On the Moore-Penrose Inverse in C^{*}-algebras

Enrico Boasso
Via Cristoforo Cancellieri 2, 34137 Trieste, Italia
e-mail: enrico_odisseo@yahoo.it
(Presented by M. Mbekhta)

Abstract

In this article, two results regarding the Moore-Penrose inverse in the frame of C^{*}-algebras are considered. In first place, a characterization of the so-called reverse order law is given, which provides a solution of a problem posed by M. Mbekhta. On the other hand, Moore-Penrose hermitian elements, that is C^{*}-algebra elements which coincide with their Moore-Penrose inverse, are intro- duced and studied. In fact, these elements will be fully characterized both in the Hilbert space and in the C^{*}-algebra setting. Furthermore, it will be proved that an element is normal and Moore-Penrose hermitian if and only if it is a hermitian partial isometry.

References

[1] Andruchow, E., Corach, G., Differential geometry of partial isometries and partial unitaries, Illinois J. Math., 48 (1) (2004), $97-120$.
[2] Barwick, D.T., Gilbert, J.D., On generalizations of the reverse order law, SIAM J. Appl. Math., 27 (2) (1974), 326-330.
[3] Barwick, D.T., Gilbert, J.D., Generalizations of the reverse order law with related results, Linear Algebra Appl., 8 (1974), 345-349.
[4] Bouldin, R., The pseudo-inverse of a product, SIAM J. Appl. Math., 24 (4) (1973), 489-455.
[5] Bouldin, R., Closed range and relative regularity for products, J. Math. Anal. Appl., 61 (1977), 397-403.
[6] Conway, J.B., "A Course in Operator Theory", Graduate Studies in Mathematics, 21, American Mathematical Society, Providence, RI, 2000.
[7] Greville, T.N.E., Note on the generalized inverse of a matrix product, SIAM Rev., 8 (4) (1966), 518-521, Erratum, ibid 9 (2) (1967), 249.
[8] Halmos, P.R., "A Hilbert Space Problem Book", Van Nostrand, New York, 1966.
[9] Harte, R., "Invertibility and Singularity for Bounded Linear Operators", Monographs and Textbooks in Pure and Applied Mahematics, 109, Marcel Dekker Inc., New York, 1988.
[10] Harte, R., Mbekhta, M., On generalized inverses in C^{*}-algebras, Studia Math., 103 (1992), 71-77.
[11] Harte, R., Mbekhta, M., On generalized inverses in C^{*}-algebras II, Studia Math., 106 (1993), 129-138.
[12] Izumino, S., The product of operators with closed range and an extension of the reverse order law, Tôhoku Math. J., 34 (1982), 43-52.
[13] Khosravi, A., Alizadeh, M.H., Generalized inverses of products, Int. J. Appl. Math., 10 (2) (2002), 141-148.
[14] Mbekhta, M., Conorme et inverse généralisé dans les C^{*}-algèbres, Canadian Math. Bull., 35 (4) (1992), 515-522.
[15] Mbekhta, M., Partial isometries and generalized inverses, Acta Sci. Math. (Szeged), 70 (3-4) (2004), 767-781.
[16] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406-413.
[17] ShiJIE, L., The range and pseudo-inverse of a product, Tôhoku Math. J., 89 (1987), 89-94.
[18] Shinozaki, N., Sibuya, M., The reverse order law $(A B)^{-}=B^{-} A^{-}$, Linear Algebra Appl., 9 (1974), 29-40.

