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1. Introduction

This note is concerned with the existence of mild solutions defined on a
compact real interval for first and second order semilinear functional diffe-
rential inclusions. In Section 3 we consider the following class of semilinear
functional differential inclusions

(1) y′ −Ay ∈ F (t, yt), a.e. t ∈ [0, T ]

(2) y(t) = φ(t), t ∈ [−r, 0]

where F : J × C([−r, 0], E) −→ P(E) is a multivalued map, A is the in-
finitesimal generator of a strongly continuous semigroup T (t), t ≥ 0, φ ∈
C([−r, 0], E), P(E) is the family of all subsets of E and E is a real separable
Banach space with norm | · |. Section 4 is devoted to the study of the following
second order semilinear functional differential inclusions

(3) y′′ −Ay ∈ F (t, yt), a.e. t ∈ J := [0, T ]

(4) y(t) = φ(t), t ∈ [−r, 0], y′(0) = η,

where F, φ,P(E), E are as in problem (1)-(2) and A is the infinitesimal gene-
rator of a strongly continuous cosine family {C(t) : t ∈ R} and η ∈ E.
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For any continuous function y defined on the interval [−r, T ] and any
t ∈ [0, T ], we denote by yt the element of C([−r, 0], E) defined by

yt(θ) = y(t + θ), θ ∈ [−r, 0].

Here yt(·) represents the history of the state from time t−r, up to the present
time t.

As a model for this class of equations, one may take the following partial
integrodifferential Volterra equation with delay

∂

∂t
w(ξ, t) =

1
π2

∂2

∂ξ2
w(ξ, t) +

∫ t

0
q(t, s, ξ, w(ξ, s))ds + h(t), t ≥ 0, 0 ≤ ξ ≤ 1,

with boundary condition

w(0, t) = w(1, t) = 0, t ≥ 0,

and initial condition

w(ξ, θ) = φ(ξ, θ), 0 ≤ ξ ≤ 1, −r ≤ θ ≤ 0,

where q, h and φ are appropriated functions. As the space E for this equation
we choose L2([0, 1]). The operator A is given by Az := 1

π2
∂2z
∂ξ2 with domain

D(A) =
{

z ∈ E :
∂2z

∂ξ2
∈ E,

∂z

∂ξ
(0) =

∂z

∂ξ
(1) = 0

}

and it is well known that this operator generates a semigroup.
In the last two decades several authors have paid attention to the problem

of existence of mild solutions to initial and boundary value problems for semi-
linear evolution equations. We refer the interested reader to the monographs
by Goldstein [8], Heikkila and Lakshmikantham [10] and Pazy [16] and to the
paper by Heikkila and Lakshmikantham [11]. In [14], [15] existence theorems
of mild solutions for semilinear evolution inclusions are given by Papageor-
giou. Recently, by means of a fixed point argument and the semigroup theory
existence theorems of mild solutions on infinite intervals for first and second
order semilinear differential inclusions with a convex valued-right hand side
are obtained by the first author in [1], [2]. Here we shall extend the above
results to functional differential inclusions with a nonconvex valued right hand
side. The method we are going to use is to reduce the existence of solutions to
problems (1)-(2) and (3)-(4) to the search for fixed points of a suitable multi-
valued map on the Banach space C([−r, T ], E). In order to prove the existence
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of fixed points, we shall rely on a fixed point theorem for contraction multiva-
lued maps due to Covitz and Nadler [5] (see also Deimling [6]). This method
was applied recently by the authors in [3], in the case when A = 0. Notice
that by using the noncompactness measure, existence results for semilinear
differential and functional differential inclusions with nonconvex valued right
hand side were considered in the very recent book of Kamenskii et al [13] and
in the references given there.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
from multivalued analysis which are used throughout this note.

C([−r, 0], E) is the Banach space of all continuous functions from [−r, 0]
into E with the norm

‖φ‖ = sup{|φ(θ)| : −r ≤ θ ≤ 0}.
By C([−r, T ], E) we denote the Banach space of all continuous functions from
[−r, T ] into E with the norm

‖y‖[−r,T ] := sup{|y(t)| : t ∈ [−r, T ]}.
L1([0, T ], E) denotes the Banach space of measurable functions y : [0, T ] −→ E
which are Bochner integrable normed by

‖y‖L1 =
∫ T

0
|y(t)|dt for all y ∈ L1([0, T ], E).

B(E) denotes the Banach space of bounded linear operators from E into E
with norm

‖N‖B(E) = sup{‖N(y)‖ : |y| = 1}.
We say that a family {C(t) : t ∈ R} of operators in B(E) is a strongly
continuous cosine family if:

(i) C(0) = I (I is the identity operator in E),

(ii) C(t + s) + C(t− s) = 2C(t)C(s) for all s, t ∈ R,

(iii) the map t 7−→ C(t)y is strongly continuous for each y ∈ E.

The strongly continuous sine family {S(t) : t ∈ R}, associated to the given
strongly continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)y =
∫ t

0
C(s)yds, y ∈ E, t ∈ R.
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The infinitesimal generator A : E −→ E of a cosine family {C(t) : t ∈ R}
is defined by

Ay =
d2

dt2
C(t)y

∣∣∣
t=0

.

For more details on strongly continuous cosine and sine families, we refer
the reader to the books of Goldstein [8], Fattorini [7], and to the papers of
Travis and Webb [17], [18]. For properties of semigroup theory, we refer the
interested reader to the books of Goldstein [8] and Pazy [16].

Let (X, d) be a metric space. We use the notations:
P (X) = {Y ∈ P(X) : Y 6= ∅}, Pcl(X) = {Y ∈ P (X) : Y closed},

Pb(X) = {Y ∈ P (X) : Y bounded}.
Consider Hd : P (X)× P (X) −→ R+ ∪ {∞}, given by

Hd(A,B) = max {supa∈A d(a, B), supb∈B d(A, b)} ,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b).
Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a generalized

metric space.
A multivalued map N : J −→ Pcl(X) is said to be measurable if, for each

x ∈ X, the function Y : J −→ R, defined by

Y (t) = d(x,N(t)) = inf{d(x, z) : z ∈ N(t)},
is measurable.

Definition 2.1. A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) contraction if and only if it is γ-Lipschitz with γ < 1.

c) N has a fixed point if there is x ∈ X such that x ∈ N(x). The fixed
point set of the multivalued operator N will be denoted by FixN .

For more details on multivalued maps and the proof of known results cited
in this section we refer to the books of Deimling [6], Gorniewicz [9] and Hu
and Papageorgiou [12].

Our considerations are based on the following fixed point theorem for
contraction multivalued operators given by Covitz and Nadler in 1970 [5]
(see also Deimling, [6] Theorem 11.1).

Lemma 2.1. Let (X, d) be a complete metric space. If N : X → Pcl(X)
is a contraction, then Fix N 6= ∅.
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3. First order semilinear FDIs

Now, we are able to state and prove our main theorem for the IVP (1)–(2).
Before stating and proving this result, we give the definition of a mild solution
of the IVP (1)–(2).

Definition 3.1. A function y ∈ C([−r, T ], E) is called a mild solution of
(1)–(2) if there exists a function v ∈ L1(J,E) such that v(t) ∈ F (t, yt) a.e. on
J, y0 = φ, and

y(t) = T (t)φ(0) +
∫ t

0
T (t− s)v(s)ds.

Theorem 3.1. Assume that:

(H1) A is the infinitesimal generator of a linear semigroup of bounded opera-
tors T (t), t ≥ 0 with ‖T (t)‖B(E) ≤ M ;

(H2) F : [0, T ] × C([−r, 0], E) −→ Pcl(E) has the property that F (·, u) :
[0, T ] → Pcl(E) is measurable for each u ∈ C([−r, 0], E);

(H3) there exists l ∈ L1(J,R) such that Hd(F (t, u), F (t, u)) ≤ l(t)‖u−u‖, for
each t ∈ J and u, u ∈ C([−r, 0], E), and d(0, F (t, 0)) ≤ l(t), for almost
each t ∈ J.

Then the IVP (1)-(2) has at least one mild solution on [−r, T ].

Proof. Transform the problem into a fixed point problem. Consider the
multivalued operator, N : C([−r, T ], E) → P(C([−r, T ], E)) defined by:

N(y) :=





h ∈ C([−r, T ], E) : h(t) =





φ(t), if t ∈ [−r, 0]

T (t)φ(0)

+
∫ t
0 T (t− s)g(s)ds, if t ∈ [0, T ]





where

g ∈ SF,y =
{

g ∈ L1([0, T ], E) : g(t) ∈ F (t, yt) for a.e. t ∈ [0, T ]
}

.

Remark 3.1. (i) It is clear that the fixed points of N are solutions to (1)-
(2).
(ii) For each y ∈ C([−r, T ], E) the set SF,y is nonempty since by (H2) F has
a measurable selection (see [4], Theorem III.6).



6 m. benchohra, s.k. ntouyas

We shall show that N satisfies the assumptions of Lemma 2.1. The proof
will be given in two steps.

Step 1 : N(y) ∈ Pcl(C[−r, T ], E) for each y ∈ C([−r, T ], E).
Indeed, let (yn)n≥0 ∈ N(y) such that yn −→ ỹ in C([−r, T ], E). Then

ỹ ∈ C([−r, T ], E) and

yn(t) ∈ T (t)φ(0) +
∫ t

0
T (t− s)F (s, ys)ds for each t ∈ [0, T ].

Using the closedness property of the values of F and the second part of
(H3) we can prove that

∫ t
0 T (t−s)F (s, ys)ds is closed for each t ∈ [0, T ]. Then

yn(t) −→ ỹ(t) ∈ T (t)φ(0) +
∫ t

0
T (t− s)F (s, ys)ds, for t ∈ [0, T ].

So ỹ ∈ N(y).
Step 2 : Hd(N(y1), N(y2)) ≤ γ‖y1−y2‖[−r,T ] for each y1, y2 ∈ C([−r, T ], E)

(where γ < 1).

Let y1, y2 ∈ C([−r, T ], E) and h1 ∈ N(y1). Then there exists g1(t) ∈
F (t, y1t) such that

h1(t) = T (t)φ(0) +
∫ t

0
T (t− s)g1(s)ds, t ∈ [0, T ].

From (H3) it follows that

Hd(F (t, y1t), F (t, y2t)) ≤ l(t)‖y1t − y2t‖.

Hence there is w ∈ F (t, y2t) such that

‖g1(t)− w‖ ≤ l(t)‖y1t − y2t‖, t ∈ [0, T ].

Consider U : [0, T ] → P(E), given by

U(t) = {w ∈ E : ‖g1(t)− w‖ ≤ l(t)‖y1t − y2t‖}.

Since the multivalued operator V (t) = U(t) ∩ F (t, y2t) is measurable (see
Proposition III.4 in [4]) there exists g2(t) a measurable selection for V . So,
g2(t) ∈ F (t, y2t) and

‖g1(t)− g2(t)‖ ≤ l(t)‖y1t − y2t‖, for each t ∈ J.
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Let us define for each t ∈ J

h2(t) = T (t)φ(0) +
∫ t

0
T (t− s)g2(s)ds.

Then we have

|h1(t)− h2(t)| ≤ M

∫ t

0
‖g1(s)− g2(s)‖ ds ≤ M

∫ t

0
l(s)‖y1s − y2s‖ds

= M

∫ t

0
l(s)e−τL(s)eτL(s)‖y1s − y2s‖ ds

≤ M‖y1 − y2‖B

∫ t

0
l(s)eτL(s)ds

= M‖y1 − y2‖B
1
τ

∫ t

0
(eτL(s))′ds

≤ M
‖y1 − y2‖B

τ
eτL(t),

where L(t) =
∫ t
0 l(s)ds, τ > M and ‖ · ‖B is the Bielecki-type norm on

C([−r, T ], E) defined by

‖y‖B = max
t∈[−r,T ]

{|y(t)|e−τL(t)}.

Then
‖h1 − h2‖B ≤ M

τ
‖y1 − y2‖B.

By the analogous relation, obtained by interchanging the roles of y1 and y2,
it follows that

Hd(N(y1), N(y2)) ≤ M

τ
‖y1 − y2‖B.

So, N is a contraction and thus, by Lemma 2.1, it has a fixed point y,
which is a mild solution to (1)-(2).

4. Second order semilinear FDIs

Definition 4.1. A function y ∈ C([−r, T ], E) is called a mild solution of
(3)–(4) if there exists a function v ∈ L1(J,E) such that v(t) ∈ F (t, yt) a.e. on
J , y0 = φ, and

y(t) = C(t)φ(0) + S(t)η +
∫ t

0
S(t− s)v(s)ds.
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Theorem 4.1. Assume that (H2), (H3) and

(H4) A is an infinitesimal generator of a given strongly continuous and boun-
ded cosine family {C(t) : t ∈ J} with ‖C(t)‖B(E) ≤ M ;

are satisfied. Then the IVP (3)-(4) has at least one mild solution on [−r, T ].

Proof. Transform the problem into a fixed point problem. Consider the
multivalued operator, N1 : C([−r, T ], E) → P(C([−r, T ], E)) defined by:

N1(y) :=





h ∈ C([−r, T ], E) : h(t) =





φ(t), if t ∈ [−r, 0]

C(t)φ(0) + S(t)η+∫ t
0 S(t− s)g(s)ds if t ∈ [0, T ]





where

g ∈ SF,y =
{

g ∈ L1([0, T ], E) : g(t) ∈ F (t, yt) for a.e. t ∈ [0, T ]
}

.

We shall show that N1 satisfies the assumptions of Lemma 2.1. The proof
will be given in two steps.

Step 1 : N1(y) ∈ Pcl(C[−r, T ], E) for each y ∈ C([−r, T ], E).
Indeed, let (yn)n≥0 ∈ N1(y) such that yn −→ ỹ in C([−r, T ], E). Then

ỹ ∈ C([−r, T ], E) and

yn(t) ∈ C(t)φ(0) + S(t)η +
∫ t

0
S(t− s)F (s, ys)ds for each t ∈ [0, T ].

Using the closedness property of the values of F and the second part of
(H3) we can prove that

∫ t
0 S(t−s)F (s, ys)ds is closed for each t ∈ [0, T ]. Then

yn(t) −→ ỹ(t) ∈ C(t)φ(0) + S(t)η +
∫ t

0
S(t− s)F (s, ys)ds, for t ∈ [0, T ].

So ỹ ∈ N(y).
Step 2: Hd(N1(y1), N1(y2)) ≤ γ‖y1−y2‖[−r,T ] for each y1, y2 ∈ C([−r, T ], E)

(where γ < 1).
Let y1, y2 ∈ C([−r, T ], E) and h1 ∈ N1(y1). Then there exists g1(t) ∈

F (t, y1t) such that

h1(t) = C(t)φ(0) + S(t)η +
∫ t

0
S(t− s)g1(s)ds, t ∈ [0, T ].
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From (H3) it follows that

Hd(F (t, y1t), F (t, y2t)) ≤ l(t)‖y1t − y2t‖.

Hence there is w ∈ F (t, y2t) such that

‖g1(t)− w‖ ≤ l(t)‖y1t − y2t‖, t ∈ [0, T ].

Consider U : [0, T ] → P(E), given by

U(t) = {w ∈ E : ‖g1(t)− w‖ ≤ l(t)‖y1t − y2t‖}.

Since the multivalued operator V (t) = U(t) ∩ F (t, y2t) is measurable (see
Proposition III.4 in [4]) there exists g2(t) a measurable selection for V . So,
g2(t) ∈ F (t, y2t) and

‖g1(t)− g2(t)‖ ≤ l(t)‖y1t − y2t‖, for each t ∈ J.

Let us define for each t ∈ J

h2(t) = C(t)φ(0) + S(t)η +
∫ t

0
S(t− s)g2(s)ds.

Then we have

|h1(t)− h2(t)| ≤ TM

∫ t

0
‖g1(s)− g2(s)‖ ds

≤ TM

∫ t

0
l(s)‖y1s − y2s‖ds

= TM

∫ t

0
l(s)e−τL(s)eτL(s)‖y1s − y2s‖ ds

≤ TM‖y1 − y2‖B

∫ t

0
l(s)eτL(s)ds

= TM‖y1 − y2‖B
1
τ

∫ t

0
(eτL(s))′ds

≤ TM
‖y1 − y2‖B

τ
eτL(t).

Then

‖h1 − h2‖B ≤ TM

τ
‖y1 − y2‖B.
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By the analogous relation, obtained by interchanging the roles of y1 and y2,
it follows that

Hd(N1(y1), N1(y2)) ≤ TM

τ
‖y1 − y2‖B.

Let τ > TM . Then N1 is a contraction and thus, by Lemma 2.1, it has a
fixed point y, which is a mild solution to (3)-(4).

Remark 4.1. The reasoning used above can be applied to obtain existence
results for the following first and second order semilinear integrodifferential
inclusions of Volterra type

(5) y′ −Ay ∈
∫ t

0
k(t, s)F (s, ys)ds, a.e. t ∈ [0, T ]

(6) y(t) = φ(t) t ∈ [−r, 0],

and

(7) y′′ −Ay ∈
∫ t

0
k(t, s)F (s, ys)ds, a.e. t ∈ [0, T ]

(8) y(t) = φ(t) t ∈ [−r, 0], y′(0) = η,

where A,F, φ, η are as in problems (1)-(2) and (3)-(4) and k : D → R, D =
{(t, s) ∈ J × J : t ≥ s}.

We state only the results. We need the following assumptions:

(H5) for each t ∈ [0, T ], k(t, s) is measurable on [0, t] and

K(t) = ess sup{|k(t, s)|, 0 ≤ s ≤ t},
is bounded on [0, T ];

(H6) the map t 7−→ kt is continuous from [0, T ] to L∞(J,R); here kt(s) =
k(t, s);

Theorem 4.2. Assume that (H1)–(H3), (H5)–(H6) are satisfied. Then
the IVP (5)-(6) has at least one mild solution on [−r, T ].

Theorem 4.3. Assume that (H2), (H3)–(H6) are satisfied. Then the IVP
(7)-(8) has at least one mild solution on [−r, T ].
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Remark 4.2. The contraction constant is given by γ = TM
τ supt∈[0,T ] K(t) <

1 for Theorem 4.2 and by γ = T 2M
τ supt∈[0,T ] K(t) < 1 for Theorem 4.3.

Remark 4.3. The above results obtained on the compact interval [−r, T ]
can be extended to the infinite interval [−r,∞) by using the same fixed point
theorem. To this end, we consider the Banach space of continuous functions
y : [−r,∞) → E such that t → exp(−τL(t))y(t) is bounded on [−r,∞). The
norm on this space is given by

‖y‖ = sup
t∈[−r,∞)

exp(−τL(t))|y(t)|.
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