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Hyperspace theory has its beginnings in the early years of XX century with
the work of Felix Hausdorff (1868-1942) and Leopold Vietoris (1891-2002). Gi-
ven a topological space X, the hyperspace 2% of all nonempty closed subsets
of X is equipped with the Vietoris topology, also called the exponential topo-
logy, see [37, p. 160] or the finite topology, see [48, p. 153], introduced in 1922
by Vietoris [60]. Vietoris proved the most basic facts of the structure of 2%,
as e.g. that compactness (similarly connectedness) of 2% is equivalent to that
of X. In case when X is a metric space, the family of all bounded nonempty
closed subsets of X can be metrized by the Hausdorff metric (distance), in-
troduced by Hausdorff in 1914, [24]. Topologies on these and other families
of subsets of a topological space X were studied by E. Michael in [48]. In
particular, it is shown in that paper that if X is metric and compact, then the
Vietoris topology coincides with the one introduced by the Hausdorff metric,
[48, Proposition 3.5, p. 160]. The reader is referred to [10, Chapter 12, p.
750] for an outline of history and for a further information in this area.

Since 1942, when J. L. Kelley doctoral dissertation [36] was published,
the hyperspace theory became an important way of obtaining information on
the structure of a topological space X by studying properties of the hyper-
space 2% and its hyperspaces. The general task in this part of topology can
be formulated as studying various properties of the hyperspaces to get more
information about the structure and properties of the space itself. Since for
a given space X the structure of the hyperspace 2% and its subspaces is
rather complicate and hard to be seen, in particular any geometrical models
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of hyperspaces are in most cases unknown, the hyperspace theory created its
own methods of study to realize the above mentioned goals. One of such
special methods is investigation of Whitney maps w : 2X — [0,00) such that
w({z}) = 0 and w(A) < w(B) for every A, B € 2¥X with A C B # A, and
of structure of the preimages w=!(¢), called Whitney levels (see [33, Chapters
VII-IX]). Another one is studying properties of some special mappings between
hyperspaces, as induced mappings, selections and retractions, see [33, Chapter
XII]. The most successful achievements in this direction have been obtained
during last sixty years in study of continua (i.e., compact, connected spaces).
The results are collected in two large monographs, [50] and [33], where the
above mentioned methods are presented and developed.

The aim of this article is to conceive the last achievements in the theory and
to bring to the reader’s attention some open problems, especially ones that tie
hyperspace theory and continuum theory. To be more concise, we restrict our
considerations to the most important part of the hyperspace theory, namely
to that of (metric) continua.

It should be underlined that up to the last years of the XX century, the
study of hyperspaces of continua concentrated on investigation of two main
hyperspaces: the hyperspace 2% of all nonempty closed subsets of a continuum
X and the hyperspace C(X) of connected members of 2%, i.e., of subcontinua
of X. Very recently, during last several years, a more extensive study of other
hyperspaces started, and the attention of investigators mostly concerns the
hyperspaces C,,(X) of members of 2% that consists of at most n components,
for n > 1. Many results related to this subject are not published yet, and they
are known to the specialists from preprints only. Some of them are discussed
in this article.

The paper consists of six sections. Basic concepts used in the paper are
collected in Preliminaries. In the second section some models for various
hyperspaces are recalled, and relations between hyperspaces are studied. A
special attention is paid to results concerning the existence of a homeomor-
phism between the cone over a continuum X and a hyperspace H(X) (as
e.g. the cone = hyperspace property). The third section is devoted to hyper-
space determined continua and some related concepts: having unique (or al-
most unique) hyperspace. In Section 4 structural properties of hyperspace
are considered. We give an information on recently obtained results about
smoothness and the property of Kelley for hyperspaces. The last two sections
deal with mappings between hyperspaces. In Section 5 necessary and suffi-
cient conditions are proved for a mapping to be an induced one. And finally
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new results concerning some special induced mappings between hyperspaces
are gathered. Many open problems (previously known as well as new ones)
indicate a direction of a further study in the area.

1. PRELIMINARIES

The symbols N and R stand for the sets of all positive integers and of all
reals, correspondingly. The closed unit interval [0, 1] of reals is denoted by I,
and S' stands for the unit circle. In particular, I" and IN denote the n-cell
and the Hilbert cube, respectively.

A continuum is called a linear graph provided that it can be written as the
union of finitely many arcs any two of which are either disjoint or intersect
only in one or both of their end points. For an integer n > 3 a simple n-od
means a continuum that is homeomorphic to the cone over a discrete n-point
space.

A continuum is said to be decomposable provided that it is the union of two
proper subcontinua. Otherwise it is said indecomposable. A continuum is he-
reditarily decomposable (hereditarily indecomposable) if each of its subcontinua
is decomposable (indecomposable, respectively).

If two spaces, A and B, are homeomorphic, we write A ~ B.

Given a continuum X with a metric d, we let 2% to denote the hyperspace
of all nonempty closed subsets of X equipped with the Hausdorff metric H
defined by

(1.1) H(A, B) = max{sup{d(a, B) : a € A}, sup{d(b,A) : b € B}}

(see e.g. [50, (0.1), p. 1 and (0.12), p. 10]). Given a continuum X, a hyper-

space of X means any subspace H(X) of 2X equipped with the inherited

topology (thus induced by the Hausdorff metric H defined by (1.1)). Recall

definitions of the most important ones, which have appeared in the literature.
For each n € N, let

Fo(X)={Ac2% :card A <n}

denote the n-fold symmetric product of X. Thus 1-fold symmetric product of
X is the hyperspace F;(X) of singletons of X, and by the definitions we have
X =~ F1(X). The concept of the symmetric product has been introduced K.
Borsuk and S.M. Ulam in [5]. See [50, (0.48), p. 23] and [33, p. 6 and 7] for
more information. Further, define the hyperspace Foo(X) of finite subsets of
X by

Foo(X) = {A €2¥: A is finite} = | J{F(X) :n € N}
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(see [33, Definition 1.8, p. 7], where Fix(X) is denoted by F'(X)). Note that
for a continuum X all hyperspaces F,,(X) are continua (see [48, 2.4.2, p. 156,
and Theorem 4.10, p. 165]; compare [5, p. 877]) and F(X) is a dense (and
connected) subset of 2% (see [48, 2.4.1, p. 156)).

Similarly, for each n € N, define

Cpn(X) ={A € 2% : Ahas at most n components},
Coo(X) = {A € 2% : A has finitely many components} = U{C’n(X) :n € N}

If n = 1, the hyperspace C1(X) of all connected elements of 2%, i.e., of
all subcontinua of X, is usually denoted by C(X). It is one of the most
important (and extensively studied in contemporary literature) hyperspaces
of X, as it can be seen from the content of the two monographs [50] and [33].
The hyperspaces Cy,(X) for arbitrary n € N are subjects of a more intensive
investigation rather recently. It is known in particular that, for each n € N,
the hyperspaces C,(X) are (arcwise connected) continua (see [44, Theorem
3.1, p. 240]), while Cs (X) is neither any Gs-subset of 2% nor locally compact
(see [44, Theorems 8.1 and 8.3, p. 253 and 254, respectively]). The reader is
referred to [44] and [45] for basic information about these hyperspaces.

Consider the following hyperspaces H(X) of a continuum X, where n € N.

(1.2) H(X) € {25, Fu(X), Foo(X), Ca(X), Coo( X))}

Obvious inclusions for these hyperspaces are:

(1.3)  Fu(X) C Fup1(X) C Fxo(X)  and  Cp(X) C Cryr(X) € Coo(X)
(1.4) Fo(X) C Cu(X)  and  Fa(X) C Cso(X).

Therefore, inclusions (1.3) and (1.4) lead to the following proposition that
extends [11, Proposition 1.2, p. 6].

PROPOSITION 1.1. For each continuum X the hyperspace Fi(X) of sin-
gletons of X is homeomorphic (even isometric) to X, and thus it is a subcon-
tinuum of any hyperspace H(X) listed in (1.2). Consequently,

X ~ F(X) C H(X) c 2%,
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Let a continuum X be given. An order arc in a hyperspace H(X) is an
arc A in H(X) such that for any A, B € A either A C B or B C A. An order
arc from Ay to A; means that Ay and A; are end points of the order arc and
that Ay C A; (hence Ay C A C A; for all points A in the order arc; we say
then that A begins with Ap), see [50, Definition 1.2, p. 57] or [33, Definition
14.1, p. 110].

Let a point p in a continuum X and a hyperspace H(X) be given. To
make our notation shorter, we put

H(p,X)={AecH(X):pec A}.

Let f: X — Y be a mapping. For a fixed hyperspace H in (1.2) define the
H-induced mapping H(f) : H(X) — H(Y) by

H(f)(A) = f(A) for each A € H(X)

If H(X) = 2%, then H(f) is usually denoted by 2/. It is known that for
each mapping f : X — Y the induced mapping 27 : 2% — 2Y is continuous
(see [33, Lemma 13.3, p. 106] and compare [48, 5.10.1 of Theorem 5.10, p.
170]). Since H(X) c 2% simply by the definition, and since H(f) = 27 |H(X),
the continuity of 2/ implies the one of each H(f). Similarly,

(1.5) if f is a homeomorphism, then H(f) is a homeomorphism

(see [50, (0.52) and (0.53), p. 29 and 30]).
The following assertions are straightforward.

PRrROPOSITION 1.2. Let a mapping f : X — Y between continua X and
Y be given, and let H be one of the hyperspaces listed in (1.2). Then
H((F1(X)) € Fu(Y).

PRrOPOSITION 1.3. Let a mapping f : X — Y between continua X and
Y be given, H be one of the hyperspaces listed in (1.2) and let A, B € H(X)
with A C B. Then H(f)(A) C H(f)(B).

2. SOME MODELS AND INTERRELATIONS; HYPERSPACES AND CONES

A geometric model for a hyperspace H(X) for a given continuum X is,
roughly speaking, a picture that shows what the hyperspace looks like. For a
majority of continua X it is rather hard to imagine the (geometric) structure
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of a continuum that is homeomorphic to the simplest hyperspaces as 2% and
C(X). Let us recall that the problem whether the Hilbert cube is a model
for 2! has its long and interesting story from the Wojdyslawski’s question of
1938 in [62] thru the affirmative 1972 answer by R. M. Schori and J. E. West
in [56], [57] and [58] to the complete 1978 solution by D. W. Curtis and R.
M. Schori in [17] and [18] who proved the following important result (see also
[33, Curtis-Schori Theorem 11.3, p. 89]).

THEOREM 2.1. A nondegenerate continuum X is locally connected if and
only if 2% ~ M. If, additionally, there is no free arc in X, then also C(X) ~
IMo,

Thus, in particular, the Hilbert cube is a model for 2! and for C(I?). The
2-cell 12 is a model for C(I) and C(S'), see [33, Examples 5.1 and 5.2, p. 33
and 35, respectively].

Indeed, if X = I, then points of C(I) are closed intervals [a,b] with 0 <
a < b < 1. Defining a function h from C(I) into R? by h([a,b]) = (a,b) we
see that the image h(C(I)) is the triangular 2-cell T in the plane R? with
vertices (0,0), (0,1) and (1,1). It is easy to observe that h is one-to-one and
h(C(I)) = T. Since a sequence of points {[a;,b;] : ¢ € N} in C(I) converges to
[a,b] if and only if the sequence of points {(a;,b;) € R? : i € N} converges (in
the plane R?) to (a,b), it follows that h : C(I) — T is a homeomorphism.

Similarly, if X = S! = {(21,22) € R? : 2§ + 3 = 1}, then points of C(S!)
are arcs A C S!, singletons {x} with z € S!, and S'. For any arc A C S!
let [(A) denote the length of A, and m(A) be the middle point of A. Define
a homeomorphism h from C(S!) onto the unit disc D = {(z1,72) € R? :
2?2 + 23 < 1} as follows. For an arc A € C(S!), let h(A) be the point that lies
on the straight line segment from (0,0) to m(A) and that is of distance %
from m(A). Now, there is only one way to define h on the rest of C(S!) so
that the resulting function is continuous: we put h({z}) = x for each x € S*
and h(S') = (0,0). It follows easily that h : C(S!) — D is a homeomorphism.

Only for very simple continua X as some specific linear graphs, locally
connected fans (i.e., n-ods and the infinite locally connected fan F,, = the
hairy point) and a few other ones the geometric models for C(X) and 2% are
known (see e.g. [33, Chapters II and III, p. 31-96)).

Recently it was shown by R. Schori that Cy(I) a~ I*. In the proof (given in
[30, Lemma 2.2, p. 349]) one considers two auxiliary subsets of Cy(I), namely
D(1) = {A € Cy(I) : 1 € A} and D(0,1) = {4 € Cx(I) : 0,1 € A}. By
constructing the corresponding homeomorphisms it is shown that D(0,1) ~
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12, D(1) = Cone(D(0,1)) and C3(I) ~ Cone(D(1)), whence the conclusion
follows.

Further, C(I) and Cy(S') are not homeomorphic (see [30, Lemma 2.3, p.
349]). In fact, since Cy(I) ~ I#, it follows that Cy(T) \ {A} is unicoherent for
each A € Cy(I). By defining a suitable essential mapping from Ca(St) \ {S'}
onto S! we conclude that Co(S') \ {S'} is not unicoherent, which completes
the proof.

It is not known if C,(I) ~ C,(S') for n > 3 (see [30, Question 5.1, p.
362]; see also [45, Question, p. 273]). Also, models for C3(I) and Co(S!) are
unknown (see [30, Problem 5.5, p. 362]). Thus the following set of problems
is natural.

PROBLEM 2.2. Given a continuum X, describe geometric models for hy-
perspaces H(X) listed in (1.2). Specifically, give such models if X is a simple
linear graph as an arc, a circle, a noose, an n-od, etc.

As it can easily be observed, since C(I) ~ I? ~ C(S'), the hyperspaces
C(X) for X € {I,S'} are homeomorphic to the (geometric) cones over X.
There are also other continua X such that the hyperspace C(X) is homeo-
morphic to Cone(X), the cone over X, defined as the quotient space obtained
from the product X x [0,1] by shrinking X x {1} to a point. Continua for
which there is the above mentioned homeomorphism are called C-H continua.
A continuum X is said to have the cone = hyperspace property if there exists
a homeomorphism A : Cone(X) — C(X) such that h maps the vertex of the
cone to the point X in C'(X) and maps the base of the cone onto the set of sin-
gletons of X in C(X). The simplest continua that enjoy this property are an
arc and a circle, as well as any solenoid and the Brouwer-Janiszewski-Knaster
continuum (called also the buckedhandle continuum), see [53, Theorem 2, p.
167] and compare [50, p. 303]. For an extension of this result to all Knas-
ter continua (i.e. the inverse limits of inverse sequences of arcs with open
bonding mappings) see [19, Corollary 12, p. 639].

The following question (see [50, Questions 8.35, p. 332]) is related to the
above recalled concepts.

QUESTION 2.3. For what continua X does there exist a continuum Z such
that C'(X) ~ Cone(Z)?

A characterization of continua having the cone = hyperspace property in
terms of some selections is given in [28] (see also [33, Theorem 80.5, p. 428|
and compare [59, Theorem 3.1, p. 1032]).
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A very complete discussion about the cone = hyperspace property is contai-
ned in [50, Chapter VIII] and [33, Sections 40 and 80]. In particular, the
following results are known.

THEOREM 2.4. Let X be a continuum.

(2.4.1) If dim X is finite and X has the cone = hyperspace property, then
either X ~ I, or X ~ S!, or X is indecomposable and each one of
its proper nondegenerate subcontinua is an arc (see [54, Theorem 1, p.
279]).

(2.4.2) If X is hereditarily decomposable and C-H, then X is homeomorphic
to one of the eight continua listed in [49, Theorem 1.1, p. 322|; (these
continua are pictured in [33, Fig. 20, p. 63]). Furthermore, each of
these eight continua is a C-H continuum (see also [50, Theorem 8.3, p.
322]).

(2.4.3) If dim X is finite and X is a C-H continuum but not hereditarily
decomposable, then dim X = 1, X is atriodic, it contains a unique
nondegenerate indecomposable subcontinuum Y (see [55, Theorem 8 p.
286]). Furthermore, Y has the cone = hyperspace property and X \'Y
is arcwise connected (see [25, Theorem, p. 286]).

(2.4.4) If X is locally connected, then C(X) ~ Cone(Z) for some finite di-
mensional continuum Z if and only if X is an arc, a circle or a simple
n-od (see [40, Theorem 4, p. 3071] and compare [33, 80.13 and 80.14,
p. 430-431]).

A further progress in the area is obtained in [38] (see also [39] and [32].
The results are summarized in the following theorem ([38, Theorem, p. ix];
compare also [32, Theorem 0, p. 378]). Since [38] is rather hard to access, and
[32] does not contain any argument for this theorem, an outline of the proof
of the result is enclosed.

THEOREM 2.5. Let X be a continuum for which there are a finite dimen-
sional continuum Z and a homeomorphism h : C(X) — Cone(Z), and let Y
be a subcontinuum of X such that h(Y") is the vertex v(Z) of Cone(Z). Then
the following assertions are satisfied.

(2.5.1) dim X = 1.
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(2.5.2) Each subcontinuum of X that does not contain Y is an arc or a point.
(2.5.3) If X is hereditarily decomposable, then'Y is a point, an arc or a circle.

(2.5.4) If X is not hereditarily decomposable, then Y is the only nondegene-
rate indecomposable subcontinuum of X.

(2.5.5) If'Y is nondegenerate, it has the cone = hyperspace property.

(2.5.6) If X is indecomposable, then X ~ Z. Consequently, X has the cone
= hyperspace property.

(2.5.7) X \ Y is locally connected.

(2.5.8) Each component of X \'Y is homeomorphic to either the real line
R = (—00,00) or the real half-line [0, 00), and it coincides with an arc
component of X \'Y.

(2.5.9) X \ 'Y has a finite number of arc components.

Proof. (Outline of proof) Since dim Z < oo, it follows that dim Cone(Z) =
dim Z + 1, [50, Lemma 8.0, p. 301], whence dim C(X) < oco. Since dim X >
2 implies dimC(X) = oo, [33, Theorems 72.5 and 73.9, p. 348 and 354,
respectively], (2.5.1) follows.

If X contains an m-od, then C(X) contains an m-cell, [50, Theorem 1.100,
p. 140], whence dimC(X) > m. Since dim C(X) is finite, there exists an
m € N such that X does not contain m-ods. Since it can be shown that
each subcontinuum A of X that does not contain Y is locally connected, A
is a linear graph. (2.5.2) is attained by showing that A does not contain any
ramification points.

Assume that X is hereditarily decomposable. Thus Y is decomposable,
and by (2.5.2) each nondegenerate proper subcontinuum of Y is an arc, whence
(2.5.3) follows.

To show (2.5.4) let Y/ # Y be a nondegenerate indecomposable subconti-
nuum of X. Thus h(Y') # v(Z). Tt follows that C(X) \ {Y’} has infinitely
many arc components. On the other hand, if p € Cone(Z) \ {v(Z)}, then
Cone(Z) \ {p} has at most two arc components. Hence Y/ =Y, and (2.5.4) is
shown.

To prove (2.5.5) consider two cases. If Y is decomposable, the result is a
consequence of (2.5.3). If Y is indecomposable, we first prove that h(F;(Y)) is
a subset of the base of Cone(Z). Then it follows that the cone over h(F;(Y))
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is a subset of Cone(Z) such that the two cones have the same vertex v(Z) =
h(Y). Finally, the equality Cone(h(F1(Y))) = h(C(Y)) is shown to verify
that h has all the needed properties.

If X is indecomposable, then Y = X by (2.5.4), so (2.5.6) follows from
[50, Theorem 8.7, p. 308|.

Finally, to show properties (2.5.7), (2.5.8) and (2.5.9) we utilize the concept
and various attributes of the semi-boundary of C(Y) in C(X) defined as

{A € C(Y) : there exists an order arc A in C(X) such that
NA=A and BZY forevery Be A\ {A}}

(see [33, Section 69, p. 333 ff.]). In particular, (2.5.7) implies that components
and arc components of X \ Y coincide. |}

A characterization of hereditarily decomposable continua X whose hyper-
space C'(X) is homeomorphic to Cone(Z) for some finite dimensional conti-
nuum Z is given in [32].

Interesting results on mutual relations between hyperspaces in (1.2) have
been proved in [42]. Namely we have the following.

THEOREM 2.6. Let a continuum X be finite-dimensional. Then
(2.6.1) C(X) = Fy(X) = X =1 (see [42, Theorem 9, p. 178]);

(2.6.2) if n € N and n > 3, then the hyperspaces C(X) and F,(X) are not
homeomorphic (see [42, Theorem 12, p. 180]).

The following problems are related to Theorem 2.6.
PROBLEM 2.7. Let a continuum X be given.

(2.7.1) Which ones of the hyperspaces H(X) in (1.2) are homeomorphic? Note
that 2%, F,(X) and C,,(X) are compact, while Fi.(X) and Cno(X) are
not.

(2.7.2) Are there some characterizations of continua X distinct from [ in terms

of the existence of a homeomorphism between some hyperspaces Hi(X)
and Ha(X) (i.e., an analog of (2.2) for X #I)?

In the light of the above mentioned results one can ask if the concepts of C-
H continua X and continua X having the cone = hyperspace property can be



RECENT RESEARCH IN HYPERSPACE THEORY 245

extended from the hyperspace C'(X) to other hyperspaces H(X). Obviously
an answer is negative for Co(X) and F(X) (since these spaces are not
compact). For the hyperspaces C, and F,(X) with n > 1 the following
results are known.

THEOREM 2.8. Let a continuum X be finite-dimensional. If n > 1 then:

(2.8.1) Cn(X) is not homeomorphic to Cone(X) (see [46, Theorem 3.2, p.
257));

(2.8.2) if X is the cone over a totally disconnected set, then the hyperspaces
Cn(X), F,(X) and 2% are cones over some continua (see [46)).

3. HYPERSPACE DETERMINED CONTINUA
The following statement is an immediate consequence of implication (1.5).

STATEMENT 3.1. If X and Y are continua, then
(3.1.1) X~rY = 28 =2Y and O(X)=C(Y).

Indeed, if h : X — Y is a homeomorphism, then the induced mapping 2" :
2% — 2V is a homeomorphism, and thus 2"|C(X) = C(h) : C(X) — C(Y)
also is a homeomorphism (see [50, (0.52) and (0.53), p. 29 and 30]).

The converse to (3.1.1) is not true in general because of the following
examples (already mentioned in the previous section; see [50, (0.58), p. 32]
and compare [33, Chapters II and III, p. 31-96]).

ExAMPLE 3.2. 2! ~ I* ~ 25 and C(I) ~ 12 ~ C(S'). Moreover, if
X is a nondegenerate locally connected continuum, then 2% ~ IN, and if
additionally there is no free arc in X, then also C'(X) ~ I™.

However, the implication
(3.1) CX)=CY) = X=~rY

holds if continua X and Y satisfy some additional conditions. The above
discussed results led to creating the following concept (see [50, Definition
(0.61), p. 33]). The members of a class A of continua are said to be C-
determined provided that implication (3.3) is true for any two members X
and Y of A. The known results about C-determined continua can be gathered
as follows.
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THEOREM 3.3. (a) The members of the following classes of continua are
known to be C-determined:

(3.3.1) linear graphs, at least one of which is different from an arc and a circle
(see 20, 9.1, p. 283]) and [21]);

(3.3.2) hereditarily indecomposable continua (see [50, (0.60), p. 33] and com-
pare also [22, Section 4, paragraph 3 on p. 1032]);

(3.3.3) smooth fans (see [23, Corollary 3.3, p. 285]);

(3.3.4) indecomposable continua such that all of their nondegenerate proper
subcontinua are arcs (see [41, Theorem 3, p. 261]);

(3.3.5) compactifications of the ray [0,00) with a nondegenerate remainder
(see [1, Corollary 5, p. 44]);

(3.3.6) continua of the form S;1URU Sy, where S;UR and S;UR are compac-
tifications of the disjoint rays S1 and Ss with the common remainder R
(see [1, Theorem 10, p. 48]);

(3.3.7) compactifications of the real line R = (—o0, 00) different from an arc
(see [3, Theorem 4.5, p. 24]);

(3.3.8) circle-like continua being compactifications of the real line R = (—oo,
o0) with a connected remainder (see [2, Theorem 3.6, p. 184]);

(3.3.9) continua of the form S U abU bc, where ab and be are arcs, S'Uab is a
compactification of a ray S with the arc ab as the remainder, and bc N

(SUab) = {b} (see [2, Theorem 4.6, p. 187]);

(3.3.10) continua of the form (SUab)/{a, e}, where SUab is a compactification
of a ray S with the arc ab as the remainder, and e is the end point of S
(see [2, Theorem 4.10, p. 187]);

(3.3.11) arcwise connected circle-like continua (see [2, Theorem 4.12, p. 188]);

(3.3.12) circle-like continua which are either arcwise connected or compacti-
fications of the real line R = (—o0,00) with a connected remainder (see
[2, Theorem 4.14, p. 188]).

(b) The members of the following classes of continua are known not to be
C-determined:
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(3.3.13) chainable continua (see [26]);
(3.3.14) fans (see [27]).

In connection with the concept of C-determined continua one can introduce
the following. Let H(X) denote one of the hyperspaces of a continuum X
listed in (1.2). We say that the members of a class A of continua are said to
be H-determined provided that implication

(3.2) HX)~HY) = X~Y

is true for any two members X and Y of A.

If ‘H denotes the hyperspace C of subcontinua, then the known results
about the subject are collected in Theorem 3.3. Only a few results are known
if H is not C. Extending Nadler’s result (3.3.2) of Theorem 3.3, S. Macias has
shown that implication (3.2) holds for hereditarily indecomposable continua if
H(X) means either the hyperspace 2% (see [43, Corollary, p. 417]) or Cy,(X),
for any n € N (see [45, Theorem 6.1, p. 273]). In connection with these results
the following questions seem to be natural.

QUESTION 3.4. For what hyperspaces H € {Cw, F),, Fo}, where n € N
and n > 1, hereditarily indecomposable continua are H-determined?

QUESTION 3.5. Are members of the classes in (3.3.3)-(3.3.14) H-determi-
ned if H is as in (1.2)7

Let S be a family of topological spaces and M be a class of mappings
between members of S. Then S can be quasi-ordered with respect to Ml writing
for any X,Y € S

(Y <y X) < ( there exists a surjection f € M of X onto Y ),
(X =M Y) <~ (Y <m X and X <m Y)

Replacing in the definition of H-determined continua the relation ~ by
~y for a given class M of mappings between continua one gets the following
concept. Let H(X) denote one of the hyperspaces of a continuum X listed in
(1.2), and let M be a class of mappings between continua. The members of a
class A of continua are said to be (H, M)-determined provided that implication

HX)~rmH(Y) = X~y Y
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is true for any two members X and Y of A.

The above defined notion of a class A of (H,M)-determined continua can
be a subject of a further study.

The concept of C-determined continua has been modified by S. Macfas in
[43, p. 416] and by G. Acosta in [1] in the following way (see also [4, p. 745]).

For a given continuum X, consider a family F(X) of continua Y such that:

(a) no two distinct members of F(X) are homeomorphic;
(b) C(Y) is homeomorphic to C(X) for each member Y of F(X);

(c) F(X) is the maximal family satisfying conditions (a) and (b), i.e., if Z is
a continuum such that C(Z) ~ C(X), then Z ~ Y for some Y € F(X).

A continuum X is said to have unique hyperspace C'(X) provided that the
family F(X) consists of one element only, viz. of X, [1, Definition 1, p. 34];
almost unique hyperspace provided that the family F(X) is finite and consists
of more than one element (see [2, Definition 1.1, p. 176]). The known results
about continua X with the unique hyperspace C(X) are collected below. Some
special irreducible continua of type A that have almost unique hyperspace are
studied in [4].

THEOREM 3.6. (a) The following continua X have unique hyperspace
C(X):

(3.6.1) linear graphs different from an arc and a circle (see [1, Theorem 1,
p. 38]);
(3.6.2) hereditarily indecomposable continua (see [1, Theorem 2, p. 38]);

(3.6.3) compactifications of a ray with a nondegenerate remainder (see [1,
Theorem 4, p. 42]);

(3.6.4) indecomposable continua such that all of their nondegenerate proper
subcontinua are arcs (see [2, Theorem 2.3, p. 177]).

(b) The following continua X do not have unique hyperspace C(X):
(3.6.5) continua of the form S;1URU Sy, where S;UR and Sy UR are compac-

tifications of the disjoint rays S1 and Ss with the common remainder R
(see [2, Theorem 3.3, p. 183]);
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(3.6.6) compactifications of the real line R = (—o0,00) with a connected
remainder (see [2, Theorem 3.4, p. 184]);

(3.6.7) continua of the form S U ab U bc, where ab and bc are arcs, S U ab
is a compactification of a ray S with the arc ab as the remainder, and
be N (S Uab) = {b} (see [2, Theorems 4.3 and 4.4, p. 185 and 186,
respectively]);

(3.6.8) continua of the form (SUab)/{a,e}, where SUab is a compactification
of a ray S with the arc ab as the remainder, and e is the end point of S
(see [2, Theorem 4.7, p. 187]);

(3.6.9) arcwise connected circle-like continua (see [2, Theorem 4.11, p. 187]).

To illustrate the methods used in the proofs, we present outlines of argu-
ments for (3.6.2) and (3.6.5).

Proof. Proof of (3.6.2) Let continua X and Y be given such that X is
hereditarily indecomposable, and that C(X) ~ C(Y). Since a continuum Z
is hereditarily indecomposable if and only if the hyperspace C(Z) is uniquely
arcwise connected (see [50, Theorem 1.61, p. 111]), we infer that C'(X) is
uniquely arcwise connected, whence it follows that C(Y) is and, consequently,
Y is hereditarily indecomposable. Since hereditarily indecomposable continua
are C-determined (see (3.3.2) above; in fact, if h : C(X) — C(Y) is a homeo-
morphism, then h(Fi (X)) = Fi(Y); since Fi1(X) ~ X and F1(Y) = Y, we
conclude X =~ Y), the result follows. |

In [23, Example 4.5, p. 286] two continua X and Y are constructed such
that X is decomposable, Y is indecomposable, and C(X) ~ C(Y'). Therefore,
there are indecomposable continua which do not have unique hyperspace, so
hereditary indecomposability is essential in the result.

Proof. (Outline of proof of (3.6.5)) Let a continuum X be such that X =
S1URU Sy, where S1UR and Sy U R are compactifications of the disjoint rays
S1 and Sy with the common remainder R. Let a and b denote the end points
of the rays S1 and 5o, respectively, and let M be an arc with its end points a
and b such that M N X = {a,b}. Put Y = M U X.

The following general result is shown in [2, Theorem 3.1, p. 179]. Let X
be a continuum such that

(1) X is irreducible between points a and b;
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(2) C(a,X) and C(b, X) are arcs in the hyperspace C(X);

(3) if X’ = AU X U B is a continuum obtained from X by attaching two
disjoint arcs A and B ending at the points a and b, respectively, so that
ANX ={a} and BN X = {b}, then X' = X.

If M is an arc such that M NX = {a,b} and Y = X UM, then C(Y) =~ C(X).
Observe that the continuum X = S; U RU Sy satisfies conditions (1)-(3).
Thereby we get C(Y') =~ C(X), so (3.6.5) follows.

Extending the above concept, one can say that a continuum X has (almost)
unique hyperspace H(X) provided that in the conditions (b) and (c) of the
definition of the family F(X) the hyperspace C(X) is replaced by H(X).
There are only a few results related to this concept, and they concern (si-
milarly to preliminary results about C-determined continua, compare [50, p.
33]) the two “diametrically opposite” classes of continua, namely the simplest
continua, linear graphs, and the most complicated continua, viz. heredita-
rily indecomposable ones. The results are reported below. To illustrate the
methods used in the proof, we present outline of argument for (3.7.4).

THEOREM 3.7. (a) Let X be a linear graph. Then
(3.7.1) X has unique hyperspaces F»(X) and F3(X) (see [6]);

(3.7.2) if X is different from an arc and from a simple closed curve, then it
has unique hyperspace C(X) (see [20, 9.1, p. 283]) and [21]);

(3.7.3) X has unique hyperspace Cy,(X) for each integer n > 2 (see [30, Theo-
rem 4.1, p. 356] for n = 2 and [31] for n > 2; the methods of proofs are
distinct for the two cases).

(b) Let a continuum X be hereditarily indecomposable. Then

(3.7.4) X has unique hyperspace 2% (see [43, Theorem, p. 416]);
5) X has unique hyperspace Cy(X) for each n € N (see [45, Theorem
6.1, p. 273)).

(3.7.

Proof. (Outline of proof of (3.7.4)) Let X and Y be continua such that X
is hereditarily indecomposable and there is a homeomorphism A : 2X — 2V
Then by [50, Theorem 1.136, p. 154] 2% and 2¥ are locally connected at X
and Y, respectively. Since X is indecomposable, X is the only point at which
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2% is locally connected, see [50, Theorem 1.139, p. 155], whence Y is the only
point of local connectedness of 2¥". Then h(X) =Y.

Take A € C(X)\ F1(X) and observe that 2%\ { A} is not arcwise connected,
[50, Theorem 11.15, p. 368], whence 2" \ {h(A)} is not arcwise connected,
and thereby h(A) € C(Y), [50, Theorem 11.3, p. 358]. Since C(Y) is closed
in 2¥ [50, Theorem 0.8, p. 7], and F}(X) C cl(C(X) \ F1(X)), we conclude
that h(Fy (X)) C O(Y).

Suppose that there is {z} € F1(X) such that h({z}) € C(Y) \ Fi(Y). By
[50, Corollary 12.4, p. 376] the point h({z}) is arcwise accessible from 2 \
C(Y). Since h(C(X)) C C(Y), it follows that {z} is arcwise accessible from
2%\ C(X), but this contradicts the fact that X is hereditarily indecomposable,
[50, Corollary 12.9, p. 378]. Therefore h(F1(X)) C F1(Y).

Let Y/ € C(Y) be such that Fy(Y’) = h(F1(X)). Then C(Y') C C(Y).
Since h~1(C(Y")) is an arcwise connected subcontinuum of 2% and X is heredi-
tarily indecomposable, it follows from [50, Theorem 12.29, p. 390] that C'(X)N
h=YC(Y")) is arcwise connected. Note that Fy(X) C C(X)Nh=HC(Y")).

Considering the cases h~1(Y’) € C(X) and h=1(Y’) € 2X\O(X) separately
and using [50, Theorems 1.50, 12.9 and 12.30, p. 102, 378 and 391, respecti-
vely], one can show that Y’ =Y, whence it follows that F1(Y) = h(F1(X)).
Since F1(X) and F;(Y') are homeomorphic to X and Y, correspondingly, we
have X ~ Y, as needed. |

It is immediate to ask about similar results for other continua, not neces-
sarily assuming that they are linear graphs or hereditarily indecomposable.
The following result is related to this (see [45, Theorem 5.7, p. 272]).

THEOREM 3.8. Let n > 1 be an integer. If a continuum X is such that
Cn(X) is homeomorphic to either C,,(I) or C,,(S'), then X homeomorphic to
either T or S!.

We close this section with a result about dendrites. Recall that a dendrite
means a locally connected continuum containing no simple closed curve. A
point of order 2 in a dendrite X (i.e., that is neither an end point of X nor a
ramification point of X) is called an ordinary point of X.

The following result is shown in [29, Theorems 1 and 8, p. 77 and 90,
respectively].

THEOREM 3.9. Let X be a dendrite and Y be a continuum such that
F5(X) = F5(Y). Then'Y is a dendrite. Further, if the sets of ordinary points
of X and of Y are open, then X =Y.
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The following questions are related to Theorem 3.9.

QUESTION 3.10. (a) Let X be a dendrite and Y be a continuum such that
Fo(X) =~ F,(Y) for some integer n > 3. Is then Y a dendrite?

(b) Let X and Y be dendrites such that F,(X) =~ F,(Y) for some integer
n > 3, and that the sets of ordinary points of X and of Y are open. Does it
follow that X ~ Y?

(c) Is the assumption of openness of the sets of ordinary points in X and
Y essential in Theorem 3.97

4. STRUCTURAL PROPERTIES

A continuum X is said to have the property of Kelley provided that for
each point x € X, for each subcontinuum K of X containing x and for each
sequence of points x, converging to x there exists a sequence of subcontinua
K, of X containing z, and converging to the continuum K (see e.g. [50,
Definition 16.10, p. 538]).

The property, introduced by J. L. Kelley as property 3.2 in [36, p. 26],
has been used there to study hyperspaces, in particular their contractibility
(see e.g. Chapter 16 of [50], where references for further results in this area
are given). Now the property, which has been recognized as an important
tool in investigation of various properties of continua, is interesting by its own
right, and has numerous applications to continuum theory. Many of them
are not related to hyperspaces. A pointed version of this property has been
introduced by Wardle in [61, p. 291], where it is shown that homogeneous
continua have the property of Kelley. This result has been extended to openly
homogeneous continua in [8, Statement, p. 380], and Kato has proved in [34]
that it cannot be enlarged to continua that are homogeneous with respect to
confluent mappings (introduced in [7]).

In [35] Kato defined a stronger version of the property of Kelley and showed
that if a continuum X has this stronger property, then the hyperspace C'(X)
of all nonempty subcontinua of X, as well as all Whitney levels in C'(X) have
the property of Kelley.

A continuum X is said to be smooth at a point p € X provided that for
each € > 0 there is 6 > 0 such that if a,b € X, d(a,b) < and A € C(a, X) N
C(p, X), then there exists B € C(b,X) N C(p, X) such that H(A,B) <e. A
continuum X is said to be smooth if it is smooth at some point.

The following problem, being a research program concerning hyperspaces
of continua rather than any particular question, is discussed in [13].
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PROBLEM 4.1. Let H(X) denote a hyperspace of a continuum X. Find
necessary and/or sufficient conditions under which implications are true bet-
ween any two of the following four assertions:

(4.1.1) X is smooth;

(4.1.2) X has the property of Kelley;
(4.1.3) H(X) is smooth;

(4.1.4) H(X) has the property of Kelley.

The next result, [13, Theorems 2 and 9] shows that smoothness or the
property of Kelley of some hyperspaces of continua implies the property of
Kelley for the continua.

THEOREM 4.2. Let a hyperspace H(X) of a continuum X satisfy the fol-
lowing conditions:

(4.2.2) F1(X) C H(X);
(4.2.b) if an order arc A in 2% begins with Ag € H(X), then A C H(X).
Then the following implications hold.

(4.2.1) If the hyperspace H(X) is smooth, then the continuum X has the
property of Kelley.

(4.2.2) If H(X) has the property of Kelley, then X has the property of Kelley,
too.

As a consequence we get the following corollaries, [13, Corollaries 3-5 and
10], the first of which generalizes [16, Theorem 1, p. 88].

COROLLARY 4.3. Let X be a continuum.

(4.3.1) Smoothness of either 2% or C,,(X) for some n € N implies that X has
the property of Kelley.

(4.3.2) If there exists a smooth hyperspace H(X) satisfying conditions (4.2.a)
and (4.2.b) of Theorem 4.2, then for each n € N the hyperspace Cp(X)
is contractible.
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(4.3.3) If some of the hyperspaces 2% or C,,(X) is smooth, then for eachn € N
the hyperspace C,(X) is contractible.

(4.3.4) If either 2% or C,,(X) for some n € N has the property of Kelley, then
X also has the property of Kelley.

The next questions are asked also in the above quoted paper [13].
QUESTION 4.4. Let X be a continuum.

(4.4.1) For what (not locally connected) continua X does the property of
Kelley for X imply that a) 2%, b) C,(X) for some n € N is smooth?

(4.4.2) Let a hyperspace H(X) be given. Consider the following two condi-
tions:
(a) H(X) has the property of Kelley; (b) X has the property of Kel-
ley. What are necessary and/or sufficient conditions under which: (a)
implies (b)? (b) implies (a)?

Note that (4.3.4) gives a partial answer to (4.4.2).
The next results are shown as Theorems 11, 18 and 20-23 of [13].

THEOREM 4.5. Let X be a continuum.

(4.5.1) If the hyperspace C(X) is smooth, then each Whitney level for C(X)
has the property of Kelley.

(4.5.2) If the hyperspace F,(X) is smooth for some integer n > 1, then X has
the property of Kelley.

(4.5.3) If Cone(X) is smooth, then X has the property of Kelley.

(4.5.4) Cone(X) has the property of Kelley if and only if the product X x [0, 1]
has the property of Kelley.

(4.5.5) If Cone(X) has the property of Kelley, then it is smooth at its vertex.

(4.5.6) If the hyperspace C(X) (the hyperspace 2% ) has the property of Kel-
ley, then C(X) (2%, respectively) is smooth at X.

We finish this section recalling an important problem (formulated in [13,
Problem 24].



RECENT RESEARCH IN HYPERSPACE THEORY 255

PRrROBLEM 4.6. Consider the following conditions that a continuum X may
or may not satisfy.

(4.6.1) X has the property of Kelley;

(4.6.2) X x [0,1] has the property of Kelley;

(4.6.3) C(X) has the property of Kelley;

(4.6.4) Cone(X) has the property of Kelley;

(4.6.5) the Whitney levels for C'(X) have the property of Kelley;
(4.6.6) Cone(X) is smooth at v(X);

(4.6.7) C(X) is smooth at X.

The main open problem in this area is if (4.6.1) implies any of the properties
(4.6.2)-(4.6.6). As it is shown in [13], to this aim it is enough to prove that
(4.6.1) implies (4.6.2). On the other hand, we do not know if (4.6.6) implies
(4.6.4) or if (4.6.7) implies (4.6.3).

5. INDUCIBLE MAPPINGS

In connection with the concept of the induced mappings one can ask un-
der what conditions an arbitrary mapping between the hyperspaces H(X) and
H(Y) is an induced one. An answer to this question was known for the map-
pings between hyperspaces of all nonempty closed subsets of the continuum
(i.e., 2% and 2Y) or between hyperspaces of all nonempty subcontinua (i.e.,
C(X) and C(Y)), see [11, Theorem 2.2, p. 7], and next it has been extended
to mappings between the hyperspaces C, for any n € N in [14, Theorem 49,
p. 802]. The result can further be proved for all hyperspaces listed in (1.2).
To do this we will use similar auxiliary concepts and notation as introduced
in [11, p. 6].

Let 'H be one of the hyperspaces in (1.2). Given two mappings between
hyperspaces g1,92 : H(X) — H(Y) we will write g1 < g2 provided that
g1(A) C g2(A) for each A € H(X). The following properties of the relation <
on the set of all mappings between hyperspaces are consequences of the above
definition.
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ProproOSITION 5.1. The relation < is an order on the set of all mappings
between hyperspaces H(X) and H(Y') (where H is in (1.2)), that is, the follo-
wing properties are true for every mappings g1, g2, g3 between corresponding
hyperspaces:

(5.1.1) g1 < g2 and go < g3 implies g1 < g3;
(5.1.2) g1 < g2 and g2 < g1 implies g1 = go;
(5.1.3) g1 < 01-

Let X and Y be continua. A mapping between hyperspaces, g : H(X) —
H(Y) is said to be inducible provided that there exists a mapping f: X — Y
such that ¢ = H(f). We have the following characterization of inducible
mappings.

THEOREM 5.2. Let continua X and Y be given and let ‘H denote one of
the hyperspaces listed in (1.2). A mapping between hyperspaces, g : H(X) —
H(Y), is inducible if and only if each of the following three conditions is
satisfied:

(5:2.1) g(F1(X)) C Fi(Y);

)
(5.2.2) A C B implies g(A) C g(B) for every A, B € H(X);
)

(5.2.3) ¢ is minimal with respect to the order <, i.e., if a mapping go : H(X) —
H(Y') satisfies (5.2.2), and go < g, then g = go.

Proof. In fact, the proof is almost the same as for the hyperspace 2% in
[11, proof of Theorem 2.2, p. 7]. We repeat the arguments here for sake of
completeness only.

Assume g is inducible, i.e., g = H(f) for some f: X — Y. Then (5.2.1)
and (5.2.2) follow from Propositions 1.2 and 1.3 correspondingly. Let gg sa-
tisfy (5.2.2), and let go < H(f). Then for each z € X we have go({z}) C

H(f)({z}) = {f(2)}, and thus

(5:2.4) go({z}) = {f(2)}-

For each A € H(X) and for each x € A we have {z} C A, whence go({z}) C
go(A) by (5.2.2). Taking the union over all points € A and using (5.2.4) we
get

Ulao({z}) s 2 € A} = [ JH{f (@)} : & € A} = f(4) C g0(A).
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Since the last inclusion holds for each A € H(X), we conclude that H(f) <
go- This implies H(f) = go by (5.1.2), thus (5.2.3) follows. If a mapping g
satisfies conditions (5.2.1)-(5.2.3), then one can define f : X — Y putting
f(x) to be the only point in the set g({z}). Thus for each A € H(X) we
have H(f)(A) = f(A) = U{f(@)} - 2 € A} = U{9({z}) : € A} C g(4)
by (5.2.2). Thus H(f) < g, and by (5.2.3) we get H(f) = g. The proof is
finished. 1

Recall that in [11, Section 3, p. 8-9] examples are constructed which shown
that conditions (5.2.1), (5.2.2) and (5.2.3) of Theorem 5.2 are independent in
the sense that no one of them is implied by the two others.

6. SPECIAL INDUCED MAPPINGS

Let M denote a class of mappings between topological spaces (as e.g. open,
monotone, light, confluent, weakly confluent and others — see [33] and [52]
for the definitions, and compare [47, Table II, p. 28] for interrelations).

PROBLEM 6.1. Let f: X — Y be a mapping between continua X and Y
and let H be as in (1.2).

(6.1.1) Under what conditions f € M implies H(f) € M?

(6.1.2) Under what conditions H(f) € M implies f € M?

Several results related to the above problems, and concerning mostly the
induced mappings 2/ and C(f) are already known. The reader is referred
to [9] and [33, Chapter XII, Section 77, p. 381], where the recent work in
the area is gathered. In connection with these results the following particular
question can be asked.

QUESTION 6.2. (a) What of the above mentioned theorems for the induced
mappings C(f) = C1(f) can be extended to the induced mappings C,,(f) for
n > 17

(b) What about similar results for F,(f) with n > 17

The following results were obtained in [14] (see [33], [50] and [52] for the
definitions of the needed concepts).

THEOREM 6.3. Let a mapping f : X — Y between continua be given.
Then for each n € N and n > 1 the following statements hold.
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(6.3.1) Cn(f) is a surjection if and only if f is weakly confluent [14, Proposi-
tion 1, p. 784].

(6.3.2) Cp(f) is monotone if and only if f is monotone [14, Theorem 4, p.
784)].

(6.3.3) If Cy,(f) is open, then f is open; the converse is not true [14, Theorem
8 and Remark 9, p. 786].

(6.3.4) If f is an open monotone surjection, then Cy(f) is an r-mapping [14,
Theorem 20, p. 792].

(6.3.5) I Y is in Class (W) and f is refinable, then C,(f) is refinable [14,
Theorem 38, p. 799].

Further, the following holds for all n € N.

(6.3.6) If f is confluent and A € C,,(A), then U(Cy(f)) 1 (A) = f~1(A) (here
U means the union mapping) [14, Lemma 2, p. 784].

S. B. Nadler, Jr. proved in [51, Lemma 2.1, p. 750] that, for a surjective
mapping f between continua,

(6.1) f is a monotone surjection if and only if C(f) is a surjective CE-mapping.

This result has been extended in [14, Corollary 7, p. 786] from C(f) to
Cpn(f) for n > 1. Thus the following result holds, which is a stronger form of
(6.3.2) and (6.1).

THEOREM 6.4. Let a mapping f : X — Y between continua be given.
Then the conditions below are equivalent.

(6.4.1) There exists an n € N such that the induced mapping Cy(f) is mono-
tone.

(6.4.2) There exists an n € N such that the induced mapping C,(f) is a
surjective CE-mapping.

(6.4.3) For each n € N the induced mapping Cy(f) is monotone.
(6.4.4) For eachn € N the induced mapping C,(f) is a surjective CE-mapping.

(6.4.5) f is monotone.



RECENT RESEARCH IN HYPERSPACE THEORY 259

Remark 6.5. Besides induced mappings considered above some special
mappings between hyperspaces as e.g. retractions or selections were consi-
dered in the literature. Concerning recent results on this topic see [15]. For
open problems see [12].
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