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Dr. D. José Enrique Chacón Durán Dr. D. Agust́ın Garćıa Nogales
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Summary

In the Thesis we show how to use methods to analyze the asymptotic be-

havior of kernel distribution function estimators. Exact expressions for the

mean integrated squared error in terms of the characteristic function of the

distribution and the Fourier transform of the kernel are employed to obtain

the limit value of the optimal bandwidth sequence in its greatest generality.

The assumptions in our results are mild enough so that they are applicable

when the kernel used in the estimator is a superkernel, or even the sinc

kernel, and this allows to extract some interesting consequences, as the ex-

istence of a class of distributions for which the kernel estimator achieves a

first-order improvement in efficiency over the empirical distribution function.

In the second part we develope a Monte Carlo method to approximate

conditional expectations in a probabilistic framework motivated by a gen-

eral result inspired by the Besicovitch covering theorem for differentiation

of measures. The method is specially useful when densities are not available

or are not easy to compute. The method is illustrated by means of various

examples and can also be used in a statistical setting to approximate the

conditional expectation given a sufficient statistic. In this paper it is used

to compute the minimum risk equivariant estimator (MRE) of the location

parameter of a general half-normal distribution since this estimator is de-

scribed in terms of a conditional expectation for known values of the location

and scale parameters. For the sake of completeness, an explicit expression

for the minimum risk equivariant estimator of the scale parameter is given.
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Summary

As far as we are aware, these estimators have not appeared before in the

literature. Simulation studies to compare the behavior of the new estimators

with those of maximum likelihood and unbiased estimators are presented.

Finally, we explore the performance of several automatic bandwidth se-

lectors, originally designed for density gradient estimation, as data-based

procedures for nonparametric, modal clustering. The key tool to obtain

a clustering from density gradient estimators is the mean shift algorithm,

which allows to obtain a partition not only of the data sample, but also of

the whole space. The results of our simulation study suggest that most of

the methods considered here, like cross validation and plug in bandwidth

selectors, are useful for cluster analysis via the mean shift algorithm.
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Resumen

En la presente Tesis exponemos cómo utilizar métodos para anlizar el com-

portamiento asintótico de estimadores núcleo de la función de distribución.

Utilizamos expresiones exactas del error cuadrático integrado medio en tér-

minos de la función caracteŕıstica de la distribución y de la transformada de

Fourier del núcleo para obtener el ĺımite de la secuencia de anchos de banda

óptimos en su modo más genérico. Las hipótesis requeridas en nuestros

resultados son tan suaves que son aplicables en el caso de disponer de un

supernúcleo como núcleo del estimador. Incluyendo incluso el caso de que

el núcleo considerado del estimador sea el núcleo sinc. Esto último permite

extraer algunas consecuencias interesantes como la existencia de un tipo de

distribuciones para las que el estimador núcleo alcanza una mejora de primer

grado en eficiencia con respecto a la función de distribución emṕırica.

En la segunda parte de la Tesis, desarrollamos un método de Monte

Carlo para aproximar esperanzas condicionales en un marco probabiĺıstico

basándonos en un resultado fruto del teorema de Besicovitch para diferen-

ciación de medidas. El método es especialmente útil cuando o no se dispone

de las densidades o éstas no son calculables. El método es ilustrado con

los cálculos de medias de varios ejemplos y puede ser también utilizado

en un contexto estad́ıstico para aproximar esperanzas condicionales dado

un estad́ıstico suficiente. Además, utilizamos dichos resultados para com-

putar el estimador equivariante de mı́nimo riesgo (MRE) del parámetro de
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Resumen

localización de una distribución half-normal ya que este estimador es expre-

sado en términos de una esperanza condicional para valores conocidos de

los parámetros de localización y escala. Proporcionamos también una ex-

presión expĺıcita del estimador equivariante de mı́nimo riesgo del parámetro

de escala. Por último, se exponen estudios de simulación para comparar el

comportamiento de los nuevos estimadores con el insesgado y el de máxima

verosimilitud.

Finalmente, analizamos el comportamiento de varios selectores automáti-

cos de ancho de banda, originalmente diseñados para estimación de gradiente

de densidades, como procedimientos para análisis no paramétrico de cluster

modal basados en datos. La herramienta clave para obtener una clasificación

cluster a partir de estimadores del gradiente de la densidad es el algoritmo

mean shift, el cual permite obtener una partición, no sólo de los datos de

la muestra, si no del espacio completo. Los resultados de este estudio de

simulación apuntan a que la mayoŕıa de los métodos aqúı considerados, como

los selectores de ancho de banda de validación cruzada o el plug-in, son útiles

para realizar análisis cluster v́ıa el algoritmo del mean shift.
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0
Preface

0.1 Historical Preface

We can structure this thesis in three different parts: distribution function

estimation, conditional expectation calculation with application to equivari-

ant estimation of the parameters of a general half-normal distribution and

cluster analysis.

In relation to the first one, in 1956 and 1962 Rosenblatt and Parzen in-

troduce the kernel density estimator and, on the basis of this one, Nadaraya

(1964), Tiago de Oliveira (1963) and Watson and Leadbetter (1963) deve-

lope the kernel estimator for the distribution function as an alternative to

the empirical estimator.

In 1973 Yamato proved in his paper some results about the uniform con-

vergence of the kernel distribution function estimator. These aspects have

been studied recently by Giné and Nickl (2009) and Chacón and Rodŕıguez-

Casal (2010).

From that time to today many papers have studied these estimators

proposing differents ways to choose the kernel K (Swanepoel (1988) and

Jones (1990)) and, mainly, the optimal bandwidth h through cross-validation

methods (Sarda (1993), Altman and Léger (1995) and Bowman et al. (1998)),

plug-in methods (Altman and Léger (1995), Polansky and Baker (2000),

Martins and Tenreiro (2003) and Tenreiro (2003)) and others.

The existence of a optimal bandwidth is proved by Tenreiro (2006) un-

der very mild conditions satisfied for any finite-order kernel. In year 2007,
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Chacón, Montanero and Nogales study the case for superkernels which is

not included in Tenreiro’s paper.

In the second part, the problem of estimating the parameters of the

general half-normal distribution is considered. Recall that a half-normal

distribution HN(0, 1) is the distribution of a random variable X := |Z|,
where Z has a standard normal distribution. A general half-normal distri-

bution HN(ξ, η) is obtained from a half-normal distribution HN(0, 1) by a

location-scale transformation: HN(ξ, η) is the distribution of Y = ξ + ηX.

The classical paper Daniel (1959) introduces half-normal plots and the half-

normal distribution, a special case of the folded and truncated normal dis-

tributions (see Johnson et al. (1994)). Bland et al. (1999) and Bland (2005)

propose a so-called half-normal method to deal with relationships between

measurement error and magnitude, with applications in medecine. Pewsey

(2002) uses the maximum likelihood principle to estimate the parameters

of the general half-normal distribution, and presents a brief survey on the

general half-normal distribution, its relations with other well-known distri-

butions and its usefulness in the analysis of highly skew data. Pewsey (2004)

proposes bias-corrected versions of the maximum likelihood estimators. No-

gales et al. (2011) deals with the problem of unbiased estimation for the

general half-normal distribution.

Namely, the problem of determining the minimum risk equivariant (MRE)

estimators of the location and scale parameters is explored in Chapter 3.

Simulation studies are realized to compare the behavior of these estimators

with maximum likelihood and unbiased estimators.

A natural probrabilistic Monte Carlo method to compute conditional

expectations is used to approximate the MRE estimation of the location

parameter because its expression involves two conditional expectations not

easily computable. The method is justified by a theorem of Besicovitch

(1945, 1946) on differentation of measures.

Cluster analysis, the third part of this thesis, has not been studied widely

from a theoretical point of view. This field of the Statistics has been mainly

developed by researchers from Computer Science and Statistics in a compu-

tational way.

2
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One of the most important problems for this aspect is the lack of a

global goal in cluster analysis. This lack of a global goal can be seen in the

even today ambiguous and generic definitions of cluster analysis such as the

definition given by Hand, Mannila and Smyth in 2001: ”partitioning a data

set into groups so that the points in one group are similar to each other and

are as different as possible from the points in other groups”.

A first method in cluster analysis is the mean shift algorithm introduced

by Fukunaga and Hostetler (1975) to estimate the gradient of a multivariate

density. But this method is useful for clustering too as Silverman wrote in

his known book Density estimation for Statistics and Data Analysis (1986).

This method was used again several years later in the field of Engineering

with papers of Cheng (1995), Carreira-Perpiñán (2006) and Comaniciu and

Meer (2002).

Due to the mean shift algorithm depends on a good choice of a band-

width matrix, Chacón and Duong (2013) and Horová, Kolácek and Vopatová

(2013) propose several automatic methods for bandwidth selectors.

Nowadays the cluster analysis is a current issue where a lot of scien-

tists are researching due to the ability of existing computers. Since 1981,

when W.H.E. Day published his paper ”The complexity of computing metric

distances between partitions” (Mathematical Social sciences, 1, 269-287), a

wide range of clustering methods have been proposed in the literature. But

the most of these methods have been focused on clustering for a group of

points.

0.2 Structure of the Thesis

The structure of the present Thesis is as follows.

First of all we explain the motivation which have taken us to write this

Thesis. Then, the three main articles are included.

In chapter I we present the article titled Fourier methods for smooth

distribution function estimation (J.E. Chacón, P. Monfort and C. Tenreiro,

Statistics and Probability Letters 84 (2014) 223-230). In this paper, Fourier

transforms methods are used to analyzed the asymptotic behavior of kernel

distribution function estimators. Morever, exact expressions for the mean

3



Preface

integrated squared error are given in terms of the Fourier transform of the

kernel and the characteristic function of the distribution. These expressions

are valid with superkernel and the sinc kernel and simulations in these cases

are shown.

In chapter II we show the paper On equivariant estimation of the param-

eters of the general Half-Normal distribution making use of a Monte Carlo

method to approximate conditional expectations where we study the prob-

lem of estimating the parameters of the general half-normal distribution.

Namely, the problem of determining the minimum risk equivariant (MRE)

estimators of the parameters is explored. Simulation studies are realized to

compare the behavior of these estimators with maximum likelihood and un-

biased estimators. A natural Monte Carlo method to compute conditional

expectations is used to approximate the MRE estimation of the location

parameter because its expression involves two conditional expectations not

easily computables. The used Monte Carlo method is justified by a theorem

of Besicovitch on differentiation of measures, and has been slightly modi-

fied to solve a sort of ”curse of dimensionality” problem appearing in the

estimation of this parameter.

In chapter II we show the paper A Monte Carlo method to approximate

conditional expectations based on a theorem of Besicovitch: application to

equivariamt estimation of the parameters of the general half-normal distri-

bution (A.G. Nogales, P. Pérez and P. Monfort, arXiv:1306.1182 (2013))

where a Monte Carlo method is developed to approximate conditional ex-

pectation in a probabilistic framework. Examples to evaluate the minimum

risk equivariant estimator of the location parameter of a general half-normal

distribution are given.

In chapter III we display the paper titled A comparison of bandwidth

selectors for mean shift clustering (J.E. Chacón and P. Monfort, arXiv:1310.

7855 (2014)). In this paper we analyze the behavior of several automatic

bandwidth selectors applied in modal clustering through the mean shift al-

gorithm.
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In next section, a brief discussion of the main results in this Thesis is

done. Also are included some open questions and future research to devel-

ope. Finally, an appendix with the simulation programs used in the papers

and a list of the references are shown to conclude the Thesis.
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1
Introduction

This thesis is based on three clearly differentiated problems. A previous

general framework for all of them will be set up in this chapter, and the

contributions made on each of the topics will be described.

1.1 Distribution function estimation

1.1.1 The empirical distribution function

The problem of estimating an unknown distribution function F from a sam-

ple X1, ..., Xn of independent and identically distributed (iid) random vari-

ables with a common univariate probability distribution P and distribution

function F , has been widely studied. The empirical (cumulative) distribu-

tion function is surely the most commonly used estimator. This empirical

estimator is defined as follows:

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi)

where IA is the indicator function for the set A.

It is easy to see that this estimator is consistent. In fact, for a fixed

x ∈ R it is the minimum variance unbiased estimator of F (x), with

E[Fn(x)] = F (x)

and

V ar[Fn(x)] =
1

n
F (x)(1− F (x)).

1
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Moreover, the Central Limit Theorem ensures that, for each fixed x ∈ R,

the empirical distribution is asymptotically normally distributed

√
n{Fn(x)− F (x)} →d N

(
0, F (x){1− F (x)}

)
.

Globally, surely the two most used measures of discrepancy are the uni-

form distance

‖Fn − F‖∞ = sup
x∈R
|Fn(x)− F (x)|

and the (squared) L2 distance, also know as Integrated Squared Error (ISE),

ISE(Fn) =

∫
R
{Fn(x)− F (x)}2dx.

The paper by del Barrio, Cuesta-Albertos and Matrán (2000) includes a

detailed review of the uses of these two distances in the context of testing

for goodness of fit.

The importance of the empirical distribution function is well reflected in

the following famous result:

Theorem 1.1 (Glivenko-Cantelli Theorem, 1933). Given X1, . . . , Xn ran-

dom variables i.i.d. with a common distribution function F . Then

‖Fn − F‖∞ = sup
x∈R
|Fn(x)− F (x)| → 0 a.s.

as n→∞.

The Glivenko-Cantelli theorem tells us about consistency of Fn in L∞.

A further refinement was shown by Massart (1990), who found a tight value

for the constant involved in an inequality discovered by Dvoretzky, Kiefer

and Wolfowitz (1956).

Theorem 1.2 (Dvoretzky, Kiefer and Wolfowitz Inequality). Let be X1, . . . , Xn

random variables i.i.d. with distribution function F . Then, for each n ∈ N
and each λ ≥ 0,

P
(√

n sup
x∈R
|Fn(x)− F (x)| > λ

)
≤ 2 exp{−2λ2}.

2
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Figure 1.1: Comparison among Φ, Fn and Fnh

In relation to the Integrated Squared Error, most existing results deal

with its expected value, which is commonly referred to as the Mean Inte-

grated Squared Error (MISE), defined by

MISE{Fn} = E
∫
R
{Fn(x)− F (x)}2 dx.

It is not hard to show that that

MISE{Fn} =
1

n

∫
R
F (x){1− F (x)} dx,

and hence that MISE{Fn} is finite if the distribution has a finite first

absolute moment, that is, if the condition
∫
R |x|dF (x) <∞ holds.

1.1.2 The kernel distribution function estimator

However, the empirical distribution estimator presents some undesirable

properties. One of the most important ones is that Fn is not a continuous

function, and this could represent a disadvantage at the time of estimating

a continuous distribution function. This problem is illustrated with a simple

simulation based on a sample of size n = 20 from a standard normal N(0, 1)

in Figure 1.1.
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The kernel estimator of a distribution function was introduced inde-

pendently by Tiago de Oliveira (1963), Nadaraya (1964) and Watson and

Leadbetter (1964) as a smooth alternative to the discontinuous empirical

estimator. It is also represented in Figure 1.1.

To define this estimator we need two previous concepts.

Definition 1.1. A kernel k is an integrable function with
∫
R k(x) dx = 1.

We will mainly consider kernels which are also densities, namely, k ≥ 0.

Definition 1.2. Let k be a kernel and h > 0 a real number and assume

that X1, . . . , Xn are iid continuous random variables with common density

f . The kernel estimator of f , with kernel k and bandwidth h, is defined as

fnh(x) ≡ fnh(x;X1, . . . , Xn) =
1

nh

n∑
i=1

k
(x−Xi

h

)
.

We observe that this estimator, according to the definition of kernel, is

a density if k ≥ 0.

By integrating this estimator we obtain en estimator of the distribution

function, which is called kernel distribution function estimator.

Definition 1.3. According to the previous notations and given the kernel

density estimator fnh for the density f , we define the kernel distribution

function estimator as

Fnh(x) =

∫ x

−∞
fnh(t) dt.

An equivalent definition for this estimator can be obtained by expanding

the above definition.

Fnh(x) =

∫ x

−∞
fnh(t) dt =

∫ x

−∞

1

nh

n∑
i=1

k
( t−Xi

h

)
dt

=
1

nh

n∑
i=1

∫ x

−∞
k
( t−Xi

h

)
dt =

1

n

n∑
i=1

∫ x−Xi
h

−∞
k(y) dy

=
1

n

n∑
i=1

K
(x−Xi

h

)
,

4
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where we have used the change of variables y = t−Xi
h , and where the function

K(x) =
∫ x
−∞ k(t) dt will be referred to as an integrated kernel.

So, we have a new equivalent definition for the distribution kernel esti-

mator.

Definition 1.4. Let us consider an integrated kernel K and a real number

h > 0, and assume that X1, . . . , Xn are iid continuous random variables with

common distribution function F . We define the kernel estimator of F , with

integrated kernel K and bandwidth h as

Fnh(x) ≡ Fnh(x;X1, . . . , Xn) =
1

n

n∑
i=1

K
(x−Xi

h

)
.

Obviously, when k is itself a density, then K is a proper distribution

function so that the kernel estimator Fnh also inherits its properties.

The definition of Fnh can be extended for the case h = 0 following some

results of Chacón and Rodŕıguez-Casal (2010), who showed that Fnh = Fn

when h = 0.

1.1.3 MISE properties of kernel distribution function esti-

mators

The paper of Yamato (1973) contains a detailed study of the consitency

properties of the kernel distribution function estimator with respect to the

uniform distance.

However, surely due to its mathematical tractability, many more papers

deal with kernel distribution function estimators from the point of view of

MISE, as for example Azzalini (1981), Jones (1990) and, more recently, Ten-

reiro (2003), Chacón and Rodŕıguez-Casal (2010) or Mason and Swanepoel

(2012).

Here we will also focus on the MISE as a measure of the performance

of the kernel distribution function estimator

MISE(h) ≡MISE{Fnh} = E
∫
R

[Fnh(x)− F (x)]2 dx

5
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Jones (1990) proved that asymptotically, with respect to the MISE

criterion, the optimal integrated kernel K is the distribution function cor-

responding to a uniform distribution:

K(x) =


0 if x < −

√
3

x+
√

3
2
√

3
if −

√
3 ≤ x <

√
3

1 if
√

3 ≤ x

However, there are not significative differences between this integrated

kernel and others, like the Gaussian one, given by

Φ(x) =

∫ x

−∞
φ(t) dt, x ∈ R

where φ(t) = 1√
2π

exp{−t2/2}, corresponding to the standard normal distri-

bution.

Therefore, the problem is not an appropiate selection of the kernel K

but choosing an optimal bandwidth h to minimize the MISE.

For a better understanding of the role that h plays in the performance

of Fnh, it is helpful to decompose the MISE as the sum of the integrated

variance and the integrated squared bias: since the integrand is not negative,

we can exchange the order of integration and expectation by applying the

Fubini Theorem, obtaining

MISE(h) = E
[ ∫

R
{Fnh(x)− F (x)}2 dx

]
=

∫
R
E[{Fnh(x)− F (x)}2] dx

=

∫
R
V ar{Fnh(x)} dx+

∫
R
{E[{Fnh(x)]− F (x)}2 dx

= IV (h) + ISB(h)

where IV (h) and ISB(h) are called integrated variance and integrated

squared bias.

Hence, given F , K and n, we obtain a real function

MISE : [0,∞) ⊂ R→ R.

6
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1.1.4 Optimal bandwidth selection

Let suppose that there is a bandwidth h0n that minimizes this MISE func-

tion; that is,

MISE(h0n) ≤MISE(h), ∀h > 0.

The value h = h0n ∈ (0,∞) is the optimal value to use in the estimator

Fnh in order to estimate the distribution. Though, it is obvious that this

bandwidth depends on n and F , which is unknown from a statistical point

of view. Then, the problem for choosing an optimal bandwidth is equivalent

to the problem of the distribution estimation.

Regarding the empirical distribution function Fn, we showed before that

Fnh = Fn when h = 0. This correspondence also hold for the MISE, since

MISE(0) =
1

n

∫
R
F (x)[1− F (x)] dx = MISE{Fn}.

In Figure 1.2 the function MISE(h) is shown for the case where n = 20,

F = Φ and K is the integrated kernel corresponding to a standard Gaussian

distribution. The figure clearly shows that the error of the empirical esti-

mator (MISE(0)) could be improved with a good choice of h. Moreover,

the estimator Fnh has an error smaller than that of Fn not only for h0n, but

also for a wide range of values of h.

7
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Figure 1.2: The MISE as a function of the bandwidth

1.1.5 The contribution of this work

The paper by Tenreiro (2006) contains a precise result about the existence

and asymptotic properties of the optimal bandwidth h0n. His result, how-

ever, cannot be applied to the case where superkernels are used. Superk-

ernels are defined as kernels whose Fourier transform is identically equal to

one in a neighbourhood of the origin, and they are known to produce rate-

adaptive kernel density estimators, as shown in Devroye (1992) and Chacón,

Montanero and Nogales (2007).

So we focused on the goal of extending Tenreiro’s (2006) result and

finding a generalization that could cover the case of a superkernel as well.

This goal is achieved in Chapter 2.

The theoretical tools that we use to achieve that goal are based on Fourier

transforms. This techniques are relatively straightforward to apply in the

density case, by assuming that the density function is square integrable, but

much more delicate arguments are needed to obtain valid expressions, in

terms of characteristic functions, for the MISE of the kernel distribution

function estimator, since it makes no sense to assume that a distribution

function is square integrable (no distribution function can satisfy such a

requirement).
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By expressing the MISE in terms of characteristic functions we also ob-

tained a result about the limir behavior of the optimal bandwidth sequence

in its most general form, including the possibility of using superkernels and

the sinc kernel in kernel distribution function estimation.

As a consequence, we also showed that there exists a class of distributions

for which the kernel distribution estimator presents a first-order improve-

ment over its empirical counterpart, opposite to the usual situation, where

only second-order improvements are possible.

1.2 Approximation of conditional expectations

1.2.1 The problem of computing conditional expectations

Let (Ω,A, P ) be a probability space, X : (Ω,A, P )→ Rn be an n-dimensional

random variable and Y : (Ω,A, P )→ R a random variable with finite mean.

In this context, we can define the conditional expectation E(Y |X) as

follows.

Definition 1.5. The conditional expectation E(Y |X) is defined as a random

variable on Rn such that
∫
X−1(B) Y dP =

∫
B E(Y |X)dPX for any Borel set

B in Rn, where PX denotes the probability distribution of X.

Although the existence of the conditional expectation is guaranteed via

the Radon-Nikodym theorem, its computation is, generally, involved.

When the joint density f of Y and X is known, E(Y |X = x) is the mean

of the conditional distribution P Y |X=x of Y given X = x, whose density is

f(x, y)/fX(x), where fX denotes the marginal distribution of X. In this case

the problem of computing a conditional expectation reduces to evaluating a

mean, and many methods exist which can be used to do so.

The main problem appears when a joint density for X and Y is not

available, or it is difficult to determine. In this case the problem of evaluating

the conditional expectation can become an arduous problem. Nevertheless,

this is still an interesting problem due to y = E(Y |X = x) is the regression

curve of Y given X = x.

9
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1.2.2 A natural Monte Carlo method

We describe a natural Monte Carlo method, inspired by a Besicovitch theo-

rem for the differentiation of measures, to evaluate such a conditional expec-

tation in a probabilistic setting (see, for instance, Corollary 2.14 of Mattila

(1995)). This theorem extends to Radon measures the classical Lebesgue

Differentation Theorem. The method is really useful when densities are not

available or they are not easy to compute.

Given two real random variables X and Y , the mentioned Monte Carlo

method of approximation of the conditional expectation E(Y |X = x) is

based on the naive idea that one can approximate it from a sample (xi, yi)1≤i≤n

by the mean of the yi corresponding to points xi lying in a narrow neigh-

borhood of x. Despite the simplicity of the argument, and to the best of

our knowledge, this result has not been described this way in the literature.

When the joint density of X and Y is known, E(Y |X = x) is the mean of

the conditional distribution of Y given X = x, and the problem of compute

a conditional expectation is reduced to the problem of computing a mean.

At this point, it must be noticed that the mentioned Monte Carlo method

does not rely on the existence of a joint density and could be specially useful

to approximate conditional expectations when densities are not available (or

are not easy to compute).

Although its nature is probabilistic, in a statistical framework we can

provide additional guarantees on the method, since the obtained Monte

Carlo approximation to the conditional expectation E(Y |X = x) coincides

with the value at the point x of the kernel estimator, introduced by Nadaraya

and Watson, of the regression curve y = E(Y |X = x) for the kernel K(x) =

I[−1,1](x) (see Nadaraya (1989), p. 115). From this point of view, ε plays

the role of the bandwidth parameter. We refer to Härdle (1992, Ch. 5) for a

detailed discussion on the important problem of the choice of the bandwidth.

This way we establish a connection with the first chapter of this thesis.

10
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1.2.3 Applications for the General Half-Normal distribution

The method is applied for us to evaluate the minimum risk equivariant esti-

mator of the location parameter of a general half-normal distribution. This

estimator is described in terms of two conditional expectations for known

values of the location and scale parameters and its value is approximated

using simulation.

We remind that a general half-normal distribution depends on two pa-

rameters as follows:

Definition 1.6. Let Z denote a standard normal random variable. Then,

Y = ξ + ηX, where X = |Z|, is a general half-normal random variable with

location and scale parameters ξ and η, respectively, and density

f(y) =
2

η
φ

(
y − ξ
η

)
=
b

η
exp

{
−(y − ξ)2

2η2

}
, y > ξ,−∞ < ξ <∞, η > 0,

where b = (2/π)1/2 and φ(·) denotes the standard normal density.

As mentioned above, the main application of the Monte Carlo method

for the approximation of conditional expectations is approximating the es-

timation of the location parameter of the general half-normal distribution,

because it is defined in terms of a quotient of two not-easily-computable

parameter-free conditional expectations given a n − 1-dimensional statistic

U . Some problems about “curse of dimensionality” appear when n is large

because, in this case, it is not easy to find large samples of points lying

in a small ball centered at a point U(y). This is the reason to modify the

Monte Carlo method for the approximation of conditional expectations tak-

ing advantage of the underlying distribution of Y (the general half-normal

distribution) and the invariance properties of U . This could become an im-

portant scholium of the paper, as the ideas used here could be useful to deal

with the “curse of the dimensionality” in similar situations.

Finally, we develop an explicit expression for the minimum risk equiv-

ariant estimator of the parameter η of a general half-normal distribution.

Although less interesting from the point of view of applications, for the

sake of completeness, the MRE estimators of both parameters ξ and η are

given when the other parameter is known. As far as we know, this had not

been done before.

11
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1.2.4 The contribution of this work

A Monte Carlo method to approximate conditional expectations in a prob-

abilistic framework is motivated by a general result inspired by the Besicov-

itch covering theorem for differentiation of measures. The method is spe-

cially useful when densities are not available or are not easy to compute. The

method is illustrated through various examples and can also be used in a sta-

tistical setting to approximate the conditional expectation given a sufficient

statistic. In this thesis it is used to compute the minimum risk equivariant

estimator (MRE) of the location parameter of a general half-normal distri-

bution since this estimator is described in terms of a conditional expectation

for known values of the location and scale parameters. For the sake of com-

pleteness, an explicit expression for the minimum risk equivariant estimator

of the scale parameter is given. As far as we are aware, these estimators

have not appeared before in the literature. Simulation studies to compare

the behavior of the new estimators with those of maximum likelihood and

unbiased estimators are presented in this thesis.

1.3 Nonparametric cluster analysis

1.3.1 The problem of cluster analysis

Cluster analysis is the task of grouping a set of objects in such a way that

objects in the same group (called a cluster) are more similar (in some sense

or another) to each other than to those in other groups. It is a main task of

exploratory data mining, and a common technique for statistical data anal-

ysis, used in many fields, including machine learning, pattern recognition,

image analysis, information retrieval and bioinformatics.

Cluster analysis was originated in anthropology by Driver and Kroeber

in 1932 and introduced to psychology by Zubin in 1938 and Robert Tryon

in 1939 and famously used by Cattell beginning in 1943 to treat theory

classification in personality psychology.

According to the different notions for distance (Euclidean, Manhattan,

Mahalanobis...) or cluster and other concepts and desired properties, a lot

of different methods for cluster analysis can be developed.

12
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1.3.2 Clustering methodologies

A rough classification of clustering methodologies can be made by grouping

the different methods into three types: hierarchical clustering, centroid-

based clustering and density-based clustering.

Strategies for hierarchical clustering generally fall into two types: ag-

glomerative (each observation starts in its own cluster, and pairs of clusters

are merged as one moves up the hierarchy) and divisive (all observations

start in one cluster, and splits are performed recursively as one moves down

the hierarchy). The results of hierarchical clustering are usually presented

in a dendrogram.

When the number of final clusters is known, the centroid-based clus-

tering methods are used. The most important representative of this group

of methods is surely the k-means algorithm, although more robust variants

have been developed; see, for instance, the excellent recent survey of Garćıa-

Escudero et al. (2010).

Due to the fast development of computer power, a lot of methods have

been created in recent years improving existing ones. They are necessary in

a context of high-dimensional data clustering. Some of this recent methods

focus on distribution-based clustering or density-based clustering, meaning

that the whole distribution (as opposed to centroids) are involved in the

clustering procedure.

The mean shift algorithm was introduced in 1975 by Fukunaga and

Hostetler with the goal of estimating the gradient of a multivariate density.

Later, Silverman (1986) highlighted this algorithm as an important appli-

cation of kernel smoothing. But it was not studied again until years later

through several authors such as Cheng (1995), Carreira-Perpiñán (2006) and

Comaniciu and Meer (2002).

The algorithm can be used to iteratively shift each data point towards

a local maximum of a kernel estimator of density, and two data points are

then identified to belong to the same cluster if they have been moved to

the same local maximum. This way, the mean shift algorithm induces a

clustering of the data in a nonparametric way, based on a kernel estimator

of the density.

13
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1.3.3 The contribution of this work

Recently, several authomatic methods for bandwidth selection have been

proposed for density gradient estimation; see Chacón and Duong (2013)

and Horová, Kolácek and Vopatová (2013).

On the other hand, Chacón (2012) set up a population background for

density-based clustering in which the ideal population goal is clearly identi-

fied, and also several distances between clusterings are proposed to measure

the performance of a clustering method.

So our goal was to compare the newly introduced bandwidth selection

methods for density gradient estimation, but in the context of mean shift

clustering, making use of the recently proposed loss measures for density-

based clustering to evaluate their performance. This goal is achieved in

Chapter 4.

We use these automatic bandwidth selectors in order to obtain the clus-

tering of the space that they induce via the mean shift algorithm. Then,

we measure the distance between both clusterings of Rd, the clustering ob-

tained with each automatic bandwidth selector and the ideal clustering of

the density.

We analyze the performance of several bandwidth selectors using the

following distance between two clusterings introduced in Chacón (2012):

given two clusterings C = {C1, ..., Cr} and D = {D1, ..., Ds} of a probability

measure P , with r ≤ s, the distance in measure between them is defined as

dP (C,D) =
1

2
min
σ∈Ps

s∑
i=1

P (Ci 4Dσ(i))),

where Ps denotes the set of permutations of {1, 2, ..., s}, the partition C

has been enlarged by adding s − r empty sets Cr+1 = ... = Cs = ∅ if

necessary, and4 denotes the symmetric difference between two sets, namely

C 4D = (C ∩Dc) ∪ (Cc ∩D).

As a result of our study, we conclude that none of the ten automatic

bandwidth matrix selectors included in the study showed a consistent supe-

rior performance over the rest of the methods.

All the cross-validation, plug-in, smoothed cross-validation proposals,

and the iterative method, are best for one of the models considered in our

14
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study, but utterly fail to identify the cluster structure for one, two or even

three of the remaining ones. This suggests that the problem of bandwidth

selection for mean shift clustering, though related, is different from that of

bandwidth selection for density gradient estimation, and presents its own

peculiarities.
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Part I

Distribution function estimation



2
Fourier methods for smooth distribution function

estimation

2.1 Introduction

The kernel estimator of a distribution function was introduced independently

by Tiago de Oliveira (1963), Nadaraya (1964) and Watson and Leadbetter

(1964) as a smooth alternative to the empirical estimator. It is defined

as the distribution function corresponding to the well-known kernel density

estimator. Precisely, given independent real random variables X1, . . . , Xn

with common and unknown distribution function F , assumed to be abso-

lutely continuous with density function f , the kernel estimator of F (x) is

Fnh(x) = n−1
n∑
j=1

K
(
h−1(x−Xj)

)
,

where h > 0 is the and the function K will be referred to as the integrated

kernel, since it is assumed that K(x) =
∫ x
−∞ k(y)dy for some integrable

function k, called kernel, having unit integral over the whole real line.

Classical references on kernel distribution function estimators include

Yamato (1973), which provided mild necessary and sufficient conditions

for its consistency in uniform norm, Azzalini (1981), Swanepoel (1988)

and Jones (1990) on asymptotic squared error analysis of the estimator,

or Sarda (1993), Altman and Léger (1995) and Bowman, Hall and Prvan

(1998), and more recently Polansky and Baker (2000) and Tenreiro (2006),

on data-driven bandwidth selection. There are also other recent papers
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on different aspects of kernel distribution function estimation, like Tenreiro

(2003), Swanepoel and Van Graan (2005), Janssen, Swanepoel and Veraver-

beke (2007), Giné and Nickl (2009), Berg and Politis (2009), Chacón and

Rodŕıguez-Casal (2010) or Mason and Swanepoel (2012). See Servien (2009)

for a detailed survey on distribution function estimation, not limited to .

This paper is devoted to the study of the kernel distribution function

estimator from the point of view of the mean integrated squared error,

MISE(h) ≡ MISEn(h) = E
∫ ∞
−∞
{Fnh(x)− F (x)}2dx.

In this sense, the optimal bandwidth h0n is the value of h > 0 minimizing

MISE(h). The existence of such a bandwidth was proved in Theorem 1 of

Tenreiro (2006) under very general assumptions, and Proposition 2 in the

same paper showed that h0n → 0 whenever the Fourier transform of k is not

identically equal to 1 on any neighbourhood of the origin. This condition can

be considered mild as well, since it is satisfied for any finite-order kernel;

however, it does not hold for a superkernel (see Chacón, Montanero and

Nogales (2007)).

The purpose of this note is to show how to use Fourier transform tech-

niques for the analysis of kernel distribution estimators. Particularly, ex-

pressing the MISE in terms of characteristic functions allows us to obtain a

result on the limit behavior of the optimal bandwidth sequence in its most

general form so that it also covers the case of a superkernel, and to explore

its consequences showing the peculiar properties of the use of superkernels

and the sinc kernel in kernel distribution function estimation. Precisely, it

is shown in Section 2.2 that in some situations the sequence h0n does not

necessarily tend to zero. Moreover, we exhibit a class of distributions for

which the kernel distribution estimator presents a first-order improvement

over its empirical counterpart, opposite to the usual situation, where only

second-order improvements are possible (see Remark 2.3). Our findings are

illustrated in Section 2.3 through two representative examples.
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2.2 Main results

Recall from Chacón and Rodŕıguez-Casal (2010) that the kernel distribution

function estimator admits the representation

Fnh(x) =

∫
Fn(x− hz)dK(z), (2.1)

where Fn denotes the empirical distribution function (here and below in-

tegrals without integration limits are meant over the whole real line). Us-

ing this, and standard properties of the empirical process, it is possible

to obtain a decomposition of MISE(h) = IV(h) + ISB(h), where the inte-

grated variance IV(h) =
∫

Var {Fnh(x)}dx and the integrated squared bias

ISB(h) =
∫
{E[Fnh(x)] − F (x)}2dx can be expressed in the following exact

form:

IV(h) = n−1

∫∫∫ {
F
(
x− h(y ∨ z)

)
− F (x− hy)F (x− hz)

}
dK(y)dK(z)dx,

(2.2)

ISB(h) =

∫∫∫
{F (x− hy)− F (x)}{F (x− hz)− F (x)}dK(y)dK(z)dx,

(2.3)

with y ∨ z standing for max{y, z}.
Note that the representation (2.1) and the exact expressions (2.2) and

(2.3) also make sense for h = 0, implying that the kernel distribution es-

timator reduces to the empirical distribution function for h = 0, for which

the well-known MISE formula reads MISE(0) = IV(0) = n−1
∫
F (1 − F )

whenever ψ(F ) =
∫
F (1 − F ) is finite. Moreover, it is not hard to check

that
∫
|x|dF (x) <∞ and

∫
|y k(y)|dy <∞ ensure that MISE(h) is finite for

all h > 0, so those two minimal conditions will be assumed henceforth. Note

that the required condition that F have a finite mean is slightly stronger

than ψ(F ) <∞ since ψ(F ) ≤ 2
∫
|x|dF (x).

2.2.1 Limit behavior of the optimal bandwidth sequence

Denote by ϕg the Fourier transform of a function g, defined as ϕg(t) =∫
eitxg(x)dx. As in Chacón, Montanero and Nogales (2007), the key to

understand the limit behavior of the optimal bandwidth sequence is to use
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Fourier transforms to express the MISE criterion. Abdous (1993) provided

a careful account of the necessary conditions under which the MISE can be

expressed in terms of Fourier transforms. The proof of his Proposition 2

implicitly derives formulas for ISB(h) and IV(h) in terms of ϕk and ϕf for

h > 0. We reproduce this result here for completeness, and show that it can

be extended to cover the case h = 0 as well.

Theorem 2.1. If
∫
|x|dF (x) <∞ and

∫
|y k(y)|dy <∞ then, for all h ≥ 0,

the IV and ISB functions can be written as

IV(h) = (2π)−1n−1

∫
t−2|ϕk(th)|2{1− |ϕf (t)|2}dt,

ISB(h) = (2π)−1

∫
t−2|1− ϕk(th)|2|ϕf (t)|2dt.

Particularly, note that for h = 0 the previous result yields a Parseval-like

formula for distribution functions,

ψ(F ) =

∫
F (1− F ) = (2π)−1

∫
t−2{1− |ϕf (t)|2}dt, (2.4)

which can be useful to compute errors in an exact way in cases where F

does not have a close expression but ϕf does, as it happens for instance for

the normal distribution (see also Section 2.3 below). Moreover, we show

in Lemma 2.1 that (2.4) remains valid for integrated kernels K. In the

following it will be assumed that ψ(K) > 0, a property that immediately

holds, using (2.4), whenever ϕk(t) ∈ [0, 1] for all t. Note that, for density

estimation, admissible kernels are precisely those whose Fourier transform

satisfies that restriction (see (1988)).

The limit behavior of the optimal bandwidth sequence h0n is determined

in its greatest generality by the following constants, depending on the Fourier

transforms of f and k: let Cf denote the smallest positive frequency from

which ϕf is null along a proper interval and Df the positive frequency from

which ϕf is identically null (so that Cf ≤ Df , both possibly being infinite);

also, denote Sk the greatest frequency such that ϕk is identically equal to

one on [0, Sk] and Tk the smallest frequency such that ϕk is not identically
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equal to one on a subinterval of [Tk,∞), and note that Sk ≤ Tk with both

possibly being zero. In mathematical terms,

Cf = sup{r ≥ 0: ϕf (t) 6= 0 a.e. for t ∈ [0, r]}
Df = sup{t ≥ 0: ϕf (t) 6= 0}
Sk = inf{t ≥ 0: ϕk(t) 6= 1}
Tk = inf{r ≥ 0: ϕk(t) 6= 1 a.e. for t ≥ r}

Finally, define h∗ = sup{h ≥ 0: ISB(h) = 0}. The following result shows

the limit of the optimal bandwidth sequence h0n in the common case where

Cf = Df and Sk = Tk.

Theorem 2.2. Assume that
∫
|x|dF (x) <∞,

∫
|y k(y)|dy <∞ and ψ(K) >

0, and suppose that Cf = Df and Sk = Tk. Then, h0n → Sk/Df as n→∞
and also h∗ = Sk/Df .

A number of consequences can be extracted from Theorem 2.2:

Remark 2.1. A kernel k with Sk > 0 is called a superkernel (see Chacón,

Montanero and Nogales (2007)). If an integrated superkernel is used in

the kernel distribution function estimator and the density f is such that

Df <∞ (see Chacón, Montanero and Nogales (2007), and Section 2.3 below

for examples of such distributions) then, contrary to the usual situation, the

optimal bandwidth sequence h0n does not tend to zero, but to the strictly

positive constant Sk/Df . Moreover, any positive constant can be the limit

of an optimal bandwidth sequence, because modifying the scale of the density

by taking fa(x) = f(x/a)/a, for any a > 0, it follows that Dfa = Df/a, and

hence the limit of the optimal bandwidth sequence equals aSk/Df .

Remark 2.2. Since h∗ = Sk/Df , the kernel estimator Fnh is unbiased for

any fixed (i.e., not depending on n) choice of h ∈ [0, Sk/Df ]. If either K

is not an integrated superkernel or the characteristic function ϕf does not

have bounded support, then the only kernel distribution estimator with null

ISB corresponds to h = 0, the empirical distribution function.
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Remark 2.3. It is shown in the proof of Theorem 2.2 that for h ∈ [0, Sk/Df ]

the MISE of Fnh admits the exact expression MISE(h) = n−1ψ(F )−n−1ψ(K)h.

From this, it follows that for any fixed h ∈ (0, Sk/Df ] the kernel estimator

Fnh presents an asymptotic first-order reduction in MISE over the empirical

estimator; that is, its MISE is of order n−1 as for the empirical estimator,

yet with a strictly smaller constant (namely, ψ(F ) − ψ(K)h < ψ(F )). As

a result, over the class of distributions with Df bounded by a constant (say,

Df ≤ M) the kernel estimator with bandwidth h = Sk/M is strictly more

efficient than the empirical distribution function Fn. This is in contrast

with the more common case (i.e., Sk = 0 or Df = ∞) where it is well-

known that the asymptotic improvement of Fnh over Fn is only of second

order, in the sense that MISE(h0n) admits the asymptotic representation

n−1ψ(F )−cn−p+o(n−p) for some p > 1 and c > 0 (see, e.g., Jones (1990),

and Shao and Xiang (1997)).

2.2.2 Sinc kernel distribution function estimator

In this section we consider the sinc kernel, defined by sinc(x) = sin(x)/(πx)

for x 6= 0 and sinc(0) = 1/π. This function is not integrable, so the sinc

kernel density estimator inherits this undesirable property, but such a defect

can be corrected as described in Glad, Hjort and Ushakov (2003). Neverthe-

less, the sinc kernel is square integrable, and as such the sinc kernel density

estimator achieves certain optimality properties with respect to the MISE

(Davis, 1977), that make the sinc kernel useful for density estimation (see

Glad, Hjort and Ushakov (2007), or Tsybakov (2009), Section 1.3).

Abdous (1993, Section 3) provided a careful study showing that it also

makes sense to use the MISE criterion for kernel distribution function es-

timators based on the integrated sinc kernel. However, it is not so clear

from his developments how the sinc kernel distribution function estimator is

explicitly defined, nor the asymptotic properties of the optimal bandwidth

sequence in this case, since Theorem 2.2 above can not be directly applied

given that the sinc kernel is not integrable. This section contains a detailed

treatment of these issues.

First, note that the definition of the integrated kernelK(x) =
∫ x
−∞ sinc(z)dz

has to be understood in the sense of Cauchy principal value, i.e. K(x) =
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limM→∞
∫ x
−M sinc(z)dz, because the integral is not Lebesgue-convergent. A

simpler way to express such principal value is K(x) = 1
2 + Si(x), where

Si(x) =
∫ x

0 sinc(z)dz is the sine integral function (with the usual convention

that
∫ b
a = −

∫ a
b if b < a). This yields the following explicit form for the sinc

kernel distribution function estimator:

F sinc
nh (x) = 1

2 + n−1
n∑
j=1

Si
(
h−1(x−Xj)

)
. (2.5)

An alternative, and perhaps more natural, derivation of (2.5) is found

through the use of inversion formulas. The sinc kernel density estimator

with bandwidth h = 1/T is readily obtained from the inversion formula

f(x) = (2π)−1
∫
e−itxϕf (t)dt by replacing ϕf with the empirical charac-

teristic function ϕn(t) = n−1
∑n

j=1 e
itXj , conveniently truncated to get a

finite integral (2π)−1
∫ T
−T e

−itxϕn(t)dt (see for instance Chiu, 1992, p. 774).

An inversion formula relating F and ϕf is the so-called Gil-Pelaez formula

F (x) = 1
2 −

1
π

∫∞
0 t−1={e−itxϕf (t)}dt, with ={z} standing for the imaginary

part of a complex number z, which is valid for a continuous F in the prin-

cipal value sense (Gurland, 1948). Reasoning as before, replacing ϕf with

ϕn and restricting the domain of integration to [0, 1/h], results in the same

sinc kernel distribution function estimator shown in (2.5).

As a square integrable function, the Fourier transform of the sinc kernel

is the indicator function of the interval [−1, 1]. In this sense, Abdous (1993)

showed that the IV and ISB formulas of Theorem 2.1 above remain valid for

the sinc kernel distribution estimator, as long as the square integrability of

f is added to its assumptions, leading to the following simple exact MISE

formula for h > 0:

MISE(h) = (nπ)−1

∫ 1/h

0
t−2{1− |ϕf (t)|2}dt+ π−1

∫ ∞
1/h

t−2|ϕf (t)|2dt. (2.6)

Straightforward differentiation shows that the critical points of such a MISE

function are located at any value h� such that |ϕf (1/h�)|2 = (n+1)−1. This

does not reveal, however, if such critical points are local minima or maxima.

The following result shows the existence of a global minimizer h0n of (2.6),

and that Theorem 2.2 above remains valid for the sinc kernel estimator.
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Note, again, that Theorem 2 of Tenreiro (2006) on the existence of h0n can

not be directly applied here because it relies on the assumption that the

kernel function is integrable.

Theorem 2.3. Assume that f is square integrable and
∫
|x|dF (x) < ∞.

Then, there exists a bandwidth h0n that minimizes the MISE of the sinc

kernel distribution function estimator. Moreover, if Cf = Df then h0n →
1/Df as n→∞ and also h∗ = 1/Df .

If it were integrable, the sinc kernel could be considered as a superkernel

with Ssinc = Tsinc = 1, so from Theorem 2.3 it follows that all the remarks

above about the limit behavior of h0n and the optimal MISE for superkernel

distribution function estimators can be equally applied to the sinc kernel

distribution estimator.

2.3 Numerical examples

In this section we present some examples to further illustrate the usefulness

and consequences of Theorems 2.1, 2.2 and 2.3 above.

2.3.1 Example A.1

In this example we consider the so-called Jackson-de la Vallé Poussin distri-

bution F , with density function

f(x) =
3

4π

(
sin(x/2)

x/2

)4

=
9 + 3 cos(2x)− 12 cos(x)

2πx4

and whose characteristic function is shown in and (1971, p. 516) to be

ϕf (t) =


1− 3t2/2 + 3|t|3/4, |t| ≤ 1

(2− |t|)3/4, 1 ≤ |t| ≤ 2

0, |t| ≥ 2

,

which implies that Cf = Df = 2.

As shown in Theorems 2.2 and 2.3, since Cf = Df <∞ this distribution

(or any of its rescalings Fa(x) = F (x/a) with a > 0) represents a case

where superkernel distribution function estimators are asymptotically more
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Figure 2.1: Optimal bandwidth sequence (left) and relative efficiency in
MISE (right) for the estimation of the Jackson-de la Vallé Poussin distribu-
tion, as a function of log10 n. The lines show the limit values. Solid circles
and solid lines correspond to the trapezoidal superkernel and open circles
and dashed lines correspond to the sinc kernel.

efficient than the empirical distribution function. To illustrate this fact,

we include here a numerical comparison using two different superkernels:

the sinc kernel and a proper superkernel, the trapezoidal superkernel given

by k(x) = (πx2)−1{cosx − cos(2x)}, for which Sk = Tk = 1 (see Chacón,

Montanero and Nogales, 2007).

It is not hard from Theorem 2.1 (for the trapezoidal kernel) and (2.6)

(for the sinc kernel) to come up with an explicit formula for the exact MISE

function in each case. These exact MISE calculations allow to numerically

compute the optimal bandwidth sequences h0n and the minimum MISE

values. The optimal bandwidth sequences for both superkernel estimators

are shown in Figure 3.2 (left) as a function of log10 n, where it is already

noticeable that they both have limit 1/2, as predicted from theory.

The right graph in Figure 3.2 shows the relative efficiency of both su-

perkernel estimators using optimal bandwidths with respect to the empirical

estimator, namely MISE(h0n)/MISE(0), together with their asymptotic val-

ues, given by MISE(Sk/Df )/MISE(0) = 1−ψ(K)Sk/{ψ(F )Df}. Using (2.4)

it follows that ψ(F ) = (96 log 2− 43)/(8π), and ψ(K) equals (4 log 2− 2)/π

and 1/π for the trapezoidal and the sinc kernel, respectively, resulting in

asymptotic relative efficiencies of approximately 0.87 and 0.83 for the two
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superkernel estimators, as reflected on Figure 3.2. For this distribution, the

trapezoidal kernel is more efficient than the sinc kernel up to about sample

size n = 3000, but asymptotically the sinc kernel is slightly more efficient.

Both are markedly more efficient than the empirical distribution as was

to be expected from asymptotic theory; besides, the gains are even more

substantial for low and moderate sample sizes.

2.3.2 Example A.2

In this second example we make use of the MISE expressions in terms of

characteristic functions to obtain exact MISE formulas for the case-study in

which F corresponds to the N(0, σ2) distribution and the integrated kernel

is either the standard normal distribution function Φ, or the integrated sinc

kernel, and we compare both estimators.

For this specific example the exact MISE formula for the density esti-

mation problem was provided in Fryer (1976) making use the convolution

properties of the normal density function, which are also useful for deriving

many other integral results for the normal density and its derivatives (see

Aldershof et al., 1995).

However, convolution techniques seem to be of little use to find exact

MISE expressions for kernel distribution function estimators in the normal

case, where not even the estimation goal F has an explicit formula. For

this problem, it is convenient to work with exact expressions in terms of

characteristic functions. For instance, using (2.4) it immediately follows

that the MISE for the empirical distribution function equals n−1π−1/2σ

and, similarly, it is not hard to show that for the kernel estimator with the

normal kernel

π1/2MISE(h) = n−1{(h2 + σ2)1/2− h}+ {(2h2 + 4σ2)1/2− (h2 + σ2)1/2− σ}

and with the sinc kernel

πMISE(h) = (1+n−1)
{
he−σ

2/h2 +2σ
√
πΦ
(
σ
√

2
/
h
)}
−n−1h−(2+n−1)σ

√
π.

In Figure 3.3 we show the relative efficiency MISE(h0n)/MISE(0) as a func-

tion of log10 n for σ = 1 for both kernel estimators with respect to the
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Figure 2.2: Relative efficiency in MISE for the estimation of standard normal
distribution, as a function of log10 n. The line shows the limit value. Solid
circles correspond to the normal kernel and open circles correspond to the
sinc kernel.

empirical distribution function. Here, all the three estimators are asymp-

totically equally efficient, in the sense that the relative efficiency converges

to 1 as n → ∞. However, it is clear that this convergence is much slower

for the sinc kernel estimator, which is more efficient that the normal kernel

estimator for sample sizes as low as n = 50.

2.4 Proofs

For h > 0, the statement of Theorem 2.1 is contained within the proof of

Proposition 2 in Abdous (1993). Therefore, it only remains to show the case

h = 0; i.e., Equation (2.4). This formula is valid in the more general situation

where F is not necessarily a distribution function, but an integrated kernel

with finite first order moment, as shown in the following lemma.

Lemma 2.1. Suppose that K(x) =
∫ x
−∞ k(y)dy, where k is an integrable

function with
∫
k(y)dy = 1 and

∫
|yk(y)|dy <∞. Then,∫

K(x){1−K(x)}dx = (2π)−1

∫
t−2{1− |ϕk(t)|2}dt.
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Proof. It is not hard to show thatK(x){1−K(x)} =
∫
{I[y,∞)(x)−K(x)}2k(y)dy,

where IA stands for the indicator function of a set A. Moreover, reasoning as

in the proof of Proposition 2 in Abdous (1993), it follows that the condition∫
|yk(y)|dy <∞ guarantees that

∫
|I[y,∞)(x)−K(x)|dx <∞ for all y, which

implies that the function Gy(x) = I[y,∞)(x)−K(x) is square integrable, since

K is bounded (because |K(x)| ≤
∫
|k(y)|dy for all x). Therefore, by Parse-

val’s identity,
∫
{I[y,∞)(x) −K(x)}2dx = (2π)−1

∫
|ϕGy(t)|2dt. The Fourier

transform of Gy is shown to be (−it)−1{eity − ϕk(t)}, since splitting the

integration region and using integration by parts,

−itϕGy(t) = it

∫ y

−∞
eitxK(x)dx− it

∫ ∞
y

eitx{1−K(x)}dx

= K(y)eity −
∫ y

−∞
eitxk(x)dx+ {1−K(y)}eity −

∫ ∞
y

eitxk(x)dx

= eity − ϕk(t).

Thus,
∫
{I[y,∞)(x)−K(x)}2dx = (2π)−1

∫
t−2
[
1+|ϕk(t)|2−2<

{
e−ityϕk(t)

}]
dt,

where <{z} denotes the real part of a complex number z. This finally leads

to ∫
K(x){1−K(x)}dx =

∫∫
{I[y,∞)(x)−K(x)}2k(y)dxdy

= (2π)−1

∫∫
t−2
[
1 + |ϕk(t)|2

− 2<
{
e−ityϕk(t)

}]
k(y)dydt

= (2π)−1

∫
t−2{1− |ϕk(t)|2}dt,

where the last line follows from the fact that
∫
e−ityϕk(t)k(y)dy = ϕk(−t)ϕk(t) =

|ϕk(t)|2.

The proof of Theorem 2.2 is immediate from the following lemma.

Lemma 2.2. Assume that F and K satisfy the assumptions of Theorem

2.2. Then,

Sk/Df ≤ inf
n∈N

h0n ≤ lim sup
n→∞

h0n ≤ h∗ ≤ min{Sk/Cf , Tk/Df}.
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Proof. First notice that ISB(h) = 0 for all h ∈ [0, Sk/Df ], since using The-

orem 2.1

0 ≤ π ISB(h) =

∫ ∞
0

t−2|1− ϕk(th)|2|ϕf (t)|2dt

≤
∫ Sk/h

0
t−2|1− ϕk(th)|2|ϕf (t)|2dt+

∫ ∞
Df

t−2|1− ϕk(th)|2|ϕf (t)|2dt = 0,

with the last equality due to the facts that ϕk(th) = 1 for t ∈ [0, Sk/h] and

ϕf (t) = 0 for t ≥ Df by definition of Sk and Df , respectively.

Therefore, for h ∈ [0, Sk/Df ] the MISE reduces to the IV, and admits

the exact expression MISE(h) = n−1{ψ(F )− ψ(K)h} because, again using

Theorem 2.1, noting the expression (2.4) for ψ(F ), taking into account the

definition of Sk and Df and making the change of variable s = th, we obtain

IV(h) = (nπ)−1

∫ ∞
0

t−2|ϕk(th)|2{1− |ϕf (t)|2}dt

= (nπ)−1

∫ ∞
0

t−2{1− |ϕf (t)|2}dt

− (nπ)−1

∫ ∞
0

t−2{1− |ϕk(th)|2}{1− |ϕf (t)|2}dt

= n−1ψ(F )− (nπ)−1

∫ ∞
Sk/h

t−2{1− |ϕk(th)|2}dt

= n−1ψ(F )− n−1ψ(K)h.

Since the MISE function is linear in h with negative slope in [0, Sk/Df ], its

minimum has to be attached at some point greater than Sk/Df , hence we

obtain the first inequality.

On the other hand, reasoning as in Chacón et al. (2007) it is possible

to show that ISB(h) > 0 for h > Sk/Cf and for h > Tk/Df , thus yielding

the last inequality. Finally, denote hL = lim supn→∞ h0n and assume that

hL > h∗. Then, the continuity of ISB(h) with respect to h (Tenreiro, 2006,

Proposition 1) entails that there is a subsequence h0nk such that, as k →∞,

ISB(h0nk) → ISB(hL) with ISB(hL) > 0 since we are assuming hL > h∗.

But from (2.2) and (2.3) it immediately follows that, for every fixed h,

MISEnk(h) → ISB(h) as k → ∞, so we obtain that the following chain of

inequalities
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ISB(h) = lim
k→∞

MISEnk(h) ≥ lim
k→∞

MISEnk(h0nk) ≥ lim
k→∞

ISB(h0nk)

= ISB(hL) > 0

is valid for every fixed h, implying that limh→0 ISB(h) ≥ ISB(hL) > 0,

which contradicts Proposition 1 in Tenreiro (2006), where it is shown that

ISB(h)→ 0 as h→ 0. Hence, it should be hL ≤ h∗, as desired.

Finally, we show the proof of Theorem 2.3. We focus only on the state-

ment about the existence of the optimal bandwidth sequence, since the argu-

ments showing the limit behavior can be adapted from the proof of Lemma

2.2 above.

Proof of Theorem 2.3. It is clear from (2.6) and (2.4) that limh→0 MISE(h) =

n−1ψ(F ). Moreover, limh→∞MISE(h) = ∞, since ϕf (0) = 1 and by conti-

nuity it is possible to take δ > 0 such that |ϕf (t)|2 > 1
2 for all 0 ≤ t ≤ δ, so

this yields
∫∞

0 t−2|ϕf (t)|2dt ≥ 1
2

∫ δ
0 t
−2dt = ∞. These two limit conditions,

together with the fact that MISE(h) is a continuous function, imply that the

existence of a minimizer of the MISE is guaranteed if there is some h1 > 0

such that MISE(h1) < n−1ψ(F ). But from (2.6) we have

MISE(h)− n−1ψ(F ) = −(nπ)−1h+ (1 + n−1)π−1

∫ ∞
1/h

t−2|ϕf (t)|2dt

so that using the Riemann-Lebesgue lemma and the dominated convergence

theorem, it follows that

lim
h→0

h−1{MISE(h)− n−1ψ(F )} = −(nπ)−1 < 0,

which entails that there is some h1 > 0 fulfilling the aforementioned desired

property.
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3
On equivariant estimation of the parameters of the

general half-normal distribution making use of a

Monte Carlo method to approximate conditional

expectations

3.1 Introduction

Let Z be a N(0, 1) random variable. The distribution of X := |Z| is the so-

called half-normal distribution. It will be denoted HN(0, 1) and its density

function is

fX(x) =

√
2

π
exp

{
−1

2
x2

}
I[0,+∞[(x).

A general half-normal distribution HN(ξ, η) is obtained from HN(0, 1)

by a location-scale transformation: HN(ξ, η) is the distribution of Y =

ξ + ηX.

The classical paper Daniel (1959) introduces half-normal plots and the

half-normal distribution, a special case of the folded and truncated normal

distributions (see Johnson et al. (1994)). Bland et al. (1999) and Bland

(2005) propose a so-called half-normal method to deal with relationships

between measurement error and magnitude, with applications in medicine.

Pewsey (2002) uses the maximum likelihood principle to estimate the param-

eters, and presents a brief survey on the general half-normal distribution, its

relations with other well-known distributions and its usefulness in the anal-

ysis of highly skew data. Pewsey (2004) proposes bias-corrected versions of
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the maximum likelihood estimators. Nogales et al. (2011) deals with the

problem of unbiased estimation for the general half-normal distribution.

Here we consider the problem of equivariant estimation of the location

and scale parameters, ξ and η, but first we provide a brief review of results

for unbiased and maximum likelihood estimation appearing in the literature.

The density function of HN(ξ, η) is

fY (y) =
1

η
fX

(
y − ξ
η

)
=

1

η

√
2

π
exp

{
−1

2

(
y − ξ
η

)2
}
I[ξ,+∞[(y).

It is readily shown that

E(Y ) = ξ + η

√
2

π
and Var(Y ) =

π − 2

π
η2.

Let Y1, . . . , Yn be a sample of size n from a general half-normal distri-

bution with unknown parameters, ξ and η. Y1:n denotes the minimum of

Y1, . . . , Yn. From the factorization criterion, we obtain that the expression

(
∑n

i=1 Y
2
i ,
∑n

i=1 Yi, Y1:n) is a sufficient statistic. Indeed, it is minimal suffi-

cient, although not complete.

We write Yi = ξ + ηXi, where Xi = |Zi|, 1 ≤ i ≤ n, Z1, . . . , Zn being a

sample of the standard normal distribution N(0, 1). Throughout the paper,

we also let

cn := E(X1:n)

For n ≥ 2, it is readily shown that 0 < cn <
√

2
π . In fact, the next

lemma (Nogales et al. (2011)) yields an alternative expression and a refined

bound for cn. We write Φ for the standard normal cumulative distribution

function.

Lemma 3.1. (i) cn =
∫∞

0 (2− 2Φ(t))n dt.

(ii) For n ≥ 1, cn ≤ 1
n

√
π
2 ≤ Φ−1

(
1
2 + 1

2n

)
.

Notice also that Y1:n = mini Yi = ξ + ηX1:n and E(Y1:n) = ξ + ηcn.

The next proposition (Nogales et al. (2011)) yields unbiased estimators

of the location and scale parameters, ξ and η. Both estimators are L-

statistics and functions of the cited minimal sufficient statistic.
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Proposition 3.1. (i) ξ̃ :=

√
2
π
Y1:n−cnȲ√
2
π
−cn

is an unbiased estimator of the lo-

cation parameter ξ.

(ii) η̃ := Ȳ−Y1:n√
2
π
−cn

is an unbiased estimator of the scale parameter η whose

distribution does not depend on ξ.

Remark 3.1. We also have that the sample mean Ȳ is an unbiased estima-

tor of the mean ξ + η
√

2
π . Moreover, an unbiased estimator of η2 is

π

π − 2
S2,

where S2 := 1
n−1

∑n
i=1(Yi − Ȳ )2 is the sample variance; notice that its

distribution does not depend on ξ. Ȳ and S2 also are functions of the

sufficient statistic given above. The reader is referred to Nogales et al. (2011)

for these and other results about unbiased estimation of the parameters of

the general half-normal distribution. 2

Remark 3.2. Pewsey (2002) provides maximum likelihood estimates for

each of the parameters ξ and η:

ξ̂ := Y1:n, η̂ :=

(
1

n

n∑
i=1

(Yi − Y1:n)2

)1/2

A large sample based bias-correction is used in Pewsey (2004) to improve

the performance of the maximum likelihood estimators ξ̂ and η̂. 2

3.2 A Monte Carlo method to approximate con-

ditional expectations

In this section, we describe a natural Monte Carlo method to compute con-

ditional expectations based on a theorem of Besicovitch on differentiation

of measures. It will be used in the next section to approximate the MRE

estimator of the location parameter ξ because its expression involves two

conditional expectations not easy to compute.

We first recall briefly a theorem of Besicovitch (1945, 1946) for differenti-

ation of measures (see, for instance, Corollary 2.14 of Mattila (1995)). This
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theorem extend to Radon measures the classical Lebesgue Differentiation

Theorem.

Theorem 3.1 (Besicovitch (1945, 1946)). Let λ be a Radon measure on Rn,

and f : Rn → R a locally λ-integrable function. Then

lim
r↓0

1

λ(Br(x))

∫
Br(x)

f dλ = f(x)

for λ-almost all x ∈ Rn, where Br(x) denotes the ball of center x and radius

r > 0 for the norm ‖ · ‖∞ on Rn.

Now let (Ω,A, P ) be a probability space, X : (Ω,A, P ) → Rn be an

n-dimensional random variable and Y : (Ω,A, P ) → R be a real random

variable with finite mean. The conditional expectation E(Y |X) is defined

as a random variable on Rn such that
∫
X−1(B) Y dP =

∫
B E(Y |X)dPX for

any Borel set B in Rn, where PX denotes the probability distribution of X.

Although the existence of the conditional expectation is guaranteed via

the Radon-Nikodym theorem, its computation is, generally, involved. Nev-

ertheless, according to the previous result, for PX -almost every x ∈ Rn,

lim
ε↓0

1

PX(Bε(x))

∫
X−1(Bε(x))

Y (ω) dP (ω)

= lim
ε↓0

1

PX(Bε(x))

∫
Bε(x)

E(Y |X = x′) dPX(x′)

= E(Y |X = x)

By the Strong Law of Large Numbers, for almost every sequence (ωi) in

Ω, we have

PX(Bε(x)) = lim
k

1

k

k∑
i=1

IBε(x)(X(ωi))

and∫
Bε(x)

E(Y |X = x′) dPX(x′) = lim
k

1

k

k∑
i=1

IBε(x)(X(ωi))Y (ωi)
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where IA denotes the indicator function of A. Observe that, for every ε > 0,

the rate of convergence is 1/
√
n.

Hence, we have proved the following result:

Theorem 3.2. Let (Ω,A, P ) be a probability space, X : (Ω,A, P )→ Rn be

an n-dimensional random variable and Y : (Ω,A, P )→ R be a real random

variable with finite mean. Then, for PX-almost every x ∈ Rn and almost

every sequence (ωi) in Ω, we have

E(Y |X = x) = lim
ε↓0

lim
k

∑k
i=1 IBε(x)(X(ωi))Y (ωi)∑k

i=1 IBε(x)(X(ωi))
.”

This theorem yields a means of approximating the conditional expecta-

tion of Y given X. The following simple example illustrates the method.

Example 3.1. Let (X,Y ) be a bivariate normal random variable with null

mean such that Var (X) = Var (Y ) = 1 and Cov (X,Y ) = 0.5. In this

case, there is no need for an approximation to the conditional expectation

of Y given X = x because it is x/2. The conditional distribution of Y

given X = x is N(1
2x,

1
2

√
3). Applying the proposed method to evaluate

E(Y |X = 1), given a small ε > 0, we may choose a sample (xi, yi)1≤i≤k

from the joint distribution of X and Y and approximate E(Y |X = 1) by∑k
i=1 I[1−ε,1+ε](xi)yi∑k
i=1 I[1−ε,1+ε](xi)

. (1)

Taking ε = 0.1, 0.01 and samples from the joint distribution of X and Y with

sample sizes k large enough to obtain m = m(k) =
∑k

i=1 I[1−ε,1+ε](xi) =

100, 1000, 5000, we obtained the approximations for E(Y |X = 1) summa-

rized in Table 1 and Figure 1; 100 replications of each simulation have been

conducted to obtain the table and the figure. Namely, taking m = 1000,

for instance, the value 0.493947 appearing in the table as an approximation

of E(Y |X = 1) when ε = 0.1 is the mean of the 100 values of the quotient

(1) obtained after 100 replications of the experiment of choosing a k-sized

sample (xi, yi)1≤i≤k of the joint distribution of (X,Y ), k being large enough

to get m = m(k) = 1000. Table 1 also includes the “mean squared error”

(MSE) calculated from these 100 values: the format used for a typical entry
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in the table is E(Y |X = 1)±MSE. The box-plot of the figure describes the

distribution of these 100 values (a dotted red line represents the mean).

m 100 1000 5000

ε = 0.1 0.505885± 0.006395 0.493947± 0.000815 0.497892± 0.000128

ε = 0.01 0.503655± 0.007165 0.499826± 0.000716 0.499471± 0.000150

Table 3.1: Approximation of E(Y |X = 1)±MSE as a function of the number
of simulations, m, for ε = 0.1, 0.01

Figure 3.1: Box plots of the approximations of E(Y |X = 1) as a function of
the number of simulations, m, for ε = 0.1 and ε = 0.01.

Remark 3.3. The described method of Monte Carlo approximation to the

conditional expectation E(Y |X = x) is based on the näıve idea that one can

approximate it from a sample (xi, yi)1≤i≤n by the mean of the yi correspond-

ing to points xi lying in a narrow neighborhood of x. From a probabilistic

point of view, the method has been justified by the mentioned theorem of

Besicovitch on differentiation of measures. When the joint density of X and

Y is known, E(Y |X = x) is the mean of the conditional distribution of Y

given X = x, and the problem of compute a conditional expectation is re-

duced to the problem of computing a mean. Notice that the existence of a

joint density is not required by the method and it could be specially useful

when densities are not available or are not easy to compute (see the next

example). 2
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Example 3.2. (Example 1, continuation) A similar simulation study has

been performed to approximate the conditional expectation E(V |U = 0.5),

where V = sin(X · Y ) and U = cos(X2 + Y 2); the obtained results are:

m 100 1000 5000

ε = 0.1 0.127650± 0.001890 0.127280± 0.000202 0.124169± 0.000025

ε = 0.01 0.123063± 0.001620 0.125869± 0.000153 0.1252856± 0.000031

Table 3.2: Approximation of E(V |U = 0.5)±S2 (S2 is the sample variance)
as a function of the number of simulations, m, for ε = 0.1, 0.01

Figure 3.2: Box plots of the approximations of E(V |U = 0.5) as a function
of the number of simulations, m, for ε = 0.1 and ε = 0.01

Remark 3.4. In a statistical framework, we can provide additional guaran-

tees on the method, since the obtained Monte Carlo approximation to the

conditional expectation E(Y |X = x) cöıncides with the value at the point

x of the kernel estimator (the Nadaraja-Watson estimator) of the regres-

sion curve y = E(Y |X = x) for the kernel K(x) = I[−1,1](x) (see Nadaraya

(1989), p. 115). From this point of view, ε plays the role of the bandwidth

parameter. We refer to Härdle (1992, Ch. 5) for a detailed discussion on the

important problem of the choice of the bandwidth. In this paper, the main

application of the Monte Carlo method for the approximation of conditional

expectations is given in the next section to approximate the estimation of
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the location parameter of the general half-normal distribution, beacuse it is

defined in terms of a quotient of two not-easily-computable parameter-free

conditional expectations given a (n−1)-dimensional statistic U . Some “curse

of dimensionality problem” appears when n is large because, in this case,

it is not easy to find large samples of points lying in a small ball centered

at a point U(y). This is why we had to modify the Monte Carlo method

for the approximation of conditional expectations taking advantage of the

underlying distribution of Y (the general half-normal distribution) and the

invariance properties of U . This could become an important scholium of

the paper, as the ideas used here could be useful to deal with the “curse of

dimensionality problem” in similar situations. 2

3.3 Equivariant estimation of the location param-

eter of the general half-normal distribution

In this section we consider the problem of determining the minimum risk

equivariant estimator of the location parameter ξ of the general half-normal

distribution HN(ξ, η) when the scale parameter η is unknown. We cannot

provide an explicit expression for this estimator, since it is described in terms

of two conditional expectations that had to be approximated by simulation.

To achieve this goal, an R program was developed based on the method

of computing conditional expectations described in the previous section. In

fact, the method has been slightly modified to solve a sort of ”curse of

dimensionality” problem.

We consider the scale-location family of densities

f(ξ,η)(y1, ..., yn) =
1

ηn
f

(
y1 − ξ
η

, ...,
yn − ξ
η

)
,

where

f(y1, ..., yn) =

(
2

π

)n
2

exp

{
−1

2

n∑
i=1

y2
i

}
I[0,+∞[(y1:n).

This family remains invariant under transformations of the form ga,b(y1, ..., yn) =

(a+ by1, ..., a+ byn), a ∈ R, b > 0.

To estimate the location parameter ξ when the scale parameter η is un-

known, we have the next result, a direct consequence of classical equivariant
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estimation theory (see Lehmann (1983)). First, recall that an estimator

T of the location parameter is equivariant if T (a + bx1, . . . , a + bxn) =

a+ bT (x1, . . . , xn), for all a ∈ R and all b > 0.

Proposition 3.2. When the loss function W2(x; ξ, η) = η−2(x− ξ)2 is con-

sidered, the MRE estimator ξ̊ of ξ is

ξ̊ = T ∗0 − (ρ ◦ U)T ∗1

where

T ∗0 = Ȳ , T ∗1 =
1

n

n∑
i=1

|Yi − Ȳ |

U =

(
Y1 − Yn
Yn−1 − Yn

, . . . ,
Yn−2 − Yn
Yn−1 − Yn

,
Yn−1 − Yn
|Yn−1 − Yn|

)
,

ρ =
Eξ=0,η=1(T ∗0 T

∗
1 |U)

Eξ=0,η=1(T ∗1
2|U)

Remark 3.5. T ∗0 can be replaced by any other equivariant estimator of

ξ (i.e., satisfying T ∗0 (a + by1, . . . , a + by1) = a + bT ∗0 (y1, . . . , y1) for every

a ∈ R, b > 0), and T ∗1 can be replaced by any positive estimator of η

satisfying T ∗1 (a+ by1, . . . , a+ by1) = bT ∗1 (y1, . . . , y1) for every a ∈ R, b > 0.

2

A simulation study has been performed to investigate the behavior of the

minimum risk equivariant estimator ξ̊. In it, we used 100 simulations with

sample sizes n = 100, 1000, 5000 from the HN(10, 4) distribution, obtaining

the results summarized in Table 3 and Figure 3 (see below how we have

made use of the method of approximation of conditional expectations to

obtain the values of the Tables 2 and 3).

m 100 1000 5000

ε = 0.1 9.811914± 2.307873 9.835290± 1.881063 9.862105± 0.158635

ε = 0.01 9.840835± 0.687243 9.827150± 3.501158 9.907112± 0.027826

Table 3.3: Approximations of ξ̊ ± MSE as a function of the number of
simulations, m, for ε = 0.1, 0.01
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Figure 3.3: Box plots of the approximations of ξ̊±MSE as a function of the
number of simulations, m, for ε = 0.1 and ε = 0.01

To compare the behavior of the unbiased estimator ξ̃, the maximum

likelihood estimator ξ̂ and the minimum risk equivariant estimator ξ̊, we used

100 simulations with sample sizes n = 100, 1000, 5000 from the HN(10, 4)

distribution, obtaining the results summarized in Table 4 and Figure 4:

m 100 1000 5000

ξ̃
ε = 0.1 9.997350± 0.003289 9.999356± 0.000020 10.000823± 0.000001

ε = 0.01 9.999662± 0.003443 9.999989± 0.000025 10.001050± 0.000002

ξ̂
ε = 0.1 10.047256± 0.005455 10.004383± 0.000039 10.000823± 0.000001

ε = 0.01 10.049128± 0.005752 10.005005± 0.000050 10.001050± 0.000002

ξ̊
ε = 0.1 9.412753± 2.307873 9.517691± 1.881063 9.732626± 0.158635

ε = 0.01 9.603969± 0.687243 9.274164± 3.501158 9.867600± 0.027826

Table 3.4: Approximations of ξ̃±MSE, ξ̂±MSE and ξ̊±MSE as a function
of the number of simulations, m, for ε = 0.1, 0.01
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Figure 3.4: Box plots of the approximations of ξ̃, ξ̂ and ξ̊ as a number of
simulations, m = 100, 1000, 5000, for ε = 0.1 and ε = 0.01 function of the

Table 4 and Figure 4 illustrate the biased character of the maximum

likelihood estimator ξ̂ and the minimum risk equivariant estimator ξ̊. As
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expected, the behavior of this approximation to the MRE estimator is worse

than those of the unbiased estimator ξ̃ or the maximum likelihood estimator

ξ̂. However, this method provides a way to proceed when other estimation

methods are not available.

Let us describe in more details the ideas used in these simulations. For a

sample y = (y1, . . . , yn), n = 100, 1000, 5000, of the distribution HN(10, 4),

we have

ρ(U(y)) = lim
ε→0

Nε

Dε

where

Nε =

∫
Aε(y)

f(y′)dy′, Dε =

∫
Aε(y)

g(y′)dy′,

f(y′) = T ∗0 (y′)T ∗1 (y′) exp

{
−1

2
‖y′‖22

}
, g(y′) = T ∗1 (y′)2 exp

{
−1

2
‖y′‖22

}
,

Aε(y) = {y′ ∈ [0, 10]n : max
1≤i≤n−1

|Ui(y′)− Ui(y)| ≤ ε}.

Now, take a sample S of Aε(y) and approximate Nε and Dε by

1

card (S)

∑
y′∈S

f(y′) and
1

card (S)

∑
y′∈S

g(y′),

respectively. So, ρ(U(y)) can be approximated by

C(y) :=

∑
y′∈S f(y′)∑
y′∈S g(y′)

and ξ̊(y) is approximated by D(y) := T ∗0 (y)− C(y)T ∗1 (y).

To approximate C(y), a first idea would be to divide the interval [0, 10]

in multiple subintervals of small length ε > 0 and consider the grid in the

interval [0, 10]n formed by the n-power set of the ends of these subintervals

(we have restricted ourselves to the interval [0,10] because the functions

f(y) and g(y) are almost null when one of the coordinates of the vector y

is greater than 10). The sample S would then be formed by the grid nodes

that are in Aε. The main problem with this approach is that the size m of

the sample S is very small: it becomes smaller as n increases, because of the

so-called “curse of dimensionality” problem. In order to avoid this problem

and obtain a sample size m large enough for S (given n, we take m = 100n),
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we have used the following algorithm, a modification of the described Monte

Carlo method to approximate conditional expectations that hinges on the

use of the invariance of U under scale and location transformations. Namely:

Step A. Let n ∈ N and be y = (y1, . . . , yn) a n-sized sample of the distribution

HN(10, 4). For 1 ≤ i ≤ n − 2, let ai := y1−yn
yn−1−yn and take 0 < ε <

min{0.1,min1≤i≤n−2 |ai|}.

Step A.1. At this stage we choose at random 100·n vectors v(j) = (v
(j)
1 , . . . , v

(j)
n ),

1 ≤ j ≤ 100n, in Rn such that max1≤i≤n−1 |Ui(v(j))− Ui(y)| ≤ ε

as follows:

A.1.1. Make j = 1.

A.1.2. Take v
(j)
n−1, v

(j)
n at random in [0, 10] such that v

(j)
n−1− v

(j)
n has

the same sign as yn−1−yn. (So, the last coordinates of U(v(j))

and U(y) are the same).

A.1.3. For 1 ≤ i ≤ n − 2 take v
(j)
i at random on the interval de-

termined by v
(j)
n + (v

(j)
n−1 − v

(j)
n )(ai − ε) and v

(j)
n + (v

(j)
n−1 −

v
(j)
n )(ai + ε). (So |Ui(v(j))− Ui(y)| ≤ ε).

A.1.4. Make j = j + 1 a go back to Step 1 until 100n vectors v(j) =

(v
(j)
1 , . . . , v

(j)
n ), 1 ≤ j ≤ 100n are obtained.

Step A.2. Since the vectors v(j) = (v
(j)
1 , . . . , v

(j)
n ), 1 ≤ j ≤ 100n, do not

lie necessarily in [0, 10]n (so neither in Aε(y)), we can done some

random location-scale trasnformations to put them into [0, 10]n.

These transformations do not modify the required fact that

max1≤i≤n−1 |Ui(v(j))− Ui(y)| ≤ ε.

A.2.1. If v
(j0)
i0

< 0 for some i0, j0, we define u
(j)
i = v + v

(j)
i , 1 ≤

i ≤ n, 1 ≤ j ≤ 100n, where v is choosen at random between

−min1≤i≤n,1≤j≤100n v
(j)
i and 1−min1≤i≤n,1≤j≤100n v

(j)
i . Oth-

erwise, u
(j)
i = v

(j)
i , 1 ≤ i ≤ n, 1 ≤ j ≤ 100n.

A.2.2. Each vector u(j) is divided by max1≤i≤n u
(j)
i and multiplied

by a random number choosen in [0, 10] to obtain the vector

w(j).
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A.2.3. Take S = {w(j) : 1 ≤ j ≤ 100n} and approximate C(y) by∑100n
j=1 f(w(j))∑100n
j=1 g(w(j))

and D(y) by T ∗0 (y)− C(y)T ∗1 (y).

Step B. Finally, following the process designed in Step A, we choose k := 100

random samples y(i) of size n from the HN(10, 4) distribution and

approximate the mean and the mean squared error of ξ̊ by

1

k

k∑
i=1

D(y(i)) and
1

k

k∑
i=1

(D(y(i))− 10)2, respectively.

Remark 3.6. Notice that both ξ̂ and ξ̃ are equivariant estimators of the

location parameter ξ. So they have greater risk for the loss function W2

than ξ̊. Hence, in the previous simulation study, the MSE of ξ̊ should have

been smaller than the MSE of ξ̂ and ξ̃. That has not been the case because,

for the MRE estimator, we have not real estimates of ξ, but approximations

of these estimates obtained by a modification of the Monte Carlo method of

computing conditional expectations appearing as the numerator and denom-

inator of a quotient. But this is a possible issue to approximate minimum

risk estimations of a location parameter, and a possible way avoid the “curse

dimensionality problem”. 2

Remark 3.7. Although less interesting from the perspective of real appli-

cations, for completeness we now consider the problem of estimating the

scale parameter ξ when the location parameter η is known, say η = η0. In

this case, the joint density of Y1, . . . , Yn is

fξ(y1, . . . , yn) =
1

ηn0

√
2

π

n

exp

{
− 1

2η2
0

n∑
i=1

(yi − ξ)2

}
I[ξ,+∞[(y1:n),

where y1:n := min{y1, . . . , yn}. This family remains invariant under trans-

lations of the form ga(y1, . . . , yn) = (y1 − a, . . . , yn − a).
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The equivariant estimator of minimum mean squared error of the loca-

tion parameter ξ is

T1 = Ȳ − η0√
2πn

exp
{
− n

2η20

(
Y1:n − Ȳ

)2}
Φ
[√

n
η0

(
Y1:n − Ȳ

)] .

In fact, for the loss function W ′2(ξ, x) = (x− ξ)2, the MRE estimator of

the location parameter ξ is the Pitman estimator

T1(y1, . . . , yn) =

∫ +∞
−∞ uf0(y1 − u, ..., yn − u)du∫ +∞
−∞ f0(y1 − u, ..., yn − u)du

.

For y ∈ Rn, we write ȳ for the mean of y1, . . . , yn. After some algebraic

manipulations, we obtain:

∫ +∞

−∞
uf0(y1 − u, ..., yn − u)du =( √

2

η0
√
π

)n
exp

{
− 1

2η2
0

(
n∑
i=1

y2
i − nȳ2

)}
η0√
n

×
[
− η0√

n
exp

{
− n

2η2
0

(y1:n − ȳ)2

}
+ ȳ
√

2πΦ

(√
n

η0
(y1:n − ȳ)

)]
and ∫ +∞

−∞
f0(y1 − u, ..., yn − u)du =( √

2

η0
√
π

)n
exp

{
− 1

2η2
0

(
n∑
i=1

y2
i − nȳ2

)}
η0√
n

√
2πΦ

[√
n

η0
(y1:n − ȳ)

]

and the statement follows easily from these expressions. 2

3.4 Equivariant estimation of the scale parameter

of the general half-normal distribution

Unlike what happens with the location parameter ξ, for the scale parameter

η an explicit expression for the MRE estimator is obtained.
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Recall that an estimator T of the scale parameter η is equivariant if

T (a+ bx1, . . . , a+ bxn) = bT (x1, . . . , xn), for all a ∈ R and all b > 0.

Proposition 3.3. When using the loss function W1(x; ξ, η) = η−2(x− η)2,

the MRE estimator η̊ of η is

η̊(y) =

√
n− 1

2

Γ
(
n+1

2

)
Γ
(
n+2

2

) t(n+ 1)

([√
n(n+1)
n−1

ȳ−y1:n
S(y) ,∞

[)
t(n+ 2)

([√
n(n+2)
n−1

ȳ−y1:n
S(y) ,∞

[)S(y).

where t(n) denotes the Student’s t-distribution with n degrees of freedom and

S2 is the sample variance.

Proof 1. The MRE estimator of the scale parameter η, when using the loss

function W1, is

η̊(y) =

∫ +∞
0 vnf ′(vy′1, ..., vy

′
n−1)dv∫ +∞

0 vn+1f ′(vy′1, ..., vy
′
n−1)dv

,

where f ′ is the joint density when η = 1 of Y ′i := Yi − Yn, 1 ≤ i ≤ n − 1,

and y′i := yi − yn, 1 ≤ i ≤ n− 1.

Notice that

f ′(y′1, ..., y
′
n−1) =

∫ +∞

−∞
f(y1 + t, ..., yn + t)dt

=

(
2

π

)n
2

exp

{
−1

2

n∑
i=1

y2
i +

n

2
ȳ2

}∫ ∞
−y1:n

exp
{
−n

2
(t+ ȳ)2

}
dt

=
1√
n

(
2

π

)n
2

exp

{
−1

2
(n− 1)S2(y)

}∫ ∞
√
n(ȳ−y1:n)

exp

{
−1

2
u2

}
du.

Hence, for k ∈ N, applying Fubini’s Theorem after a suitable change of
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variables in the inner integral,

Ik(y) :=

∫ ∞
0

vkf ′(vy′1, ..., vy
′
n−1)dv

=
1√
n

(
2

π

)n
2
∫ ∞

0
vk exp

{
−1

2
(n− 1)v2S2(y)

}∫ ∞
√
n(ȳ−y1:n)

exp

{
−1

2
u2

}
dudv

=
1√
n

(
2

π

)n
2
∫ ∞
√
n(ȳ−y1:n)

Jk(t, y)dt.

where

Jk(t, y) :=

∫ ∞
0

vk+1 exp

{
−1

2
v2(t2 + (n− 1)S2(y))

}
dv =

2k/2Γ
(
k+2

2

)
(t2 + (n− 1)S2(y))

k+2
2

.

where, for t ≥
√
n(ȳ − y1:n), we have made the change of variables w =

1
2v

2(t2 + (n− 1)S2(y)).

So,

Ik(y) =
1√
n

(
2

π

)n
2

2k/2Γ

(
k + 2

2

)∫ ∞
√
n(ȳ−y1:n)

dt

(t2 + (n− 1)S2(y))
k+2
2

=
2
n+k
2 Γ

(
k+1

2

)
√
nπ

n−1
2 (n− 1)

k+1
2 S(y)k+1

t(k + 1)

([√
n(k + 1)

n− 1

ȳ − y1:n

S(y)
,∞

[)
.

Finally

η̊(y) =
In(y)

In+1(y)
=

√
n− 1

2

Γ
(
n+1

2

)
Γ
(
n+2

2

) t(n+ 1)

([√
n(n+1)
n−1

ȳ−y1:n
S(y) ,∞

[)
t(n+ 2)

([√
n(n+2)
n−1

ȳ−y1:n
S(y) ,∞

[)S(y).

2

Remark 3.8. A simulation study has been performed to compare the be-

havior of the unbiased estimator η̃, the maximum likelihood estimator η̂

and the MRE estimator η̊ using 1000 simulated random samples of size

n = 10, 20, 30 from the HN(10, 4) distribution. The results obtained for the

means and the mean squared errors of the three estimators are presented in

Table 5 and Figure 5 (as before, a dotted red line represents the mean).
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n η̃ η̂ η̊

10 3.996009± 1.052443 3.520680± 0.952987 3.568520± 0.929288

20 3.996575± 0.526328 3.760888± 0.458780 3.795590± 0.450882

30 4.015727± 0.324161 3.845478± 0.294937 3.871677± 0.291209

Table 3.5: Sample mean and MSE of the estimators calculated using 1000
random samples of size n from the HN(10, 4) distribution
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Figure 3.5: Box plots for the estimator η̊ for sample sizes n = 10, 20, 30 and
for the estimators η̃, η̂ y η̊ for sample sizes n = 10, 20, 30, respectively

Notice that both η̂ and η̃ are equivariant estimators of the scale param-

eter η. So they have greater risk for the loss function W1 than η̊. Hence

(see Table 5 and Figure 5), in the previous simulation study, the MSE of η̊
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is smaller than the MSE of η̂ and η̃. 2

Remark 3.9. Although less interesting from the perspective of real applica-

tions, for completeness we now consider the problem of estimating the scale

parameter η when the location parameter ξ is known, say ξ = ξ0. After

the shift (y1, . . . , yn) 7→ (y1 − ξ0, . . . , yn − ξ0), the statistical model remains

invariant under the transformations (dilations) of the form (y1, . . . , yn) 7→
(ay1, . . . , ayn), for a > 0. For the loss function W ′1(η, x) = (x− η)2/η2, the

MRE estimator of the scale parameter η is

T2 =
Γ(n+1

2 )
√

2Γ(n+2
2 )

√√√√ n∑
i=1

(Yi − ξ0)2 =
B(n+1

2 , 1
2)

√
2π

√√√√ n∑
i=1

(Yi − ξ0)2,

where Γ and B denote Euler’s gamma and beta functions. In fact, for the

loss function W ′1, the MRE estimator of η is

T2(y1, . . . , yn) =

∫ ∞
0

vnh1(v(y1 − ξ0), ..., v(yn − ξ0))dv∫ ∞
0

vn+1h1(v(y1 − ξ0), ..., v(yn − ξ0))dv

,

where

h1(y1, . . . , yn) =

(
2

π

)n
2

exp

{
−1

2

n∑
i=1

y2
i

}
I[0,+∞[(y1:n).

To simplify the notation, we assume without loss of generality that ξ0 =

0. The change of variable t = 1
2

∑n
i=1 y

2
i v

2 leads to, for k = n, n+ 1,

∫ ∞
0

vkh1(vy1, ..., vyn)dv = 2
n+k−1

2 π−
n
2

(
n∑
i=1

y2
i

)− k+1
2

Γ

(
k + 1

2

)
I[0,+∞[(y1:n),

and the assertion then follows easily.

Note also that, when ξ = ξ0,

1

n

n∑
i=1

(Yi − ξ0)2

is the minimum variance unbiased estimator of η2. This is a consequence of

the Lehmann-Scheffé Theorem and the facts that
∑n

i=1(Yi − ξ0)2 is a suffi-
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cient and complete statistic and η−2
∑n

i=1(Yi−ξ0)2 has a χ2(n) distribution.

A little more work shows that

Γ(n2 )
√

2Γ(n+1
2 )

√√√√ n∑
i=1

(Yi − ξ0)2 =
B(n2 ,

1
2)

√
2π

√√√√ n∑
i=1

(Yi − ξ0)2

is the minimum variance unbiased estimator of η. 2
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Part III

Cluster analysis



4
A comparison of bandwidth selectors for mean shift

clustering

4.1 Introduction

The mean shift algorithm was introduced by Fukunaga and Hostetler in a

seminal paper in 1975, with the goal of estimating the gradient of a mul-

tivariate density. They also showed that their algorithm can be helpful for

many applications in several pattern recognition problems, and particularly

pointed out its usefulness for clustering and data filtering.

Even if this algorithm was highlighted in the popular book by Silver-

man (1986) as an important application of kernel smoothing, it remained

relatively neglected in the Statistics literature, until it was “re-discovered”

by Cheng (1995), Carreira-Perpiñán (2006) and Comaniciu and Meer (2002)

for its applications in Engineering. Some recent contributions that make use

of the mean shift algorithm, either explicitly or implicitly, are Li, Ray and

Lindsay (2007), Ozertem and Erdogmus (2011), Genovese, Perone-Pacifico,

Verdinelli and Wasserman (2012) or Chacón and Duong (2013).

Being closely related to the problem of density gradient estimation, the

mean shift algorithm inherits its dependence on the choice of a suitable

bandwidth matrix. It was only recently (see Chacón and Duong (2013)

and Horová, Kolácek and Vopatová (2013)) that automatic methods for

bandwidth selection for density gradient estimation were proposed. The

goal of this paper is to provide a comparative study of the performance of

these automatic bandwidth selectors, not with respect to the problem of
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density gradient estimation, but regarding the clustering of the space that

they induce via the mean shift algorithm.

The rest of the paper is organized as follows. In Section 2 below the

clustering procedure derived from the mean shift algorithm is introduced.

A brief review of the existing bandwidth matrix selectors for density gradi-

ent estimation is contained in Section 3. The details of the simulation study

comparing these methodologies are given in Section 4 and some conclusions

are discussed in Section 5. Finally, we show in an Appendix the ascend-

ing property of the mean shift algorithm with an unconstrained bandwidth

matrix.

4.2 Mean shift clustering

Let us consider a probability density f : Rd → R, and denote by Df its

gradient vector, so that with the usual column notation for vectors x =

(x1, . . . , xd)
> we have

Df =
∂f

∂x
=
( ∂f
∂x1

, . . . ,
∂f

∂xd

)>
,

with > standing for the transpose operator.

The mean shift algorithm is a variant of the well-known gradient ascent

algorithm which is usually employed to find the local maxima of a given

function. Explicitly, given any starting point y0 ∈ Rd, the mean shift al-

gorithm iteratively constructs a sequence (y0,y1,y2, . . .) according to the

following updating mechanism

yj+1 = yj + ADf(yj)
/
f(yj), (4.1)

where A is a d×d positive definite matrix conveniently chosen to guarantee

the convergence of the sequence. The only difference with the usual gra-

dient ascent algorithm is that (4.1) uses the normalized gradient Df/f to

accelerate the convergence when the starting point belongs to a low-density

zone.

Since the shift at every step is done approximately along the gradient

direction it follows that the limit point of the mean shift sequence should
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be a local maximum of f (i.e., a mode of the density). This induces a

clustering scheme in which any two points are said to belong to the same

cluster whenever the sequences constructed from them as starting points

converge to the same mode of f . In that case, it is also common to say

that the two points belong to the same domain of attraction of such local

maximum, and this type of clustering is called modal clustering.

Moreover, since the mean shift algorithm is applicable with any point in

Rd as starting point, eventually this clustering scheme induces a partition

of the whole space Rd into disjoint clusters. This partition, built up from

the knowledge of the density f , will be referred to as the ideal population

clustering. A precise definition of this ideal population clustering can be

found in Chacón (2012).

When the density f is unknown, but a sample X1, . . . ,Xn from f is

observed instead, the mean shift algorithm (4.1), with the density and the

density gradient estimated from the sample, yields a data-based clustering

of the whole space Rd.
The goal of most clustering methodologies is not to partition Rd, but

only the data sample. Nevertheless, it is clear that by partitioning the

whole space the mean shift algorithm induces, in particular, a clustering of

the data by assigning two data points to the same cluster if they belong to

the same component of the aforementioned partition of Rd.
The density and density gradient estimators considered here are of kernel

type. The kernel density estimator has the form

f̂H(x) = n−1
n∑
i=1

KH(x−Xi),

where the kernel K is a spherically symmetric d-variate density function, the

bandwidth matrix H is symmetric and positive definite, and we have used

the re-scaling notation KH(x) = |H|−1/2K(H−1/2x) (see Wand and Jones

(1995), Chapter 4). Then, following Chacón, Duong and Wand (2011),

the density gradient estimator is just the gradient of the kernel density

estimator, given by

Df̂H(x) = n−1
n∑
i=1

DKH(x−X) = n−1|H|−1/2H−1/2
n∑
i=1

DK
(
H−1/2(x−X)

)
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Being symmetric, the kernel K can be expressed as K(x) = 1
2k(x>x),

where the function k : R+ → R is known as the profile of K (see Comaniciu

and Meer (2002)). Furthermore, the kernel K is usually assumed to be

smooth and unimodal, so that g(x) = −k′(x) ≥ 0. Thus, following the ideas

of Fukunaga and Hostetler (1975), Chacón and Duong (2013) showed that

a sensible estimator of the normalized gradient Df(x)/f(x) is H−1mH(x),

where the term mH(x) =
∑n

i=1 ωi,H(x)Xi − x is known as the mean shift.

It is the difference between a weighted mean of the data and x, with the

weights ωi,H(x) defined as

ωi,H(x) =
g
(
MH(x,Xi)

)∑n
`=1 g

(
MH(x,X`)

) ,
where MH denotes the Mahalanobis distance MH(x,y) = (x−y)>H−1(x−
y). Hence, by plugging this estimate in (4.1) and taking A = H, the

updating mechanism of the data-based mean shift algorithm simply reads

yj+1 =

n∑
i=1

ωi,H(yj)Xi. (4.2)

Originally, Fukunaga and Hostetler (1975) developed the mean shift al-

gorithm using a constrained bandwidth matrix consisting of a scalar h2 times

the identity matrix, h > 0, and Comaniciu and Meer (2002) showed that for

this constrained form the choice of A = H guarantees that the mean shift

sequence is convergent, as long as the kernel K has a convex and monoton-

ically decreasing profile k. In the Appendix below we show that (4.2), the

unconstrained version of the mean shift algorithm, is also convergent.

4.3 Bandwidth matrix selectors

As it is common for all kernel smoothing methods, the performance of mean

shift clustering is highly influenced by the choice of the bandwidth matrix.

Since the element having the biggest impact on the performance of the mean

shift algorithm appears to be the density gradient, it seems reasonable that a

bandwidth matrix chosen to obtain a good kernel density gradient estimate

could lead to an appealing clustering via the mean shift algorithm.
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Surprisingly, the literature tackling the problem of automatic, data-based

bandwidth matrix selection for kernel density gradient estimation is quite

scant and recent. We are aware only of two contributions dealing with this

problem: Chacón and Duong (2013) and Horová, Kolácek and Vopatová

(2013). In both papers the measure to evaluate the performance of the

kernel density gradient estimator Df̂H is the mean integrated squared error,

defined as

MISE(H) =

∫
Rd
‖Df̂H(x)− Df(x)‖2dx,

where ‖ · ‖ denotes the usual Euclidean norm in Rd. With this goal in mind,

the optimal bandwidth for kernel density gradient estimation is taken to be

HMISE, the minimizer of the MISE function over the class of all symmetric

positive definite matrices.

In Chacón and Duong (2013), three bandwidth matrix selectors were

proposed for kernel estimation of the r-th derivative of a multivariate den-

sity f , for arbitrary r. They are defined as the minimizers of certain criteria

which aim to estimate the MISE. These criteria can be shown to generalize

the well-known cross validation (CV), plug-in (PI) and smooth cross vali-

dation (SCV) methodologies proposed earlier for the base case of univariate

density estimation (i.e., d = 1 and r = 0). In the case of the density gradient

(arbitrary d and r = 1), these criteria can be written as

CV(H) = −n−2
n∑

i,j=1

∇2K2H(Xi −Xj) + 2[n(n− 1)]−1
∑
i 6=j
∇2KH(Xi −Xj)

PI(H) = n−1|H|−1/2tr
{
H−1R(DK)

}
− 1

4{(vec>Id)⊗ (vec>H)⊗ (vec>H)}n−2
n∑

i,j=1

D⊗6KG(Xi −Xj)

SCV(H) = n−1|H|−1/2tr
{
H−1R(DK)

}
− n−2

n∑
i,j=1

∇2
{
K2H+2G − 2KH+2G +K2G

}
(Xi −Xj),

respectively. Here, ∇2 =
∑d

i=1(∂2/∂x2
i ) is the Laplace operator, tr denotes

the trace operator, vec is the vectorization operator that transforms a matrix

into a vector by stacking the columns of the matrix one underneath the other,

⊗ denotes the Kronecker product, R(DK) =
∫
Rd DK(x)DK(x)>dx is a d×d
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matrix, the vector D⊗6KG ∈ Rd6 includes all 6-th order partial derivatives

of KG, arranged in a particular order (see Chacón and Duong (2010)), and

G is a pilot bandwidth matrix. Computation of these criteria is not simple,

but efficient implementations were proposed in Chacón and Duong (2014).

In Horová, Kolácek and Vopatová (2013) an iterative method (IT) was

proposed to treat the cases r = 0 and r = 1 for arbitrary d. These authors

noted that the asymptotic approximation of the optimal bandwidth HMISE,

so-called HAMISE, can be characterized as the solution of a particular equa-

tion involving the unknown density f . So a sensible choice for the bandwidth

is introduced as the solution of a data-based estimate of this equation, which

for r = 1 can be written as

(d+ 2)n−1|H|−1/2tr
{
H−1R(DK)

}
4n−2

n∑
i,j=1
i 6=j

∇2
{
K4H − 2K3H +K2H

}
(Xi −Xj) = 0.

Again, the computational details to obtain the solution of this equation are

not simple, and an iterative method to solve it (hence the name of this

bandwidth selector) is proposed in Horová, Kolácek and Vopatová (2013).

All these methodologies focus on the most general form for the band-

width matrix H, which is only required to be symmetric and positive definite.

Other popular choices for the bandwidth matrix include constrained forms

such as H being diagonal, H = diag(h2
1, . . . , h

2
d), or the parametrization us-

ing a single bandwidth h > 0 so that H = h2Id, with Id denoting the d× d
identity matrix.

The thorough study of Wand and Jones (1993) reported that for density

estimation, in general, the diagonal parametrization results in a small loss of

efficiency, but the single-bandwidth estimator should not be blindly used for

unscaled multivariate data (see also Chacón (2009)). For density derivative

estimation, Chacón, Duong and Wand (2011) showed that the loss of effi-

ciency due to the use of simpler bandwidth matrix parametrizations can be

even more severe. However, the goal of cluster analysis is quite different from

that of density estimation, so that not very precise density estimates may

equally lead to nearly optimal clusterings (see Chacón (2012), Figure 6, for
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an illustration of this phenomenon), so in principle the simpler parametriza-

tions should not be completely discarded. In fact, the very simple diagonal

bandwidth proposal of Azzalini and Torelli (2007) was shown to produce

good results in Chacón and Duong (2013). Therefore, unconstrained but

also diagonal bandwidth matrices will be considered in the simulation study

below.

4.4 Simulation study

The main goal of this paper is to provide an empirical comparison of the

performance of several bandwidth selection methods for mean shift cluster-

ing.

Five true models are analyzed in the study, which cover a wide variety of

cluster shapes. Two of these densities are normal mixture densities; hence

a parametric cluster analysis of these two models, by fitting an estimated

density through maximum likelihood, would probably yield quite good re-

sults (see Chacón and Duong (2013), and references therein). But to exploit

the nonparametric nature of the mean shift approach we also include three

densities with more intricate features which are not likely to be accurately

recovered in a parametric setup. Figure 4.1 shows the true densities and the

ideal population clusterings associated to each of these models, along with

the names which we will use to refer to them. A precise definition of these

models can be found in Chacón and Duong (2013).

The automatic bandwidth selectors compared in this study are the CV,

PI and SCV bandwidths proposed in Chacón and Duong (2013) for den-

sity gradient estimation, the IT method introduced in Horová, Kolácek

and Vopatová (2013), the normal-scale bandwidth (NS) for density gra-

dient estimation introduced in Chacón, Duong and Wand (2011), and the

simple proposal AT of Azzalini and Torelli (2007), which shrinks the diag-

onal normal-scale bandwidth for density estimation by a factor 3/4 (hence,

it could be considered as a diagonal variant of the previous one). For the

CV, PI, SCV and IT methods we also considered their respective diagonal

versions, which are obtained by minimizing (or solving, in the case of IT)

the objective criteria over the class of all positive definite diagonal matrices.

65



A comparison of bandwidth selectors for mean shift clustering

Trimodal III Quadrimodal

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

4-crescent Broken ring

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Eye

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

Figure 4.1: The five true density models included in the simulation study,
with the ideal population clustering shown in different colors.
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These are denoted by adding ‘D’ to their initials (i.e., CVD, PID, SCVD

and ITD), while their unconstrained counterparts are represented by CVU,

PIU, SCVU and ITU, respectively.

The measure of the performance of each of these methods is completely

different than that employed in Chacón and Duong (2013). There, different

clusterings of the data were compared by means of the adjusted Rand index

criterion, introduced in Hubert and Arabie (1985). Here, the interest is not

to compare different clusterings of the data, but clusterings of the whole

space Rd. Therefore, it is necessary to use a distance between clusterings of

Rd, and we will use the distance in measure proposed in Chacón (2012).

This distance is defined as follows: given two clusterings C = {C1, . . . , Cr}
and D = {D1, . . . , Ds} of a probability measure P , with r ≤ s, the distance

in measure between them is defined as

dP (C,D) =
1

2
min
σ∈Ps

s∑
i=1

P (Ci4Dσ(i)),

where Ps denotes the set of permutations of {1, 2, . . . , s}, the partition C

has been enlarged by adding s − r empty sets Cr+1 = · · · = Cs = ∅ if

necessary, and4 denotes the symmetric difference between two sets, namely

C4D = (C ∩Dc) ∪ (Cc ∩D).

Even if the true densities are known in a simulation study, the exact value

of dP (C,D) is difficult to compute in practice. We used a fine enough grid

defined over a large rectangle chosen to contain at least 0.999 probability

mass. This regular grid is ruled in rectangles by considering a tiny rectangle

centered at each grid point with its sides of length half the distance to the

next grid point in each coordinate direction. Each grid point is assigned to

one cluster via the mean shift algorithm, and hence every cluster can be ap-

proximated by the union of tiny rectangles surrounding the grid points that

are labeled to belong to it. By computing the probability mass of each tiny

rectangle and adding up the contributions corresponding to the rectangles

that approximate each symmetric difference we obtain an approximation of

P (Ci4Dj) for each i, j = 1, . . . , s. Finally, finding the minimum over all the

permutations Ps is known as a linear sum assignment problem, and efficient

algorithms to solve it are shown, e.g., in Papadimitriou and Steiglitz (1982).
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One hundred samples of size n = 500 from each density in the study were

drawn. For each of these samples all the ten bandwidth selectors NS, AT,

CVU, CVD, PIU, PID, SCVU, SCVD, ITU and ITD were computed and a

partition in clusters of the whole space was obtained through the mean shift

algorithm. Finally, we recorded the distance in measure between such data-

based partitions and the ideal population clustering. The sample medians

and interquartile ranges (IQR) of these distances over the 100 samples are

summarized in Table 4.1. The median and the IQR were preferable over

the more usual mean and standard deviation because the distribution of

these random distances in measure was generally skewed and contained some

outliers.

In view of Table 4.1 it is clear that no bandwidth selector is uniformly

preferable over the others. However, it seems clear that NR and AT nearly

always induced a poor clustering (an exception is NR for the broken ring

model). The reason for this bad performance could be partially explained by

Table 4.2. There it is shown the distribution of the number of clusters ob-

tained by each method along the 100 simulation runs for each density model

(some unusually large number of clusters have been omitted for clarity). In

Table 4.2 it is possible to appreciate that both NR and AT normally induce

a number of clusters smaller than those appearing in the true model, which

can be interpreted as a well-known oversmoothing effect, due to the fact

that these two bandwidth selectors are based on a normal reference rule.

As noted before, an exception is the broken ring model, where NR correctly

identifies 5 clusters in all the cases. We acknowledge, however, that the den-

sity clustering approach of Azzalini and Torelli (2007) is not based on the

mean shift algorithm; the goal here was to test if their appealingly simple

bandwidth proposal were also suitable for mean shift clustering.

The performance of the IT methods is somehow erratic. ITU is the best

method for the trimodal mixture density, and has moderately good results

for the quadrimodal mixture density as well, but both ITU and ITD are

unable to deal with more complicated features like those appearing in the

last three density models. Again, a partial explanation for this is provided

in Table 4.2, where it is shown that ITU, and especially ITD, tend to par-

tition the space in only one cluster, thus presenting a highly oversmoothed
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Bandwidth selector
Model NR AT CVU CVD PIU

Trimodal III 6.37e-02 6.37e-02 1.04e-03 2.05e-04 9.96e-05
(6.36e-02) (5.15e-06) (5.29e-02) (3.42e-02) (4.60e-03)

Quadrimodal 9.70e-02 9.68e-02 1.63e-02 4.75e-02 3.16e-02
(2.34e-04) (1.34e-04) (4.35e-02) (4.59e-02) (4.65e-02)

4-crescent 1.21e-01 2.44e-01 2.03e-21 2.24e-21 2.44e-03
(0.00e+00) (0.00e+00) (5.16e-22) (5.34e-04) (1.49e-02)

Broken ring 3.62e-14 2.81e-01 3.72e-14 3.36e-14 2.58e-14
(6.12e-15) (9.57e-02) (9.90e-15) (4.81e-15) (5.33e-15)

Eye 2.67e-02 2.67e-02 1.61e-15 2.44e-02 3.24e-16
(4.51e-17) (1.04e-17) (2.67e-02) (2.67e-02) (7.03e-17)

Bandwidth selector
Model PID SCVU SCVD ITU ITD

Trimodal III 9.26e-05 3.19e-02 6.37e-02 7.02e-05 1.04e-04
(1.27e-03) (6.36e-02) (6.36e-02) (1.98e-02) (5.19e-02)

Quadrimodal 4.74e-02 9.70e-02 9.68e-02 5.24e-02 9.79e-02
(4.77e-02) (3.09e-04) (2.13e-04) (4.82e-02) (2.05e-01)

4-crescent 3.44e-03 1.90e-21 1.84e-21 1.21e-01 3.70e-01
(3.91e-02) (2.42e-05) (5.51e-22) (1.23e-01) (0.00e+00)

Broken ring 2.53e-14 3.20e-14 3.12e-14 3.77e-01 3.77e-01
(6.12e-15) (4.59e-15) (4.19e-15) (0.00e+00) (0.00e+00)

Eye 3.37e-16 4.40e-16 4.50e-16 3.24e-01 3.24e-01
(3.20e-04) (2.54e-17) (3.34e-17) (0.00e+00) (0.00e+00)

Table 4.1: Sample median and (interquartile range) for the distance in mea-
sure between the data-based clusterings induces by each bandwidth selec-
tion method and the ideal population clustering along 100 simulation runs
of sample size n = 500 of each distribution. The significantly best methods
for each model are marked in bold font.
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Trimodal Quadrimodal

No. of clusters
H 1 2 3 4 5 6 7

NR 1 54 43 2 0 0 0
AT 1 90 8 0 0 0 0
CVU 1 11 34 28 12 9 1
CVD 0 13 41 24 12 2 3
PIU 1 14 51 23 10 1 0
PID 0 10 48 31 9 0 0
SCVU 4 46 45 5 0 0 0
SCVD 1 50 45 3 0 0 0
ITU 2 20 57 18 3 0 0
ITD 1 19 62 14 2 0 0

No. of clusters
H 1 2 3 4 5 6 7

NR 0 87 13 0 0 0 0
AT 0 97 3 0 0 0 0
CVU 0 14 28 31 16 7 2
CVD 0 19 44 27 8 1 0
PIU 0 20 30 30 13 5 0
PID 0 18 36 31 12 1 0
SCVU 0 83 16 1 0 0 0
SCVD 0 86 14 0 0 0 0
ITU 0 43 39 13 3 1 0
ITD 38 50 10 2 0 0 0

Eye Broken ring

No. of clusters
H 1 2 3 4 5 6 7

NR 0 0 0 100 0 0 0
AT 0 0 1 98 1 0 0
CVU 0 0 0 44 52 3 1
CVD 0 0 0 30 42 12 3
PIU 0 0 0 0 78 18 3
PID 0 0 0 0 67 28 4
SCVU 0 0 0 0 99 1 0
SCVD 0 0 0 0 99 1 0
ITU 81 8 8 3 0 0 0
ITD 100 0 0 0 0 0 0

No. of clusters
H 1 2 3 4 5 6 7

NR 0 0 0 0 100 0 0
AT 48 33 12 6 1 0 0
CVU 0 0 9 2 86 2 1
CVD 0 0 0 0 98 1 0
PIU 0 0 0 0 95 5 0
PID 0 0 0 0 92 7 1
SCVU 0 0 0 0 98 2 0
SCVD 0 0 0 0 100 0 0
ITU 100 0 0 0 0 0 0
ITD 100 0 0 0 0 0 0

4-crescent

No. of clusters
H 1 2 3 4 5 6 7 8 9

NR 0 8 82 7 2 0 1 0 0
AT 0 99 1 0 0 0 0 0 0
CVU 0 0 1 81 18 0 0 0 0
CVD 15 1 0 63 17 0 3 0 0
PIU 0 0 0 13 28 37 18 2 2
PID 0 0 0 12 23 43 14 5 3
SCVU 0 0 0 74 24 2 0 0 0
SCVD 0 0 0 76 21 2 1 0 0
ITU 22 16 45 9 4 2 0 0 0
ITD 100 0 0 0 0 0 0 0 0

Table 4.2: Distribution of the number of clusters for each clustering method
along the five density models. The true number of clusters is marked in
bold. 70
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estimate. The fact that both methods found only one cluster in all the cases

for the broken ring model is the reason why the IQR of the distribution

of their distances in measure is exactly zero (the distance in measure is a

constant variable in this case).

The PI bandwidth selectors induce the clusterings with lowest distance

in measure for the broken ring and eye models, and are close to the best

performance in the two normal mixture density models, ranking second to

best in terms of median error. They fail, however, to capture the features of

the 4-crescent density, with a tendency to find more clusters than present (as

seen in Table 4.2). The CV bandwidths perform disappointingly in the case

of the trimodal mixture density, but CVU ranks first for the quadrimodal

density model and both CVU and CVD obtain moderately good results for

the densities with complicated features, frequently finding the right number

of clusters. Both SCV proposals are probably the best ones concerning the

right number of clusters for the densities with complicated features, and in-

deed they have the best marks for the 4-crescent model, but their behaviour

is far from optimal for the normal mixture densities, with performances close

to NR and AT.

With respect to the unconstrained-diagonal bandwidth dilemma, our

study seems to suggest that diagonal bandwidths perform worse than their

unconstrained counterparts in most of the cases. However, perhaps the use

of diagonal matrices should not be blindly discarded, since indeed in some

cases their performance is comparable or even slightly better than that of

the unconstrained ones, but with a clearly smaller computational cost.

4.5 Conclusion

We explored here the influence of the bandwidth matrix in the mean shift

algorithm from the point of view of modal clustering. Due to the crucial

influence of the density gradient estimate in the mean shift algorithm we

analyzed the practical performance of ten bandwidth selectors originally

designed for density gradient estimation.

None of the ten automatic bandwidth matrix selectors showed a consis-

tent superior performance over the rest of the methods in our simulation
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study, but surely neither NR nor AT can be recommended for general use.

All the CV, PI, SCV and IT proposals are best for one of the models, but

utterly fail to identify the cluster structure for one, two or even three of the

remaining ones. This suggests that the problem of bandwidth selection for

mean shift clustering, though related, is different from that of bandwidth

selection for density gradient estimation, and presents its own peculiarities,

which undoubtedly deserve to be studied in further detail.

Since CVU and PIU are the only methods that failed solely for one of the

density models, any of these two bandwidth matrix selectors would represent

a cautious recommendation in practice, out of the ten methods studied here.

4.6 Appendix

Here it is shown that when the profile of the kernel is a bounded, convex,

non-increasing, differentiable function, then the mean shift is an ascend-

ing algorithm; that is, the points of the sequence (y0,y1,y2, . . .) obtained

through the mean shift algorithm attain sequentially increasing values of the

estimated density f̂H, so that the sequence
(
f̂H(y0), f̂H(y1), f̂H(y2), . . .

)
is

convergent.

Proof. Notice that since K(x) = 1
2k(x>x) it follows that 2|H|1/2KH(x −

Xi) = k
(
MH(x,Xi)

)
. Therefore,

2n|H|1/2
{
f̂H(yj+1)− f̂H(yj)

}
=

n∑
i=1

{
k
(
MH(yj+1,Xi)

)
− k
(
MH(yj ,Xi)

)}
.

Then, following Comaniciu and Meer (2002), the convexity of the profile k

implies that

k
(
MH(yj+1,Xi)

)
− k
(
MH(yj ,Xi)

)
≥ k′

(
MH(yj ,Xi)

){
MH(yj+1,Xi)−MH(yj ,Xi)

}
.
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Hence, expanding the difference between the two Mahalanobis distances we

obtain

2n|H|1/2
{
f̂H(yj+1)− f̂H(yj)

}
≥ −

n∑
i=1

g
(
MH(yj ,Xi)

)
×
{
y>j+1H

−1yj+1 − y>j H−1yj − 2(yj+1 − yj)
>H−1Xi

}
.

But definition (4.2) of the updating step entails that
∑n

i=1 g
(
MH(yj ,Xi)

)
Xi

=
∑n

i=1 g
(
MH(yj ,Xi)

)
yj+1 so that it is possible to replace Xi for yj+1 in

the last term of the previous display, and simplify to get

2n|H|1/2
{
f̂H(yj+1)− f̂H(yj)

}
≥

n∑
i=1

g
(
MH(yj ,Xi)

)
MH(yj ,yj+1) ≥ 0,

so the sequence
(
f̂H(y0), f̂H(y1), f̂H(y2), . . .

)
is non-decreasing and bounded,

hence convergent.
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5
Conclusions

Some of the main results obtained in this Thesis are the following:

• We use Fourier transform techniques to obtain exact expressions for

the mean integreated squared error of kernel distribution function es-

timators. These expressions are then employed to analyze the asymp-

totic behavior of the kernel estimators optimal bandwidth sequence in

its greatest generality, including the cases where superkernels and the

sinc kernel are used. The results thus obtained can guide our steps in

order to develope automatic bandwidth selectors in the future.

• We show the existence of classes of distributions for which the kernel

distribution estimator presents a first-order improvement over its em-

pirical counterpart, opposite to the usual situation, where only second-

order improvements are possible.

• In relation to the half-normal distribution, we have developed an ex-

plicit expression for the minimum risk equivariant (MRE) estimator

of the scale parameter and we have determined the MRE estimators

of scale and location parameters when the other one is unknown.

• We have modified a natural Monte Carlo method of approximation

of conditional expectations in order to approximate the MRE estima-

tion of the location parameter of a half-normal distribution. Several

simulations have been performed to analyze the behavior of this two

methods obtaining a wide variety of graphics about this.
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• The mean shift algorithm is used as the basis for nonparametric,

density-based clustering. We combine recent advances in multivari-

ate bandwidth selection for density gradient estimation with a novel

population background proposal for cluster analysis to compare the

performance of several nonparametric clustering methods in practice.

• Our conclusions suggest that the problem of bandwidth selection for

mean shift clustering presents its own peculiarities and deserves fur-

ther study. None of of the existing bandwidth selection methods dom-

inated all the others, but the cross-validation and plug-in selectors for

density gradient estimation show promise as automatic standards for

nonparametric mean shift clustering.
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6
Future Research

We enumerate the most important questions and points that have appeared

during the development of this dissertation which will be studied in the near

future.

6.1 R package

Nowadays, there are several important packages in R in relation to kernel

estimation. Some of them are KernSmooth (Wand, 2006), sm (Bowman and

Azzalini, 2007) and ks (Duong, 2013).

The KernSmooth package is the first important package for kernel esti-

mation. In this package, Wand implements functions for kernel smoothing

and density estimation corresponding to the book Kernel Smoothing (Wand

and Jones, 1995).

The sm package provides most of the smoothing methods for nonpara-

metric regression and density estimation published in the book Applied

Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus

Illustrations (1997), by A. Azzalini and A. Bowman.

The ks package is focuses on kernel density estimation for multivariate

data. In this package several tools are implemented such as diagonal and

unconstrained data-driven bandwidth matrices for kernel density estimation

and selectors for 1- to 6-dimensional data.
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We are planning to create a new R package with several necessary and

unavailable functions in kernel estimation. We are interested in implement-

ing modal clustering methods such as the mean shift algorithm. Besides, it

will be useful to include in the development of this package several variants

of the mean shift algorithm like median shift, medioid shift and others.

To improve its applicability it would be convenient to use Improved Fast

Gauss Transform (Raykar, Duraiswami and Zhao, 2010) to compute each

step in the mean shift algorithm. To our knowledge, this fast transform has

not been implemented in R to date.

6.2 New methods for bandwidth selection

In Chapter 2 of this thesis we have developed several new formulas to quan-

tify the MISE of the kernel distribution estimator in terms of characteristic

functions. Using these expressions we want to propose new bandwidth se-

lectors based on these formulas.

For instance, replacing the characteristic function of the distribution

with its empirical counterpart we would obtain an unbiased estimator of the

MISE (perhaps shifted by a quantity independent of the bandwidth). This

would lead us to a new kind of cross-validation bandwidth selector for kernel

distribution function estimation. It would be interesting then, to compare

this new cross-validation criterion with that of Bowman, Hall and Prvan

(1998).

Looking further afield, if the proposed selector behaves like other cross-

validation bandwidths, which tend to be quite variable, it would be inter-

esting to investigate if one could modify this selector as in Chiu (1992), to

obtain a more stabilized version.

6.3 Integrated regression

In a seminal paper, Stute (1997) proposed to use the integrated regression

function for testing the goodness of fit of a parametric regresion model. The

proposed procedures are useful to test if the regression function belongs to

a specific family or not.
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However, little is known about the estimation of this integrated regres-

sion function. Stute (1997) showed that it can be empirically estimated, in a

way that makes it look like the natural analogue of the distribution function

in the regression setting.

It would be interesting to study the problem of the estimation of the

integrated regression function in greater detail, and particularly, to pro-

pose alternative smooth estimators, since the empirical one resembles the

empirical distribution function in the sense that it is not continuous. In

this context, not only kernel but also local polynomial estimators could be

proposed and analyzed.

6.4 Optimal bandwidth selection for other error

measures

The methodology used in most of this thesis for the problem of distribution

function estimation is based on the MISE. Little is known, however, about

the problem of selecting the bandwidth in kernel distribution function es-

timation with respect to the uniform error. Most papers dealing with this

error measure are concerned only with conistency results.

We are interested in developing methods to obtain optimal bandwidth

selectors in the case where the performance of the kernel distribution func-

tion estimator is measured by the uniform error.

6.5 Fast Fourier Transform

Fast implementations of kernel density estimators based on the use of the

fast Fourier transform are commonly used in statistical sofware. A faster

implementation for the kernel distribution estimator would be a really de-

sirable tool.

Along the writing of the Chapter 2 of this thesis we realized that there

are also explicit inversion formulas that are useful to express a distribution

function from its characteristic function (namely, the so-called Gil-Pelaez

formula). Using these formulas it would be possible to develop a Fast Fourier

Transform implementation of the kernel distribution function estimator.

81



A
Simulation Programs

The programs for the simulations given in the papers of this Thesis have

been done through the statistical software and programming environment

R.

Simulations in Chapter 3

Conditional Expectation Calculation

The function simulacionBinormal generates an approximation of E(Y |X =

1) and the boxplots of the Figure 1 for (X,Y ) such as in Example 1. There

are 3 inputs: epsilon, numerosimulaciones (the number of replications) and

tamanomuestra (the sample size).

library(mvtnorm)

simulacionBinormal<-function(epsilon=0.1,numerosimulaciones=50,tamanomuestra

=c(10,20,30)){

a<-c()

esperanza<-c()

for(i in tamanomuestra){

muestrafinal<-matrix(,1,2)

while(dim(muestrafinal)[1]<(i*numerosimulaciones+1)){

muestra<-rmvnorm(1,mean=c(0,0),sigma=matrix(c(1,0.5,0.5,1),2,2))

if((muestra[1]<(1+epsilon))&&(muestra[1]>(1-epsilon))){

muestrafinal<-rbind(muestrafinal,muestra)
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}

}

for(z in 0:(numerosimulaciones-1)){

esperanza<-c(esperanza,sum(muestrafinal[1+z*i+1:i,2])/i)

}

}

png(filename=paste("Graph_Binormal_Eps",epsilon,"and",numerosimulaciones,

"rep.png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7),ylim=c(min(esperanza)-1,

max(esperanza)+1))

for(s in 0:(length(tamanomuestra)-1)){

estim<-esperanza[ s*numerosimulaciones+1:numerosimulaciones ]

boxplot(estim,add=T,at=s+1,width=1,cex.axis=1.5)

segments(s+1-0.45,mean(estim),s+1+0.45,mean(estim),col=2,lwd=3,lty=3)

mtext(tamanomuestra[s+1],1,at=s+1)

a<-c(a,mean(estim))

}

abline(h=0.5)

dev.off()

save(a,esperanza,file=paste("Sim_Binormal_Eps",epsilon,"_",numerosimulaciones,

"rep.RData",sep=""))

}

simulacionBinormal(0.01,100,c(100,1000,5000))

simulacionBinormal(0.1,100,c(100,1000,5000))

The function simulacionBinormalSenCos generates an approximation of

E(V |U = 0.5) and the boxplots of the Figure 2 for (U,V) such as in the

example 2. There are 3 inputs: epsilon, numerosimulaciones (the number of

replications) and tamanomuestra (the sample size).

library(mvtnorm)
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simulacionBinormalSenCos<-function(epsilon=0.1,numerosimulaciones=50,tamanomuestra

=c(10,20,30)){

esperanza<-c()

for(i in tamanomuestra){

muestrafinal<-matrix(,1,2)

while(dim(muestrafinal)[1]<(i*numerosimulaciones+1)){

muestra<-rmvnorm(1,mean=c(0,0),sigma=matrix(c(1,0.5,0.5,1),2,2))

if(((cos(sum(muestra^2)))<(0.5+epsilon))&&((cos(sum(muestra^2)))

>(0.5-epsilon))){

muestrafinal<-rbind(muestrafinal,muestra)

}

}

for(z in 0:(numerosimulaciones-1)){

esperanza<-c(esperanza,sum(sin(muestrafinal[1+z*i+1:i,1]*muestrafinal

[1+z*i+1:i,2]))/i)

}

}

png(filename=paste("Graph_BinormalSenCos_Eps",epsilon,"and",numerosimulaciones,

"rep.png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7),ylim=c(min(esperanza)-1,

max(esperanza)+1))

a<-c()

for(s in 0:(length(tamanomuestra)-1)){

estim<-esperanza[ s*numerosimulaciones+1:numerosimulaciones ]

boxplot(estim,add=T,at=s+1,width=1,cex.axis=1.5)

segments(s+1-0.45,mean(estim),s+1+0.45,mean(estim),col=2,lwd=3,lty=3)

mtext(tamanomuestra[s+1],1,at=s+1)

a<-c(a,mean(estim))

}

dev.off()

save(a,esperanza,file=paste("Sim_BinormalSenCos_Eps",epsilon,"_",

numerosimulaciones,"rep.RData",sep=""))

}

simulacionBinormalSenCos(0.1,100,c(100,1000,5000))

simulacionBinormalSenCos(0.01,100,c(100,1000,5000))
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Parameters Estimation

The function simulacionHN generates an Excel archive where several pa-

rameters are saved in each column. Some of these parameters are ξ̃,
◦
ξ, ξ̂,

η̃,
◦
η and η̂. There are 6 inputs: the parameters ξ and η of the half-normal,

tamanovector (sample size), numeromuestras (number of replications), cuan-

tosyprima (number of vectors used to calculating the approximations) and

ep (epsilon).

library(Matrix)

library(nor1mix)

library(XLConnect)

simulacionHN<-function(xi=0,eta=1,tamanovector,numeromuestras=1,cuantosyprima

=100,ep){

nombre<-paste("resultados_xi",xi,"_eta",eta,"_",numeromuestras,"muestras_de

_tamano",tamanovector,"con",cuantosyprima,"valores_y_prima_y_",ep,"_como_

epsilon.xlsx",sep="")

wb<-loadWorkbook(nombre,create=T)

createSheet(wb,name="resultados")

nombresvariables<-c("cn","ey","vary","xitilde","etatilde","xigorro","etagorro",

"t0estrella","t1estrella","pho","xiyprima","etacirculo")

writeWorksheet(wb,t(nombresvariables),sheet=1,startRow=1,startCol=1,header=F,

rownames=F)

saveWorkbook(wb)

norma<-function(v,p=2){

return( sum(abs(v)^p)^(1/p) )

}

for(contador in 1:numeromuestras){

z<-rnorm(tamanovector)

x<-abs(z)

y<-xi+eta*x

cnfuncion<-function(x,n){

(2-2*pnorm(x))^n

}
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cn<-integrate(cnfuncion,0,3,n=tamanovector)$value

ey<-xi+eta*sqrt(2/pi)

vary<-((pi-2)/pi)*eta^2

xitilde<-( (sqrt(2/pi)*min(y)-cn*mean(y) ) / (sqrt(2/pi)-cn) )

etatilde<- (mean(y)-min(y))/(sqrt(2/pi)-cn)

xigorro<-min(y)

etagorro<-sqrt(sum((y-min(y))^2)/tamanovector)

etacirculo<-(gamma((tamanovector+1)/2)/gamma((tamanovector+2)/2))*sqrt

((tamanovector-1)/2)*sqrt(var(y))*((1-pt(sqrt((tamanovector*(tamanovector+1))

/(tamanovector-1))*((mean(y)-min(y))/sqrt(var(y))),tamanovector+1)))/((1-pt(

sqrt((tamanovector*(tamanovector+2))/(tamanovector-1))*((mean(y)-min(y))

/sqrt(var(y))),tamanovector+2)))

t0estrella<-mean(y)

t1estrella<-(sum(abs(y-mean(y)))/tamanovector)

u<-(y[1:tamanovector-1]-y[tamanovector])/c(rep(y[tamanovector-1]

-y[tamanovector],tamanovector-2),abs(y[tamanovector-1]-y[tamanovector]))

f<-function(y){

mean(y)*(sum(abs(y-mean(y))))/length(y)*exp(-0.5*sum(y^2))

}

g<-function(y){

((sum(abs(y-mean(y))))/length(y))^2*exp(-0.5*sum(y^2))

}

transformacion<-function(x){

return(c((x[1:(length(x)-2)]-x[length(x)])/(x[length(x)-1]-x[length(x)]),

(x[length(x)-1]-x[length(x)])/(abs(x[length(x)-1]-x[length(x)]))))

}

muestrainicial<-matrix(0,cuantosyprima,tamanovector)

transformadadey<-transformacion(y)

epsilon<-min(ep,min(abs(transformadadey[1:(tamanovector-2)])))

for(i in 1:cuantosyprima){

z2<-runif(2,0,10)

if(sign(z2[1]-z2[2])==sign(y[tamanovector-1]-y[tamanovector])){

muestrainicial[i,c(tamanovector-1,tamanovector)]<-z2

} else{

muestrainicial[i,c(tamanovector-1,tamanovector)]<-c(z2[2],z2[1])

}
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for(j in 1:(tamanovector-2)){

aux1<-muestrainicial[i,tamanovector]+(muestrainicial[i,tamanovector-1]

-muestrainicial[i,tamanovector])*(transformadadey[j]-epsilon)

aux2<-muestrainicial[i,tamanovector]+(muestrainicial[i,tamanovector-1]

-muestrainicial[i,tamanovector])*(transformadadey[j]+epsilon)

muestrainicial[i,j]<-runif(1,min(aux1,aux2),max(aux1,aux2))

}

}

d<-min(muestrainicial)

if(d<0){

asumar<-runif(1,-d,1-d)

muestrainicial<-muestrainicial+asumar

}

maximo2<-apply(muestrainicial,1,max)

muestrainicial<-muestrainicial/maximo2*runif(1,0,10)

nepsilon<-apply(muestrainicial,1,f)

depsilon<-apply(muestrainicial,1,g)

pho<-sum(nepsilon)/sum(depsilon)

xicomplicado<-t0estrella-pho*t1estrella

haches<-c(cn,ey,vary,xitilde,etatilde,xigorro,etagorro,t0estrella,

t1estrella,pho,xicomplicado,etacirculo)

wb<-loadWorkbook(nombre,create=F)

writeWorksheet(wb,t(haches),sheet=1,startRow=contador+1,startCol=1,

header=F,rownames=F)

saveWorkbook(wb)

cat("Simulacion ",contador, " de ", numeromuestras,"\n")

}

}

When the Excel archives have been created with the function simula-

cionHN, all the boxplots and graphs included in this thesis in the figures 3,

4 and 5 are drawn with next program.

library(XLConnect)
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wb1<-loadWorkbook("resultados_xi10_eta4_100muestras_de_tamano100con10000valores

_y_prima_y_0.1_como_epsilon.xlsx",create=F)

wb2<-loadWorkbook("resultados_xi10_eta4_100muestras_de_tamano100con10000valores

_y_prima_y_0.01_como_epsilon.xlsx",create=F)

wb3<-loadWorkbook("resultados_xi10_eta4_100muestras_de_tamano1000con10000valores

_y_prima_y_0.1_como_epsilon.xlsx",create=F)

wb4<-loadWorkbook("resultados_xi10_eta4_100muestras_de_tamano1000con10000valores

_y_prima_y_0.01_como_epsilon.xlsx",create=F)

wb5<-loadWorkbook("resultados_xi10_eta4_100muestras_de_tamano5000con10000valores

_y_prima_y_0.1_como_epsilon.xlsx",create=F)

wb6<-loadWorkbook("resultados_xi10_eta4_100muestras_de_tamano5000con10000valores

_y_prima_y_0.01_como_epsilon.xlsx",create=F)

b1<-readWorksheet(wb1,sheet="Resultados")

b2<-readWorksheet(wb2,sheet="Resultados")

b3<-readWorksheet(wb3,sheet="Resultados")

b4<-readWorksheet(wb4,sheet="Resultados")

b5<-readWorksheet(wb5,sheet="Resultados")

b6<-readWorksheet(wb6,sheet="Resultados")

mediasapintar<-apply(b1,2,mean,na.rm=T)[11]

mediasapintar1<-apply(b1,2,mean,na.rm=T)[c(4,6,11)]

mediasapintareta1<-apply(b1,2,mean,na.rm=T)[c(5,7,12)]

apply(b1,2,median,na.rm=T)

apply((b1[,c(4,6,11)]-10)^2,2,mean,na.rm=T)

mediasapintar[2]<-apply(b2,2,mean,na.rm=T)[11]

mediasapintar2<-apply(b2,2,mean,na.rm=T)[c(4,6,11)]

mediasapintareta2<-apply(b2,2,mean,na.rm=T)[c(5,7,12)]

apply(b2,2,median,na.rm=T)

apply((b2[,c(4,6,11)]-10)^2,2,mean,na.rm=T)

mediasapintar[3]<-apply(b3,2,mean,na.rm=T)[11]

mediasapintar3<-apply(b3,2,mean,na.rm=T)[c(4,6,11)]

mediasapintareta3<-apply(b3,2,mean,na.rm=T)[c(5,7,12)]

apply(b3,2,median,na.rm=T)

apply((b3[,c(4,6,11)]-10)^2,2,mean,na.rm=T)

mediasapintar[4]<-apply(b4,2,mean,na.rm=T)[11]

mediasapintar4<-apply(b4,2,mean,na.rm=T)[c(4,6,11)]
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mediasapintareta4<-apply(b4,2,mean,na.rm=T)[c(5,7,12)]

apply(b4,2,median,na.rm=T)

apply((b4[,c(4,6,11)]-10)^2,2,mean,na.rm=T)

mediasapintar[5]<-apply(b5,2,mean,na.rm=T)[11]

mediasapintar5<-apply(b5,2,mean,na.rm=T)[c(4,6,11)]

mediasapintareta5<-apply(b5,2,mean,na.rm=T)[c(5,7,12)]

apply(b5,2,median,na.rm=T)

apply((b5[,c(4,6,11)]-10)^2,2,mean,na.rm=T)

mediasapintar[6]<-apply(b6,2,mean,na.rm=T)[11]

mediasapintar6<-apply(b6,2,mean,na.rm=T)[c(4,6,11)]

mediasapintareta6<-apply(b6,2,mean,na.rm=T)[c(5,7,12)]

apply(b6,2,median,na.rm=T)

apply((b6[,c(4,6,11)]-10)^2,2,mean,na.rm=T)

tamanomuestra<-c(100,1000,5000)

### Boxplot A1. (several xi’s)

png(filename=paste("HN_tamano ",100,"_epsilon ",0.1,".png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(b1[,c(4,6,11)],names=c(expression(tilde(xi)),expression(hat(xi)),

expression(ring(xi))),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar1[s+1],s+1+0.45,mediasapintar1[s+1],col=2,

lwd=3,lty=3)

}

dev.off()

### Boxplot A2. (several xi’s)

png(filename=paste("HN_tamano ",100,"_epsilon ",0.01,".png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(b2[,c(4,6,11)],names=c(expression(tilde(xi)),expression(hat(xi)),

expression(ring(xi))),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar2[s+1],s+1+0.45,mediasapintar2[s+1],col=2,

lwd=3,lty=3)

}

89



Appendix

dev.off()

### Boxplot A3. (several xi’s)

png(filename=paste("HN_tamano ",1000,"_epsilon ",0.1,".png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(b3[,c(4,6,11)],names=c(expression(tilde(xi)),expression(hat(xi)),

expression(ring(xi))),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar3[s+1],s+1+0.45,mediasapintar3[s+1],col=2,

lwd=3,lty=3)

}

dev.off()

### Boxplot A4. (several xi’s)

png(filename=paste("HN_tamano ",1000,"_epsilon ",0.01,".png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(b4[,c(4,6,11)],names=c(expression(tilde(xi)),expression(hat(xi)),

expression(ring(xi))),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar4[s+1],s+1+0.45,mediasapintar4[s+1],col=2,

lwd=3,lty=3)

}

dev.off()

### Boxplot A5. (several xi’s)

png(filename=paste("HN_tamano ",5000,"_epsilon ",0.1,".png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(b5[,c(4,6,11)],names=c(expression(tilde(xi)),expression(hat(xi)),

expression(ring(xi))),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar5[s+1],s+1+0.45,mediasapintar5[s+1],col=2,

lwd=3,lty=3)

}

dev.off()

### Boxplot A6. (several xi’s)

png(filename=paste("HN_tamano ",5000,"_epsilon ",0.01,".png"))

plot.new()
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plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(b6[,c(4,6,11)],names=c(expression(tilde(xi)),expression(hat(xi)),

expression(ring(xi))),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar6[s+1],s+1+0.45,mediasapintar6[s+1],col=2,

lwd=3,lty=3)

}

dev.off()

### Boxplot B1. (xi ring. epsilon 0.1)

png(filename=paste("HN_nuevo xi_epsilon ",0.1," and ",100,"replications.png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(cbind(b1[,11],b3[,11],b5[,11]),names=c(100,1000,5000),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar[2*s+1],s+1+0.45,mediasapintar[2*s+1],col=2,

lwd=3,lty=3)

}

dev.off()

### Grafico B2. (xi ring. epsilon 0.1)

png(filename=paste("HN_nuevo xi_epsilon ",0.01," and ",100,"replications.png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(cbind(b2[,11],b4[,11],b6[,11]),names=c(100,1000,5000),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar[2*s+2],s+1+0.45,mediasapintar[2*s+2],col=2,

lwd=3,lty=3)

}

dev.off()

### Grafico C1. (several eta’s)

png(filename=paste("HN_Etas con tamano ",100,".png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(b1[,c(5,7,12)],names=c(expression(tilde(eta)),expression(hat(eta)),

expression(ring(eta))),cex.axis=1.5)

# Pintar las medias:

for(s in 0:2){

segments(s+1-0.45,mediasapintareta1[s+1],s+1+0.45,mediasapintareta1[s+1],col=2,

lwd=3,lty=3)

}
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dev.off()

### Grafico C2. (several eta’s)

png(filename=paste("HN_Etas con tamano ",1000,".png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(b3[,c(5,7,12)],names=c(expression(tilde(eta)),expression(hat(eta)),

expression(ring(eta))),cex.axis=1.5)

# Pintar las medias:

for(s in 0:2){

segments(s+1-0.45,mediasapintareta3[s+1],s+1+0.45,mediasapintareta3[s+1],col=2,

lwd=3,lty=3)

}

dev.off()

### Grafico C3. (several eta’s)

png(filename=paste("HN_Etas con tamano ",5000,".png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(b5[,c(5,7,12)],names=c(expression(tilde(eta)),expression(hat(eta)),

expression(ring(eta))),cex.axis=1.5)

# Pintar las medias:

for(s in 0:2){

segments(s+1-0.45,mediasapintareta5[s+1],s+1+0.45,mediasapintareta5[s+1],col=2,

lwd=3,lty=3)

}

dev.off()

### Grafico D1. (eta tilde)

png(filename=paste("HN_eta tilde and ",100,"replications.png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(cbind(b1[,5],b3[,5],b5[,5]),names=c(100,1000,5000),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar[2*s+1],s+1+0.45,mediasapintar[2*s+1],col=2,

lwd=3,lty=3)

}

dev.off()
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### Grafico D2. (eta hat)

png(filename=paste("HN_eta gorro and ",100,"replications.png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(cbind(b1[,7],b3[,7],b5[,7]),names=c(100,1000,5000),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar[2*s+1],s+1+0.45,mediasapintar[2*s+1],col=2,

lwd=3,lty=3)

}

dev.off()

### Grafico D3. (eta ring)

png(filename=paste("HN_eta circulo and ",100,"replications.png"))

plot.new()

plot.window(xlim=c(0.3,length(tamanomuestra)+0.7))

boxplot(cbind(b1[,12],b3[,12],b5[,12]),names=c(100,1000,5000),cex.axis=1.5)

for(s in 0:2){

segments(s+1-0.45,mediasapintar[2*s+1],s+1+0.45,mediasapintar[2*s+1],col=2,

lwd=3,lty=3)

}

dev.off()

Simulations in Chapter 4

Population clusters for normal mixture densities

The pop.clust function draws the population clusters for a normal mixture

density. It has the following inputs: mus, Sigmas and props (means, vari-

ance matrix and proportions for the normal mixture) and several graphical

parameters (gsize, fact, M, pc and ce).

pop.clust<-function(mus,Sigmas,props,gsize=50,fact=3,M=NULL,pc=15,ce=1.5){

K<-length(props)

if(K==1){mus<-matrix(mus,nrow=1)}

if(is.null(M)){

limits<-numeric()

for(i in 1:K){

mu<-mus[i,]
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sigma<-Sigmas[(2*i-1):(2*i),]

ev <- eigen(sigma, symmetric = TRUE)

s <- fact*sqrt(rev(sort(ev$values)))

V <- t(ev$vectors[, rev(order(ev$values))])

x <- s[1]

y <- s[2]

xy <- cbind(c(x, -x, 0, 0), c(0, 0, y, -y))

xy <- xy %*% V

xy <- sweep(xy, MARGIN = 2, STATS = mu, FUN = "+")

limits<-rbind(limits,xy)

}

xl1<-min(limits[,1]);xl2<-max(limits[,1])

yl1<-min(limits[,2]);yl2<-max(limits[,2])

}

else{

xl1<-yl1<--M;xl2<-yl2<-M

}

xs<-seq(xl1,xl2,length=gsize)

ys<-seq(yl1,yl2,length=gsize)

xys<-expand.grid(xs,ys)

fxys<-dmvnorm.mixt(xys,mus=mus,Sigmas=Sigmas,props=props)

zs<-invvec(fxys)

clus.labs<-MS.muestral(x=xys,mus=mus,Sigmas=Sigmas,props=props)$labels

contour(xs,ys,zs,drawlabels=FALSE,lwd=2,levels=quantile(fxys,c(.7,.75,

.8,.85,.9,.95)),

xaxs="i",yaxs="i",xlab="",ylab="")

classPlotColors <- c("dodgerblue2", "red3", "green3", "slateblue",

"orange", "skyblue1", "forestgreen", "steelblue4", "gray", "brown",

"black")

points(xys,col=classPlotColors[clus.labs],pch=pc,cex=ce)

contour(xs,ys,zs,drawlabels=FALSE,lwd=2,levels=quantile(fxys,c(.7,.75,

.8,.85,.9,.95)),

add=TRUE)

}

Population clusters for densities 3, 4 and 5

These three functions (pop.clust3, pop.clust4 and pop.clust5) calculate the

population clusters for 4 crescent, broken ring and eye densities. They have

3 inputs: n, gsize and pc. They are similar to the previous functions.
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library(ks)

library(mclust)

h3<-function(x,Nruns=10){

h0<-0

h1<-1

n0<-Inf

n1<-1

for(i in 1:Nruns){

hmed<-(h0+h1)/2

nmed<-MS.kde(x=x,H=hmed^2*diag(2))$nclus

if(nmed>4){h0<-hmed;n0<-nmed}

if(nmed<=4){h1<-hmed;n1<-nmed}

}

return(h1)

}

pop.clust3<-function(n=100,gsize=50,pc=15){

png(filename="Densidad3.png",width = 4*480, height = 4*480)

x<-r4cresc(n)$x

h<-h3(x)

xs<-seq(-2,1,length=gsize)

ys<-seq(-0.8,1.6,length=gsize)

xys<-as.matrix(expand.grid(xs,ys))

fxys<-kde(x=x,H=h^2*diag(2),eval.points=xys)$estimate

zs<-invvec(fxys)

msx<-MS.kde(x=x,H=h^2*diag(2),eval.points=xys)

contour(xs,ys,zs,drawlabels=FALSE,lwd=2,levels=quantile(fxys,c(.7,.75,

.8,.85,.9,.95)),

xaxs="i",yaxs="i",xlab="",ylab="")

classPlotColors <- c("dodgerblue2", "red3", "green3", "slateblue",

"orange", "skyblue1", "forestgreen", "steelblue4", "gray", "brown",

"black")

widthx<-xs[2]-xs[1]

widthy<-ys[2]-ys[1]

for(i in 1:nrow(xys)){

rect(xys[i,1]-widthx/2,xys[i,2]-widthy/2,xys[i,1]+widthx/2,xys[i,2]+

widthy/2,
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border=NA,col=classPlotColors[(msx$labels)[i]])

}

contour(xs,ys,zs,drawlabels=FALSE,lwd=2,levels=quantile(fxys,c(.7,.75,

.8,.85,.9,.95)),

add=TRUE)

dev.off()

return(list(x=x,msx=msx,h=h))

}

h4<-function(x,Nruns=10){

h0<-0

h1<-1

n0<-Inf

n1<-1

for(i in 1:Nruns){

hmed<-(h0+h1)/2

nmed<-MS.kde(x=x,H=hmed^2*diag(2))$nclus

if(nmed>5){h0<-hmed;n0<-nmed}

if(nmed<=5){h1<-hmed;n1<-nmed}

}

return(h1)

}

pop.clust4<-function(n=100,gsize=50,pc=15){

x<-rbrokenring(n)$x

h<-h4(x)

xs<-seq(-1.2,1.2,length=gsize)

ys<-seq(-1.2,1.2,length=gsize)

xys<-as.matrix(expand.grid(xs,ys))

fxys<-kde(x=x,H=h^2*diag(2),eval.points=xys)$estimate

zs<-invvec(fxys)

msx<-MS.kde(x=x,H=h^2*diag(2),eval.points=xys)

contour(xs,ys,zs,drawlabels=FALSE,lwd=2,levels=quantile(fxys,c(.7,.75,

.8, .85,.9,.95)),xaxs="i",yaxs="i",xlab="",ylab="")

classPlotColors <- c("dodgerblue2", "red3", "green3", "slateblue",

"orange", "skyblue1", "forestgreen", "steelblue4", "gray", "brown",

"black")
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widthx<-xs[2]-xs[1]

widthy<-ys[2]-ys[1]

for(i in 1:nrow(xys)){

rect(xys[i,1]-widthx/2,xys[i,2]-widthy/2,xys[i,1]+widthx/2,xys[i,2]+

widthy/2,border=NA,col=classPlotColors[(msx$labels)[i]])

}

contour(xs,ys,zs,drawlabels=FALSE,lwd=2,levels=quantile(fxys,c(.7,.75,.8,

.85, .9,.95)),add=TRUE)

return(list(x=x,msx=msx,h=h))

}

h5<-function(x,Nruns=10){

h0<-0

h1<-1

n0<-Inf

n1<-1

for(i in 1:Nruns){

hmed<-(h0+h1)/2

nmed<-MS.kde(x=x,H=hmed^2*diag(2))$nclus

if(nmed>5){h0<-hmed;n0<-nmed}

if(nmed<=5){h1<-hmed;n1<-nmed}

}

return(h1)

}

pop.clust5<-function(n=100,gsize=50,pc=15){

x<-r4crescring(n)$x

h<-h5(x)

xs<-seq(-1.4,1.4,length=gsize)

ys<-seq(-2,2,length=gsize)

xys<-as.matrix(expand.grid(xs,ys))

fxys<-kde(x=x,H=h^2*diag(2),eval.points=xys)$estimate

zs<-invvec(fxys)

msx<-MS.kde(x=x,H=h^2*diag(2),eval.points=xys)

contour(xs,ys,zs,drawlabels=FALSE,lwd=2,levels=quantile(fxys,c(.7,.75,

.8,.85,.9,.95)),

xaxs="i",yaxs="i",xlab="",ylab="")

classPlotColors <- c("dodgerblue2", "red3", "green3", "slateblue",
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"orange", "skyblue1","forestgreen", "steelblue4", "gray", "brown",

"black")

widthx<-xs[2]-xs[1]

widthy<-ys[2]-ys[1]

for(i in 1:nrow(xys)){

rect(xys[i,1]-widthx/2,xys[i,2]-widthy/2,xys[i,1]+widthx/2,xys[i,2]+

widthy/2,

border=NA,col=classPlotColors[(msx$labels)[i]])

}

contour(xs,ys,zs,drawlabels=FALSE,lwd=2,levels=quantile(fxys,c(.7,.75,

.8,.85,.9,.95)),

add=TRUE)

return(list(x=x,msx=msx,h=h))

}

Mean Shift partitions for the 5 densities

The function called particiones MS 5densidades creates a tridimensional ma-

trix with dimensions num rep, 5, 11. Num rep is the number of repetitions,

5 are the total densities used (trimodal III, quatrimodal, 4 crescent, broken

ring and eye) and 11 are the number of bandwidth selectors used (Hlscv,

Hscv, Hpi, ..., Hpi.diag). In this matrix, the clusters labels of the samples

through the MS.kde function are saved.

There are several inputs such as densidad (the five densities labeled

with numbers from 1 to 5), numero repeticiones (number of repetions),

tamano muestra (each sample size)

There are several previous functions to set the parameters of some of the

densities.

mwweights = function(d)

{

switch(d,

"1"=c(3,3,1)/7,

"2"=c(1,3,1,3)/8)

}

mwmeans = function(d)
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{

switch(d,

"1"=rbind(c(-1,0), c(1,2/sqrt(3)), c(1, -2/sqrt(3))),

"2"=rbind(c(-1,1), c(-1,-1),c(1,-1), c(1, 1)))

}

mwsdeviations = function(d)

{

switch(d,

"1"=1/25*rbind(invvech(c(9,63/10,49/4)),invvech(c(9,0,49/4)),

invvech(c(9,0,49/4))),

"2"=rbind(invvech(c(4/9,8/45,4/9)),invvech(c(4/9,12/45,4/9)),

invvech(c(4/9, -28/90,4/9)),invvech(c(4/9,-4/18,4/9))))

}

limite_malla_x = function(d)

{

switch(d,

"1"=c(-3,3),

"2"=c(-3,3),

"3"=c(-2,1.1),

"4"=c(-1.2,1.2),

"5"=c(-1.4,1.4))

}

limite_malla_y = function(d)

{

switch(d,

"1"=c(-3,3),

"2"=c(-3,3),

"3"=c(-0.8,1.8),

"4"=c(-1.2,1.2),

"5"=c(-2,2))

}

particiones_MS_5densidades<-function(densidad=1:5,numero_repeticiones=100,

tamano_muestra=500,gsize=150){

contador<-0

for(d in densidad){
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nombresinextension<-paste("Resultados_densidad_",d,sep="")

set.seed(346536)

res<-array(,dim=c(numero_repeticiones,gsize^2,11))

dimnames(res)[[3]]<-c("lscv","scv","pi","nr", "it","it.diag",

"it.single", "at","lscv_diag","scv_diag","pi_diag")

puntos_eje_x<-seq(limite_malla_x(d)[1],limite_malla_x(d)[2],

length=gsize)

puntos_eje_y<-seq(limite_malla_y(d)[1],limite_malla_y(d)[2],

length=gsize)

malla<-expand.grid(puntos_eje_x,puntos_eje_y)

contador<-contador+1

cat("Densidad ",d,"\n")

for(num_rep in 1:numero_repeticiones){

setTxtProgressBar(barra_progreso,num_rep/numero_repeticiones)

if(d==1 || d==2){

muestra<-rmvnorm.mixt(tamano_muestra,mus=mwmeans(d),

Sigmas=mwsdeviations(d),props=mwweights(d))

}

if(d==3){

muestra<-r4cresc(tamano_muestra)$x

}

if(d==4){

muestra<-rbrokenring(tamano_muestra)$x

}

if(d==5){

muestra<-r4crescring(tamano_muestra)$x

}

hlscv_optimo<-Hlscv(muestra,deriv.order=1)

res[num_rep,,1]<-MS.kde(muestra,hlscv_optimo,as.matrix(malla))

$labels

hscv_optimo<-Hscv(muestra,deriv.order=1,pilot="dunconstr")

res[num_rep,,2]<-MS.kde(muestra,hscv_optimo,as.matrix(malla))

$labels

hpi_optimo<-Hpi(muestra,deriv.order=1,pilot="dunconstr")
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res[num_rep,,3]<-MS.kde(muestra,hpi_optimo,as.matrix(malla))

$labels

hnr_optimo<-(4/6)^(2/8)*var(muestra)*tamano_muestra^(-2/8)

res[num_rep,,4]<-MS.kde(muestra,hnr_optimo,as.matrix(malla))

$labels

hiterativo_optimo<-Hit.r1(muestra,obj=FALSE)

res[num_rep,,5]<-MS.kde(muestra,hiterativo_optimo,as.matrix(malla))

$labels

hiterativo_diag_optimo<-Hit.diag.r1(muestra,obj=FALSE)

res[num_rep,,6]<-MS.kde(muestra,hiterativo_diag_optimo,

as.matrix(malla))$labels

hiterativo_single_optimo<-Hit.single.r1(muestra,obj=FALSE)

res[num_rep,,7]<-MS.kde(muestra,hiterativo_single_optimo,

as.matrix(malla))$labels

h_azzalini_torelli_optimo<-3/4*(1/tamano_muestra)^(1/6)*

diag(apply(muestra,2,sd))

res[num_rep,,8]<-MS.kde(muestra,h_azzalini_torelli_optimo,

as.matrix(malla))$labels

hlscv_diag_optimo<-Hlscv.diag(muestra,deriv.order=1)

res[num_rep,,9]<-MS.kde(muestra,hlscv_diag_optimo,as.matrix(malla))

$labels

hscv_diag_optimo<-Hscv.diag(muestra,deriv.order=1,pilot="dscalar")

res[num_rep,,10]<-MS.kde(muestra,hscv_diag_optimo,as.matrix(malla))

$labels

hpi_diag_optimo<-Hpi.diag(muestra,deriv.order=1,pilot="dscalar")

res[num_rep,,11]<-MS.kde(muestra,hpi_diag_optimo,as.matrix(malla))

$labels

save(res,file=paste(nombresinextension,".RData",sep=""))

}

cat("\n")

}
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}

Distance in measure for normal mixture densities

library(ks)

library(mvtnorm)

library(clue)

probsquares.mixt<-function(lowers,uppers,gsizes,mus,Sigmas,props){

xs<-seq(lowers[1],uppers[1],length=gsizes[1])

ys<-seq(lowers[2],uppers[2],length=gsizes[2])

xys<-as.matrix(expand.grid(xs,ys))

widthx<-xs[2]-xs[1]

widthy<-ys[2]-ys[1]

xs2<-c(xs[1]-widthx/2,xs+widthx/2)

ys2<-c(ys[1]-widthy/2,ys+widthy/2)

xys2<-as.matrix(expand.grid(xs2,ys2))

prob.squares<-numeric(nrow(xys2))

for(l in 1:length(prob.squares)){

prob.squares[l]<-pmvnorm.mixt(upper=xys2[l,],mus=mus,Sigmas=Sigmas,

props=props,lower=c(-Inf,-Inf))

}

prob.squares<-matrix(prob.squares,nrow=gsizes[1]+1,ncol=gsizes[2]+1,

byrow=TRUE)

prob.squares<-prob.squares[(gsizes[1]+1):1,]

prob.squares<-prob.squares[-(gsizes[1]+1),-1]+prob.squares[-1,-(gsizes

[2]+1)]-prob.squares[-(gsizes[1]+1),-(gsizes[2]+1)]-prob.squares[-1,-1]

psvector<-numeric()

for (i in 1:gsizes[1]){

psvector <- c(psvector, prob.squares[gsizes[1]+1-i,])

}

return(psvector)

}

probsquares.kde<-function(lowers,uppers,gsizes,x,h){

n<-nrow(x)
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xs<-seq(lowers[1],uppers[1],length=gsizes[1])

ys<-seq(lowers[2],uppers[2],length=gsizes[2])

xys<-as.matrix(expand.grid(xs,ys))

widthx<-xs[2]-xs[1]

widthy<-ys[2]-ys[1]

xs2<-c(xs[1]-widthx/2,xs+widthx/2)

ys2<-c(ys[1]-widthy/2,ys+widthy/2)

xys2<-as.matrix(expand.grid(xs2,ys2))

prob.squares<-rep(0,nrow(xys2))

for(i in 1:n){

prob.squares<-prob.squares+pnorm(q=xys2[,1],mean=x[i,1],sd=h)*

pnorm(q=xys2[,2],

mean=x[i,2],sd=h)/n

}

prob.squares<-matrix(prob.squares,nrow=gsizes[1]+1,ncol=gsizes[2]+1,

byrow=TRUE)

prob.squares<-prob.squares[(gsizes[1]+1):1,]

prob.squares<-prob.squares[-(gsizes[1]+1),-1]+prob.squares[-1,-(gsizes

[2]+1)]-prob.squares[-(gsizes[1]+1),-(gsizes[2]+1)]-prob.squares[-1,-1]

psvector<-numeric()

for (i in 1:gsizes[1]){

psvector <- c(psvector, prob.squares[gsizes[1]+1-i,])

}

return(psvector)

}

dmeas.probs<-function(labels1,labels2,probs){

if(length(labels1)!=length(labels2)||length(labels2)!=length(probs)){

stop("Error: the vectors of labels and probabilities all have to be of the

same length")

}

nclus1<-length(unique(labels1))

nclus2<-length(unique(labels2))

Psymdif<-matrix(0,nrow=nclus1,ncol=nclus2)

for(i in 1:nclus1){for(j in 1:nclus2){
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symdif.ind<-(((labels1==i)+(labels2==j))==1)*1

if(sum(symdif.ind>0)){

Psymdif[i,j]<-sum(probs[symdif.ind])

}

}}

if(nclus1<nclus2){

prob.clus2<-numeric(nclus2)

for(k in 1:nclus2){

prob.clus2[k]<-sum(probs[labels2==k])

}

Psymdif<-rbind(Psymdif,matrix(rep(prob.clus2,nclus2-nclus1),

nrow=nclus2-nclus1,ncol=nclus2,byrow=TRUE))

}

if(nclus1>nclus2){

prob.clus1<-numeric(nclus1)

for(k in 1:nclus1){

prob.clus1[k]<-sum(probs[labels1==k])

}

Psymdif<-cbind(Psymdif,matrix(rep(prob.clus1,nclus1-nclus2),

ncol=nclus1-nclus2,nrow=nclus1,byrow=FALSE))

}

permutacion_solucion_minima<-solve_LSAP(Psymdif)

resultado<-sum(Psymdif[cbind(seq_along(permutacion_solucion_minima),

permutacion_solucion_minima)])

return(resultado/2)

}

pmvnorm.mixt<-function (lower=-Inf,upper=Inf, mus, Sigmas, props = 1)

{

if (!(identical(all.equal(sum(props), 1), TRUE)))

stop("Proportions don’t sum to one\n")

d<-length(lower)
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if (missing(mus))

mus <- rep(0, d)

if (missing(Sigmas))

Sigmas <- diag(d)

if (identical(all.equal(props[1], 1), TRUE)) {

if (is.matrix(mus))

mus <- mus[1, ]

dens <- pmvnorm(lower=lower,upper=upper, mean = mus, sigma = Sigmas

[1:d,], algorithm=GenzBretz(maxpts = 25000, abseps = 10^-10, releps

= 10^-10))

}

else {

k <- length(props)

dens <- 0

for (i in 1:k) dens <- dens + props[i] * pmvnorm(lower=lower, upper=

upper, mean = mus[i,], sigma = Sigmas[((i - 1) * d + 1):(i * d), ],

algorithm=GenzBretz(maxpts = 25000, abseps = 10^-10, releps = 10^-10))

}

return(dens)

}

Calculation of distances between clusters

The function called calculo de distancias calculates the distances between

clusters saved in the RData (Resultados densidad 1 to 5) with the function

particiones MS 5densidades and clusters saved in the RData (p1 to p5).

These distances are saved in a tridimensional matrix (matriz distancias)

in the archive Matriz de distancias.RData.

calculo_de_distancias<-function(){

gsize<-150

p1<-load("p1.RData")

etiquetas1verdad<-p1$msx$labels

p2<-load("p2.RData")

etiquetas2verdad<-p2$msx$labels

p3<-load("p3.RData")

etiquetas3verdad<-p3$msx$labels
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p4<-load("p4.RData")

etiquetas4verdad<-p4$msx$labels

p5<-load("p5.RData")

etiquetas5verdad<-p5$msx$labels

load("Resultados_densidad_1.RData")

etiquetas1estimadas<-res

load("Resultados_densidad_2.RData")

etiquetas2estimadas<-res

load("Resultados_densidad_3.RData")

etiquetas3estimadas<-res

load("Resultados_densidad_4.RData")

etiquetas4estimadas<-res

load("Resultados_densidad_5.RData")

etiquetas5estimadas<-res

numero_muestras<-dim(etiquetas1estimadas)[1]

nombres_columnas<-c("lscv","scv","pi","nr", "it","it.diag","it.single","at",

"lscv_diag","scv_diag","pi_diag")

matriz_distancias<-array(,dim=c(numero_muestras,length(nombres_columnas),5))

dimnames(matriz_distancias)[[2]]<-nombres_columnas

d<-1

puntos_eje_x<-seq(limite_malla_x(d)[1],limite_malla_x(d)[2],length=gsize)

puntos_eje_y<-seq(limite_malla_y(d)[1],limite_malla_y(d)[2],length=gsize)

malla<-expand.grid(puntos_eje_x,puntos_eje_y)

prob_normal_mix<-p1$psf

for(i in 1:numero_muestras){

for(k in 1:11){

matriz_distancias[i,k,1]<-dmeas.probs(etiquetas1verdad,

etiquetas1estimadas[i,,k],prob_normal_mix)

}
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}

save(matriz_distancias,file="Matriz_de_distancias.RData")

d<-2

puntos_eje_x<-seq(limite_malla_x(d)[1],limite_malla_x(d)[2],length=gsize)

puntos_eje_y<-seq(limite_malla_y(d)[1],limite_malla_y(d)[2],length=gsize)

malla<-expand.grid(puntos_eje_x,puntos_eje_y)

prob_normal_mix<-p2$psf

for(i in 1:numero_muestras){

for(k in 1:11){

matriz_distancias[i,k,2]<-dmeas.probs(etiquetas2verdad,

etiquetas2estimadas[i,,k],prob_normal_mix)

}

}

save(matriz_distancias,file="Matriz_de_distancias.RData")

d<-3

puntos_eje_x<-seq(limite_malla_x(d)[1],limite_malla_x(d)[2],length=gsize)

puntos_eje_y<-seq(limite_malla_y(d)[1],limite_malla_y(d)[2],length=gsize)

malla<-expand.grid(puntos_eje_x,puntos_eje_y)

prob_squares_kde<-p3$psf

for(i in 1:numero_muestras){

for(k in 1:11){

matriz_distancias[i,k,3]<-dmeas.probs(etiquetas3verdad,

etiquetas3estimadas[i,,k],prob_squares_kde)

}

}

save(matriz_distancias,file="Matriz_de_distancias.RData")

d<-4

puntos_eje_x<-seq(limite_malla_x(d)[1],limite_malla_x(d)[2],length=gsize)

puntos_eje_y<-seq(limite_malla_y(d)[1],limite_malla_y(d)[2],length=gsize)

malla<-expand.grid(puntos_eje_x,puntos_eje_y)

prob_squares_kde<-p4$psf

for(i in 1:numero_muestras){

for(k in 1:11){
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matriz_distancias[i,k,4]<-dmeas.probs(etiquetas4verdad,

etiquetas4estimadas[i,,k],prob_squares_kde)

}

}

save(matriz_distancias,file="Matriz_de_distancias.RData")

d<-5

puntos_eje_x<-seq(limite_malla_x(d)[1],limite_malla_x(d)[2],length=gsize)

puntos_eje_y<-seq(limite_malla_y(d)[1],limite_malla_y(d)[2],length=gsize)

malla<-expand.grid(puntos_eje_x,puntos_eje_y)

prob_squares_kde<-p5$psf

for(i in 1:numero_muestras){

for(k in 1:11){

matriz_distancias[i,k,5]<-dmeas.probs(etiquetas5verdad,

etiquetas5estimadas[i,,k],prob_squares_kde)

}

}

save(matriz_distancias,file="Matriz_de_distancias.RData")

}
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Altman, N. and Léger, C. (1995). Bandwidth selection for kernel distri-

bution function estimation. Journal of Statistical Planning and Infer-

ence, 46, 195–214.

Azzalini, A. (1981) A note on the estimation of a distribution function

and quantiles by a kernel method. Biometrika, 68, 326–328.

Azzalini, A. and Bowman, A. (1997). Applied smoothing techniques for

data analysis: the kernel approach with S-Plus illustrations, Oxford

University Press, Oxford.

Azzalini, A. and Torelli, N. (2007) Clustering via nonparametric density

estimation. Stat. Comput., 17, 71–80.

109



Bibliography

Barrio, E. del, Cuesta-Albertos, J.A. and Matrán, C. (2000) Contribu-

tions of empirical and quantile processes to the asymptotic theory of

goodness-of-fit tests. Test, 9, 1-96.

Berg, A. and Politis, D. (2009) CDF and survival function estimation

with infinite-order kernels. Electronic Journal of Statistics, 3, 1436–

1454.

Besicovitch, A.S. (1945) A general form of the covering principle and

relative differentiation of additive functions, I, Proceedings of the Cam-

bridge Philosophical Society, 41, 103-110.

Besicovitch, A.S. (1946) A general form of the covering principle and

relative differentiation of additive functions, II, Proceedings of the Cam-

bridge Philosophical Society, 42, 205-235.

Bland, J.M. (2005) The half-normal distribution method for measure-

ment error: two case studies, unpublished talk available on http://www-

users.york.ac.uk/ mb55/talks/halfnor.pdf.

Bland, J.M. and Altman, D.G. (1999) Measuring agreement in method

comparison studies, Stat. Methods Med. Res., 8, 135-160.

Bouchard, B., Ekeland, I. and Touzi, N. (2004) On the Malliavin ap-

proach to Monte Carlo approximation of conditional expectations, Fi-

nance Stochast., 8, 45-71.

Bowman, A., Hall, P. and Prvan, T. (1998) Bandwidth selection for the

smoothing of distribution functions. Biometrika, 85, 799–808.

Butzer, P.L. and Nessel, R.J. (1971) Fourier analysis and approxima-

tion. Academic Press, New York.

Cantelli, F.P. (1933) Sulla determinazione empirica della legge di prob-

abilita. Giorn. Ist. Ital. Attuari, 4, 421-424.
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Garćıa-Escudero, L.A., Gordaliza, A., Matrán, C. and Mayo, A. (2010)

A review of robust clustering methods. Advances in Data Analysis and

Classification, 4, 89–109.

Genovese, C.R., Perone-Pacifico, M., Verdinelli, I. and Wasser-

man, L. (2012) Nonparametric ridge estimation. arXiv preprint

arXiv:1212.5156.
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Giné, 1, 18

Glad, 22

118



Appendix

Glivenko, 2

Gurland, 23
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