
Abstract— Infinite periodic arrays of antennas that can be 
individually described by means of spherical modes are analyzed 
starting from the Generalized Scattering Matrix (GSM) of an 
isolated element. After computing the Generalized Scattering 
Matrix of an isolated element with the Finite Element Method, a 
fast post-processing can be carried out to calculate the response of 
the element in an infinite array environment by using addition 
theorems for spherical modes. For this purpose, an efficient 
computation of lattice sums of spherical harmonics is used. The 
main advantage of this method is that the antenna is analyzed only 
once whatever the array lattice or scan angle. Additionally, fast 
frequency analysis can be performed since the starting point is the 
computation of the isolated antenna with the Finite Element 
Method, which is suitable for fast frequency sweep. The active 
reflection coefficient and the embedded radiation pattern of the 
infinite periodic array are calculated for several examples to show 
the capabilities of the proposed method.  

Index Terms— Spherical Modes, Addition Theorems, Finite 
Element Method, Lattice Sums, Generalized Scattering Matrix.   

I. INTRODUCTION

ESEARCH on infinite arrays made up of periodically 
arranged antennas has been carried out for a long time 

since it constitutes the core model for the analysis and design of 
large phased antenna arrays [1], [2]. The importance of the 
infinite array model as a pre-design tool is confirmed by the fact 
that the main commercial software incorporates it [3]-[5]. 
Although a great effort has been made in recent years for the 
efficient analysis of finite arrays [6], for example, using 
spherical mode expansion [7] or far-field data and iterative 
methods [8], their use in the design of periodic arrays of 
hundreds or even thousands of elements requires computational 
times that are too high for design purposes. In those cases, 
infinite array analysis is still preferred. The main advantage of 
the infinite array model is that, because of Floquet theorem [9], 
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only a single antenna element, i.e. unit cell of the antenna array, 
needs to be analyzed through the application of proper periodic 
Floquet boundary conditions and modal expansions [2]. Once 
results from this unit cell are computed, the behavior of a finite 
phased array can be readily estimated on the basic assumption 
that it is large enough, so that central antenna elements 
dominate this behavior [2].  

In the last decades, a number of computational methods to 
enable accurate simulations of infinite periodic arrays have 
been proposed (see, for example, the thorough review in the 
introduction of [10]). This variety, together with the 
technological developments in phased antenna arrays, can make 
the designer choose the most appropriate method according to 
the phased array structure and materials. As said, the 
application of Floquet theorem [9] is a shared common ground 
for all these methods to compute a Generalized Scattering or a 
Generalized Admittance Matrix in terms of Floquet modes 
[11]-[15]. Among these methods, the Finite Element Method 
(FEM), both in the time and the frequency domain [16], has 
turned out to be quite popular because of its capability to model 
complex materials and structures.  

The analysis of infinite periodic arrays with the frequency-
domain three-dimensional (3D) FEM has been long known 
since it was proposed in the mid-1990’s [17]-[19]. In spite of its 
popularity, the 3D-FEM analysis of infinite periodic structures 
based on Floquet theory still suffers from three major issues: 1) 
the application of periodic boundary conditions onto opposite 
faces of the unit cell may not be straightforward for non-
matching meshes; thus, matching meshes are desirable, but the 
generation of such meshes incurs in complicated meshing 
procedures and it is sometimes infeasible for complicated 
structures; 2) a different FEM simulation of the unit cell is 
required for each scan angle of the infinite phased array, as the 
desired scan angle changes both the Floquet modes and the shift 
in periodic boundary conditions to be applied; thus, a complete 
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characterization (i.e. embedded element pattern or active 
reflection coefficient per scan angle) requires several full-wave 
simulations (in a discretized scan angle range); and 3) there is a 
need to know a priori the regular arrangement (the lattice) of 
the antennas in the array (i.e., shape and dimensions of the unit 
cell) since, again, the shift in periodic boundary conditions and 
the Floquet modes depend on this; though this can be regarded 
as obvious, in the end a degree of freedom in the design process 
is subtracted as a different lattice would entail a new full-wave 
FEM simulation per scan angle. After the mentioned seminal 
works [17]-[19], later works focused on addressing the issue of 
matching face triangulations, either using prismatic elements 
[20], or by directly proposing FEM strategies for non-matching 
meshes [21],[22],[15]. 

To the best of the authors’ knowledge, [23] is the only work 
reporting a FEM analysis independent of the scan angle, valid 
for aperture-type antennas. It is based on the matching of FEM 
basis functions and the Floquet modes in the aperture, although 
special care should be taken to avoid convergence issues in this 
matching procedure. 

To reduce the computational effort due to the need to carry 
out one unit cell FEM analysis for each scan angle, some 
commercial software such as HFSS/ANSYS have developed 
efficient interpolation methods in one of the angular directions 
for a fixed value of the other one. However, this approximation 
may still require up to 15 FEM analyses for each fixed angular 
direction for an error lower than 0.01 in S parameters [24]. 

In this work, we propose a full-wave strategy based on 3D-
FEM for the characterization of infinite arrays of antennas that 
can be individually described in terms of spherical modes. The 
proposed method overcomes, for this type of antennas, the 
aforementioned current three major issues regarding the FEM 
analysis of infinite arrays: only one full-wave 3D-FEM 
simulation needs to be carried out independently of the scan 
angle and the array lattice dimensions, and this simulation does 
not require the imposition of periodic boundary conditions in 
opposite faces (avoiding the need for matching procedures). 

To that effect, we first propose to use the frequency domain 
3D-FEM combined with Modal Analysis to obtain the 
Generalized Scattering Matrix (GSM) in terms of spherical 
modes of a single, non-coupled, isolated antenna element [25], 
[7]. It is worth noting that this FEM step is independent of the 
infinite array arrangement where this antenna element will be 
placed, as no Floquet’s theory is applied so far (i.e., the GSM is 
obtained for spherical modes, not Floquet modes). Therefore, 
this FEM simulation needs to be carried out only once, 
independent of the scan angle and the array lattice arrangement. 
From this GSM in terms of spherical modes, the response of the 
antenna element under desired infinite array conditions (i.e. by 
adjusting the lattice parameters and scan angle at this step) is 
computed by using translation of spherical modes based on 
addition theorems from every one of the surrounding elements. 
It is important to note that a limitation of the method, associated 
to the implementation based on addition theorems, is that the 
minimum spheres (or hemispheres on a ground plane) that 
circumscribe each one of the elements should not overlap [26]. 
The formulation, which involves the computation of lattice 

sums for spherical harmonics, is thoroughly derived. Although 
this postprocessing step needs to be performed at each scan 
angle, the computational speed-up factor overcomes traditional 
approaches, since it relies on analytical evaluations and 
computation of spherical harmonic lattice sums. Several 
methods have been developed for fast computation of lattice 
sums of spherical harmonics (see [27], [28] and references 
therein). Specifically, in this work we use the code provided in 
[29], [30], based on the exponentially convergent expressions 
provided in [31], [32] that use an extension of the Ewald 
summation procedure for 2D periodicity in 3D [33]. It should 
be noted that Ewald method has also been used previously to 
analyze periodic planar arrays of antennas or scatterers to 
accelerate the evaluation of Green Functions [34],[35],[20],[11]  

II. THEORY

A. Active reflection coefficient from the GSM of an isolated 
element. 

A two-dimensional infinite periodic planar array of coupled 
antennas is considered. In the first step of the proposed analysis 
methodology, a single isolated antenna (i) of the array is 
characterized from its GSM. This GSM is obtained by applying 
a hybrid Finite Element/Modal Analysis method to a three-
dimensional domain bounded by transmission line or 
waveguide feeding ports and a hemispherical port on a ground 
plane surrounding the antenna. This method has been detailed 
in [25] and [7]. The resulting GSM is given in terms of its 
submatrices as 

൤ડ ܂܀ ܁) − ۷)൨ ൤ܞ(௜)܉(௜)൨ = ൤ܟ(௜)܊(௜) ൨, (1) 

where ܞ(௜) and ܟ(௜) are column vectors of complex amplitudes 
of incident and reflected modes on the feeding port of the 
antenna (i), ܉(௜) and ܊(௜) are column vectors of complex 
amplitudes of standing and scattered spherical modes on a 
spherical port, used to characterize the radiating region. 
Submatrices Γ, T, R and S are the reflection, transmission, 
reception, and scattering matrices of the isolated antenna, 
respectively, as defined in the classic theory [26], and I is the 
identity matrix. 

The incident field on the spherical port of antenna (i) in the 
infinite coupled array is expressed as the superposition of the 
fields scattered by the rest of antenna elements, supposing no 
incoming field from outside the array. By expanding these 
fields in terms of spherical modes, the scattered field from 
antenna (k) can be expressed as an incident field in antenna (i), 
in terms of complex amplitudes of spherical modes, ܊(௞) and ܉(௜), respectively. In this way, these amplitudes are related as 
follows: 

(௜)܉ = ∑ ۵(௜)(௞)܊(௞),ஶ௞ୀଵ௞ஷ௜  (2) 



where ۵(௜)(௞) is the general translational matrix between 
antennas (i) and (k) for spherical modes, whose elements can be 
found in [36], or in an alternative way in [26]. By substituting 
(2) into (1) and assuming no incoming field from outside the 
array, two equations are obtained: ડܞ(௜) + ܀ ∑ ۵(௜)(௞)܊(௞) = ஶ௞ୀଵ௞ஷ௜(௜)ܟ ܂ (3)  + ܁) − ۷) ∑ ۵(௜)(௞)܊(௞) = ஶ௞ୀଵ௞ஷ௜.(௜)܊  (4) 

The transmission behavior of each antenna in the presence of 
the others in an infinite periodic array is identical for all the 
antennas Therefore, in an infinite array environment the 
following expression can be written for the complex amplitudes ܊(௞)

(௞)܊ =  (5) ,(௞)ܞ୬୤୍܂

where ୍܂୬୤ is the transmission matrix of each antenna in 
presence of the rest of elements in the array. Inserting (5) into 
(4), the latter results in ܞ܂(௜) + ܁) − ۷) ∑ ۵(௜)(௞)୍܂୬୤ܞ(௞) = ஶ௞ୀଵ௞ஷ௜.(௜)ܞ୬୤୍܂  (6) 

Next, an excitation ܞ(௞) over the infinite array, in order to 
scan the radiated field at a particular direction (ߠ௢, ߮௢), is 
considered: ܞ(௞) = ೖ࢘∙࢕ࣄ୨ି݁ܞ , (7) 

where ࣄ૙ = ଴cos ߮଴ߠsin)ߢ ොݔ + sin ଴ߠ sin߮଴ݕො + cosߠ଴̂ߢ ,(ݖ is 
the wavenumber in free space, ࢘௞ = ௞ݔ ොݔ ොݕ௞ݕ+ is the position 
vector of the antenna (k) and ܞ =  if antenna (i) is located at (௜)ܞ
the origin of the coordinate system. Now, by using the 
excitation (7) into (6), 

ܞ܂ + ܁) − ۷) ∑ ۵(௜)(௞)୍܂୬୤ି݁ܞ୨࢘∙࢕ࣄೖ = ஶ௞ୀଵ௞ஷ௜ܞ୬୤୍܂ . (8) 

ષ(࢕ࣄ) has been defined in [37] as the matrix that designates 
the quasi-periodic lattice sum of the general translational 
matrices for spherical modes ۵(௜)(௞)

ષ(࢕ࣄ) = ∑ ۵(௜)(௞)݁ି୨࢘∙࢕ࣄೖஶ௞ୀଵ௞ஷ௜ . (9)

It has been used in that work for modeling gratings composed 
of periodic arrays of identical discrete particles. This definition 
leads to the transmission matrix ୍܂୬୤(࢕ࣄ), particularized at 
,௢ߠ) ߮௢) (࢕ࣄ)୬୤୍܂ = [۷ − ܁) − ۷)ષ(࢕ࣄ)]ି૚܂. (10) 

The reflection performance for an antenna in the array can be 
expressed similarly in terms of (9) and (10). Substituting (5) 
into (3) and taking into account the excitation in (7), the 
following expression is obtained  

ડܞ + ܀ ∑ ۵(௜)(௞)୍܂୬୤ି݁ܞ୨࢘∙࢕ࣄೖ = ஶ௞ୀଵ௞ஷ௜ܟ  (11) 

which, using the definition of ષ(࢕ࣄ)  in (9), results in  ડܞ + ܀ ષ(࢕ࣄ)୍܂ ୬୤(࢕ࣄ)ܞ =  (12) .ܟ

Finally, from (12), and considering the excitation modes in v
and w, the active reflection coefficient at the scan angle (ߠ௢, ߮௢)
is determined: ડ௔(ߠ௢, ߮௢) = ડ + ܀ ષ(࢕ࣄ)୍܂୬୤(࢕ࣄ). (13) 

It should be noted that the mathematical operations in (10) 
and (13) involve matrix multiplications and solving a linear 
system of dimension equal to the number of spherical modes 
required to describe the radiated field in the spherical port of 
the isolated element in (1). This number is chosen according to 
the criteria given in [38] ݊ = ௠௜௡ݎߢൣ + 0.045 ඥݎߢ௠௜௡య ݎݐܲ−) )൧,               
where n is the degree of the spherical modes, rmin is the radius 
of the minimum sphere enclosing the element and Ptr is the 
relative truncated (i.e. excluded) power in dB with respect to 
the total radiated power due to the series truncation. We have 
checked that Ptr = -65 dB provides accurate results [39], so that, 
for a typical array element size of 0.4λ-0.7λ, n is not greater 
than 6, which leads to, at most, 48 spherical modes for elements 
on a ground plane. Convergence is absolute when increasing the 
degree n in the sense that, as the degree is increased, the 
precision of the calculated GSM is continuously improved. 
However, when the degree n is increased from an initial value 
chosen with the criterion that Ptr = -65 dB, this provides 
variations less than 10-5 for the GSM elements. Thus, a low 
computational effort will be required in this process since, 
although expression (9) must be computed for each scan angle, 
it requires a negligible time, as will be shown in Section III. The 
most time-consuming computation of the proposed procedure 
will be focused on the calculation of the GSM of the isolated 
element, given by (1), with FEM. Nevertheless, this effort is 
made only once, whatever the number of considered scan 
angles or array lattice arrangement. 

B. Quasi-periodic lattice sum of the general translational 
matrices for spherical modes 

As shown in [36], each element of matrix ۵(௜)(௞) can be 
expressed as ܩఓఔ௠௡ = ∑ ,݉)ܥ ݊,௣ ,ߤ (௞ݎߢ)ℎ௣(ߥ ௣ܻ௠ିఓ(ߠ௞, ߮௞),  (14) 

where m and µ are the order, and n and ν are the degree, of the 
spherical modes referred to elements (i) and (k), respectively. 
Index p is related to n and ν, where the sum over the indices 
(n,ν) is finite. In (14),  ℎ௣ is the spherical Hankel function for 
outward propagation, ௣ܻ௠ିఓ is the scalar spherical harmonic, 
and ( ݎ௞, ,௞ߠ ߮௞) are the spherical coordinates of element (k) 
with respect to element (i). Formulae for the computation of C
based on addition theorems have been reported in many works 
but for the first time in [36], although there is a well-
documented sign error in that paper [40], [41]. Additional 







Figs. 7 and 8 show the computed active element field pattern 
of the co-polarized component in E and H-planes, respectively, 
at 6 GHz for an element spacing a = b = 0.6λ. The results 
obtained with the proposed method show an excellent 
agreement in both planes with the FEM/Floquet analysis. 
However, the curve obtained from MM method deviates in E-
plane from the scan blindness angle to the end-fire direction. 
This discrepancy may be due to the phenomenon of relative 
convergence when applying the MM method.  

 Figs. 9 and 10 show the broadside-matched active reflection 
coefficient magnitude versus the scan angle in E and H-planes 
respectively. An excellent agreement with the FEM/Floquet in 
both planes is also observed, whereas the curve obtained from 
the MM in E-plane shows a similar deviation as the observed 
for the active reflection coefficient.  

In this example, the total CPU simulation time for the 
computation of (9) and (13) at 180 scan angles, in order to 
obtain the active reflection coefficient with the proposed 
method, is only 0.1 seconds. The computation of the GSM of 
the isolated element with FEM, for which only 24 spherical 
modes are required, takes 16 seconds. As stated in Section II, 
this last one is the most time-consuming step of the proposed 
procedure. On the other hand, in the characterization of the 
infinite array from the FEM/Floquet method in [15], the time 
required to perform the analysis at one scan angle is similar to 
the characterization of the isolated element in the proposed 
method. This comparison illustrates the considerable effort in 
computer time and memory requirements saved with the 
proposed analysis technique. 

C.Infinite array of cylindrical dielectric resonator antennas 
with coaxial probe feeding 

A square grid infinite array of probe-fed cylindrical dielectric 
resonator antennas (DRA´s) on a ground plane is analyzed in 
this last example. Fig. 11 shows the side view of the isolated 
element as studied with FEM. The geometry and dimensions of 
the array in a 2x2 subarray are shown in Fig. 12. The resonant 

Fig. 7. Active element field pattern in E-plane of the infinite array of cavity-
backed patch antennas defined in Fig. 6. 

Fig. 8. Active element field pattern in H-plane of the infinite array of cavity-
backed patch antennas defined in Fig. 6. 

Fig. 9. Broadside-matched active reflection coefficient magnitude versus the 
scan angle in E-plane of the infinite array of cavity-backed patch antennas 
defined in Fig. 6. 

Fig. 10. Broadside-matched active reflection coefficient magnitude versus the 
scan angle in H-plane of the infinite array of cavity-backed patch antennas 
defined in Fig. 6. 
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