provided
with a multiplication, under which Bu is an Archimedean von Neumann reg-
ular f -algebra with unit element. This multiplication will be denoted again
by juxtaposition.

Let u, v, w ∈ T (A) such that u ∧ v = 0 and w ≥ 0. Since T is a Riesz
homomorphism, there exists 0 ≤ f, g, h ∈ A such that u = Tf , v = Tg,
and w = Th. On the other hand, from the preceding theorem there exists
ξ ∈ (Bu)+ such that T (hf) = ξT (h)T (f). Now from u∧ v = 0, it follows that
Tf∧Tg = 0 and, in view of the fact that Bu is an f -algebra, ξT (h)T (f)∧Tg =
0. So, we can write

T (hf) ∧ Tg = T (fh) ∧ Tg = 0 .

Thus
(w ∗ u) ∧ v = (u ∗ w) ∧ v = 0.

We deduce that T (A) is an f -algebra. Suppose now that e is the unit element
of A. So Tf ∗ Te = T (fe) = Tf for all f ∈ A; it follows that Te is the unit
element of T (A) and the proof of the corollary is complete.
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4. Some results in Archimedean d-algebras

Let A be an Archimedean vector lattice with universal completion Au.
We have already mentioned in the preliminaries that Au is provided with
a multiplication, under which Au is an f -algebra with unit element. This
multiplication will be denoted by juxtaposition.

Assume now that A is a d-algebra. The main topic of the following result
is to establish a relationship between the structure of d-algebra on A and the
structure of f -algebra in Au.

The principal order ideal generated by 0 < e ∈ A is denoted by Ae.
Moreover,

Ae = {f ∈ A : ∃λ ∈ R with |f | ≤ λe}.

Theorem 2. Let A be an Archimedean Riesz space, assume that A is a
d-algebra under ∗ , and let 0 < e ∈ A. Then, there exists ξ ∈ Au such that

f ∗ g = ξ(f ∗ e)(e ∗ g) for all f, g ∈ Ae .

Proof. We can assume without loss of generality that 0 ≤ g ≤ e. Let

T (f) = f ∗ e and S(f) = f ∗ g .

So T : A → Au is a Riesz homomorphism and 0 ≤ S ≤ T . So it follows from
[1, Theorem 8.16] that there exists a positive orthomorphism R ∈ Orth(Au)
satisfying S = RT. Hence, Au is an f -algebra with unit element, so there
exists ω ∈ Au such that

R(f) = ωf for all f ∈ Au .

This implies that S(f) = ωT (f) for all f ∈ A. So

f ∗ g = ω(f ∗ e) for all f ∈ A .

Observe now that for f ∈ Ae, f ∗ e ∈ {Te}. Then we can assume that
ω ∈ {Te}.

Now, by Proposition 1, there exists 0 < ξ ∈ Au such that ξT (e) is the unit
element of {Te}. Since S(e) = ωT (e), we have S(e)ξ = ω. Therefore

f ∗ g = ξ(e ∗ g)(f ∗ e) for all f ∈ Ae .

It is an easy task to verify that

f ∗ g = ξ(e ∗ g)(f ∗ e) for all f, g ∈ Ae .

The proof is complete.
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We end this paper by showing an inequality in an Archimedean d-algebra
which replaced the Cauchy-Schwarz inequality. Note that the Cauchy-Schwarz
inequality fails for Archimedean d-algebra as it is shown in the following ex-
ample.

Example 1. Consider A = R2 with the coordinatewise partial ordering,
for which A is an Archimedean Riesz space. Equip A with the following
multiplication (see [3, Example 2.8]):

(
α1

α2

)(
β1

β2

)
=

(
α1β1

α1β2

)
.

Then A becomes a d-algebra. For

f =
(

1
4

)
, g =

(
2
2

)
, h =

(
4
1

)

we have

λ2f + 2λg + h =
(

(λ + 2)2

(2λ + 1)2

)
≥ 0

for all λ ∈ R, but

g2 =
(

4
4

)
, fh =

(
4
1

)
,

so g2 ≤ fh does not hold.

Proposition 2. (Negative discriminant) Let A be an Archimedean
Riesz space, assume that A is a d-algebra under ∗ and let f, g, h ∈ A such
that

λ2f + 2λg + h ≥ 0 for all λ ∈ R .

Then

g ∗ g ≤ f ∗ h + h ∗ f

2
.

Proof. Observe that if we take λ = 0, we find h ≥ 0. For λ > 0 and
dividing λ2f + 2λg + h ≥ 0 by λ2 we get

f +
2
λ

g +
1
λ2

h ≥ 0 .

Let λ → +∞ and use the Archimedean property to obtain f ≥ 0. Put

e = f + |g|+ h .
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Using the preceding theorem, there exists 0 ≤ ξ ∈ Au such that

f ∗ h = ξ(e ∗ h)(f ∗ e) ,

h ∗ f = ξ(e ∗ f)(h ∗ e) ,

g ∗ g = ξ(e ∗ g)(g ∗ e) .

On the other hand, A is a Riesz subspace of Au. Then λ2f + 2λg + h ≥ 0 in
Au for all λ ∈ R, which implies that

λ2(f ∗ e) + 2λ(g ∗ e) + (h ∗ e) ≥ 0 ,

λ2(e ∗ f) + 2λ(e ∗ g) + (e ∗ h) ≥ 0

in Au for all λ ∈ R. Since Au is an f -algebra, so by the Cauchy-Schwarz
inequality, we get

(g ∗ e)2 ≤ (f ∗ e)(h ∗ e) ,

(e ∗ g)2 ≤ (e ∗ f)(e ∗ h) .

Multiplying the above inequalities we obtain

(g ∗ e)2(e ∗ g)2 ≤ (f ∗ e)(h ∗ e)(e ∗ f)(e ∗ h) ;

multiplying by ξ2 the two members of the obtained inequality, it comes that

(ξ(g ∗ e)(e ∗ g))2 ≤ ξ(f ∗ e)(e ∗ h)ξ(e ∗ f)(h ∗ e) ;

therefore
(g ∗ g)2 ≤ (f ∗ h)(h ∗ f) .

It is not hard to prove that

(f ∗ h)(h ∗ f) ≤
(

(f ∗ h) + (h ∗ f)
2

)2

;

therefore

(g ∗ g)2 ≤
(

(f ∗ h) + (h ∗ f)
2

)2

.

Since Au is a semiprime f -algebra, then we get

|g ∗ g| ≤
∣∣∣∣
(f ∗ h) + (h ∗ f)

2

∣∣∣∣
and consequently

g ∗ g ≤ (f ∗ h) + (h ∗ f)
2

.

This is the desired result.
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Standard arguments lead us to the Cauchy-Schwarz inequality in Archime-
dean d-algebras.

Theorem 3. Let B be a commutative `-algebra with positive squares, A
an Archimedean d-algebra, and T a positive operator from B into A. Then

T (fg)2 ≤ 1
2

(
T (f2)T (g2) + T (g2)T (f2)

)

holds in A for all f, g ∈ B.

Proof. Let λ ∈ R and f, g ∈ B. Since squares in B are positive, we get

T ((λf + g)2) = λ2T (f2) + 2λT (fg) + T (g2) ≥ 0

in A. According to the preceding proposition, the inequality

T (fg)2 ≤ 1
2

(
T (f2)T (g2) + T (g2)T (f2)

)

holds in A, which completes the proof.
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