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1. Introduction

Let L(H) be the algebra of all bounded linear operators acting on a
complex separable and infinite dimensional Hilbert space H. For operators
A,B ∈ L(H) we define the generalized derivation δA,B associated with (A, B)
by

δA,B(X) = AX −XB for X ∈ L(H).

If A = B, then δA,A = δA is called the inner derivation. The theory of
derivations has been extensively dealt with in the literature (see for example
[1, 2, 3, 5, 6, 7, 8, 9, 10, 16, 17, 18, 20] and [21]).

For a linear operator T acting on a Banach space X, we denote by T ∗,
Ker T and R(T ) respectively the adjoint, the kernel and the range of T. Also
we denote by R(T ) and R(T )

ω
respectively the closure of the range of T

respect to the norm topology and the weak operator topology.
In this work we give the extension of the results showed by Williams [21, p.

301] and Ho [13, p. 511] to δA,B. We will give some conditions for A, B ∈ L(H)
under which

R(δA,B)
τ ∩KerδA∗,B∗ = {0},

where R(δA,B)
τ

denotes closure of R(δA,B) respect to the norm topology or
the weak operator topology.

In section 1, we prove that if A and B are isometries (resp. co-isometries)
or if P (A) and P (B) are normal for some non-trivial polynomial P with
degree ≤ 2, then

R(δA,B) ∩Ker δA∗,B∗ = {0}.
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Recall [12] that A ∈ L(H) is bloc-diagonal if there exists an increasing
sequence {Pn}n of self-adjoint projectors of finite rank in L(H) such that
lim
sot

Pn = I and PnA = APn for all n ∈ IN, where lim
sot

is the limit respect to

the strong operator topology in L(H).
In section 2, we prove that if A is bloc-diagonal then every positive operator

in R(δA)
ω

vanishes. As a consequence of this we obtain that if A is bloc-
diagonal then R(δA,B)

ω ∩KerδA∗,B∗ = {0} for every B ∈ L(H).

2. Conditions under which R(δA,B) ∩KerδA∗,B∗ = {0}

Let C1(H) be the ideal of trace class operators, that is, the set of all
compact operators T ∈ L(H) for which the eigenvalues of (T ∗T )

1
2 counted

according to their multiplicity are summable. The trace function is defined by
Tr(T ) =

∑
n < Ten, en >, where (en) is any complete orthonormal sequence

in H. Recall that the ultraweak continuous linear functionals on L(H) are
those of the form fT for some T ∈ C1(H) and the weak continuous linear
functionals on L(H) are those of the form fT , where T is of finite rank.

Lemma 2.1. Let T =
(

A 0
0 B

)
on H ⊕ H, where A,B ∈ L(H). Then

we have the following assertions :

i) If R(δT )
τ ∩KerδT ∗ = {0}, then R(δA,B)

τ ∩KerδA∗,B∗ = {0};
ii) If R(δT ) ∩KerδT ∗ = {0}, then R(δA,B) ∩KerδA∗,B∗ = {0}.

Proof. i) Let C ∈ R(δA,B)
τ ∩ KerδA∗,B∗ . Then there exists a sequence

{Xα}α of elements of L(H) such that lim
τ

AXα −XαB = C and A∗C = CB∗.

Let T =
(

A 0
0 B

)
, Yα =

(
0 Xα

0 0

)
and S =

(
0 C
0 0

)
on H ⊕H. Then

lim
τ

TYα − YαT = lim
τ

(
A 0
0 B

)(
0 Xα

0 0

)
−

(
0 Xα

0 0

) (
A 0
0 B

)

= lim
τ

(
0 AXα −XαB
0 0

)
.

If lim
ω

(
0 AXα −XαB
0 0

)
=

(
L11 L12

L21 L22

)
on H ⊕H. Then

∣∣∣∣
〈(

L11 L12 − (AXα −XαB)
L21 L22

) (
0
x

)
,

(
y
0

)〉∣∣∣∣
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converges to 0, hence | < [L12 − (AXα −XαB)]x, y > | converges to 0 for all
x, y ∈ H, which implies that

lim
ω

AXα −XαB = L12.

As the same we prove that

L11 = L21 = L22 = 0.

This implies that

lim
ω

(
0 AXα −XαB
0 0

)
=

(
0 limω AXα −XαB
0 0

)

=
(

0 C
0 0

)
.

If lim
(

0 AXα −XαB
0 0

)
=

(
L11 L12

L21 L22

)
on H ⊕H, then

∥∥∥∥
(

L11 L12 − [AXα −XαB]
L21 L22

) ∥∥∥∥ converges to 0,

hence

‖L12 − [AXα −XαB‖ converges to 0 and L11 = L21 = L22 = 0.

This implies that

lim
(

0 AXα −XαB
0 0

)
=

(
0 limAXα −XαB
0 0

)

=
(

0 C
0 0

)
.

Hence,
(

0 C
0 0

)
= S ∈ R(δT )

τ
. Since ST ∗ = T ∗S, then S ∈ R(δT )

τ ∩
Ker δT ∗ = {0}. So C = 0. This completes the proof of i). To prove ii) it
suffices to replace R(δT )

τ
with R(δT ).

In the following theorem we give an extension of the result of [21, p. 301]
and [13, p. 511] to δA,B.
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Theorem 2.1. Let A,B ∈ L(H). If A and B are isometries (resp. co-
isometries) or P (A) and P (B) are normal for some non-trivial polynomial P
with degree ≤ 2 then

R(δA,B) ∩KerδA∗,B∗ = {0}.

Proof. i) If A and B are isometries (resp. co-isometries), then

T =
(

A 0
0 B

)

is also an isometry (resp. co-isometry) on L(H⊕H). By [21, p. 301], we have
R(δT ) ∩KerδT ∗ = {0}. Hence from Lemma 2.1, we conclude that R(δA,B) ∩
KerδA∗,B∗ = {0}.

ii) The result of [13, Theorem 3 (1)] asserts that if T ∈ L(H) is such
that P (T ) is normal for some non-trivial polynomial P with degree ≤ 2, then
R(δT ) ∩KerδT ∗ = {0}. Indeed, suppose that T 2 − 2αT − β = N is a normal
operator. Let limTXn −XnT = S∗ ∈ R(δT ) ∩KerδT ∗ . Then

lim(N + 2αT )Xn −Xn(N + 2αT ) = limT 2Xn −XnT 2 = TS∗ + S∗T.

This implies that TS∗+ S∗T − 2αS∗ ∈ R(δN )∩KerδN∗ so that TS∗+ S∗T −
2αS∗ = 0 by [4, Theorem 1.7]. Hence

(S + S∗)(T − α) = (T − α)(S − S∗) and (T − α)S∗ = −S∗(T − α).

The Putnam-Fuglede theorem then gives

(S∗ + S)(T − α) = (T − α)(S∗ − S) and (T − α)S = −S(T − α).

Combining these equations we get

(T − α)(S∗ + S) = 0 and (S∗ + S)(T − α) = 0.

Hence S∗T = TS∗. Therefore S∗S ∈ R(δT ) ∩ KerδT ∗ so that S = 0 by [13,
Lemma 3]. Now, if P (A) and P (B) are normal for some non-trivial polynomial

P with degree ≤ 2, then P (T ) is also normal for T =
(

A 0
0 B

)
, hence from

the previous result R(δT )∩KerδT ∗ = {0}. From Lemma 2.1, we conclude that

R(δA,B) ∩KerδA∗,B∗ = {0}.
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Lemma 2.2. Let A,B ∈ L(H). If T ∈ R(δA,B)
τ ∩KerδA∗,B∗ , then T ∗T ∈

R(δB)
τ

and TT ∗ ∈ R(δA)
τ
.

Proof. If T ∈ R(δA,B)
τ ∩KerδA∗,B∗ , then there exists a sequence {Xα}α

of elements of L(H) such that T = limτ AXα−XαA = 0 and A∗T −TB∗ = 0.
Hence

T ∗T = lim
τ

T ∗AXα − T ∗XαB = lim
τ

BT ∗Xα − T ∗XαB,

and
TT ∗ = lim

τ
AXαT ∗ −XαBT ∗ = lim

τ
AXαT ∗ −XαT ∗A,

since right multiplication and left multiplication are continuous with respect
to the topology τ.

The following lemma is proved in [19], we need it to prove the next theorem.

Lemma 2.3. Let B ∈ L(H) be a normal operator and X ∈ C2(H) such
that BX −XB ∈ C1(H), then Tr(BX −XB) = 0.

For the unilateral right shift with a non null weight, we have the following
result.

Theorem 2.2. Let S ∈ L(H) be the unilateral right shift with a non null
weight (αn)n; αn 6= 0 for all n ∈ IN and let B ∈ L(H) be normal. Then

R(δS,B) ∩KerδS∗,B∗ = {0}.

Proof. Let T ∈ R(δS,B) ∩ KerδS∗,B∗ . By the same argument as in the
proof of Lemma 2.2, we get that TT ∗ ∈ R(δS), hence from [13] TT ∗ ∈ C1(H).
Which is equivalent to T ∈ C2(H). On the other hand T ∗T = BT ∗X −T ∗XB
with T ∗T ∈ C1(H), T ∗X ∈ C2(H) and B is normal. Hence by Lemma 2.3, we
conclude that Tr(T ∗T ) = 0. Since T ∗T is positive, then T = 0.

3. Positive operators in R(δA)
ω

Definition 3.1. [12] An operator A ∈ L(H) is bloc-diagonal if there
exists an increasing sequence {Pn}n of self-adjoint projectors of finite rank in
L(H) such that lim

sot
Pn = I and PnA = APn for all n ∈ IN, where lim

sot
is the

limit with respect to the strong operator topology in L(H).
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Example 1. [12] Let H =
∞⊕

n=0

Hn. If A =
n⊕

n=0

An where An =
(

0 0
1 0

)

on C2, then A is bloc-diagonal.

For bloc-diagonal operators we have the following result.

Theorem 3.1. Let A ∈ L(H). If A is bloc-diagonal then every positive
operator in R(δA)

ω
vanishes.

Proof. Suppose that A is bloc-diagonal. Then there exists an increasing
sequence {Pn}n of self-adjoint projectors of finite rank in L(H) such that

lim
sot

Pn = I and PnA = APn for all n ∈ IN.

Let T a positive operator in R(δA)
ω
, then there exists a sequence {Xα}α in

L(H) such that T = lim
ω

AXα −XαA. By multiplication right and left by Pn,
we obtain

PnTPn = lim
ω

PnAXαPn − PnXαAPn,

since APn = PnA, then

(∗) PnTPn = lim
ω

PnAPnPnXαPn − PnXαPnPnAPn.

Since APn = PnA and A∗Pn = PnA∗, then R(Pn) = Hn reduces A. Hence A
has the decomposition

A =
(

A11 0
0 A22

)
on H = Hn ⊕H⊥

n .

Let T =
(

T11 T12

T21 T22

)
, Xα =

(
X11

α X12
α

X21
α X22

α

)
and Pn =

(
I 0
0 0

)
on H =

Hn ⊕H⊥
n . It follow from (*) that

(
T11 0
0 0

)
= lim

ω

(
A11X

11
α −X11

α A11 0
0 0

)
.

Hence for all x, y ∈ Hn,

∣∣∣∣
〈(

T11 −A11X
11
α −X11

α A11 0
0 0

)(
x
0

)
,

(
y
0

)〉∣∣∣∣
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converges to 0. This implies that lim
ω

A11X
11
α −X11

α A11 = T11, that is T11 ∈
R(δA11)

ω
. Since dimension of Hn is finite, then T11 ∈ R(δA11), hence there

exists Y ∈ L(Hn) such that T11 = A11Y − Y A11, which implies that

Tr(T11) = Tr(A11Y )− Tr(Y A11) = 0.

Since Pn is auto-adjoint, then PnTPn =
(

T11 0
0 0

)
is positive, and hence

T11 is positive. Since Tr(T11) = 0, then T11 = 0, and hence PnTPn = 0 for all
n ∈ IN. On the other hand, since

lim
sot

Pn = I, lim
sot
‖PnTPnx− TPnx‖ = 0

and
lim
sot
‖TPnx− Tx‖ ≤ lim

sot
‖T‖‖Pnx− x‖ = 0,

then lim
sot

PnTPn = lim
sot

TPn and lim
sot

TPn = T. This implies that lim
sot

PnTPn = T

for all n ∈ IN. Finally, T = 0.

As an immediate consequence we have the following corollary:

Corollary 3.1. Let A ∈ L(H). If A is bloc-diagonal, then

R(δA,B)
ω ∩KerδA∗,B∗ = {0}

for every B ∈ L(H).

Proof. If A ∈ L(H) is bloc-diagonal and T ∈ R(δA,B)
ω ∩KerδA∗,B∗ , then

by Lemma 2.2, TT ∗ ∈ R(δA)
ω
. By Theorem 3.1, we conclude that TT ∗ = 0,

and hence T = 0.

Recall [12] that A ∈ L(H) is quasi-diagonal if there exists an increasing
sequence {Pn}n of self-adjoint projectors of finite rank in L(H) such that
lim
sot

Pn = I and lim ‖PnA − APn‖ = 0 for all n ∈ IN. Every bloc-diagonal

operator is quasi-diagonal and the converse is false, see [12]. The following
example show that in general Theorem 3.1 does not hold for quasi-diagonal
operators.

Example 2. Let A = S + S∗ where S is the unilateral shift defined by
Sen = en+1 where {en}n is any complete orthonormal sequence in H. Since
A is self-adjoint, then A is quasi diagonal [12]. Let T = I − SS∗, then
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T = (S +S∗)S−S(S +S∗) = AS−SA. Hence T ∈ R(δA). On the other hand,
we have

< Tx, x >=< (I − SS∗)x, x >= ‖x‖2 − ‖S∗x‖2, for all x ∈ H.

Since ‖S∗‖ ≤ 1, then < Tx, x >≥ 0 for all x ∈ H. Thus T is positive. Finally,
T is a non null positive operator in R(δA).

4. A comment

In [1] (see also [15]) it is shown that every finite rank operator in R(δA,B)
ω∩

KerδA∗,B∗ vanishes and every trace class operator in R(δA,B)
ω∗ ∩KerδA∗,B∗

vanishes, where R(δA,B)
ω∗

is the closure of R(δA,B) with respect to the ultra-
weak topology ω∗.

However in [11](see also [14]) the author ask; if every compact operator in
R(δA)

ω ∩ {A∗}′ is quasinilpotent? A partial answer is given in [1] (see also
[14]) if A or A∗ is dominant and in [10] if A or A∗ lies in U0.

Recall that A ∈ L(H) is dominant if for all λ ∈ C, there exists a real
number Mλ ≥ 1 such that ‖(A− λ)∗x‖ ≤ Mλ‖(A− λ)x‖ and A lie in U0 if A
satisfies the absolute value condition |A|2 ≤ |A2| and every normal subspaces
of A are reducing (An invariant subspace M of A is said to be a normal
subspace of A if A |M is normal).
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ator Theory”, Birkhäuser-Verlag, 1981, 319 – 328.

[21] Williams, J.P., On the range of a derivation II, Proc. Roy. Irish. Acad. Sect.
A, 74 (1974), 299 – 310.


