Commutativity Criterions In Locally M-Convex Algebras

AIDA TOMA

Mathematics Department, Academy of Economic Studies Piata Romana no. 6, Bucharest, Romania e-mail: aida_toma@yahoo.com

(Presented by S. Dierolf)

AMS Subject Class. (2000): 46H05, 46J05

Received June 22, 2001

1. Introduction

In this paper we define the notions of semicommutativity and semicommutativity modulo a linear subspace. We prove some results regarding the semicommutativity or semicommutativity modulo a linear subspace of a sequentially complete m-convex algebra. We show how can be applied such results in order to obtain commutativity criterions for locally m-convex algebras.

Let A be a complex m-convex algebra, whose topology is defined by a separating family $(p_{\alpha})_{\alpha \in I}$ of submultiplicative seminorms.

The unitization of A over \mathbb{C} , denoted by A_1 is the m-convex algebra consisting of the set $\mathbb{C} \times A$ with addition, scalar multiplication and product defined (for all $x, y \in A$ and $\alpha, \beta \in \mathbb{C}$) by

$$(\alpha, x) + (\beta, y) = (\alpha + \beta, x + y)$$
$$\beta(\alpha, x) = (\beta \alpha, \beta x)$$
$$(\alpha, x)(\beta, y) = (\alpha \beta, xy + \alpha y + \beta x)$$

and with the seminorms $(q_{\alpha})_{\alpha \in I}$, defined by

$$q_{\alpha}((\lambda, x)) = |\lambda| + p_{\alpha}(x)$$

for all $\alpha \in I$, $\lambda \in \mathbb{C}$ and $x \in A$; A_1 is an m-convex algebra with unit element (1,0), $q_{\alpha}((1,0)) = 1$ for all $\alpha \in I$, and the mapping $a \to (0,a)$ is an isomorphism of A onto a subalgebra of A_1 . It is a routine matter to verify that A_1

is sequentially complete when A is sequentially complete (i.e., every Cauchy sequence converges).

Recall that for an element x of an unital algebra A, the set

$$\sigma(x) = \{ \lambda \in \mathbb{C} : \lambda 1 - x \notin G(A) \}$$

is called the spectrum of x, and

$$\rho(x) = \sup\{|\lambda| \, : \, \lambda \in \sigma(x)\}$$

is called the spectral radius of x, 1 being the unit element of A and G(A) the set of all invertible elements of A.

If A_1 is a sequentially complete m-convex algebra, then (see [7])

$$\rho(y) = \sup_{\alpha \in I} \lim_{n \to \infty} q_{\alpha}(y^n)^{\frac{1}{n}}$$

for any $y \in A_1$. In particular, we have

$$\rho((0,x)) = \sup_{\alpha \in I} \lim_{n \to \infty} q_{\alpha}((0,x)^{n})^{\frac{1}{n}}$$

$$= \sup_{\alpha \in I} \lim_{n \to \infty} q_{\alpha}((0,x^{n}))^{\frac{1}{n}} = \sup_{\alpha \in I} \lim_{n \to \infty} p_{\alpha}(x^{n})^{\frac{1}{n}}.$$
(1)

In the remainder of this paper we assume that A is a complex sequentially complete m-convex algebra with topology defined by a separating family $(p_{\alpha})_{\alpha \in I}$ of submultiplicative seminorms.

DEFINITION 1. A is said to be commutative iff xy = yx for any $x, y \in A$, and A is said to be semicommutative iff xyz = zxy for any $x, y, z \in A$. Given a linear subspace E of A, A is said to be commutative modulo E iff $xy - yx \in E$ for any $x, y \in A$, and A is said to be semicommutative modulo E iff $xyz - zxy \in E$ for any $x, y, z \in A$.

For example, in the set $\mathcal{M}_4(\mathbb{C})$ of all square matrices with four columns and complex elements, we consider the subset

$$A = \{X \in \mathcal{M}_4(\mathbb{C}) : X = \alpha M + \beta N + \gamma M N, \alpha, \beta, \gamma \in \mathbb{C}\}\$$

where

If we define on A the family consisting of the submultiplicative seminorm

$$p(X) = |\alpha| + |\beta| + |\gamma|,$$

A become an m-convex algebra. This m-convex algebra is semicommutative but not commutative: on the one hand, NM = 0 (the null matrix) and

on the other hand, using the fact that MNM = NMN = 0 it is a routine matter to verify that XYZ = ZXY = 0 for any $X, Y, Z \in A$, and so we obtain the semicommutativity of A.

DEFINITION 2. If A has unit element, the radical of A, denoted by $\operatorname{Rad} A$ is the set

Rad
$$A = \{x \in A : 1 - xy \in G(A) \text{ for any } y \in A\}.$$

If A hasn't unit element then we define the radical of A as

$$\operatorname{Rad} A = \{ x \in A : (0, x) \in \operatorname{Rad} A_1 \}.$$

2. Some commutativity criterions

Theorem 1. If A is semicommutative then A is commutative modulo $\operatorname{Rad} A$.

Proof. We have to prove that $(0, xy - yx) \in \operatorname{Rad} A_1$ for any $x, y \in A$. We prove first that

$$(xy)^n = x^n y^n (2)$$

for any $n \in \mathbb{N}^*$ and $x, y \in A$. Indeed, for n = 2, from semicommutativity we have

$$(xy)^2 = (xy)(xy) = ((xy)x)y = x(yx)y = xy^2x = x^2y^2$$

for any $x, y \in A$, and by induction we obtain the equality (2).

Let now $x, y \in A$. For $\alpha \in I$ and $n \in \mathbb{N}^*$, we have

$$p_{\alpha}((xy)^n)^{\frac{1}{n}} = p_{\alpha}(x^ny^n)^{\frac{1}{n}} \le p_{\alpha}(x^n)^{\frac{1}{n}}p_{\alpha}(y^n)^{\frac{1}{n}},$$

and by (1) we obtain

$$\rho((0,x)(0,y)) \le \rho((0,x))\rho((0,y)). \tag{3}$$

Using again the semicommutativity of A, we find that $(xy - yx)^2 = 0$ for any $x, y \in A$. This implies that

$$\rho((0, xy - yx)) = \sup_{\alpha \in I} \lim_{n \to \infty} p_{\alpha}((xy - yx)^n)^{\frac{1}{n}} = 0$$
 (4)

for any $x, y \in A$. From (3) and (4) it follows that

$$\rho((0, xy - yx)(0, z)) = 0 \tag{5}$$

for any $x, y, z \in A$.

We prove now that for $u \in A$ with the properties

$$\rho(0, u) = 0 \qquad \text{and} \qquad \rho((0, u)(0, z)) = 0 \quad \text{for any } z \in A,$$

the equality

$$\rho((0, u)(\lambda, v)) = 0 \tag{6}$$

hold for any $(\lambda, v) \in A_1$. Indeed, using the semicommutativity of A we obtain that $(0, \lambda u)$ and (0, uv) are permutable elements of A_1 . It is a well known fact that for permutable elements the spectral radius is submultiplicative so we have

$$\rho((0, u)(\lambda, v)) = \rho((0, \lambda u + uv)) \le |\lambda|\rho((0, u)) + \rho((0, u)(0, v)) = 0$$

for any $(\lambda, v) \in A_1$.

From (4), (5) and (6) it follows that $\rho((0, xy - yx)t) = 0$ for any $x, y \in A$ and $t \in A_1$. We deduce that $1 \notin \sigma((0, xy - yx)t)$ for any $x, y \in A$ and $t \in A_1$. So $(1,0)-(0, xy-yx)t \in G(A_1)$ for any $x, y \in A$ and $t \in A_1$, and consequently

$$(0, xy - yx) \in \operatorname{Rad} A_1$$

for any $x, y \in A$, and this completes the proof.

DEFINITION 3. If $(q_{\alpha})_{\alpha \in I}$ is a family of seminorms on A, the kernel of family $(q_{\alpha})_{\alpha \in I}$, denoted by $\operatorname{Ker}((q_{\alpha})_{\alpha \in I})$, is the set

$$\operatorname{Ker}((q_{\alpha})_{\alpha \in I}) = \bigcap_{\alpha \in I} \operatorname{Ker}(q_{\alpha}).$$

DEFINITION 4. If p, q are seminorms on A, q is said to be p-continuous if there exists k > 0 such that

$$q(x) \le kp(x)$$
 for any $x \in A$.

THEOREM 2. If $(q_{\alpha})_{\alpha \in I}$ is a family of submultiplicative seminorms on A such that, for any $\alpha \in I$, q_{α} is a p_{α} -continuous seminorm and there exists $k_{\alpha} > 0$ such that

$$q_{\alpha}(xy) \leq k_{\alpha}p_{\alpha}(yx)$$

for any $x, y \in A$, then A is semicommutative modulo $\operatorname{Ker}((q_{\alpha})_{\alpha \in I})$.

Proof. Let $x, y \in A$, $z \in A_1$, and $f : \mathbb{C} \to A$ given by

$$f(\lambda) = \exp(\lambda z) xy \exp(-\lambda z)$$

for any $\lambda \in \mathbb{C}$, where

$$\exp(\lambda z) = (1,0) + \sum_{n=1}^{\infty} \frac{1}{n!} \lambda^n z^n.$$

The function f is well defined, because A is an ideal of A_1 . We consider the linear space $A/_{\text{Ker}((q_{\alpha})_{\alpha \in I})}$ and the family of seminorms $(p'_{\alpha})_{\alpha \in I}$ given by

$$p'_{\alpha}(\widehat{x}) = q_{\alpha}(x)$$

for any $\widehat{x} \in A/_{\mathrm{Ker}((q_{\alpha})_{\alpha \in I})}$ and $\alpha \in I$. We immediately obtain that the seminorms p'_{α} are well defined and that $(p'_{\alpha})_{\alpha \in I}$ is a separating family. So the linear space $A/_{\mathrm{Ker}((q_{\alpha})_{\alpha \in I})}$ endowed with the family $(p'_{\alpha})_{\alpha \in I}$ is a locally convex space. We will denote this space by \widetilde{A} .

Let now $\widetilde{f}: \mathbb{C} \to \widetilde{A}$ defined by $\widetilde{f}(\lambda) = \widehat{f(\lambda)}$ for any $\lambda \in \mathbb{C}$. The function \widetilde{f} is differentiable on \mathbb{C} . Indeed, for any $\alpha \in I$, from the fact that q_{α} is a p_{α} -continuous seminorm, we get the existence of a constant β_{α} such that

$$p_{\alpha}' \left(\frac{\widetilde{f}(\lambda) - \widetilde{f}(\lambda_0)}{\lambda - \lambda_0} - \widehat{f'(\lambda_0)} \right) = p_{\alpha}' \left(\frac{f(\lambda) - \widetilde{f}(\lambda_0)}{\lambda - \lambda_0} - f'(\lambda_0) \right)$$
$$= q_{\alpha} \left(\frac{f(\lambda) - f(\lambda_0)}{\lambda - \lambda_0} - f'(\lambda_0) \right)$$
$$\leq \beta_{\alpha} p_{\alpha} \left(\frac{f(\lambda) - f(\lambda_0)}{\lambda - \lambda_0} - f'(\lambda_0) \right)$$

because f is a differentiable function as a product of differentiable functions. It follows that \widetilde{f} is differentiable on $\mathbb C$ and

$$\left(\widetilde{f}\,\right)'(\lambda) = \widehat{f'(\lambda)} \qquad \text{for any } \ \lambda \in \mathbb{C}\,.$$

Let $\alpha \in I$ and $\lambda \in \mathbb{C}$. We have

$$\begin{split} p_{\alpha}'\left(\widetilde{f}(\lambda)\right) &= p_{\alpha}'\left(\widehat{f(\lambda)}\right) = q_{\alpha}(f(\lambda)) \\ &= q_{\alpha}(\exp(\lambda z)xy\exp(-\lambda z)) \leq k_{\alpha}p_{\alpha}(yz) \,. \end{split}$$

So \widetilde{f} is differentiable and bounded on $\mathbb C$ and using Liouville Theorem we get that \widetilde{f} is a constant function. This implies that $\left(\widetilde{f}\right)'(\lambda)=\widehat{0}$ for any $\lambda\in\mathbb C$. We have

$$\left(\widetilde{f}\right)'(\lambda) = \widehat{f'(\lambda)} = z \exp(\lambda z) xy \exp(-\lambda z) - \exp(\lambda z) xy \exp(-\lambda z) z$$

for any $\lambda \in \mathbb{C}$. For $\lambda = 0$ we obtain $\widehat{0} = zx\widehat{y} - xyz$. So $zxy - xyz \in \text{Ker}((q_{\alpha})_{\alpha \in I})$ for any $x, y, z \in A$ and this completes the proof.

COROLLARY 1. If there exists a separating family $(q_{\alpha})_{\alpha \in I}$ of submultiplicative seminorms on A with the properties that for any $\alpha \in I$, q_{α} is a p_{α} -continuous seminorm and there exists $k_{\alpha} > 0$ such that

$$q_{\alpha}(xy) \le k_{\alpha} p_{\alpha}(yx)$$
 for any $x, y \in A$,

then A is semicommutative.

Proof. From the fact that $(q_{\alpha})_{\alpha \in I}$ is a separating family, we have

$$\operatorname{Ker}((q_{\alpha})_{\alpha \in I}) = \bigcap_{\alpha \in I} \operatorname{Ker}(q_{\alpha}) = \{0\}$$

and now we use Theorem 2.

COROLLARY 2. If A has unit element and for any $\alpha \in I$ there exists $k_{\alpha} > 0$ such that

$$p_{\alpha}(xy) \le k_{\alpha} p_{\alpha}(yx)$$
 for any $x, y \in A$,

then A is commutative.

Remark. If the conditions of Corollary 1 or Corollary 2 are satisfied then A is commutative modulo Rad A. In addition, if A has unit element, then A is commutative.

Now we consider that A has unit element. We denote by S = S(A) the set of all states on A, i.e., the set of all continuous functionals s on A with the properties that s(1) = 1 and there exists $\alpha \in I$ such that

$$|s(x)| \le p_{\alpha}(x)$$
 for any $x \in A$.

Recall that, for an element $x \in A$, the set

$$V(x) = \{s(x) : s \in S\}$$

is called the numerical range of x, and

$$v(x) = \sup\{|s(x)| : s \in S\}$$

is called the numerical radius of x. We recall the generalization of Bohnenblust and Karlin theorem for m-convex algebras (see [3], [4]). Let A be an unital m-convex algebra and $x \in A$. Then

$$\frac{1}{e} \sup_{\alpha \in I} p_{\alpha}(x) \le v(x) \le \sup_{\alpha \in I} p_{\alpha}(x).$$

COROLLARY 3. If A has unit element and for any $\alpha \in I$ there exists $k_{\alpha} > 0$ such that

$$v(xy) \le k_{\alpha} p_{\alpha}(yx)$$
 for any $x, y \in A$,

then A is commutative.

 ${\it Proof.}$ From the generalization of Bohnenblust and Karlin theorem we have

$$\frac{1}{e} \sup_{\alpha \in I} p_{\alpha}(xy) \le v(xy) \quad \text{for any } x, y \in A.$$

Now using Corollary 2 it follows that A is a commutative algebra.

THEOREM 3. If A has unit element and for any $\alpha \in I$ there exists $k_{\alpha} > 0$ such that

$$p_{\alpha}(x)^2 \le k_{\alpha} p_{\alpha}(x^2)$$
 for any $x \in A$,

then A is commutative.

Proof. Let $\alpha \in I$ and $x \in A$. An induction argument lead us to

$$p_{\alpha}(x) \le k_{\alpha}^{1-\frac{1}{2^n}} (p_{\alpha}(x^{2^n}))^{\frac{1}{2^n}}.$$

We denote

$$\rho_{\alpha}(x) = \lim_{n \to \infty} (p_{\alpha}(x^{2^n}))^{\frac{1}{2^n}}.$$

Letting $n \to \infty$, we obtain $p_{\alpha}(x) \le k_{\alpha} \rho_{\alpha}(x)$. As it is known, $\rho_{\alpha}(xy) = \rho_{\alpha}(yx)$ for any $x, y \in A$ (see [7]). So

$$p_{\alpha}(xy) \le k_{\alpha} \rho_{\alpha}(xy) = k_{\alpha} \rho_{\alpha}(yx) \le k_{\alpha} p_{\alpha}(yx)$$

for any $x, y \in A$, and using Corollary 2 we obtain that A is commutative.

COROLLARY 4. (See [2]) Let A be a complex Banach algebra with unit such that, for some k > 0,

$$||xy|| \le k||yx||$$
 for any $x, y \in A$.

Then A is commutative.

THEOREM 4. If A has unit element and for any $\alpha \in I$ there exists $k_{\alpha} > 0$ such that

$$p_{\alpha}(x) \leq k_{\alpha} \rho(x)$$
 for any $x \in A$,

then A is commutative.

Proof. Let $x, y \in A$ and $f: \mathbb{C} \to A$ given by

$$f(\lambda) = \exp(\lambda x)y \exp(-\lambda x)$$

for any $\lambda \in \mathbb{C}$. For any $\alpha \in I$ and $\lambda \in \mathbb{C}$, we have

$$p_{\alpha}(f(\lambda)) = p_{\alpha}(\exp(\lambda x)y \exp(-\lambda x)) \le k_{\alpha}\rho(\exp(\lambda x)y \exp(-\lambda x)) = k_{\alpha}\rho(y)$$

because the spectral radius has the property $\rho(xy) = \rho(yx)$ for any $x, y \in A$ (see [7]). So f is a bounded and differentiable function on $\mathbb C$ and using Liouville theorem we obtain that f is a constant function. This implies that $f'(\lambda) = 0$ for any $\lambda \in \mathbb C$ and consequently

$$x \exp(\lambda x)y \exp(-\lambda x) - \exp(\lambda x)yx \exp(-\lambda x) = 0$$
 for any $\lambda \in \mathbb{C}$.

For $\lambda = 0$ we have xy - yx = 0, and this completes the proof.

COROLLARY 5. (See [1] and [2]) Let A be a complex Banach algebra with unit such that, for some k > 0,

$$||x|| \le k\rho(x)$$
 for any $x \in A$.

Then A is commutative.

References

- [1] AUPETIT, B., "Propriétés Spectrales des Algèbres de Banach", Lecture Notes Math. 735, Springer, Berlin, 1979.
- [2] BONSALL, F.F., DUNCAN, J., "Complete Normed Algebras", New York, Springer-Verlag, 1973.
- [3] Bonsall, F.F., Duncan, J., "Numerical Ranges of Operators and of Elements of Normed Algebras", LMS Lecture Note Series 2, Cambridge University Press, London, 1971.
- [4] GILES, J.R., KOEHLER, D.O., On numerical ranges of elements of locally m-convex algebras, Pacific J. Math. 49 (1973), 79–91.
- [5] Mallios, A., "Topological Algebras, Selected Topics", North-Holland Math. Studies 124, Amsterdam, 1986.
- [6] Mocanu, Gh., On numerical radius of an element of a normed algebra, Glasgow Math. J. 15 (1974), 90–92.
- [7] ŹELAZKO, W., "Selected Topics in Topological Algebras", Lecture Note Series No. 31, Aarhus Universitet, Aarhus, 1971.