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1. INTRODUCTION

Let T be a Calderon-Zygmund operator, a classical result of Coifman,
Rochberg and Weiss (see [7]) states that the commutator [b,T] = T'(bf) — 0T f
(where b € BMO(R")) is bounded on LP(R"™) for 1 < p < oo; Chanillo (see [2])
proves a similar result when T is replaced by the fractional integral operator.
However, it was observed that [b, T is not bounded, in general, from HP(R")
to LP(R"™) for p < 1. But, the boundedness holds if b belongs to Lipschitz
spaces Lipg(R™) (see [3],[15]). This shows the difference of b € BMO(R") and
b € Lipg(R"™). The purpose of this paper is to prove the boundedness proper-
ties for some multilinear operators generated by Littlewood-Paley operators
and Lipschitz functions on Hardy and Herz-Hardy spaces.

2. PRELIMINARIES AND RESULTS

In this paper, we will consider a class of multilinear operators related to
Littlewood-Paley operators, whose definitions are following.
Let m be a positive integer and A be a function on R". We denote

Ri1(As,y) = A(x) = 37 DU Al)(w —y)"

la|<m
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Qi (A2,9) = Ru(Aiz9) = 3~ D A)(w — y)°

|a)|=m

and I'(z) = {(y,t) € R’frl |z —y| <t} as well as the characteristic function
of I'(z) by Xr(a)-

Fix e > 0 and p > 1. Let ¢ be a fixed function which satisfies the following
properties:

(1) [ (@) =0,

(2) |¥(@)] < OO+ [z])~0 D),

(3) (@ +y) — (@) < Clyl*(1 + [x]) =1+ when 2Jy| < |«f;

The multilinear Littlewood-Paley operators are defined by

siw = ([T owet)”,

1/2
S @) = [ /. IFt’”’A(f)(af,y)foff]

and

- 1/2
o)) = [ oo () 10wyl ] ,

where

m+1(4; 2,

R = [ e ) (s
Rm+1(A;ﬂf,Z)

no |z —z|™

FPA(f) () = /

and Y (x) = t7™p(z/t) for t > 0. The variants of gﬁ, S;Z‘ and g/‘? are defined
by

f(2) Yy — 2)dz,

sow = ([T owet)”,

1/2
S8 = [ /. IF?”’A(f)(:v,y)!foff] ,

and

o 1/2
IA()a) = [ [ (i) 1 0P G ] ,
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where

Qmi1(A;z,y)
rn T —y™

EPAf) () = be( — y) f(y)dy

and
Qm+1(A;52, 2)

e |z —2z™

We denote that Ftw(f)(y) = f* 1 (y). We also define that

go(f) (@) = ( [ f)(x)|2it>1/ .
- ( /. |Ff<f><y>|2f3ff> "
11} Qdydt 2
<//R"“<f+lx—yl) it tn+1> ’

which are the Littlewood-Paley operators (see [19]). For SA SA and gu, gu,
we have the following pointwise estimates (see [19, p. 317})

S{H()(x) < Cgyl(f)(x) and SE(f)(z) < Cg(f) ().

Let ¢ = ¢ * xp, where B is a ball of R™. It is easy to see that

FPA(f)(y) = Gely — 2)f(2)dz.

and

1

YA (z) = = A (z
BAN@ =g [ D

thus
g (f)(x) < CS5(f)(x) and G} (f)(x) < CS5(f)(=).

Notice that if ¢ satisfies the properties (1),(2)and (3), then v also satisfies
similar estimates.

Note that when m = 0, g4, S# and gf} are just the commutator of
Littlewood-Paley operators (see [1],[12],[13]), while when m > 0, they are
non-trivial generalizations of the commutators. It is well known that multi-
linear operators are of great interest in harmonic analysis and have been widely
studied by many authors (see [3-6],[8],[9]). In [3] and [20], authors obtain the
boundedness of multilinear singular integral operators generated by singular
integrals and Lipschitz functions on LP(p > 1) and some Hardy spaces. The
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main purpose of this paper is to discuss the boundedness properties of the
multilinear Littlewood-Paley operators on Hardy and Herz-Hardy spaces. Let
us first introduce some definitions (see [10],[16],[17],[18]). Throughout this
paper, M (f) will denote the Hardy-Littlewood maximal function of f, @ will
denote a cube of R™ with side parallel to the axes. Denote the Hardy spaces
by HP(R™). It is well known that HP(R")(0 < p < 1) has the atomic decom-
position characterization (see [19]). For § > 0, the Lipschitz space Lipg(R")
is the space of functions f such that

Wfllzip, =  sup  |f(z+h) — f(2)|/|h]° < .
z,h € R"
h#0

Let By, = {v € R" : |z| < 2*} and Cy = By \ By_1 for k € Z. Denote by
Xk the characteristic function of C} and x; the characteristic function of Cj,
for £k > 1 and x( the characteristic function of By.

DEFINITION 1. Let 0 < p, ¢ < o0, @ € R.
(1) The homogeneous Herz space is defined by

KgP(R") = {f € L (R"\{0}) « ||/l ggor () < 00},

where

o] 1/p
Nl o = [ > 2kaprXk|’£q] ;

k=—00

(2) The nonhomogeneous Herz space is defined by

KgP(R") = {f € Lipo(B") : || fllgo(amy < 00},

loc

where
o0

1/p
/1] or = [Z 2koP || Fxkl g + HfXBOH’zq] :

k=1

DEFINITION 2. Let a € R, 0 < p,q < o0.
(1) The homogeneous Herz type Hardy space is defined by

HEJP(RY) = {f € §'(R") : G(f) € K{P(RM)},

and

1l gcar = NG o
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(2) The nonhomogeneous Herz type Hardy space is defined by
HEFP(R") = {f € S'(R") : G(f) € Kg"(R")},

and

A llrregr = NG lxcow

where G(f) is the grand maximal function of f.

The Herz type Hardy spaces have the atomic decomposition characteriza-
tion.

DEFINITION 3. Let « € R, 1 < ¢ < co. A function a(z) on R" is called a
central («, ¢)-atom (or a central (a, g)-atom of restrict type), if

1) Suppa C B(0,r) for some r > 0 (or for some r > 1),

2) |lallzs < [B(0,r)|~*/",

3) [a(z)z"dx =0 for || < [a—n(l —1/q)].

LEMMA 1. (See [17]) Let 0 < p < 00, 1 < g < oo and a > n(l —1/q). A
temperate distribution f belongs to HKgP(R™)(or HKJP(R™)) if and only
if there exist central (o, q)-atoms (or central (o, q)-atoms of restrict type)
a; supported on B; = B(0,27) and constants \j, > AP < oo such that
f=2202 o Ajajor [ =37720);a;) in the S'(R") sense, and

1/p

1 W ricon Cor 1 fllmracgr) = D [A17

J

We will prove the following theorems in Section 4.

THEOREM 1. Let 0 < # < 1, max(n/(n + B),n/(n+¢)) < p < 1 and
1/p—1/q=p/n. If D*A € Lipg(R") for |a| = m. Then g;‘ is bounded from
HP(R™) to LY(R™).

THEOREM 2. Let 0 < # < min(l,e). If D*A € Lipg(R") for |a| = m.
Then §;} is bounded from H™/("+8)(R"™) to L'(R™).

THEOREM 3. Let 0 < # < min(l,e). If D*A € Lipg(R") for |a] = m.
Then g;} is bounded from H"/("+A)(R™) to weak L'(R™).
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THEOREM 4. Let 0 < 3<1,0<p< oo, 1 < q,q2 <00, 1/q1 —1/qo =
B/n and n(l —1/q1) <o <min(n(l —1/q1) + B,n(l —1/q1) +¢). f D*A €
Lipg(R™) for |a| =m. Then g} is bounded from HKq"(R™) to Kg,"(R™).

Remark 1. By the pointwise estimates of 9$7 S$ and g;‘(or gﬁ, 5{2 and
g;‘), Theorem 1, 2, 3 and 4 also hold for g{? and S;Z‘(or g{) and S;Z‘)

Remark 2. Theorem 4 also hold for the nonhomogeneous Herz type Hardy
space.

3. SOME LEMMAS

We begin with some preliminary lemmas.

LEMMA 2. (See [6]) Let A be a function on R™ and D*A € Li(R") for
|a| = m and some q > n. Then

1/q
m 1 «
R(As,)| < Cla =y 3 (m Sl A<z>|%zz> ,
M "Evy

|a]=m
where Q(x,y) is the cube centered at = and having side length 5/n|x — y|.

LEMMA 3. (See [3, p.418, Theorem 2.3]) Let T4 be the multilinear oper-
ators defined by

Rm—l—l (A7 z, y)

TAN@) = | = e @)y

Ifo<p<l,1<p<n/B,1/q=1/p—F/n and D*A € Lipg(R") for |a| = m.
Then T4 is bounded from LP(R™) to L(R™), that is

IT4()lpa < ClI || o-

LEMMA 4. Let 0 < < 1,1 <p<mn/B,1/qg=1/p—3/n and D*A €
Lipg(R") for |a| = m. Then g;j}, S£ and gl‘? are all bounded from LP(R"™) to
Li(R™).

Proof. By the pointwise estimates of gi}, S;Z‘ and gf}, we only need to give
the proof of gﬁ‘. Note that

o0 tdt L
/0 (t+ |z — 2[)2n+2 =Clz -2
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and

tn/ < t )nu dy
o \t+ |z —yl) (t+]y—z])*+2

1 1
< CM <
=¢ (<t+ 7= zr>2n+2> <Ot

by using Minkowski’s inequality and the condition of v, we obtain

0 B " nu dy > :|1/2
. t " tdt dz
[/0 ( /R" <t+l$—y|> (t+ |y — 2])n+2

- 1/2
<C M|Rm+l(x4§$7z)| (/0 ( tdt ‘)2n+2> dz

R T — 2|™ t+|z—=z2
co [ VIR,
Rr |z — 2

Thus, the lemma follows from Lemma 3. |

4. PROOFS OF THEOREMS

Proof of Theorem 1. It suffices to show that there exists a constant C' > 0
such that for every HP-atom a,

gy (@)llzs < C.

Let a be a HP-atom, that is that a supported on a cube Q = Q(xo, 1), ||a||f~ <
Q|77 and [ a(x)z"dx = 0 for |y| < [n(1/p — 1)]. We write

A Idx = Aa)(2)|dx = I + .
| @@ (/2Q+/(2Q)C> g (@) 2) )t = I + 1

For Iy, taking 1 < p; < n/f and ¢ such that 1/p; —1/q1 = 3/n, by Holder’s
inequality and the (LP', L9 )-boundedness of g;‘ (see Lemma 4), we get

I < CllgiH(a)][4 12Q) =71 < Cllal|%,, |QI" /" < C.

To obtain the estimate of I2, we need to estimate gﬁ (a)(z) for x € (2Q)°. Let
Q = 5y/nQ and A(z) = A(z) — Z|a‘:m$(DaA)Qxa. Then R, (A;x,y) =
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Ry(A;x,y) and D*A(y) = D*A(y) — (D*A)g). We write, by the vanishing
moment of a,

|z — z[m |z — @o[™

Ft"/%A(a)(x, y) — / [wt(y — Z)Rm(le, €z, Z) . wt(y — xO)Rm(‘ZL xz, :UO) dz

Ly L[ 92 D)

al Jpn |z — 2™

a(z)dz.

|lal=m

By Lemma 2 and the following inequality, for b € Lipg(R"),

1
b(x) —bol < 7 [ [bllLins |z =yl dy < |1b|Lip, (|2 — 0| +7)7,
Ql Jo

we get

[Ron(As 2, 9)| <Y (1D Al pigy (|2 =yl + )™ 7.

|a|=m

On the other hand, by the formula (see [6]):

_ . 1 -
Ron(A;2,y) = Rn(A;2,m0) = Y = R (D" A; 20, y) (z — o))"

[n|<m

and note that |z —y| ~ |z — z¢| for y € @ and = € R™ \ ), we obtain, similar
to the proof of Lemma 4,

A ly — o ly — @o|°
g, (a)(z) <C g HDO‘AHLipﬁ/ Lx — o[t B + o — o[ P
|a|=m

T e

— o [ntm—Tn] —zol”
|77|<m |:L’ x0| ‘I $Q|

<C > |IDYAllLip,

laf=m

’x_l'O’n |x_$0’n+e—ﬂ ’

[|Q’ﬁ/n+11/p ‘Q’E/TH’lfl/p
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Thus,
I < / T (a)(x)|%dx
O NCIC)
a o0
<C Z 1D Al| Ly, [qun(l/p—(nJrB)/N)+2kqn(1/p—(n+€)/n)
|o|=m k=1

q

<c| X1 Ally, | -

laj=m

which together with the estimate for I yields the desired result. This finishes
the proof of Theorem 1.

From Theorem 1, we get

COROLLARY. Let 0 < 8 < 1. If D*A € Lipg(R") for |a| = m. Then 91‘2,
S;Z‘ and gl‘f are all bounded from L#(R™) to BMO(R™).

Proof of Theorem 2. It suffices to show that there exists a constant C' > 0
such that for every H™ ("+8)_atom a supported on Q = Q(zo,r), we have

13, (@)l < C.

We write

| i) -

NA —
/2Q i /<2Q)c] Gu(a)(z)dw := Ty + Jo.

For Ji, by the following equality

Quet (A;,2) = R (s, 2) = 37 (o — 2)* (D" A() ~ DUA(2)),

|a|=m

we have, similar to the proof of Lemma 4,

e < gl +c 3 [ =T ay

n |z —y|"

thus, g{) is (LP, L9)-bounded by Lemma 4 and [1],[2], where n/ > p > 1 and
1/¢q=1/p— B8/n. We see that

Ji < Cl1gi(@)|za2Q 19 < Cllal 20 |QI'Y < ClQ|! P Vam A < ¢
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To obtain the estimate of Jo, we denote that A(z) = A(z) — 2 laj=m 4
(D*A)opz®. Then Qu(A;z,y) = Qm(A;z,y). We write, by the vanishing
moment of a and Quu1(4;7,9) = Ron (45 2,y) — Yo 41 (2 — 4)* D7 A(2),
for z € (2Q)¢,

U (y — z)Rm([l; x,z)

B @) = | S )
oy L[ ly—)D A @ —2)
c;m ot & — 2™ ()
- /n [7/175( |x)— 2‘1(:1 72) ¢t(x—|~’;0)_]1n;|(f;x,xo)] a(z)dz

Tl T

_wt(aj —xg)(x — 20)®

|z — ao|™

] DA(z)a(z)dz,

thus, similar to the proof of Theorem 1, we obtain, for x € (2Q)°

@) @) < QI S 1DV AllL e QI
9y = Lipg |[L‘ — xo’nJrlfﬁ |x _ x0|n+afﬁ

|a|=m

|z — xo|?te

5 1/n e/n
roiar e (9 )

|a|=m
so that,
Jo <C Y |ID*AllLip, Z [2R(B=1) 4 9k(B—2)) < (0,
la|=m =
which together with the estimate for J1 yields the desired result. This finishes
the proof of Theorem 2. 1

Proof of Theorem 3. By the following equality
1
Ryt1(A5x,2) = Qa1 (A x, 2) + Z a(m — 2)%(D“A(z) — D*A(z))
laj=m

and similar to the proof of Lemma 4, we get

@ < gl +e Y [ AT

| — z|™

|lal=m
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from Theorem 1, 2 and [15], we obtain

{z € R": g} (f)(x) > A}
<Hz e R": g (f)(x) > A/2}|

+[Rzer: Z/ D2 A) = DUAG) o 1az > o

|z — z|n

laj=m
< CA Y|l /e -
This completes the proof of Theorem 3. |

Proof of Theorem 4. Let f € HKg?(R") and f(z) = > Ajaj(z) be
the atomic decomposition for f as in Lemma 1. We write

k—3 P
g, (f) [gor <€ Z 29 1S Illlgg (ag)xellee
k=—o0 Jj=—00
00 00 P
+C Y 2Py lllgg () xll e
k=—00 j=k—2

= L1+ Lo.

For Lo, by the (L%, L%) boundedness of gf) (see Lemma 4), we get

p

o (o9}
Ly<C Y 27 [ 3 (nlllaylm

k=—o00 j=k—2

O P (I 2ker) o <p <

J+2 j+2 p/p
CYE )\j|p( Z g(k—j)ap/2> ( Z Q(k—a)ap’/2> . p>1

k=—0c0 k=—0oc0

<

<C Z |>‘j|p < CHf”ngfp

j=—00

For L1, similar to the proof of Theorem 1, we have, for x € Cy, j < k — 3,

B (B
C( e apres ) [ Nl

< O(Btn=1/a)=a) g =n 4 oiletn(1=1/q)=0)| 5| B-n=e)

IN

9i: (a)(@)
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thus

Hg,’f(a]‘)XkHqu < 027 ke (QU=R)(BHn(1=1/a)=e) 4 9(=k)(e+n(1-1/a1)=a))

)

and

00 k—3
L <C Z < Z ’/\j‘(Q(j—k)(6+n(1—1/q1)—a)+2(j—k)(1/2+n(1—1/q1)_a)

k=—oco j=—o00

n 2(j—k><v+n<1—1/q1)—a>)p

CX2 NP,y (20-PE 0 a)e)
+2(j—k)(1/2+n(1—1/q1)—oc) +2(j—k)(7+n(1—1/q1)—a))p’ 0 <p <1

< .
= C Z;i—oo |)‘j [P [Zzij+3 (2(]7k)p(ﬁ+n(171/q1)7a)/2
+20=Rp(/24n(1=1/0)=a)/2 4 oi=k)(y+n(1=1/a)=2)/2)] = p > 1

<C Z ‘)‘j‘p < CHfHZK:;l,p

j=—o0

This completes the proof of Theorem 4. |
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