A Note on the Range of Generalized Derivation

Mohamed Amouch
Department of Mathematics, Faculty of Science Semlalia, B.O: 2390 Marrakesh, Morocco
e-mail: m.amouch@ucam.ac.ma

(Presented by M. Mbekhta)

AMS Subject Class. (2000): 47A20, 47B30, 47B47
Received June 10, 2006

1. Introduction

Let $\mathcal{L}(H)$ be the algebra of all bounded linear operators acting on a complex separable and infinite dimensional Hilbert space H. For operators $A, B \in \mathcal{L}(H)$ we define the generalized derivation $\delta_{A, B}$ associated with (A, B) by

$$
\delta_{A, B}(X)=A X-X B \quad \text { for } X \in \mathcal{L}(H)
$$

If $A=B$, then $\delta_{A, A}=\delta_{A}$ is called the inner derivation. The theory of derivations has been extensively dealt with in the literature (see for example $[1,2,3,5,6,7,8,9,10,16,17,18,20]$ and $[21])$.

For a linear operator T acting on a Banach space X, we denote by T^{*}, Ker T and $R(T)$ respectively the adjoint, the kernel and the range of T. Also we denote by $\overline{R(T)}$ and $\overline{R(T)}^{\omega}$ respectively the closure of the range of T respect to the norm topology and the weak operator topology.

In this work we give the extension of the results showed by Williams [21, p. 301] and Ho [13, p. 511] to $\delta_{A, B}$. We will give some conditions for $A, B \in \mathcal{L}(H)$ under which
where $\overline{R\left(\delta_{A, B}\right)^{\tau}}$ denotes closure of $R\left(\delta_{A, B}\right)$ respect to the norm topology or the weak operator topology.

In section 1, we prove that if A and B are isometries (resp. co-isometries) or if $P(A)$ and $P(B)$ are normal for some non-trivial polynomial P with degree ≤ 2, then

$$
\overline{R\left(\delta_{A, B}\right)} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}=\{0\} .
$$

Recall [12] that $A \in \mathcal{L}(H)$ is bloc-diagonal if there exists an increasing sequence $\left\{P_{n}\right\}_{n}$ of self-adjoint projectors of finite rank in $\mathcal{L}(H)$ such that $\lim _{\text {sot }} P_{n}=I$ and $P_{n} A=A P_{n}$ for all $n \in I N$, where $\lim _{\text {sot }}$ is the limit respect to the strong operator topology in $\mathcal{L}(H)$.

In section 2 , we prove that if A is bloc-diagonal then every positive operator in ${\overline{R\left(\delta_{A}\right)}}^{\omega}$ vanishes. As a consequence of this we obtain that if A is blocdiagonal then ${\overline{R\left(\delta_{A, B}\right)}}^{\omega} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}=\{0\}$ for every $B \in \mathcal{L}(H)$.

2. Conditions under which $\overline{R\left(\delta_{A, B}\right)} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}=\{0\}$

Let $\mathcal{C}_{1}(H)$ be the ideal of trace class operators, that is, the set of all compact operators $T \in \mathcal{L}(H)$ for which the eigenvalues of $\left(T^{*} T\right)^{\frac{1}{2}}$ counted according to their multiplicity are summable. The trace function is defined by $\operatorname{Tr}(T)=\sum_{n}<T e_{n}, e_{n}>$, where $\left(e_{n}\right)$ is any complete orthonormal sequence in H. Recall that the ultraweak continuous linear functionals on $\mathcal{L}(H)$ are those of the form f_{T} for some $T \in \mathcal{C}_{1}(H)$ and the weak continuous linear functionals on $\mathcal{L}(H)$ are those of the form f_{T}, where T is of finite rank.

Lemma 2.1. Let $T=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ on $H \oplus H$, where $A, B \in \mathcal{L}(H)$. Then we have the following assertions :

ii) If $R\left(\delta_{T}\right) \cap \operatorname{Ker} \delta_{T^{*}}=\{0\}$, then $R\left(\delta_{A, B}\right) \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}=\{0\}$.

Proof. i) Let $C \in{\overline{R\left(\delta_{A, B}\right)}}^{\tau} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}$. Then there exists a sequence $\left\{X_{\alpha}\right\}_{\alpha}$ of elements of $\mathcal{L}(H)$ such that $\lim _{\tau} A X_{\alpha}-X_{\alpha} B=C$ and $A^{*} C=C B^{*}$. Let $T=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right), Y_{\alpha}=\left(\begin{array}{cc}0 & X_{\alpha} \\ 0 & 0\end{array}\right)^{\tau}$ and $S=\left(\begin{array}{cc}0 & C \\ 0 & 0\end{array}\right)$ on $H \oplus H$. Then

$$
\begin{aligned}
\lim _{\tau} T Y_{\alpha}-Y_{\alpha} T & =\lim _{\tau}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{cc}
0 & X_{\alpha} \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & X_{\alpha} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) \\
& =\lim _{\tau}\left(\begin{array}{cc}
0 & A X_{\alpha}-X_{\alpha} B \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

$$
\text { If } \lim _{\omega}\left(\begin{array}{cc}
0 & A X_{\alpha}-X_{\alpha} B \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right) \text { on } H \oplus H . \text { Then }
$$

$$
\left|\left\langle\left(\begin{array}{cc}
L_{11} & L_{12}-\left(A X_{\alpha}-X_{\alpha} B\right) \\
L_{21} & L_{22}
\end{array}\right)\binom{0}{x},\binom{y}{0}\right\rangle\right|
$$

converges to 0 , hence $\left|<\left[L_{12}-\left(A X_{\alpha}-X_{\alpha} B\right)\right] x, y>\right|$ converges to 0 for all $x, y \in H$, which implies that

$$
\lim _{\omega} A X_{\alpha}-X_{\alpha} B=L_{12}
$$

As the same we prove that

$$
L_{11}=L_{21}=L_{22}=0
$$

This implies that

$$
\begin{aligned}
& \begin{array}{c}
\lim _{\omega}\left(\begin{array}{cc}
0 & A X_{\alpha}-X_{\alpha} B \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \lim _{\omega} A X_{\alpha}-X_{\alpha} B \\
0 & 0
\end{array}\right) \\
=\left(\begin{array}{ll}
0 & C \\
0 & 0
\end{array}\right) . \\
\text { If } \lim \left(\begin{array}{cc}
0 & A X_{\alpha}-X_{\alpha} B \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right) \text { on } H \oplus H, \text { then } \\
\left\|\left(\begin{array}{cc}
L_{11} & L_{12}-\left[A X_{\alpha}-X_{\alpha} B\right] \\
L_{21} & L_{22}
\end{array}\right)\right\| \text { converges to } 0
\end{array} .
\end{aligned}
$$

hence

$$
\| L_{12}-\left[A X_{\alpha}-X_{\alpha} B \| \text { converges to } 0 \text { and } L_{11}=L_{21}=L_{22}=0\right.
$$

This implies that

$$
\begin{aligned}
\lim \left(\begin{array}{cc}
0 & A X_{\alpha}-X_{\alpha} B \\
0 & 0
\end{array}\right) & =\left(\begin{array}{cc}
0 & \lim A X_{\alpha}-X_{\alpha} B \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & C \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Hence, $\left(\begin{array}{cc}0 & C \\ 0 & 0\end{array}\right)=S \in{\overline{R\left(\delta_{T}\right)}}^{\tau}$. Since $S T^{*}=T^{*} S$, then $S \in{\overline{R\left(\delta_{T}\right)}}^{\tau} \cap$ $\operatorname{Ker} \delta_{T^{*}}=\{0\}$. So $C=0$. This completes the proof of i). To prove ii) it suffices to replace ${\overline{R\left(\delta_{T}\right)}}^{\tau}$ with $R\left(\delta_{T}\right)$.

In the following theorem we give an extension of the result of [21, p. 301] and [13, p. 511] to $\delta_{A, B}$.

Theorem 2.1. Let $A, B \in \mathcal{L}(H)$. If A and B are isometries (resp. coisometries) or $P(A)$ and $P(B)$ are normal for some non-trivial polynomial P with degree ≤ 2 then

$$
\overline{R\left(\delta_{A, B}\right)} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}=\{0\} .
$$

Proof. i) If A and B are isometries (resp. co-isometries), then

$$
T=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

is also an isometry (resp. co-isometry) on $\mathcal{L}(H \oplus H)$. By [21, p. 301], we have $\overline{R\left(\delta_{T}\right)} \cap \operatorname{Ker} \delta_{T^{*}}=\{0\}$. Hence from Lemma 2.1, we conclude that $\overline{R\left(\delta_{A, B}\right)} \cap$ $\operatorname{Ker} \delta_{A^{*}, B^{*}}=\{0\}$.
ii) The result of $[13$, Theorem 3 (1)] asserts that if $T \in \mathcal{L}(H)$ is such that $P(T)$ is normal for some non-trivial polynomial P with degree ≤ 2, then $\overline{R\left(\delta_{T}\right)} \cap \operatorname{Ker} \delta_{T^{*}}=\{0\}$. Indeed, suppose that $T^{2}-2 \alpha T-\beta=N$ is a normal operator. Let $\lim T X_{n}-X_{n} T=S^{*} \in \overline{R\left(\delta_{T}\right)} \cap \operatorname{Ker} \delta_{T^{*}}$. Then

$$
\lim (N+2 \alpha T) X_{n}-X_{n}(N+2 \alpha T)=\lim T^{2} X_{n}-X_{n} T^{2}=T S^{*}+S^{*} T
$$

This implies that $T S^{*}+S^{*} T-2 \alpha S^{*} \in \overline{R\left(\delta_{N}\right)} \cap \operatorname{Ker} \delta_{N^{*}}$ so that $T S^{*}+S^{*} T-$ $2 \alpha S^{*}=0$ by [4, Theorem 1.7]. Hence

$$
\left(S+S^{*}\right)(T-\alpha)=(T-\alpha)\left(S-S^{*}\right) \text { and }(T-\alpha) S^{*}=-S^{*}(T-\alpha)
$$

The Putnam-Fuglede theorem then gives

$$
\left(S^{*}+S\right)(T-\alpha)=(T-\alpha)\left(S^{*}-S\right) \text { and }(T-\alpha) S=-S(T-\alpha)
$$

Combining these equations we get

$$
(T-\alpha)\left(S^{*}+S\right)=0 \text { and }\left(S^{*}+S\right)(T-\alpha)=0
$$

Hence $S^{*} T=T S^{*}$. Therefore $S^{*} S \in \overline{R\left(\delta_{T}\right)} \cap \operatorname{Ker} \delta_{T^{*}}$ so that $S=0$ by [13, Lemma 3]. Now, if $P(A)$ and $P(B)$ are normal for some non-trivial polynomial P with degree ≤ 2, then $P(T)$ is also normal for $T=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$, hence from the previous result $\overline{R\left(\delta_{T}\right)} \cap \operatorname{Ker} \delta_{T^{*}}=\{0\}$. From Lemma 2.1, we conclude that

$$
\overline{R\left(\delta_{A, B}\right)} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}=\{0\} .
$$

Lemma 2.2. Let $A, B \in \mathcal{L}(H)$. If $T \in{\overline{R\left(\delta_{A, B}\right)}}^{\tau} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}$, then $T^{*} T \in$ ${\overline{R\left(\delta_{B}\right)}}^{\tau}$ and $T T^{*} \in{\overline{R\left(\delta_{A}\right)}}^{\tau}$.

Proof. If $T \in{\overline{R\left(\delta_{A, B}\right)}}^{\tau} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}$, then there exists a sequence $\left\{X_{\alpha}\right\}_{\alpha}$ of elements of $\mathcal{L}(H)$ such that $T=\lim _{\tau} A X_{\alpha}-X_{\alpha} A=0$ and $A^{*} T-T B^{*}=0$. Hence

$$
T^{*} T=\lim _{\tau} T^{*} A X_{\alpha}-T^{*} X_{\alpha} B=\lim _{\tau} B T^{*} X_{\alpha}-T^{*} X_{\alpha} B
$$

and

$$
T T^{*}=\lim _{\tau} A X_{\alpha} T^{*}-X_{\alpha} B T^{*}=\lim _{\tau} A X_{\alpha} T^{*}-X_{\alpha} T^{*} A
$$

since right multiplication and left multiplication are continuous with respect to the topology τ.

The following lemma is proved in [19], we need it to prove the next theorem.
Lemma 2.3. Let $B \in \mathcal{L}(H)$ be a normal operator and $X \in \mathcal{C}_{2}(H)$ such that $B X-X B \in \mathcal{C}_{1}(H)$, then $\operatorname{Tr}(B X-X B)=0$.

For the unilateral right shift with a non null weight, we have the following result.

Theorem 2.2. Let $S \in \mathcal{L}(H)$ be the unilateral right shift with a non null weight $\left(\alpha_{n}\right)_{n} ; \alpha_{n} \neq 0$ for all $n \in \mathbb{N}$ and let $B \in \mathcal{L}(H)$ be normal. Then

$$
R\left(\delta_{S, B}\right) \cap \operatorname{Ker} \delta_{S^{*}, B^{*}}=\{0\}
$$

Proof. Let $T \in R\left(\delta_{S, B}\right) \cap \operatorname{Ker} \delta_{S^{*}, B^{*}}$. By the same argument as in the proof of Lemma 2.2, we get that $T T^{*} \in R\left(\delta_{S}\right)$, hence from [13] $T T^{*} \in \mathcal{C}_{1}(H)$. Which is equivalent to $T \in \mathcal{C}_{2}(H)$. On the other hand $T^{*} T=B T^{*} X-T^{*} X B$ with $T^{*} T \in \mathcal{C}_{1}(H), T^{*} X \in \mathcal{C}_{2}(H)$ and B is normal. Hence by Lemma 2.3, we conclude that $\operatorname{Tr}\left(T^{*} T\right)=0$. Since $T^{*} T$ is positive, then $T=0$.

3. Positive operators in ${\overline{R\left(\delta_{A}\right)}}^{\omega}$

Definition 3.1. [12] An operator $A \in \mathcal{L}(H)$ is bloc-diagonal if there exists an increasing sequence $\left\{P_{n}\right\}_{n}$ of self-adjoint projectors of finite rank in $\mathcal{L}(H)$ such that $\lim _{\text {sot }} P_{n}=I$ and $P_{n} A=A P_{n}$ for all $n \in I N$, where $\lim _{\text {sot }}$ is the limit with respect to the strong operator topology in $\mathcal{L}(H)$.

Example 1. [12] Let $H=\bigoplus_{n=0}^{\infty} H_{n}$. If $A=\bigoplus_{n=0}^{n} A_{n}$ where $A_{n}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ on \mathbb{C}^{2}, then A is bloc-diagonal.

For bloc-diagonal operators we have the following result.
Theorem 3.1. Let $A \in \mathcal{L}(H)$. If A is bloc-diagonal then every positive operator in ${\overline{R\left(\delta_{A}\right)}}$. vanishes.

Proof. Suppose that A is bloc-diagonal. Then there exists an increasing sequence $\left\{P_{n}\right\}_{n}$ of self-adjoint projectors of finite rank in $\mathcal{L}(H)$ such that

$$
\lim _{s o t} P_{n}=I \text { and } P_{n} A=A P_{n} \text { for all } n \in I N
$$

Let T a positive operator in ${\overline{R\left(\delta_{A}\right)}}^{\omega}$, then there exists a sequence $\left\{X_{\alpha}\right\}_{\alpha}$ in $\mathcal{L}(H)$ such that $T=\lim _{\omega} A X_{\alpha}-X_{\alpha} A$. By multiplication right and left by P_{n}, we obtain

$$
P_{n} T P_{n}=\lim _{\omega} P_{n} A X_{\alpha} P_{n}-P_{n} X_{\alpha} A P_{n}
$$

since $A P_{n}=P_{n} A$, then

$$
\text { (*) } P_{n} T P_{n}=\lim _{\omega} P_{n} A P_{n} P_{n} X_{\alpha} P_{n}-P_{n} X_{\alpha} P_{n} P_{n} A P_{n}
$$

Since $A P_{n}=P_{n} A$ and $A^{*} P_{n}=P_{n} A^{*}$, then $R\left(P_{n}\right)=H_{n}$ reduces A. Hence A has the decomposition

$$
A=\left(\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right) \quad \text { on } H=H_{n} \oplus H_{n}^{\perp}
$$

Let $T=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right), X_{\alpha}=\left(\begin{array}{cc}X_{\alpha}^{11} & X_{\alpha}^{12} \\ X_{\alpha}^{21} & X_{\alpha}^{22}\end{array}\right)$ and $P_{n}=\left(\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right)$ on $H=$ $H_{n} \oplus H_{n}^{\perp}$. It follow from (*) that

$$
\left(\begin{array}{cc}
T_{11} & 0 \\
0 & 0
\end{array}\right)=\lim _{\omega}\left(\begin{array}{cc}
A_{11} X_{\alpha}^{11}-X_{\alpha}^{11} A_{11} & 0 \\
0 & 0
\end{array}\right)
$$

Hence for all $x, y \in H_{n}$,

$$
\left|\left\langle\left(\begin{array}{cc}
T_{11}-A_{11} X_{\alpha}^{11}-X_{\alpha}^{11} A_{11} & 0 \\
0 & 0
\end{array}\right)\binom{x}{0},\binom{y}{0}\right\rangle\right|
$$

converges to 0 . This implies that $\lim _{\omega} A_{11} X_{\alpha}^{11}-X_{\alpha}^{11} A_{11}=T_{11}$, that is $T_{11} \in$ $\overline{R\left(\delta_{A_{11}}\right)}{ }^{\omega}$. Since dimension of H_{n} is finite, then $T_{11} \in R\left(\delta_{A_{11}}\right)$, hence there exists $Y \in \mathcal{L}\left(H_{n}\right)$ such that $T_{11}=A_{11} Y-Y A_{11}$, which implies that

$$
\operatorname{Tr}\left(T_{11}\right)=\operatorname{Tr}\left(A_{11} Y\right)-\operatorname{Tr}\left(Y A_{11}\right)=0 .
$$

Since P_{n} is auto-adjoint, then $P_{n} T P_{n}=\left(\begin{array}{cc}T_{11} & 0 \\ 0 & 0\end{array}\right)$ is positive, and hence T_{11} is positive. Since $\operatorname{Tr}\left(T_{11}\right)=0$, then $T_{11}=0$, and hence $P_{n} T P_{n}=0$ for all $n \in \mathbb{N}$. On the other hand, since

$$
\lim _{s o t} P_{n}=I, \lim _{s o t}\left\|P_{n} T P_{n} x-T P_{n} x\right\|=0
$$

and

$$
\lim _{s o t}\left\|T P_{n} x-T x\right\| \leq \lim _{s o t}\|T\|\left\|P_{n} x-x\right\|=0
$$

then $\lim _{\text {sot }} P_{n} T P_{n}=\lim _{\text {sot }} T P_{n}$ and $\lim _{\text {sot }} T P_{n}=T$. This implies that $\lim _{\text {sot }} P_{n} T P_{n}=T$ for all $n \in \mathbb{N}$. Finally, $T=0$.

As an immediate consequence we have the following corollary:
Corollary 3.1. Let $A \in \mathcal{L}(H)$. If A is bloc-diagonal, then

$$
\left.\overline{R\left(\delta_{A, B}\right.}\right)^{\omega} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}=\{0\}
$$

for every $B \in \mathcal{L}(H)$.
Proof. If $A \in \mathcal{L}(H)$ is bloc-diagonal and $T \in{\overline{R\left(\delta_{A, B}\right)}}^{\omega} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}$, then by Lemma $2.2, T T^{*} \in{\overline{R\left(\delta_{A}\right)}}^{\omega}$. By Theorem 3.1, we conclude that $T T^{*}=0$, and hence $T=0$.

Recall [12] that $A \in \mathcal{L}(H)$ is quasi-diagonal if there exists an increasing sequence $\left\{P_{n}\right\}_{n}$ of self-adjoint projectors of finite rank in $\mathcal{L}(H)$ such that $\lim _{\text {sot }} P_{n}=I$ and $\lim \left\|P_{n} A-A P_{n}\right\|=0$ for all $n \in \mathbb{N}$. Every bloc-diagonal operator is quasi-diagonal and the converse is false, see [12]. The following example show that in general Theorem 3.1 does not hold for quasi-diagonal operators.

Example 2. Let $A=S+S^{*}$ where S is the unilateral shift defined by $S e_{n}=e_{n+1}$ where $\left\{e_{n}\right\}_{n}$ is any complete orthonormal sequence in H. Since A is self-adjoint, then A is quasi diagonal [12]. Let $T=I-S S^{*}$, then
$T=\left(S+S^{*}\right) S-S\left(S+S^{*}\right)=A S-S A$. Hence $T \in R\left(\delta_{A}\right)$. On the other hand, we have

$$
<T x, x>=<\left(I-S S^{*}\right) x, x>=\|x\|^{2}-\left\|S^{*} x\right\|^{2}, \quad \text { for all } x \in H
$$

Since $\left\|S^{*}\right\| \leq 1$, then $<T x, x>\geq 0$ for all $x \in H$. Thus T is positive. Finally, T is a non null positive operator in $R\left(\delta_{A}\right)$.

4. A comment

In [1] (see also [15]) it is shown that every finite rank operator in ${\overline{R\left(\delta_{A, B}\right)}}^{\omega} \cap$ $\operatorname{Ker} \delta_{A^{*}, B^{*}}$ vanishes and every trace class operator in $\overline{R\left(\delta_{A, B}\right)} \omega^{*} \cap \operatorname{Ker} \delta_{A^{*}, B^{*}}$ vanishes, where $\overline{R\left(\delta_{A, B}\right)} \omega^{*}$ is the closure of $R\left(\delta_{A, B}\right)$ with respect to the ultraweak topology ω^{*}.

However in [11](see also [14]) the author ask; if every compact operator in ${\overline{R\left(\delta_{A}\right)}}^{\omega} \cap\left\{A^{*}\right\}^{\prime}$ is quasinilpotent? A partial answer is given in [1] (see also [14]) if A or A^{*} is dominant and in [10] if A or A^{*} lies in \mathcal{U}_{0}.

Recall that $A \in \mathcal{L}(H)$ is dominant if for all $\lambda \in \mathbb{C}$, there exists a real number $M_{\lambda} \geq 1$ such that $\left\|(A-\lambda)^{*} x\right\| \leq M_{\lambda}\|(A-\lambda) x\|$ and A lie in \mathcal{U}_{0} if A satisfies the absolute value condition $|A|^{2} \leq\left|A^{2}\right|$ and every normal subspaces of A are reducing (An invariant subspace M of A is said to be a normal subspace of A if $\left.A\right|_{M}$ is normal).

Acknowledgements

The author would like to thank the referee for several helpful suggestions concerning this paper.

References

[1] Amouch, M., "Notion du Quasi-Adjoint d'une Bi-multiplication et ses Applications. Etude de l'Orthogonalité entre l'Image et le Noyau de quelques Opérateurs Élémentaires", thèse de 3éme cycle, Université Cadi Ayyad, Faculté des Sciences Semlalia Marrakech, 1998.
[2] Amouch, M., Weyl type theorems for operators satisfying the single-valued extension property, J. Math. Anal. Appl. In press.
[3] Amouch, M., Generalized a-Weyl's theorem and the single-valued extension property, Extracta Math., 21(1) (2006), 51-65.
[4] Anderson, J.H.,On normal derivation, Proc. Amer. Math. Soc., 38 (1973), 135-140.
[5] Anderson, J.H., Foais, C., Properties which normal operator share with normal derivation and related operators, Pacific J. Math., 61 (1976), 313 325.
[6] Bhatia, R., Rosenthal, P., How and Why to solve the operator AXXB=Y, Bull. London Math. Soc., 29 (1997), 1-21.
[7] Barraa, M., Boumazgour, M., A lower bound of the norm of the operator $X \longrightarrow A X B+B X A$, Extracta Math., 16 (2001), 223-227.
[8] Bouali, S., Charles, J., Generalized derivation and numerical range, Acta Sci. Math (Szeged), 58 (1997), 563-570.
[9] Duggal, B.P., Weyl' theorem for a generalized derivation and an elementary operator, Math. Vesnik, 54 (2002), 71-81.
[10] Dugqal, B.P., Jeon, I.H., Kubrusly, C.S., Contractions satisfying the absolute valuproperty $|A|^{2} \leq|A|^{2}$, Integral Equ. Oper. Theory, 49 (2004), 141-148.
[11] Elalami, N., "Commutants et Fermutures de l'Image d'une Dérivation, Thèse, Univ. Montpellier II, 1988.
[12] Halmos, P.R., Ten problem in Hilbert space, Bull. Amer. Math. Soc., 76 (1970), 887-933.
[13] Ho, Y., Commutants and derivation ranges, Tohoku Math. J., 27 (1975), 509-514.
[14] Mecheri, S., Derivation ranges, Linear Algebra Appl., 279 (1998), 31-38.
[15] Mecheri, S., Some remarks on the range of a generalized Derivation (in Russian), Problemy Mathematicheskogo Analiza, 20 (2000), 111-119.
[16] Mecheri, S., On the Ranges of Elementary Operators, Integral Equations Operator Theory, 53 (2005), 403-409.
[17] Stampfli, J.G., Derivation on $\mathcal{B}(H)$: the range, Illinois J. Math., 17 (1973), 518-524.
[18] StampFLI, J.G., On self derivation ranges, Pacific J. Math., 82 (1979), 257-277.
[19] Weiss, G., The Fuglede theorem modulo the Hilbert-Schmidt class an generating functions for matrise operator I, Trans. Amer. Math. Soc., 246 (1976), 359-365.
[20] Williams, J.P., Derivation ranges open problems, "Topics in Modern Operator Theory", Birkhäuser-Verlag, 1981, 319-328.
[21] Williams, J.P., On the range of a derivation II, Proc. Roy. Irish. Acad. Sect. A, 74 (1974), 299-310.

