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Introduction.

The aim of this paper is the study of abelian Lie algebras as subalgebras
of the nilpotent Lie algebra gn associated with Lie groups of upper-triangular
square matrices whose main diagonal is formed by 1.

We also give an obstruction to obtain the abelian Lie algebra of dimension
one unit less than the corresponding to gn as a Lie subalgebra of gn. Moreover,
we give a procedure to obtain abelian Lie subalgebras of gn up to the dimension
which we think it is the maximum.

There are several reasons to study nilpotent Lie algebras. By one side,
the problem of their classification is still unsolved, being only known up to
dimension 7 (see [1, 2]). By the other side, we think that the information
obtained about the simply connected Lie groups associated with them will
translate in information about the algebras themselves, and finally it will
mean a step forward in the above mentioned problem.

It is known that given a fixed Lie group, there exists a Lie algebra associ-
ated with it. The converse, that is, every Lie algebra is associated with some
Lie group, was locally proved by Lie, in his Third Theorem, and globally by
Ado. Consequently it can be proved that any finite-dimensional complex Lie
algebra is isomorphic to some matrix Lie algebra (see [4]).

In this way, the study of Lie algebras reduces to the study of Lie algebras
associated with matrix Lie groups. In fact, Proposition 3.6.6 of [4] states that
every nilpotent Lie algebra is obtained as Lie subalgebra of the Lie algebra
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associated with the Lie group Gn that consists in upper-triangular square
matrices with ”1” in their main diagonal.

We have asked ourselves about the dimension of the abelian Lie algebras
contained in the Lie algebra gn associated with Gn. This paper deals with the
maximal dimension of abelian Lie algebras, considered as subalgebras of Gn,
for a given n ∈ N \ {1}.

We give a procedure to obtain abelian Lie algebras in gn, considering the
cases n odd or even. We formulate a conjecture about the maximal dimension
of these algebras in gn. Finally, the main result of the paper proves that the
Lie algebra gn, of dimension dgn cannot contain the abelian Lie algebra of
dimension dgn − 1 as a Lie subalgebra (see Theorem 3.1 and Corollary 3.2).

1. Preliminaries

We will remind some preliminary concepts on Lie groups and Lie algebras
that will be used in the paper. For a general overview on Lie groups and Lie
algebras, the reader can consult [4].

If a Lie group is denoted by G, we will denote its associated Lie algebra
by g. Note that the dimensions of G and g are the same.

A representation of a Lie group of dimension n is a homomorphism of Lie
groups φ : G → GL(n,C).

If L is a Lie algebra, its central series is given by:

C1(L) = L, C2(L) = [L,L], C3(L) = [C2(L),L], . . . , Ck(L) = [Ck−1(L),L], . . .

Then, L is called nilpotent if there exists a natural number m such that
Cm(L) ≡ 0.

A Lie algebra L is called abelian if [X,Y ] = 0, for all X, Y ∈ L.

2. The Lie group Gn of unipotent matrices.

Since an abelian Lie algebra is nilpotent, its simply connected Lie group
can be represented by unipotent matrices (that is, upper-triangular square
matrices with ”1” in the main diagonal). However, we do not know, a priori,
the minimal order of matrices verifying such a condition.

If we denote by Gn the Lie group of unipotent matrices, elements in this
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group have the form:

gn(xi,j) =




1 x1,2 x1,3 · · · x1,n−1 x1,n

0 1 x2,3 · · · x2,n−1 x2,n

0 0 1 · · · x3,n−1 x3,n
...

...
...

. . .
...

...
0 0 0 · · · 1 xn−1,n

0 0 0 · · · 0 1




(xi,j ∈ C).

As we proved in [3], the Lie algebra gn associated with Gn is nilpotent and
the only nonzero brackets in gn are:

[Xi,j , Xj,k] = Xi,k i = 1, . . . , n; j = i + 1, . . . , n; k = j + 1, . . . , n

That is, nonzero brackets are only obtained if we multiply a field of the
jth column times a field of the jth row, for every j ∈ {2, . . . , n}.

We will distinguish two cases, depending of the parity of the order of
matrices in Gn.

2.1. Case 1: Matrices of even order. Let us consider before, as
examples, the Lie groups G2 and G4, already studied in [3]:

G2 =
(

1 x1,2

0 1

)
G4 =




1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1




Clearly, only the 1-dimensional abelian Lie algebra can be obtained as
subalgebra g2 with G2.

Let’s consider g4. We have three fields corresponding to the 4th column;
the 3rd column adds two fields although the field corresponding to the 3rd

row has to be removed. So, we have four fields. If we now add the 2nd

column (which has a unique field), we would have to remove the two fields
corresponding to the 2nd row and then this last step does not improve the
situation.

Inspired in these two examples, we will show a procedure to get abelian
Lie algebras from g2k for any k. It consists of the following steps:
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Column 2k. Firstly, we consider the 2k − 1 fields corresponding
to the (2k)th column.

Column (2k − 1). We add the 2k − 2 fields corresponding to the (2k −
1)th column and we remove the field of the (2k−1)th

row.
...

...
Column i. We add the i − 1 fields corresponding to the ith

column and we remove the 2k − i fields of the ith

row. Hence the number of added fields is the differ-
ence between both numbers, that is, 2i− 2k − 1.

...
...

Column k + 1. We stop the procedure in the (k +1)th column, since
the difference 2i − 2k − 1 is positive if and only if
i > k + 1

2 . Then we add the k fields of the (k + 1)th

column and we remove the k−1 fields of the (k+1)th

row.

In this way, we can obtain abelian Lie algebras whose dimension is less or
equal than k2. Besides, fields obtained in the procedure are the following:

X1,k+1 X1,k+2 · · · X1,2k−1 X1,2k

X2,k+1 X2,k+2 · · · X2,2k−1 X2,2k
...

...
...

...
...

Xk−1,k+1 Xk−1,k+2 · · · Xk−1,2k−1 Xk−1,2k

Xk,k+1 Xk,k+2 · · · Xk,2k−1 Xk,2k

2.2. Case 2: Matrices of odd order. By repeating the same scheme
as before, we firstly consider two particular examples, already studied in [3]:

G3 =




1 x1,2 x1,3

0 1 x2,3

0 0 1


 and G5 =




1 x1,2 x1,3 x1,4 x1,5

0 1 x2,3 x2,4 x2,5

0 0 1 x3,4 x3,5

0 0 0 1 x4,5

0 0 0 0 1




We now use the same procedure as in the previous case. So, from g3,
we can obtain the abelian Lie algebra < X1,2, X1,3 > of dimension 2, but
we cannot obtain the abelian algebra of dimension 3, because g3 itself is a
non-abelian Lie algebra.
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In g5, if we consider the 5th column, we have four fields; the 4th column
adds three fields and we have to remove the field corresponding to the 4th row.
So, we have six fields. If we add the 3rd column (which has two fields), we
would have to remove the two fields corresponding with the 3rd row. However,
it does not improve the situation.

We note then that this procedure is valid for obtaining abelian Lie algebras
in g2k+1 up to dimension (2k+1)2−1

4 . This conclusion is similar as the given in
the previous case. Concretely:

Column 2k + 1. Firstly, we consider the 2k fields corresponding to the
(2k + 1)th column.

Column 2k. We add the 2k − 1 fields corresponding to the (2k)th

column and we remove the field corresponding to the
(2k)th row.

...
...

Column j. When dealing with the jth column, we add j − 1 fields
and we remove the 2k +1− j fields corresponding with
the jth row.

...
...

Column k + 1. When dealing with the (k + 1)th column, we add k
fields and we remove the k fields of the (k + 1)th row.
We stop in this step, because, by considering the kth

column, we would add k−1 fields and we would remove
the k+1 fields in the kth row and, hence, the dimension
would decrease.

So, the fields of g2k+1 in this abelian Lie algebra are:

X1,k X1,k+1 · · · X1,2k X1,2k+1

X2,k X2,k+1 · · · X2,2k X2,2k+1
...

...
...

...
...

Xk−2,k Xk−2,k+1 · · · Xk−2,2k Xk−2,2k+1

Xk−1,k Xk−1,k+1 · · · Xk−1,2k Xk−1,2k+1

Now, by taking into consideration both cases, a natural question appears:
is it possible to obtain an abelian Lie algebra of higher dimension? By denoting
the dimension of the algebra gn by dgn , we will see in the next section that it
is not possible to obtain the abelian Lie algebra of dimension dgn − 1. It is a
first step in the attempt of proving the following:
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Conjecture. The maximal dimension of an abelian Lie algebra h in gn

is given by:

dim h =

{
k2, if n = 2k, with k ∈ N,

(2k+1)2−1
4 , if n = 2k + 1, with k ∈ N.

We have already proved this result for n ∈ {2, 3, 4} in [3].

3. Abelian Lie algebra of dimension dgn − 1.

Now, coming back to the question of what abelian Lie algebras can be
contained in a given Lie algebra gn, we will prove that the abelian Lie algebra
of dimension dgn − 1 is not a subalgebra of gn.

Theorem 3.1. If n ∈ N, with n ≥ 4, then the abelian Lie algebra of
dimension dgn − 1 is not a Lie subalgebra of gn.

If we use the relation between the Lie subgroups of a given Lie group and
the Lie subalgebras of its associated Lie algebra, Theorem 3.1 immediately
implies the following result:

Corollary 3.2. If n ∈ N, n ≥ 4, then the simply connected Lie group
associated with the abelian Lie algebra of dimension dgn − 1 cannot be rep-
resented as a Lie subgroup of Gn.

Proof. To prove Theorem 3.1 we will proceed by induction on n.
Let us suppose, in the first place, n = 4: as the dimension of G4 is 6,

the considered abelian Lie algebra has dimension 5. Then every basis of Lie
subalgebras of g4 can be expressed by {Yi}5

i=1, where:

Yi =

j=3
k=4∑

k=j+1
j=1

ai,j,kXj,k , (ai,j,k ∈ C) , (i = 1, . . . , 5).

As the corresponding matrix of coefficients has rank 5, it is equivalent to
the following matrix:




b1,1 0 0 0 0 b1,6

0 b2,2 0 0 0 b2,6

0 0 b3,3 0 0 b3,6

0 0 0 b4,4 0 b4,6

0 0 0 0 b5,5 b5,6




,
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where bi,i 6= 0, for 1 ≤ i ≤ 5. Therefore, to give a basis of every 5-dimensional
subalgebra of g4, we have to distinguish the following six possibilities, where
λi ∈ C:

〈λ1X1,3 + µ1X1,2, λ2X1,4 + µ2X1,2, λ3X2,3 + µ3X1,2,

λ4X2,4 + µ4X1,2, λ5X3,4 + µ5X1,2〉.
〈λ1X1,2 + µ1X1,3, λ2X1,4 + µ2X1,3, λ3X2,3 + µ3X1,3,

λ4X2,4 + µ4X1,3, λ5X3,4 + µ5X1,3〉.
〈λ1X1,2 + µ1X1,4, λ2X1,3 + µ2X1,4, λ3X2,3 + µ3X1,4,

λ4X2,4 + µ4X1,4, λ5X3,4 + µ5X1,4〉.
〈λ1X1,2 + µ1X2,3, λ2X1,3 + µ2X2,3, λ3X1,4 + µ3X2,3,

λ4X2,4 + µ4X2,3, λ5X3,4 + µ5X2,3〉.
〈λ1X1,2 + µ1X2,4, λ2X1,3 + µ2X2,4, λ3X1,4 + µ3X2,4,

λ4X2,3 + µ4X2,4, λ5X3,4 + µ5X2,4〉.
〈λ1X1,2 + µ1X3,4, λ2X1,3 + µ2X3,4, λ3X1,4 + µ3X3,4,

λ4X2,3 + µ4X3,4, λ5X2,4 + µ5X3,4〉.
We deal next with the first of the possibilities (the rest of them can be

seen in [3]).
Making equal to zero the brackets between basic elements, we obtain a

system which contains the following equations: λ3µ2 = 0, λ3µ1 = 0, λ3µ4 =
0, µ3λ4 = 0, λ3λ5 = 0, λ3µ5 = 0, which gives a contradiction.

Let us suppose that n > 4 and, by the induction assumption, the result is
true for n− 1, that is, we cannot obtain the abelian Lie algebra of dimension
D(n− 1) = dgn−1 − 1 in gn−1.

Let us prove the result for n. The dimension of the abelian Lie algebra to
study is D(n) = dgn − 1 =

(
n
2

)− 1.
We will argue as in the case n = 4. Let us consider the elements Xi,j (with

i = 1, . . . , n−1 and j = i+1, . . . , n−1) in gn as coming from gn−1 (considered
as subalgebra of gn). If Xh,k is one of those elements and the basis Bh,k of
the (dgn − 1) dimensional abelian subalgebra consists of elements of the form:
Yi,j = λi,j Xi,j +µi,j Xh,k, with (i, j) 6= (h, k), then the abelian Lie subalgebra
B =< Yi,j >, with 1 ≤ i < j ≤ n − 1, is an abelian Lie subalgebra of gn−1

with dimension D(n− 1), against the induction assumption.
Now let us suppose that the basis of the abelian subalgebra, Bi,n, consists

of elements that involve, all of them, the element Xi,n and consider the basic
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elements:

Y1,2,i = λ1,2,iX1,2 + µ1,2,iXi,n, Y1,3,i = λ1,3,iX1,3 + µ1,3,iXi,n,
Y2,3,i = λ2,3,iX2,3 + µ2,3,iXi,n, Y3,4,i = λ3,4,iX3,4 + µ3,4,iXi,n.

The brackets [Y1,2,i, Y2,3,i] and [Y1,3,i, Y3,4,i] are given by:

[Y1,2,i, Y2,3,i] = λ1,2,iλ2,3,iX1,3 + λ1,2,iµ2,3,i[X1,2, Xi,n] + µ1,2,iλ2,3,i[Xi,n, X2,3],
[Y1,3,i, Y3,4,i] = λ1,3,iλ3,4,iX1,4 + λ1,3,iµ3,4,i[X1,3, Xi,n] + µ1,3,iλ3,4,i[Xi,n, X3,4].

According to the law of gn, we have the brackets:

[X1,2, Xi,n] =

{
0, if i 6= 2,

X1,n, if i = 2.
[Xi,n, X2,3] =

{
0, if i 6= 3,

−X2,n, if i = 3.

[X1,3, Xi,n] =

{
0, if i 6= 3,

X1,n, if i = 3.
[Xi,n, X3,4] =

{
0, if i 6= 4,

−X3,n, if i = 4.

and, as a consequence, possible cases are:

a) If i 6= 2, 3, 4, we have:
{

[Y1,2,i, Y2,3,i] = λ1,2,iλ2,3,iX1,3,
[Y1,3,i, Y3,4,i] = λ1,3,iλ3,4,iX1,4.

b) If i = 2, we have:
{

[Y1,2,i, Y2,3,i] = λ1,2,iλ2,3,iX1,3 + λ1,2,iµ2,3,iX1,n,
[Y1,3,i, Y3,4,i] = λ1,3,iλ3,4,iX1,4.

c) If i = 3, we have:
{

[Y1,2,i, Y2,3,i] = λ1,2,iλ2,3,iX1,3 − µ1,2,iλ2,3,iX2,n,
[Y1,3,i, Y3,4,i] = λ1,3,iλ3,4,iX1,4 + λ1,3,iµ3,4,iX1,n.

d) If i = 4, we have:
{

[Y1,2,i, Y2,3,i] = λ1,2,iλ2,3,iX1,3,
[Y1,3,i, Y3,4,i] = λ1,3,iλ3,4,iX1,4 − µ1,3,iλ3,4,iX3,n.

In every case, the equations λ1,2,iλ2,3,i = 0 and λ1,3,iλ3,4,i = 0 are obtained.
Hence, two elements of the basis of the abelian subalgebra are linearly depend-
ent, what gives a contradiction. This proves Theorem 3.1 and, consequently,
Corollary 3.2.
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