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1. INTRODUCTION

In this paper we define the notions of semicommutativity and semicom-
mutativity modulo a linear subspace. We prove some results regarding the
semicommutativity or semicommutativity modulo a linear subspace of a se-
quentially complete m-convex algebra. We show how can be applied such
results in order to obtain commutativity criterions for locally m-convex alge-
bras.

Let A be a complex m-convex algebra, whose topology is defined by a
separating family (pa)aer of submultiplicative seminorms.

The unitization of A over C, denoted by A; is the m-convex algebra consis-
ting of the set C x A with addition, scalar multiplication and product defined
(for all z,y € A and «a, 3 € C) by

(o, 2) + (B,y) = (a + B,z +y)
B(a, ) = (Ba, Br)
(o, 2)(8,y) = (af, 2y + ay + pz)

and with the seminorms (g4 )aer, defined by
Ga((Xs @) = [N + pa()
foralla € I, A€ C and = € A; A; is an m-convex algebra with unit element

(1,0), qa((1,0)) =1 for all « € I, and the mapping a — (0,a) is an isomor-
phism of A onto a subalgebra of A;. It is a routine matter to verify that A;
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is sequentially complete when A is sequentially complete (i.e., every Cauchy
sequence converges).
Recall that for an element x of an unital algebra A, the set

o(x)={ e C: ANl—x ¢ G(A)}
is called the spectrum of z, and
pl) = sup{[Al : A € o)}

is called the spectral radius of x, 1 being the unit element of A and G(A) the
set of all invertible elements of A.
If A; is a sequentially complete m-convex algebra, then (see [7])

. L
p(y) =sup lim gq(y™)»

ag] M0

for any y € A;. In particular, we have

3=

p((0,z)) = sup lim ¢o((0,2)")

ae[ n—oo

(1)

3=

=sup lim ¢,((0,2"))» = sup lim pa(:z:")%.
ae] M0 ae] VT
In the remainder of this paper we assume that A is a complex sequen-
tially complete m-convex algebra with topology defined by a separating family
(Pa)acer of submultiplicative seminorms.

DEFINITION 1. A is said to be commutative iff xy = yx for any z,y € A,
and A is said to be semicommutative iff xyz = zzy for any z,y,z € A.
Given a linear subspace E of A, A is said to be commutative modulo F iff
xy —yx € E for any z,y € A, and A is said to be semicommutative modulo
E iff xzyz — zzy € F for any x,y,z € A.

For example, in the set M4(C) of all square matrices with four columns
and complex elements, we consider the subset

A={X € My(C) : X =aM + 3N +~vMN, a, 3,7 € C}

where

o O O O
o O o o
o O o o
S O o
o O o o
o O O
o O O O
o O O O
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If we define on A the family consisting of the submultiplicative seminorm

p(X) = la| + 18] + Il

A become an m-convex algebra. This m-convex algebra is semicommutative
but not commutative: on the one hand, NM = 0 (the null matrix) and

MN =

o O O O
o O O
o O O O
o O O O

on the other hand, using the fact that MNM = NMN = 0 it is a routine
matter to verify that XY Z = ZXY =0 for any X,Y, Z € A, and so we obtain
the semicommutativity of A.

DEFINITION 2. If A has unit element, the radical of A, denoted by Rad A
is the set
RadA={zre€ A:1—-zyc G(A) for any y € A}.

If A hasn’t unit element then we define the radical of A as

RadA={ze€ A : (0,z) € Rad A, }.

2. SOME COMMUTATIVITY CRITERIONS

THEOREM 1. If A is semicommutative then A is commutative modulo
Rad A.

Proof. We have to prove that (0, zy — yx) € Rad Ay for any z,y € A. We
prove first that

(zy)" = a"y" (2)
for any n € N* and =,y € A. Indeed, for n = 2, from semicommutativity we
have

(zy)? = (2y)(zy) = ((zy)2)y = 2(y2)y = 2y’c = 2°y’
for any x,y € A, and by induction we obtain the equality (2).
Let now z,y € A. For a € I and n € N*| we have

1
n

Pal(xy))® = pala™y™) " < pal@™) 7 paly™)™ ,
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and by (1) we obtain

p((0,2)(0,)) < p((0,2))p((0,y)) - (3)

Using again the semicommutativity of A, we find that (zy — yx)? = 0 for any
x,y € A. This implies that

. L
P((0, 2y = yz)) = sup Hm pa((zy —yz)")r =0 (4)
ac
for any z,y € A. From (3) and (4) it follows that
p((0, 2y —yz)(0,2)) = 0 (5)
for any z,y, z € A.
We prove now that for © € A with the properties
p(0,u) =0 and p((0,u)(0,2)) =0 forany z¢€ A,
the equality
p((0,u)(A,v)) =0 (6)

hold for any (\,v) € A;. Indeed, using the semicommutativity of A we obtain
that (0, \u) and (0,uv) are permutable elements of A;. It is a well known
fact that for permutable elements the spectral radius is submultiplicative so
we have

p((O,u)()\,v)) = P((O, Au + uv)) < |Mp((07 u)) + p((O,u)(O, U)) =0

for any (\,v) € A;.

From (4), (5) and (6) it follows that p((0,zy — yx)t) = 0 for any x,y € A
and t € A;. We deduce that 1 ¢ o((0,zy — yx)t) for any z,y € A and ¢t € A;.
So (1,0)— (0, zy —yx)t € G(A;) for any x,y € A and t € Ay, and consequently

(0,xzy — yx) € Rad Ay
for any z,y € A, and this completes the proof. |

DEFINITION 3. If (go)acs is a family of seminorms on A, the kernel of
family (¢a)acr, denoted by Ker ((¢a)acr), is the set

Ker ((qa)aEI) = m Ker(qa) .
ael
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DEFINITION 4. If p,q are seminorms on A, ¢ is said to be p-continuous if
there exists k£ > 0 such that

q(x) < kp(x) forany z € A.

THEOREM 2. If (qq)acr is a family of submultiplicative seminorms on A
such that, for any a € I, qo is a po-continuous seminorm and there exists
ko > 0 such that

da(zy) < kapa(yz)

for any x,y € A, then A is semicommutative modulo Ker ((qq)acr)-
Proof. Let z,y € A, z € A1, and f: C — A given by

f(A) = exp(Az)zy exp(—Az)

for any A € C, where

1
exp(Az) = (1,0) + Z EXLZ” .

n=1

The function f is well defined, because A is an ideal of A;. We consider the

linear space A/Ker((ga)ae;) and the family of seminorms (pl,)aes given by

Pa(T) = qa()

for any Z € A/Ker((ga)ues) @ad o € I. We immediately obtain that the se-
minorms p/, are well defined and that (p!,)aer is a separating family. So the

linear space A/Ker((gq)ac;) endowed with the family (pf,)acr is a locally convex

space. We will denote this space by A. -

Let now f : C — A defined by f()\) = f(A) for any A € C. The function
f is differentiable on C. Indeed, for any o € I, from the fact that ¢, is a
pa-continuous seminorm, we get the existence of a constant 3, such that

v, (f A =00 f/(A\)> it (1=~ o)
— o (THZLO)_ piy))

fN) = (o)
< BaPa <)\_)\()[) —f ()\0)>



86 A. TOMA

because f is a differentiable function as a product of differentiable functions.
It follows that f is diferentiable on C and

(f)/(A):m for any A e C.
Let o € I and A € C. We have
v (FO) =26 (FO) = aal V)
= qo(exp(Az)zy exp(—Az)) < kapa(yz) .
So fis differentiable and bounded on C and using Liouville Theorem we get

~ N/ .
that f is a constant function. This implies that ( f ) (A\) =0 for any A € C.
We have

—

(f)/ (N = m = zexp(A\z)zy exp(—Az) — exp(Az)xy exp(—Az)z

for any A € C. For A = 0 we obtain 0 = zxy/—\:vyz. So zxy — xyz €
Ker ((¢a)acr) for any z,y,z € A and this completes the proof.

COROLLARY 1. If there exists a separating family (qq)aer of submulti-
plicative seminorms on A with the properties that for any a € I, q, is a
Pa-continuous seminorm and there exists k, > 0 such that

do(zy) < kapa(yz) for any x,y € A,

then A is semicommutative.

Proof. From the fact that (g )aers is a separating family, we have
Ker ((ga)aer) = ﬂ Ker(ga) = {0}
ael

and now we use Theorem 2. |

COROLLARY 2. If A has unit element and for any o € I there exists ko > 0
such that

Pal(zy) < kapa(yz) for any z,y € A,

then A is commutative.
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Remark. If the conditions of Corollary 1 or Corollary 2 are satisfied then
A is commutative modulo Rad A. In addition, if A has unit element, then A
is commutative.

Now we consider that A has unit element. We denote by S = S(A) the
set of all states on A, i.e., the set of all continuous functionals s on A with
the properties that s(1) = 1 and there exists « € I such that

|s(z)] < pa(x) forany z € A.
Recall that, for an element x € A, the set
V(z)={s(z) : s€ S}
is called the numerical range of x, and
v(x) = sup{[s(z)| : s € S}

is called the numerical radius of x. We recall the generalization of Bohnenblust
and Karlin theorem for m-convex algebras (see [3], [4]). Let A be an unital
m-convex algebra and z € A. Then

1

—sup pa(x) < v(z) < suppa(z).
€ ael a€cl

COROLLARY 3. If A has unit element and for any « € I there exists kq, > 0
such that
v(zy) < kapa(yz) for any x,y € A,

then A is commutative.

Proof. From the generalization of Bohnenblust and Karlin theorem we

have 1
—suppa(zy) < v(zy) for any z,y € A.
€ acrl

Now using Corollary 2 it follows that A is a commutative algebra. 1

THEOREM 3. If A has unit element and for any « € I there exists ko > 0
such that
Pa(®)? < kapa(2®)  forany ze A,

then A is commutative.
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Proof. Let « € I and x € A. An induction argument lead us to

1

Pa(@) < ha ™ (pala®) 7"
We denote

pa(@) = lim (pa(a®"))2".
Letting n — 00, we obtain p, () < kapa(x). As it is known, p,(zy) = pa(yz)
for any z,y € A (see [7]). So

pa(xy) < k‘a,Oa(ny) = k‘apa(yﬂ?) < kapa(yx)
for any x,y € A, and using Corollary 2 we obtain that A is commutative. 1
COROLLARY 4. (See [2]) Let A be a complex Banach algebra with unit
such that, for some k > 0,
loyll < kllyell  for any @,y € A.
Then A is commutative.
THEOREM 4. If A has unit element and for any « € I there exists ko > 0

such that
pa(7) < kap(z)  forany z€ A,

then A is commutative.

Proof. Let z,y € A and f:C — A given by
f(X) = exp(Az)y exp(—Ax)
for any A € C. For any o € I and X\ € C, we have
Pa(f(N)) = palexp(Az)y exp(—Az)) < kap(exp(Az)y exp(—Az)) = kap(y)

because the spectral radius has the property p(xy) = p(yx) for any z,y € A
(see [7]). So f is a bounded and differentiable function on C and using Liouville
theorem we obtain that f is a constant function. This implies that f/(\) =0
for any A € C and consequently

xexp(Azr)y exp(—Ax) — exp(Ax)yzexp(—Az) =0 for any A € C.
For A = 0 we have xy — yx = 0, and this completes the proof. |

COROLLARY 5. (See [1] and [2]) Let A be a complex Banach algebra with
unit such that, for some k > 0,

lz|| < kp(zx) for any x € A.

Then A is commutative.
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