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Conformidad del director de tesis: Conformidad del codirector de tesis:
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indagaciones matemáticas, las conversaciones en la cafeteŕıa y todo lo que aprend́ı de él.

Por último, agradezco a mis padres, a quienes les debo todo incondicionalmente, por su
apoyo y por preservar el sentido dentro de mı́. También quiero agradecer a Chuchi y a
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Resumen

Los espacios de Rochberg son simultáneamente sumas torcidas de espacios de Banach y
espacios de interpolación generalizados. La presente tesis se centra en el estudio de op-
eradores en espacios de Rochberg, y más concretamente, de los operadores definidos en
los espacios de Rochberg Rn(ℓ∞, ℓ1)1/2, obtenidos a partir de la pareja de interpolación
(ℓ∞, ℓ1). La lista de tales espacios contiene al espacio de Hilbert ℓ2 = R1(ℓ∞, ℓ1)1/2 y
al espacio de Kalton-Peck Z2 = R2(ℓ∞, ℓ1)1/2, por lo que en el Caṕıtulo 1 estudiamos
operadores en el espacio de Kalton-Peck. En el Caṕıtulo 3 presentamos la teoŕıa de los
espacios de Rochberg; la mayor parte de los resultados pueden verse como generaliza-
ciones naturales de la teoŕıa clásica de interpolación compleja. Combinando resultados
de interpolación compleja y teoŕıa de espacios de Banach con algunas técnicas propias
de la homoloǵıa y teoŕıa de categoŕıas, en el Caṕıtulo 4 estudiamos las propiedades de
Rn(ℓ∞, ℓ1)1/2 y de los operadores definidos en éstos. Finalmente, en el Caṕıtulo 5 consid-
eramos la pareja (T2, T ∗

2 ) formada por la 2-convexificación del espacio de Tsirelson y su
dual, y mostramos que los correspondientes espacios de Rochberg Rn(T2, T ∗

2 )1/2 son débil
Hilbert.

Abstract

Rochberg spaces are simultaneously twisted sums of Banach spaces and generalized inter-
polation spaces. This dissertation focuses on the study of operators on Rochberg spaces,
and more specifically, on the operators defined on the Rochberg spaces Rn(ℓ∞, ℓ1)1/2 ob-
tained from the interpolation pair (ℓ∞, ℓ1). The list of such spaces contains the Hilbert
space ℓ2 = R1(ℓ∞, ℓ1)1/2 and the Kalton-Peck space Z2 = R2(ℓ∞, ℓ1)1/2, and so, in Chapter
1 we study operators on the Kalton-Peck space. On the other hand, Chapter 3 describes
the theory of Rochberg spaces; most of the results can be regarded as natural general-
izations of classical Complex Interpolation Theory. Combining techniques from Banach
Space Theory and Complex Interpolation Theory with some homological and categorical
ideas on Banach spaces, in Chapter 4 we study the properties of Rn(ℓ∞, ℓ1)1/2 and the
operators defined on them. Finally, in Chapter 5 we consider the couple (T2, T ∗

2 ) formed
by the 2-convexification of the Tsirelson space and its dual, showing that the associated
Rochberg spaces Rn(T2, T ∗

2 )1/2 are weak Hilbert.
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Introduction

In 1969, motivated by the study of Lp spaces and absolutely p-summing operators, Lin-
denstrauss and Rosenthal asked in [70, problem 4b, p. 347] whether there exists a Banach
space X containing a subspace E ⊂ X such that both E and X/E are isomorphic to
Hilbert spaces but X is itself not isomorphic to a Hilbert space.

In homological language this is equivalent to the existence of a non-trivial short exact
sequence

0 −−−→ ℓ2 −−−→ X −−−→ ℓ2 −−−→ 0

Any such Banach space X is called a non trivial twisted Hilbert space, and the first
example was obtained by Enflo, Lindenstrauss and Pisier [47]. Based on their work, Kalton
discovered in [58] that short exact sequences of quasi-Banach spaces can be described by
using a certain type of non-linear maps called quasilinear maps.

A couple of years later, Kalton and Peck [62] devised a method to construct quasilinear
maps on Banach spaces with unconditional bases and obtained several examples of non
trivial twisted Hilbert spaces. Among them, the most important one is the now called
Kalton-Peck space Z2, generated by the quasilinear map KP : ℓ2 → ℓ∞ defined by

KP(x) = x log
|x|
∥x∥ℓ2

.

At the moment of its appearence, the Kalton-Peck space was found to be quite an exotic
space and served as counterexample for some conjectures in Banach Space Theory. A
problem that is still unsettled nowadays is whether Z2 is isomorphic to its hyperplanes.
This is known as the Hyperplane Problem, and appears in several papers [57, 59, 24].

At the initial stage of this work we studied operators on twisted Hilbert spaces. The main
motivation was to acquire further insight on the Hyperplane Problem. At the begining of
the 80’s, examples of operators on Z2 were scarce:

(i) If u = (un)n∈N ⊂ ℓ2 is a sequence of normalized blocks then the operator T u
2 : Z2 →

Z2 defined by

T u
2 (ej, 0) = (uj, 0) and T u

2 (0, ej) = (KP(uj), uj)

is an isometry. This operator receives the name of block operator and was used by
Kalton [59] to show that every operator T : Z2 → X is either strictly singular or an
isomorphism on a complemented copy of Z2.

(ii) If T : ℓ2 → ℓ2 is bounded then T2 : Z2 → Z2 defined by T2(x, y) = (Tx, Ty) is
bounded if and only if the commutator [T,KP] : ℓ2 → ℓ2 is bounded, i.e.,

∥T (KP(x))− KP(Tx)∥ℓ2 ≤ C∥x∥ℓ2 . (1)

Examples of operators for which (1) does hold are the shift maps or the canonical
projections associated to the unconditional basis of ℓ2 [59, Section 4].

ix



Some years later, in an apparently unrelated context, Rochberg and Weiss [83] developed
the theory of derived spaces, a generalized framework for Complex Interpolation Theory
that allowed to obtain commutator estimates as (1) in a systematic way. Their main
result can be summarized as follows (see Chapter 2 for details):

� Given a couple (X0, X1) with associated differential map Ωθ : Xθ → X0 + X1, if
T : X0 + X1 → X0 + X1 is interpolating then [Ωθ, T ] : Xθ → Xθ is bounded.

Some of the ideas of Rochberg and Weiss, such as the notion of differential map and derived
space were subsequently generalized by Rochberg [82]. His main idea is to consider not
just the evaluation of f ∈ C(X0, X1) and its first derivative f ′, but its truncated sequence
of Taylor coefficients. More precisely, the n-th Rochberg space at θ is defined as

Rn(X0, X1)θ =
{( 1

(n− 1)!
f (n−1)(θ), . . . , f ′(θ), f(θ)

)
∈ (X0 + X1)

n : f ∈ C(X0, X1)
}

endowed with the quotient norm

∥(xn−1, . . . , x0)∥ = inf{∥f∥C :
1

i!
f (i)(θ) = xi, 0 ≤ i ≤ n− 1}.

Therefore, first order Rochberg spaces are classical interpolation spaces and second order
Rochberg spaces are the derived spaces. Moreover, each Rochberg space can be rep-
resented as a twisted sum of lower order Rochberg spaces. Thus, Rochberg spaces are
simultaneously generalized interpolation spaces and twisted sums of increasing complexity.

The relationship between Rochberg spaces and the Kalton-Peck space was unraveled by
Rochberg and Weiss [83, Section 3.D], who showed that Z2 is the second Rochberg space
at θ = 1/2 of the couple (ℓ∞, ℓ1). This provided a cohesive theory that explained virtually
any property known for Z2 up to that moment; in particular, operators described in (ii)
were obtained by the generalized Interpolating Principle for derived spaces, while block
operators could be obtained by a generalized Stein Interpolation Principle.

We studied in [32] operators on Kalton-Peck space. However, we soon realized that most
properties of operators on Z2 could be extended to operators on the higher order Rochberg
spaces Rn(ℓ∞, ℓ1)1/2. The objective of this work is to show how this is the case and, more
generally, to study operators on general Rochberg spaces, a topic we covered in the papers
[33, 31, 30].

We now describe the structure of the work:

Chapter 1 is dedicated to study bounded operators on Z2. The original results are based
on the work

[32] J.M.F. Castillo, M. González, R. Pino, Operators on the Kalton-Peck space Z2,
(to appear in) Israel J. Math. (2023).

Any linear map T : Z2 → Z2 can be represented as a 2 × 2 matrix

(
α β
δ γ

)
where the

entries are suitable linear maps on KN. We prove in Theorem 1.2.1 that the linear map(
α β
δ γ

)
is bounded on Z2 if and only if the following maps are bounded:



δ : ℓ2 → ℓ2 γ : ℓf → ℓ2 β − KP ◦ γ : ℓf → ℓ2

δ + γ ◦ KP−1 : ℓ∗f → ℓ2 γ + δ ◦ KP : ℓ2 → ℓ2

α + β ◦ KP−1 − KP
(
δ + γ ◦ KP−1

)
: ℓ∗f −→ ℓ2

Using this result we characterize bounded operators whose entries are diagonal operators;
this extends a result due to Johnson, Lindenstrauss and Schechteman [57]. We also study
the particular cases of triangular operators, namely when δ = 0. For this class of operators
we obtain Theorem 1.2.4:

(
α β
0 γ

)
is bounded if and only if


α : ℓ2 → ℓ2

γ : ℓ2 → ℓ2

αKP− KPγ + β : ℓ2 → ℓ2

are bounded

We end the chapter discussing the so-called Johnson-Lindenstrauss-Schechteman conjec-
ture: any operator on Z2 is a strictly singular perturbation of an upper triangular operator.
First formulated in [57], it is one of the most interesting approaches to the hyperplane
problem.

In Chapter 2 we present the basic results of Complex Interpolation Theory for pairs of
Banach spaces that we will need in the rest of this work. Most results of Chapter 2 are
not new, but we have included some of the proofs to show the analogy between the case of
interpolation spaces and the case of Rochberg spaces that we will study in the forthcoming
Chapter 3.

We include at the end of Chapter 2 a brief motivation and discussion about the concept
of derived space, which may be thought as a forerunner of Rochberg spaces. We close
the chapter with the example of Kalton-Peck space, showing that it arises as the derived
space of the couple (ℓ∞, ℓ1).

Chapter 3 presents the theory of Rochberg spaces initiated by Rochberg in [82] and later
expanded in [12] by Cabello, Castillo and Kalton. The presentation closely follows the
structure of the paper

[31] J.M.F. Castillo, R.Pino, The Rochberg garden, Expositiones Math. 41 (2023),
333–397.

Our intention is to show the paralelism between Chapter 2 and Chapter 3 in such a way
that each major result in Chapter 2 has an analogue in the case of Rochberg spaces:

� The Interpolation Principle for operators generalizes to Rochberg’s Commutator
Theorem: if T : X0 + X1 → X0 + X1 is interpolating then

Tn =


T

. . .

T
T

T


is bounded on Rn(X0, X1)θ for any 0 < θ < 1.



� Under suitable hypothesis, the identity (X0, X1)
∗
θ = (X∗

0 , X
∗
1 )θ generalizes to

Rn(X0, X1)
∗
θ = Rn(X∗

0 , X
∗
1 )θ.

� We have a Reiteration Theorem for Rochberg spaces: if 0 < α < θ < β < 1 then
Rn(X0, X1)(1−θ)α+θβ and Rn

(
(X0, X1)α, (X0, X1)β

)
θ

are isomorphic.

� One has a generalization of Stein Interpolation Principle for Rochberg spaces: if
(Tz)z∈S is an interpolating family of operators (cf. Section 2.5), then

Tθ
1
1!

d Tz

dz |θ
1
2!

d2 Tz

dz2 |θ
· · · 1

(k−1)!
dk−1 Tz

dzk−1 |θ

...
. . . . . . . . .

...

0 0 Tθ
1
1!

d Tz

dz |θ
1
2!

d2 Tz

dz2 |θ

0 0 0 Tθ
1
1!

d Tz

dz |θ

0 0 0 0 Tθ


defines a bounded operator on Rn(X0, X1)θ.

The Commutator Theorem was proven by Rochberg in his seminal paper [82]. The Duality
Theorem for Rochberg spaces was obtained by Cabello, Castillo and Corrêa [11]. To the
best of our knowledge, the reiteration result for Rochberg spaces is new and we proved
it in [31]. The extension of Stein’s principle was first considered by Carro [16] and later
by Castillo and Ferenczi [25]. We provide explicit proofs of all the previous results and
discuss some of their consequences.

Chapter 4 is devoted to study the properties of the Rochberg spaces Rn(ℓ∞, ℓ1)1/2. Taking
into account that R1(ℓ∞, ℓ1)1/2 = ℓ2 and R2(ℓ∞, ℓ1)1/2 = Z2, ths family of Rochberg spaces
may be regarded as the natural generalizations of both ℓ2 and the Kalton-Peck space. The
contents of the chapter are based in the following papers:

[33] J.M.F. Castillo, M. González, R. Pino, The structure of Rochberg spaces. Sub-
mitted. Available at arXiv:2305.09845.

[30] J.M.F. Castillo, W. Cuellar, M. González, R. Pino, On symplectic Banach
spaces, RACSAM 117, paper 56, 2023, http://dx.doi.org/10.1007/s13398-023-01389-
8.

[31] J.M.F. Castillo, R.Pino, The Rochberg garden, Expositiones Math. 41 (2023),
333–397.

The Duality Theorem for Rochberg spaces implies that Rn(ℓ∞, ℓ1)1/2 is isomorphic to its
dual. This enables us to define a bilinear pairing ωn : Rn(ℓ∞, ℓ1)1/2 ×Rn(ℓ∞, ℓ1)1/2 → C
and an involution + : L(Rn)→ L(Rn) given by

ωn(T+x, y) = ωn(x, Ty), for all x, y ∈ Rn(ℓ∞, ℓ1)1/2.

We discuss several properties of this involution, which can be regarded as an analogue of
the Hilbert space adjoint, and prove in Theorem 4.2.3 that block operators obtained in
the previous chapter preserve ωn. This seemingly harmless property will be key to prove
the main original results of Chapter 4:



Thm. 4.1.1: Every seminormalized basic sequence in Rn(ℓ∞, ℓ1)1/2 admits a subsequence equiv-
alent to the canonical basis of some Orlicz space ℓfj generated by the function

fj(t) = t2 log2j t, for 0 ≤ j ≤ n− 1. Therefore, Rn(ℓ∞, ℓ1)1/2 admits exactly n types
of non-equivalent basic sequences.

Thm. 4.3.1: Every operator T : Rn(ℓ∞, ℓ1)1/2 → X is either strictly singular or an isomorphism
on a subspace E ⊂ Rn(ℓ∞, ℓ1)1/2 isomorphic to Rn(ℓ∞, ℓ1)1/2 and complemented on
Rn(ℓ∞, ℓ1)1/2. If moreover X = Rn(ℓ∞, ℓ1)1/2 then T (E) is also complemented in
Rn(ℓ∞, ℓ1)1/2.

Thm. 4.3.2: Rn(ℓ∞, ℓ1)1/2 is not a complemented subspace of a Banach lattice (or a space with
l.u.st) and does not contain complemented subspaces that are Banach lattices (or
spaces with l.u.st).

Thm. 4.3.3: Strictly singular and strictly cosingular operators on Rn(ℓ∞, ℓ1)1/2 coincide and they
form the unique maximal operator ideal of L

(
Rn(ℓ∞, ℓ1)1/2

)
. As a consequence, we

get a complete solution to the Perturbation Classes Problem for semi-Fredholm
operators in Rn(ℓ∞, ℓ1)1/2.

Thm. 4.3.4: The composition of n strictly singular operators on Rn(ℓ∞, ℓ1)1/2 is compact, while
the composition of n − 1 operators is not necessarily compact (see the comments
after Corollary 4.3.7).

Thm. 4.3.6: Every semi-Fredholm operator on Rn(ℓ∞, ℓ1)1/2 has complemented kernel and range.
In particular, every copy of Rn(ℓ∞, ℓ1)1/2 in Rn(ℓ∞, ℓ1)1/2 is complemented.

Thm. 4.3.7: We prove a generalized version of the “difference-compactness” theorem for opera-
tors on Z2 obtained in [24] (see Proposition 1.2.5). As a consequence, we obtain that
any Fredholm operator on Rn(ℓ∞, ℓ1)1/2 which is upper triangular has as Fredholm
index a multiple of n.

Thm. 4.4.1: We prove that Rn(ℓ∞, ℓ1)1/2 are non-trivial symplectic Banach spaces. For even n
this comes rather naturally since the natural bilinear pairing ωn defines a symplectic
structure, but for odd n one requires to modify such pairing by means of a complex
structure in order to define a symplectic structure.

The last chapter is devoted to study the Rochberg spaces Rn

(
T2, T ∗

2

)
1/2

defined by the

couple formed by the 2-convexification of Tsirelson space and its dual. The case n = 2
was considered by Suárez in [91], who showed that the derived space R2

(
T2, T ∗

2

)
1/2

is a

weak Hilbert space, providing the first example of non trivial twisted Hilbert weak Hilbert
space.

In the initial part of Chapter 5 we extend Suárez’s results proving that there is a function
fn depending only on the local type 2-constants am,2(X0), am,2(X1) and am,2(Xθ) such
that

am,2

(
Rn(X0, X1)θ

)
≤ fn

(
am,2(X0), am,2(X1), am,2(Xθ)

)
.

Using this estimate, the proof of Suárez for n = 2 can be translated almost verbatim to
the general case, and thus we show in Theorem 5.2.1 that Rn

(
T2, T ∗

2

)
1/2

is a weak Hilbert

space for all n ≥ 1, Unfortunately, we have been unable to decide whether these Rochberg
spaces are non-isomorphic for different values of n.



The last part of this work are three Appendices. In the first one we introduce the basic
theory of quasilinear maps and twisted sums. The second one is devoted to Operator
Theory. The last one contains some results that belong to the Local Theory of Banach
Spaces, which will be mainly used in Chapter 5.



About notation and preliminary results

The study of operators on Rochberg spaces is a conjunction of Banach Space Theory,
Complex Interpolation Theory, Operator Theory and Homology of Banach spaces. We
have been unable to follow a unique and unifying source for all the preliminary results
needed for this work. Instead, we considered some basic references for each area:

� For homological methods, quasilinear maps and twisted sums of (Quasi-)Banach
spaces we follow [10].

� For Banach Space Theory we use the books [3, 56, 71].

� For Complex Interpolation Theory we consider [7, 80, 61].

� For Operator Theory and Fredholm operators we employ [78, 50].

Most of our notation follows the previously cited sources, but there are two relevant
exceptions:

� The notation of the Calderón space appearing in Interpolation Theory: for a given
couple (X0, X1) we will denote it by C(X0, X1) instead of the usual F(X0, X1).

� It is common to use the “mathfrak” capital letters K,L,S to denote operator ide-
als. We have decide to use “mathcal” capital letters K,L,SS to denote them; the
assignment of these letters can be looked up in the Appendix B.

Given two real valued functions f, g : X → R, by f ∼ g we denote that there exist positive
constants C,M such that Cf(x) ≤ g(x) ≤Mf(x) for every x ∈ X.

Given a real valued sequence (xn)n∈N and a positive function f : N → R, we denote by
(xn)n∈N = O(f(n)) that there exists an absolute constant C > 0 and n0 ∈ N such that
|xn| ≤ Cf(n) for all n ≥ n0.

xv
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Chapter 1

Operators on Z2

We recall the definition of the Kalton-Peck space Z2 and its basic properties. We briefly
discuss the inverse representation of Z2 and the hyperplane problem. In the second part of
the chapter we will study bounded on operators on Kalton-Peck space. See the Appendix
A for the unexplained notation and results used in this chapter.

1.1 The Kalton-Peck space

In [62] Kalton and Peck produced a systematic method to construct quasilinear maps
on certain Banach spaces with unconditional basis. Define a sequence space as a quasi-
Banach space X for which the canonical vectors (en)n∈N form a normalized unconditional
basis. Examples of such spaces include ℓp spaces for all 0 < p <∞, the Schreier space S

and Tsirelson space T .

Consider the class L of lipschitz functions φ : R → R vanishing for all t ≤ 0 and define
the map

Ωφ(x) =
∞∑
i=1

xiφ
(
− log

|xi|
∥x∥X

)
en, for all x =

∞∑
i=1

xiei ∈ X. (1.1)

Then Ωφ : X ↷ X is quasilinear [62, pp. 11] (see also [10, Prop. 3.2.6]). Moreover, if X
does not contain c0, Kalton and Peck proved [62, Th. 4.2] the astonishing fact that Ωφ is
trivial if and only if φ : R→ R is bounded (cf. [10, Prop. 3.2.7]).

The choice is φ(t) = −t defines the so-called Kalton-Peck map KP : ℓ2 ↷ ℓ2 given by

KP(x) =
∞∑
i=1

xi log
|xi|
∥x∥ℓ2

en = x log
|x|
∥x∥2

, for all x =
∞∑
i=1

xiei ∈ ℓ2. (1.2)

The Kalton-Peck map defines the twisted Hilbert space Z2 = ℓ2⊕KP ℓ2 called the Kalton-
Peck space. The space ℓ∞ can be regarded as the ambient space for the Kalton-Peck map,

and thus Z2 can be explicitely described as the space of pairs (x, y) =
(∑

xiei,
∑

yiei

)
∈

ℓ∞ × ℓ2 such that

∥(x, y)∥ = ∥x− KP(y)∥2 + ∥y∥2 =

(
∞∑
i=1

(
xi − yi log

|yi|
∥y∥

)2)1/2

+
( ∞∑

i=1

|yi|2
)1/2

<∞

This produces a short exact sequence

0 −−−→ ℓ2
i−−−→ Z2

q−−−→ ℓ2 −−−→ 0 (1.3)

1



where i(x) = (x, 0) and q(x, y) = y. Note that Z2 posseses all 3-space properties that ℓ2
has, such as being superreflexive or to be ℓ2-saturaded. Specific properties of Z2 are:

(i) The sequence of 2-dimensional subspaces En = span{(en, 0), (0, en)} defines an un-
conditional finite dimensional decomposition (UFDD) for Z2. In particular (cf. [18,
Prop. 6.5]), the sequence (un)n defined by

u2n−1 = (en, 0) and u2n = (0, en)

is a basis.

(ii) The dual quasilinear map KP∗ can be identified with −KP [62, Th. 5.1]. In partic-
ular, Z∗

2 can be identified with ℓ2 ⊕−KP ℓ2. The duality between the two spaces is
given, for all finitely supported vectors (x, y) ∈ Z2 and (z, w) ∈ ℓ2 ⊕−KP ℓ2, by

⟨(x, y), (z, w)⟩Z2 = ⟨x,w⟩ℓ2 + ⟨y, z⟩ℓ2 ,

Thus Z2 is isomorphic to its dual via the map (x, y) ∈ Z2 7→ (x,−y) ∈ ℓ2 ⊕−KP ℓ2.

(iii) Every normalized basic sequence on Z2 has a subsequence equivalent to the canon-
ical basis of either ℓ2 or the Orlicz space ℓf defined by the Orlicz function f(t) =
(t| log t|)2 (see [62, Th. 5.4]).

Using these three properties Kalton and Peck [62, Theorem 6.4] obtained the following
cornerstone result:

Proposition 1.1.1. The quotient map q of (1.3) is strictly singular and the embedding i
is strictly cosingular.

In the terminology of Section A.1.1 this means that KP is singular. This particular
behaviour of the Kalton-Peck map it is used in [62, Section 6] to show that:

Proposition 1.1.2.

� Every operator T : Z2 → Z2 is either strictly singular or invertible on an isomorphic
copy of Z2.

� Z2 contains no complemented subspace with unconditional basis. In particular, no
copy of ℓ2 is complemented.

Shortly thereafter, Johnson, Lindenstrauss and Schechtman [57] showed that Z2 lacks
l.u.st (see the definition in [56]). A finer analysis of the Johnson-Lindenstrauss-
Schechtman results provided by Kalton [59] yields the following striking extension of
Proposition 1.1.2:

Theorem 1.1.1.

� Given any Banach space X, every operator T : Z2 → X is either strictly singular
or invertible on an complemented copy of Z2.

� Z2 contains no complemented subspace with l.u.st. In particular, no copy of ℓ2 is
complemented and Z2 is not complemented in a Banach lattice.

Further discussion and extensions of Theorem 1.1.1 will be given in Section 4.3.
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1.1.1 Inverse representation of Z2

We have another short exact sequence

0 −−−→ Dom(KP)
j−−−→ Z2

p−−−→ Ran(KP) −−−→ 0

where j(x) = (0, x) and p(x, y) = x. Kalton and Peck identified Dom(KP) as the Orlicz
space ℓf generated by the Orlicz function f(t) = t2| log t|2. Since KP∗ can be identified
with −KP and taking into account that ℓf is dense in ℓ2, it follows from Proposition
A.1.5 that Ran(KP) = Dom(KP)∗ = ℓ∗f . By [71, Example 4.c.1] ℓ∗f can be identified with

the Orlicz space ℓg where g(t) = t2 1
| log t|2 and thus we have a chain of strict continuous

inclusions

ℓf ⊂ ℓ2 ⊂ ℓ∗f .

The preceding discussion yields the short exact sequence

0 −−−→ ℓf
j−−−→ Z2

p−−−→ ℓ∗f −−−→ 0 (1.4)

generated by the quasilinear map KP−1 : ℓ∗f ↷ ℓf with ambient space ℓ2, that we will call
the inverse Kalton-Peck map.

1.1.2 The hyperplane problem

It was asked by Banach [4, pp. 153] if every Banach space X is isomorphic to its hyper-
planes, i.e., whether X is isomorphic to X⊕R. When Z2 appeared, some results suggested
that it could be a natural counterexample. This question has appeared in several papers
along the years (see [57, 59, 52, 24, 21]).

Despite nowadays we know explicit counterexamples to Banach’s question [52, 67], this
specific problem for the Kalton-Peck space has become a long standing conjecture:

Problem 1 (Hyperplane problem). Is Z2 isomorphic to its hyperplanes?

The first thing to note is the connection between the hyperplane problem and the structure
of operators on Z2: since any isomorphism of Z2 with its hyperplanes is necessarily a
Fredholm operator of odd index (cf. Section B.1), Problem 1 can be reformulated as:

Problem 2. Does there exist a Fredholm operator on Z2 with odd index?

1.2 Bounded operators on Z2

Motivated by the Hyperplane problem and some closely related conjectures, we studied
in [32] bounded operators in Z2; in this section we present the main results obtained.

The two natural representations (1.3) and (1.4) of Z2 yield four operators:

(i) The embeddings i, j.

(ii) The quotient maps q, p.
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Any linear map T : Z2 → Z2 can be described by a 2× 2 matrix

T (x, y) =

(
α β
δ γ

)(
x
y

)
= (αx + βy, δx + γy), (1.5)

given by four linear maps α, β, δ, γ : KN → KN. If T is bounded on Z2 then we have that

α = pT i : ℓ2 → ℓ∗f , β = pTj : ℓf → ℓ∗f δ = qT i : ℓ2 → ℓ2, and γ = qTj : ℓf → ℓ2

are bounded. Moreover, since ℓ2 ⊕ ℓf is dense in Z2, the four operators α, β, δ, γ above
uniquely define T . The boundness of T : Z2 → Z2 can be reduced to conditions that the
entries of the 2× 2 matrix in (1.5) must satisfy:

Lemma 1.2.1. Let T =

(
α β
δ γ

)
be a bounded operator on Z2. Then the following

conditions are satisfied:

(d,g) δ : ℓ2 → ℓ2 and γ : ℓf → ℓ2 are bounded.

(b-Kg) (β − KP ◦ γ) : ℓf → ℓ2 is bounded.

(d+gK’) δ + γ ◦ KP−1 : ℓ∗f → ℓ2 is bounded.

(g+dK) γ + δ ◦ KP : ℓ2 → ℓ2 is bounded.

Proof. (b-Kg) Let x ∈ ℓf and note that

∥Tjx∥Z2 = ∥T (0, x)∥Z2 = ∥(βx, γx)∥Z2 = ∥(β − KP ◦ γ)x∥2 + ∥γx∥2 ≤ ∥Tj∥ ∥x∥ℓf .

Thus β − KP ◦ γ : ℓf → ℓ2 is bounded.

(d+gK’) A bounded homogeneous lifting Lq : ℓ∗f → Z2 for q : Z2 → ℓ∗f is given by
Lq(ω) = (ω,KP−1ω). Then for every ω ∈ ℓ∗f one has

∥pTLq(ω)∥2 = ∥(δ + γ ◦ KP−1)ω∥2 ≤ ∥pT∥ ∥Lq∥ ∥ω∥ℓ∗f .

Hence δ + γ ◦ KP−1 : ℓ∗f → ℓ2 is bounded.

(g+dK) Same argument as in (d+gK’) using instead the lifting Lp(x) = (KPx, x) for
p : Z2 → ℓ2.

A surprising fact is that if we add an additional condition, these properties characterize
the boundness of T .

Theorem 1.2.1. The operator T =

(
α β
δ γ

)
is bounded on Z2 if and only if the four

necessary conditions in Lemma 1.2.1 as well as (⋆) hold, where

(⋆) α + β ◦ KP−1 − KP
(
δ + γ ◦ KP−1

)
: ℓ∗f −→ ℓ2 is a bounded map.

Proof. Condition (⋆) is necessary: if T is a bounded operator then

∥αω + βx− KP(δω + γx)∥2 ≤ ∥T∥∥(ω, x)∥Z2

and the choice (ω,KP−1ω) ∈ Z2 yields

∥αω + βKP−1ω − KP(δω + γKP−1ω)∥2 ≤ ∥T∥∥(ω,KP−1ω)∥Z2 ≤ ∥T∥∥ω∥ℓ∗f .

To prove the converse we will show that the following three conditions hold:
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(1) δω + γx ∈ ℓ2;

(2) αω + βx− KP(δω + γx) ∈ ℓ2;

(3) ∥αω + βx− KP(δω + γx)∥2 + ∥δω + γx∥2 ≤ C∥(ω, x)∥Z2 .

We shall use repeatedly the fact that the quasinorms induced by the representations (1.3)
and (1.4) of Z2 as twisted sum are equivalent (see Subsection 1.1.1), i.e., there exist a
constant M > 0 such that

1

M
∥(ω, x)∥Z2 ≤ ∥x− KP−1ω∥ℓf + ∥ω∥ℓ∗f ≤M∥(ω, x)∥Z2 . (♡)

(1) Given (ω, x) ∈ Z2, note that, by definition, ω − KPx ∈ ℓ2 and x − KP−1ω ∈ ℓf ; on
the other hand, by assumption the maps γ + δ ◦ KP : ℓ2 → ℓ2 and δ + γ ◦ KP−1 : ℓ∗f → ℓ2
are bounded. Thus

δω + γx =
1

2

(
δ(ω − KPx) + γ(x− KP−1ω) + (γ + δ ◦ KP)x + (δ + γ ◦ KP−1)ω

)
∈ ℓ2

Using (♡) yields

∥δω + γx∥2 ≤
1

2

(
∥δ∥ ∥ω − KPx∥2 + ∥γ∥ ∥x− KP−1ω∥ℓf + ∥γ + δ ◦ KP∥∥x∥2

+ ∥δ + γ ◦ KP−1∥ ∥ω∥ℓ∗f
)

≤ 1

2

(
∥δ∥+ ∥γ∥M + ∥γ + δ ◦ KP∥+ ∥δ + γ ◦ KP−1∥M

)
∥(ω, x)∥Z2 .

To prove (2) we decompose αω + βx− KP(δω + γx) in three pieces:

αω + β ◦ KP−1ω − KP(δ + γ ◦ KP−1)ω

+β(x− KP−1ω)− KP(γx− γ ◦ KP−1ω)

+KP(γx− γ ◦ KP−1ω) + KP(δ + γ ◦ KP−1)ω − KP(δω + γx).

The first piece is bounded by (⋆). For the third piece recall that KP : ℓ2 ↷ ℓ2 is quasilinear,
hence KP(x + y)− KP(x)− KP(y) ∈ ℓ2 and satisfies the estimate

∥KP(x + y)− KP(x)− KP(y)∥2 ≤ ∥KP∥(∥x∥2 + ∥y∥2)

for all x, y ∈ ℓ2. Since γ : ℓf → ℓ2 and δ + γ ◦ KP−1 : ℓ∗f → ℓ2 are bounded, all
elements in which the Kalton-Peck is defined in the third piece are elements in ℓ2; setting
x = γ(x − KP−1ω) and y = (δ + γ ◦ KP−1)ω, we can apply the quasilinear estimate to
obtain

∥KP (δω + γx)− KP
(
δω + γx− δω − γKP−1ω

)
− KP

(
δ + γKP−1

)
ω∥2

≤ ∥KP∥
(
∥δω + γKP−1ω∥2 + ∥γx− γKP−1ω∥2

)
≤ ∥KP∥

(
∥δ + γ ◦ KP−1∥ ∥ω∥ℓ∗f + ∥γ∥ ∥x− KP−1ω∥ℓf

)
≤ ∥KP∥(∥γ∥+ ∥δ + γ ◦ KP−1∥)(ω, x)∥Z2 .
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For the second piece note that β(x− KP−1ω)− KP(γx− γ ◦ KP−1ω) is equal to

β(x− KP−1ω)− KP ◦ γ(x− KP−1ω) = (β − KP ◦ γ)(x− KP−1ω).

Since by assumption (β − KP ◦ γ) : ℓf → ℓ2 is bounded, we conclude that

∥β(x− KP−1ω)− KP(γx− γ ◦ KP−1ω)∥2 ≤ ∥(β − KP ◦ γ)∥ ∥(x− KP−1ω)∥ℓf
≤M∥β − KP ◦ γ∥ ∥(ω, x)∥Z2

Finally, (3) follows by the bounds obtained in both (1) and (2).

The previous characterization has consequences for the structure of operators in Z2. The
following one will be very useful:

Proposition 1.2.1.

Iℓ∗f − KP ◦ KP−1 : ℓ∗f → ℓ2 and Iℓ2 − KP−1 ◦ KP : ℓ2 → ℓf are bounded maps.

Proof. The first part is just condition (⋆) applied to the identity operator T = IZ2 on
Z2. To deduce the second assertion compose Iℓ∗f − KP ◦ KP−1 : ℓ∗f → ℓ2 at the right with
KP : ℓ2 → ℓ∗f . This gives that

KP− KP ◦ KP−1 ◦ KP : ℓ2 → ℓ2 is bounded. (1.6)

Now observe that

KP(Iℓ2 − KP−1 ◦ KP) =
[
KP(Iℓ2 − KP−1 ◦ KP)− KP + KP(KP−1 ◦ KP)

]
+
[
KP− KP ◦ KP−1 ◦ KP

]
Using (1.6) and that KP is quasilinear on ℓ2 we conclude that

KP(Iℓ2 − KP−1 ◦ KP) : ℓ2 → ℓ2 is bounded.

Since Dom(KP) = ℓf , this can only occur if Iℓ2 − KP−1 ◦ KP : ℓ2 → ℓf .

Condition (⋆) in Theorem 1.2.1 is quite subtle since it involves both KP and KP−1. Taking
into account that no explicit expression for KP−1 is avaliable at this moment, we present a
cleaner and equivalent condition which only involves KP. To do this we will use Proposition
1.2.1 to slighlty modify the conditions of Theorem 1.2.1.

Proposition 1.2.2. Conditions (⋆) and (b-Kg) in Theorem 1.2.1 can be replaced by

(a-dK) α− δ ◦ KP : ℓ2 → ℓ2 is bounded.

(□) α ◦ KP + β − KP
(
δ ◦ KP + γ

)
: ℓ2 → ℓ2 is bounded.

Proof. Compose (⋆) at the right by KP : ℓ2 → ℓ∗f to obtain that

α ◦ KP + β ◦ KP−1 ◦ KP− KP
(
δ ◦ KP + γ ◦ KP−1 ◦ KP

)
: ℓ2 → ℓ2 is bounded. (1.7)
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Now note that

(□) = α ◦ KP + β − KP
(
δ ◦ KP + γ

)
= (1.7) + β(Iℓ2 − KP−1 ◦ KP)

− KP
(
δ ◦ KP + γ

)
+ KP

(
δ ◦ KP + γ ◦ KP−1 ◦ KP

)
.

Since we are assuming the other conditions in Theorem 1.2.1, we have that δ◦KP : ℓ2 → ℓ2
and δ + γ ◦ KP−1 : ℓ∗f → ℓ2 are bounded. Hence δ ◦ KP + γ ◦ KP−1 ◦ KP is bounded on ℓ2.
Thus we can use that KP is quasilinear on ℓ2 to rewrite the last term of previous equation:

(1.7) + β(Iℓ2 − KP−1 ◦ KP)− KP
(
δ ◦ KP + γ

)
+ KP

(
δ ◦ KP + γ ◦ KP−1 ◦ KP

)
= (1.7) + β(Iℓ2 − KP−1 ◦ KP)− KP(γ(Iℓ2 − KP−1 ◦ KP))

= (1.7) + (β − KP ◦ γ)(Iℓ2 − KP−1 ◦ KP).

Now, by Proposition 1.2.1 we have that Iℓ2 − KP−1 ◦ KP : ℓ2 → ℓf boundedly. Using
condition (b-Kg) and (1.7) we obtain (□).

The converse use the same ideas: composition of (□) at the right by KP−1 : ℓ∗f → ℓ2 and
the fact that KP is quasilinear on ℓ2 gives

(⋆) =
(
α ◦ KP ◦ KP−1 + β ◦ KP−1 − KP

(
δ ◦ KP ◦ KP−1 + γ ◦ KP−1

))
+ (α− KP ◦ δ)(Iℓ∗f − KP ◦ KP−1).

By Proposition 1.2.1 and condition (a-dK) we are done.

Using this last result we can characterize bounded operators on Z2 excluding the inverse
representation:

Theorem 1.2.2. The operator T =

(
α β
δ γ

)
is bounded on Z2 if and only if:

(d,g) δ : ℓ2 → ℓ2 and γ : ℓf → ℓ2 are bounded.

(a-dK) (α− δ ◦ KP) : ℓ2 → ℓ2 is bounded.

(g+dK) γ + δ ◦ KP : ℓ2 → ℓ2 is bounded.

(□) α ◦ KP + β − KP
(
δ ◦ KP + γ

)
: ℓ2 → ℓ2 is bounded.

Proof. This is direct using Proposition 1.2.2 and Theorem 1.2.1 above. Condition (d+gK’)
is the only one which is aparently lacking, but we can show that, in this case, it is
equivalent to (g+dK) due to Proposition 1.2.1: if δ + γ ◦ KP−1 : ℓ∗f → ℓ2 is bounded then

δ ◦ KP + γ = (δ ◦ KP + γ ◦ KP−1 ◦ KP) + γ(Iℓ2 − KP−1 ◦ KP).

Since γ : ℓf → ℓ2, we are done by Proposition 1.2.1.

Conversely, assume that δ ◦ KP + γ : ℓ2 → ℓ2 is bounded. Then

δ + γ ◦ KP−1 = (δ ◦ KP ◦ KP−1 + γ ◦ KP−1) + δ(Iℓ∗f − KP ◦ KP−1).

Taking into account that δ : ℓ2 → ℓ2, Proposition 1.2.1 finishes the proof.
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1.2.1 Linearization conditions

To give specific examples of operators on Z2, condition (□) is quite problematic because
the term KP(δ ◦ KP + γ) is dificult to work with. To overcome this we shall consider a

further condition. We say that the linear map T =

(
α β
δ γ

)
satisfies the linearization

condition if

δ : ℓ∗f → ℓ2 is bounded and γ : ℓ2 → ℓ2 is bounded. (L)

Note that this is stronger than condition (d,g); indeed, (L) is just the fact that both maps
of condition (g+dK) are separately continuous. Moreover, if the operator T is bounded,
the two conditions in (L) are equivalent (use precisely that δ ◦KP + γ is bounded on ℓ2).
To give an example, any bounded upper triangular operator on Z2 (those for which δ = 0)
trivially satisfies (L). The name given comes from the fact that this property will enable
us to treat KP as a linear map on condition (□), as we show now:

Proposition 1.2.3. Under (L), condition (□) is equivalent to

α ◦ KP + β − KP ◦ δ ◦ KP− KP ◦ γ : ℓ2 → ℓ2 is bounded. (♢)

Proof. By hypothesis, both δ ◦ KP : ℓ2 → ℓ2 and γ : ℓ2 → ℓ2 are bounded. Since KP is
quasilinear on ℓ2, it follows that

KP(δ ◦ KP + γ)− KP(δ ◦ KP)− KP ◦ γ : ℓ2 → ℓ2 is bounded. (1.8)

To end the proof just note that (♢) = (□) + (1.8).

The linearization condition allow us to simplify the hypothesis in Theorem 1.2.2:

Corollary 1.2.1. Let T =

(
α β
δ γ

)
be a linear map satisfying (L). Then T is bounded if

and only if:

(a-Kd) α− KP ◦ δ : ℓ2 → ℓ2 is bounded.

(♢) α ◦ KP + β − KP ◦ δ ◦ KP− KP ◦ γ : ℓ2 → ℓ2 is bounded.

Proof. This is direct using (L), Theorem 1.2.2 and Proposition 1.2.3.

1.2.2 Decompositions of operators

If T =

(
α β
δ γ

)
is bounded then condition (♢) can be used to decompose T in simpler

operators. Think for instance in the case where β : ℓ2 → ℓ2 is bounded; then condition
(♢) implies that (

0 β
0 0

)
is bounded. Hence we can decompose T as

T =

(
α β
δ γ

)
=

(
α 0
δ γ

)
+

(
0 β
0 0

)
8



where both operators are bounded on Z2. The general idea for decomposing operators
in this way is that all the process is governed by self-improving properties of the entries
α, β, δ and γ. More precisely, there are three levels in which those operators act

ℓf ⊂ ℓ2 ⊂ ℓ∗f

By self-improving property in this context we mean that an operator, which would be
bounded a priori in ℓ2 or ℓ∗f , actually takes values into a smaller space. We note that if
α : ℓ∗f → ℓ2 or γ : ℓ2 → ℓf are bounded, then both(

α 0
0 0

)
and

(
0 0
0 γ

)
are bounded on Z2, respectively. Thus, self-improving properties lead to further decom-
position of the original operator T .

The remaining term in (♢) is KP◦δ◦KP, which is the most difficult one. Since KP : ℓ2 → ℓ∗f
and KP : ℓf → ℓ2 are bounded, to bound KP ◦ δ ◦ KP on ℓ2 one needs that δ : ℓ∗f → ℓf ,
which would yield the decomposition(

α β
δ γ

)
=

(
α β
0 γ

)
+

(
0 0
δ 0

)
This condition on δ is somewhat unnatural and suggest that δ can be regarded as some
sort of residual term.

We can illustrate these ideas regarding self-improving properties with the example of
diagonal operators on sequence spaces, i.e., maps Da of the form

∑
xnen 7→

∑
anxnen

where a = (an)n∈N ∈ ℓ∞. If we consider a bounded operator

(
Da Db

Dd Dc

)
then the self-

improvement properties of Da, Db, Dc and Dd adopt the following form:

(i) Since b ∈ ℓ∞, the multiplication Db : ℓ2 → ℓ2 is directly bounded and no condition
on b is imposed.

(ii) On the other hand, the self-improving properties of Da : ℓ∗f → ℓ2 and Dc : ℓ2 →
ℓf means that a and c must “cancel out” a logaritmic perturbation, hence both

sequences (an)n and (cn)n∈N must converge to 0 roughly asO
(

1
logn

)
. A more detailed

argument is outlined below in Corollary 1.2.2.

(iii) Finally, in the case of Dd : ℓ∗f → ℓf , one must get rid of a quadratic logarithmic

perturbation, and thus (dn)n = O
(

1
log2 n

)
.

1.2.3 Characterization of operator with diagonal entries

Let us give a quick application of Corollary 1.2.1 to operators on Z2 whose entries are
diagonal operators: assume that a, b, c, d ∈ ℓ∞ are bounded sequences and consider on Z2

the linear map

D =

(
Da Db

Dd Dc

)
9



Corollary 1.2.2. D is bounded on Z2 if and only if

Dd : ℓ∗f → ℓ2 and Da −Dc − KP ◦Dd : ℓ∗f → ℓ2 are bounded.

Proof. First note that, in this case, Dc is already bounded on ℓ2. Thus, if D is bounded
then the necessary condition (d+gK’) reduces to Dd : ℓ∗f → ℓ2. In particular, D satisfies
the linearization condition and, applying Corollary 1.2.1, we deduce that (♢) holds.

Furthermore, observe that in this case (♢) is equivalent to

(Da −Dc)KP− KP ◦Dd ◦ KP : ℓ2 → ℓ2 is bounded. (1.9)

Indeed, since b ∈ ℓ∞, the multiplication Db is bounded on ℓ2, so we can ignore it. On the
other hand, it is known (see [10, Proposition 3.12.5]) that

∥KP(Dθx)−DθKP(x)∥2 ≤ C ∥θ∥∞ ∥x∥2, for all θ ∈ ℓ∞, x ∈ ℓ2. (1.10)

A proof of (1.10) will be given at the end of Chapter 2 using Interpolation Theory. Now
the equivalence between (1.9) and (♢) is direct by (1.10). Moreover, Corollary 1.2.1 gives
by condition (a-Kd) that Da − KP ◦Dd : ℓ2 → ℓ2 is bounded. Using this last fact we can
show that (1.9) is equivalent to the second enunciated condition. To this end, we compose
(1.9) at the right by KP−1 : ℓ∗f → ℓ2 to obtain that

(Da −Dc)KP ◦ KP−1 − KP ◦Dd ◦ KP ◦ KP−1 : ℓ∗f → ℓ2 is bounded. (1.11)

Now we decompose

(Da −Dc)− KP ◦Dd = (1.11) + (Da −Dc − KP ◦Dd)(Iℓ∗f − KP ◦ KP−1).

By Proposition 1.2.1 we have that Iℓ∗f − KP ◦ KP−1 : ℓ∗f → ℓ2 is bounded; taking into

account that both Da−KP ◦Dd and Dc are bounded on ℓ2, we conclude that (Da−Dc−
KP ◦Dd)(Iℓ∗f − KP ◦ KP−1) : ℓ∗f → ℓ2 is bounded. Thus, using (1.11) it follows that

(Da −Dc)− KP ◦Dd : ℓ∗f → ℓ2 is bounded.

Conversely, to see that the two stated conditions are sufficient just note that if Da−Dc−
KP ◦Dd : ℓ∗f → ℓ2 is bounded, then composition at the right by KP : ℓ2 → ℓ∗f gives (1.9).

Moreover, if Dd : ℓ∗f → ℓ2, then D satisfies (L) and therefore (1.9) is equivalent to (♢)
by the same arguments we used in the first part of the proof. Furthermore, since Da is
bounded on ℓ2, it follows that Da − KP ◦Dd : ℓ2 → ℓ2 is bounded. Hence D is bounded
by Corollary 1.2.1.

We can reinterpret the two conditions of last corollary in terms of the asymptotic be-
haviour of the sequences a, c, d in the form

(dn)n∈N = O
( 1

log n

)
and (an − cn − (log n)dn)n∈N = O

( 1

log n

)
. (1.12)

Indeed, since ℓ∗f can be identified with the Orlicz space defined by f = t2| log t|−2, (dn)n =

O
(

1
logn

)
is equivalent to the boundness of the diagonal operator Dd : ℓ∗f → ℓ2. The

10



second condition in (1.12) is more subtle: if (dn)n = O
(

1
log2 n

)
then Dd : ℓ∗f → ℓf , hence

(log n)dn = O
(

1
logn

)
and we conclude that

(an − cn)n = O
( 1

log n

)
.

In particular, Da − Dc : ℓ2 → ℓ2 is compact. The converse is also true: if (an − cn)n =

O
(

1
logn

)
then

(
(log n) dn

)
n

= O
(

1
logn

)
, and so (dn)n = O

(
1

log2 n

)
.

We can deduce from Corollary 1.2.2 the following result of Johnson, Lindenstrauss and
Schechtman [57] that completely describes operators on Z2 whose entries are scalars (see
also [6, Lemma 16.15]):

Corollary 1.2.3. If α, β, δ, γ are scalars, then the linear map

(
α β
δ γ

)
is bounded on Z2

if and only if δ = 0 and α = γ.

Proof. Multiplication by a scalar c is the same as the operator Dĉ with ĉ = (c, c, c, . . .) ∈
ℓ∞. Hence Corollary 1.2.2 applies and we obtain that Dδ̂ : ℓ∗f → ℓ2, hence δ = 0 since
ℓ2 and ℓ∗f do not have equivalent norms. The remaining condition reduces to Dα̂ −Dγ̂ :
ℓ∗f → ℓ2, which, by the same reasons, implies that α = γ.

The Johnson-Lindenstrauss-Schechtman Theorem hints at something very deep about the
structure of operators in twisted sum spaces. We will see that Corollary 1.2.3 admit two
generalizations on the Kalton-Peck space:

(i) In the case of triangular operators, if we replace the scalar entries by general oper-
ators, we have that α− γ : ℓ2 → ℓ2 is compact, which extends the condition α = γ.
See Proposition 1.2.5 below.

(ii) The Johnson-Lindenstrauss-Schechtman conjecture: “Every bounded operator on
Z2 is a strictly singular perturbation of an upper triangular operator”. This co-
jecture generalize the condition δ = 0 in previous results, as we will explain in
forthcoming Section 1.2.6.

With the exception of Corollary 1.2.2, where we used that KP commutes with multipli-
cation operators, the previous results do not actually depend on Z2 or KP. They are
general facts about quasilinear maps on Banach spaces. Theorem 1.2.2 has the following
analogue:

Theorem 1.2.3. Assume that F : X ↷ X is an unbounded quasilinear map. Then the

operator

(
α β
δ γ

)
is bounded on X ⊕F X if and only if:

(d,g) δ : X → X and γ : Dom(F )→ X are bounded.

(a-Kd) (α− F ◦ δ) : X → X is bounded.

(g+dK) γ + δ ◦ F : X → X is bounded.

(□′) α ◦ F + β − F
(
δ ◦ F + γ

)
: X → X.

The proof is the same as Theorem 1.2.2. Corollary 1.2.3 still holds:

11



Corollary 1.2.4 (General Johnson-Lindenstrauss-Schechtman condition). Let F : X ↷

X be an unbounded quasilinear map. If α, β, δ, γ are scalars, then the linear map

(
α β
δ γ

)
is bounded on X ⊕F X if and only if δ = 0 and α = γ.

Proof. Since we have a continuous inclusion Dom(F ) ⊂ X, Theorem 1.2.3 implies that
both conditions are sufficient. To prove that are also necessary: if δ ̸= 0 then condition
γ + δ ◦F : X → X implies that F : X → X is bounded, which is imposible. On the other
hand, since δ = 0 and F is homogeneous, condition (□′) reduces to

(α− γ)F : X → X is bounded,

and therefore yields α = γ.

1.2.4 Upper triangular operators

Let us set δ = 0 and consider the resulting upper triangular operator

(
α β
0 γ

)
. Then α

carries the canonical copy ℓ2 ⊂ Z2 into itself, and thus, γ is the induced operator in the
quotient space Z2/ℓ2 = ℓ2, hence both α, γ : ℓ2 → ℓ2 are bounded. On the other hand,
condition (♢) is reduced to

α ◦ KP− KP ◦ γ + β : ℓ2 → ℓ2 is bounded.

By Proposition 1.2.3 we deduce that such conditions are sufficient:

Theorem 1.2.4. The operator

(
α β
0 γ

)
is bounded on Z2 if and only if α, γ : ℓ2 → ℓ2

and

α ◦ KP− KP ◦ γ + β : ℓ2 → ℓ2 is bounded. (♠)

Note that the generalized commutator [α,KP, γ] = α ◦ KP − KP ◦ γ is a quasilinear map
on ℓ2, and the preceding condition just means that [α,KP, γ] is trivial, i.e., it can be
approximated by the linear map β. Thus, upper triangular operators on Z2 correspond
to trivial twisted Hilbert spaces generated by certain pullbacks and pushouts of KP. Even
if we assume α = γ, it is not true that [α,KP] = [α,KP, α] is trivial on ℓ2 for a given
operator α : ℓ2 → ℓ2 (see [24, Th. 3.1] or [25, Prop. 8.5] for some examples). Despite
this, we have the following fact proved in [24, Prop. 5.8]:

Lemma 1.2.2. For every operator α : ℓ2 → ℓ2 and every block subspace W ⊂ ℓ2, the
commutator [α,KP] is trivial on some infinite dimensional subspace of W .

Althought rather simple due to previous calculations, we state now the characterization
of diagonal operators to the case of upper triangular operators. This will be useful to set
up the next results regardind the compact difference between diagonal entries. Thus, we
assume that a, b, c ∈ ℓ∞ are bounded sequences and consider on Z2 the linear map

D =

(
Da Db

0 Dc

)
Then Corollary 1.2.2 directly gives that:

12



Proposition 1.2.4. D is bounded if and only if (an − cn)n = O
(

1
logn

)
. In particular,

Da −Dc : ℓ2 → ℓ2 is compact.

A rather deep extension of this result to general twisted Hilbert spaces is given in [13] by
F. Cabello and R. Garćıa using different methods.

Proposition 1.2.4 admits the following generalization proved in [24, Cor. 5.9]:

Proposition 1.2.5. Let

(
α β
0 γ

)
be a bounded operator on Z2. Then α − γ : ℓ2 → ℓ2 is

compact.

Proof. By Theorem 1.2.4 we have that αKP− KPγ : ℓ2 ↷ ℓ2 is trivial. Then note that[
αKP− KPγ

]
=
[
αKP− KPα

]
+ KPα− KPγ

= [α,KP] + (−KP(α− γ) + αKP− KPγ)

+ KP(α− γ).

If α − γ is not compact, then it is invertible on on some infinite dimensional subspace
W ⊂ ℓ2. Passing to a further subspace if necessary, it follows by Lemma 1.2.2 that [α,KP]
is trivial on some infinite dimensional subspace Y ⊂ W . Using that KP is quasilinear
on ℓ2, we deduce that KP(α − γ) : ℓ2 ↷ ℓ2 is trivial on Y . Hence, KP is trivial on
(α− γ)(Y ) ⊂ ℓ2, which is impossible since KP is singular.

The previous result provides a simple way to check if an upper triangular operator is not
bounded: let S+ and S− be the right and left shift operators on ℓ2, respectively. Consider

the upper triangular map S =

(
S+ Iℓ2
0 S−

)
on Z2. Then S is not bounded by Proposition

1.2.5 since, if it were, then S+ − S− : ℓ2 → ℓ2 should be compact, which is absurd.

1.2.5 Diagonal operators

Condition (♠) for upper triangular operators states that the quasilinear map α ◦ KP −
KP ◦ γ : ℓ2 → ℓ2 has to be trivial. If, moreover β = 0, it has to be bounded :

Corollary 1.2.5. The map T =

(
α 0
0 γ

)
is bounded on Z2 if and only if α, γ : ℓ2 → ℓ2

and
α ◦ KP− KP ◦ γ : ℓ2 → ℓ2 is bounded.

The following commutative diagram resumes the situation:

ℓ2 Z2 ℓ2

ℓ2 Z2 ℓ2

α T γ

KP

KP

13



For instance, the maps (
S+ 0
0 S+

)
and

(
S− 0
0 S−

)
define bounded operators on Z2. Indeed, KP commutes with S+:

S+KP(x) =
∞∑
n=1

xn−1 log
|xn−1|
∥x∥

en = KP
(

(0, x1, x2, x3, . . .)
)

= KP(S+x).

Hence,

(
S+ 0
0 S+

)
is bounded by Corollary 1.2.5. On the other hand, using the identifi-

cation of Z2 with ℓ2⊕−KP ℓ2 it can be shown (see Subsection 4.2.1 for a precise statement)
that (

S− 0
0 S−

)∗

is bounded if and only if

(
S∗
− 0
0 S∗

−

)
=

(
S+ 0
0 S+

)
is bounded.

Corollary 1.2.6. The operator

(
α 0
0 α

)
is bounded on Z2 if and only if α : ℓ2 → ℓ2 and

[α,KP] = α ◦ KP− KP ◦ α : ℓ2 → ℓ2 is bounded.

Note that if T =

(
α 0
0 α

)
is bounded on Z2 then the operator α itself must be bounded

on both the range space ℓ∗f and on the domain space ℓf . Indeed, recall that the domain
space is just the subspace of Z2 formed by vectors of the form (0, x) ∈ Z2, in which T
clearly acts boundedly. Thus, α(ℓf ) ⊂ ℓf and since ℓ∗f = Z2/ℓf , it follows that α is also
bounded on ℓ∗f . This gives direct ways to show that some diagonal operators on Z2 can
not be bounded. Take any norm one x ∈ ℓ2 such that x /∈ ℓf and consider the isometry U
on ℓ2 sending e1 to x. Then U is not bounded on the aforementioned Orlicz spaces, hence(
U 0
0 U

)
is not bounded on Z2. Checking if the commutator map is bounded for arbitrary

operators can be tricky. Consider the Cesàro and Hilbert operator, denoted respectively
by C and H; those are bounded operators on ℓ2 whose matrix representation is given by

C =


1 0 0 0 · · ·
1
2

1
2

0 0 · · ·
1
3

1
3

1
3

0 · · ·
1
4

1
4

1
4

1
4
· · ·

...
...

...
...

. . .

 and H =


1 1

2
1
3

1
4
· · ·

1
2

1
3

1
4

1
5
· · ·

1
3

1
4

1
5

1
6
· · ·

1
4

1
5

1
6

1
7
· · ·

...
...

...
...

. . .

 (1.13)

Thus C(x) =
(

1
n

∑n
k=1 xk

)
n∈N

and H(x) =
(∑∞

k=1
xk

k+n−1

)
n∈N

. The corresponding com-

mutator estimates are(
∞∑
n=1

∣∣∣ 1
n

n∑
k=1

xk

[
log

∣∣ 1
n

∑n
k=1 xk

∣∣
∥C(x)∥

− log
|xk|
∥x∥

]∣∣∣2)1/2

≤ C∥x∥ℓ2 (1.14)

and (
∞∑
n=1

∣∣∣ ∞∑
k=1

xk

n + k − 1

[
log

∣∣∑∞
k=1

xk

n+k−1

∣∣
∥H(x)∥

− log
|xk|
∥x∥

]∣∣∣2)1/2

≤ C ′∥x∥ℓ2 (1.15)
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The fundamental result to be explained in Chapter 2 is that the commutator estimates
(1.14) and (1.15) not only are true, but they are direct consequences of the behaviour of
C and H on the interpolation scale of ℓp spaces.

Until now, we put special focus in formulating conditions to bound an operator on Z2 in
terms of KP. One can express the conditions using KP−1. All such inverse conditions are
obtained much in the same way so we may skip the proofs. The only remarkable thing is
that in order to deduce the analogous condition to (♢) we need to introduce the following
companion to (L):

α : ℓ∗f → ℓ∗f is bounded and β : ℓ2 → ℓ∗f is bounded. (L∗)

The key here is that (L∗) linearizes KP−1 in the same sense that (L) linearizes KP. For
the sake of completeness, we summarize all conditions in the following table:

Boundness conditions for operators on Z2

Operator Canonical representation Inverse representation
General • αKP + β − KP(δKP + γ) : ℓ2 → ℓ2 • KP−1(α + βKP−1)− δ − γKP−1 : ℓ∗f → ℓf
(L) • αKP−KPγ + β −KPδKP : ℓ2 → ℓ2 ———————–
(L∗) ———————– • γKP−1−KP−1α+ δ−KP−1βKP−1 : ℓ∗f → ℓf
δ = 0 • αKP− KPγ + β : ℓ2 → ℓ2 • γKP−1 − KP−1α− KP−1βKP−1 : ℓ∗f → ℓf
β = 0 • αKP− KPγ − KPδKP : ℓ2 → ℓ2 • γKP−1 − KP−1α + δ : ℓ∗f → ℓf
δ, β = 0 • αKP− KPγ : ℓ2 → ℓ2 • γKP−1 − KP−1α : ℓ∗f → ℓf
α = γ • [α,KP] : ℓ2 → ℓ2 • [α,KP−1] : ℓ∗f → ℓf

1.2.6 The Johnson-Lindenstrauss-Schechtman conjecture

In Proposition 1.2.5 we saw that condition α = γ of Corollary 1.2.3 could be generalized

to the fact that α − γ : ℓ2 → ℓ2 is compact for any upper triangular operator

(
α β
0 γ

)
.

Now we focus on how to generalize the fact that δ = 0, which, as we will see, is closely
connected to the hyperplane problem. The first thing to note is that Z2 is isomorphic
to its subspaces of finite even codimension. This can be achieved using the bounded
operators (

S+ 0
0 S+

)
and

(
S− 0
0 S−

)
and its powers. One of the most interesting approaches to the hyperplane problem was
given by Johnson, Lindenstrauss and Schechtman in [57]. They reasoned the following
way: since the quotient map q : Z2 → ℓ2 is strictly singular, given any operator T : Z2 →
Z2 of the form (

α β
δ γ

)
the composition δ = qT i : ℓ2 → ℓ2 is strictly singular on ℓ2, hence compact. This means
that every operator T : Z2 → Z2 carries, up to a residual factor indicated by δ, the
canonical copy ℓ2 ⊂ Z2 into itself. Therefore, they posed the following conjecture:

Conjecture 1 (JLS Conjecture). Every operator T : Z2 → Z2 is a strictly singular
perturbation of an upper triangular operator.
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Every Fredholm operator of the form T =

(
α β
0 γ

)
+ S with S strictly singular has even

index. Indeed, recall that the index of a Fredholm operator is invariant under strictly

singular perturbations (cf. Proposition B.1.2). Thus, if T is Fredholm then U =

(
α β
0 γ

)
is Fredholm with the same index. In this case, U is Fredholm if and only if both α
and γ are Fredholm on ℓ2 (see [103]), in which case ind(U) = ind(α) + ind(γ). But
Proposition 1.2.5 gives that α− γ ∈ K(ℓ2); using again the invariance of the index under
compact perturbations we obtain that ind(α) = ind(γ + (α − γ)) = ind(γ). Therefore,
ind(T ) = ind(U) = ind(α) + ind(γ) is even. Hence, an isomorphism between Z2 and its
hyperplanes is something impossible if the representation provided by JLS-Conjecture is
true.

There are obvious situations for which this conjecture does hold. Think for instance when
δ : ℓ∗f → ℓf is bounded. We saw in Section 1.2.2 that, in this case, such condition leads
to the decomposition (

α β
δ γ

)
=

(
α β
0 γ

)
+

(
0 0
δ 0

)
(1.16)

in which both operators are bounded. Moreover, the last operator is always strictly sin-
gular on Z2: the canonical quotient map p : Z2 → ℓ∗f is strictly singular by Theorem 1.1.1
since, if it not were, Z2 could be embedded in ℓ∗f , which is impossible due to type/cotype

constraints. Then Proposition A.1.4 gives that S =

(
0 0
δ 0

)
is strictly singular if and only

if its restriction to ℓf = ker(p) is strictly singular. Since S|ℓf = 0 it follows that (1.16)
is strictly singular. If we drop the previous condition on δ, even if we assume the quite
stringent condition

δ : ℓ∗f → ℓ2 and δ : ℓ2 → ℓf are bounded, (∆)

it is not clear how to obtain a decomposition as indicated by the (JLS)-conjecture. In
this case the factorization (1.16) is not allowed since the last term would not be bounded,
and thus one has to perturb also the remaining entries of the matrix to induce something
of the form (

α β
δ γ

)
=

(
α′ β′

0 γ′

)
+

(
α− α′ β − β′

δ γ − γ′

)
Condition (∆) implies the linearization condition (L), and since both operators must be
bounded, Corollary 1.2.5 and Theorem 1.2.4 forces that

α′ ◦ KP− KP ◦ γ′ + β′ : ℓ2 → ℓ2

and
(α− α′) ◦ KP− KP ◦ (γ − γ′) + (β − β′)− KP ◦ δ ◦ KP : ℓ2 → ℓ2

are bounded maps. Therefore, in this case the problem can be reduced to the simultaneous
approximation of two naturally defined quasilinear maps:

Problem 3. Given three bounded operators α, γ : ℓ2 → ℓ2 and δ : ℓ2 → ℓf such that the
quasilinear map

α ◦ KP− KP ◦ γ − KP ◦ δ ◦ KP
is trivial on ℓ2, there exist two bounded operators α′, γ′ : ℓ2 → ℓ2 satisfying the following
conditions:
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(1) α′ ◦ KP− KP ◦ γ′ : ℓ2 → ℓ2 is trivial.

(2) (α− α′) ◦ KP− KP ◦ (γ − γ′)− KP ◦ δ ◦ KP : ℓ2 → ℓ2 is trivial.

It is clear by the preceding discussion that upper and lower triangular operators play a
key role in the study of the hyperplane problem. This leads to the question of whether
there exist a natural and systematic way to construct triangular operators on Z2. It turns
out that there is a general method to obtain upper triangular operators, and it depends
on the fundamental fact that the Kalton-Peck space appears naturally in the (apparently
unrelated) context of Complex Interpolation Theory of Banach spaces. The whys and the
hows are the main content of next two chapters.
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Chapter 2

Complex interpolation for pairs

In this chapter we present the basics of complex interpolation for pairs of Banach spaces.
The main source for us will be the classical [7], but we shall use at times the other works
[80, 61]. The origins of complex interpolation of Banach spaces can be traced back to the
work of Riesz and Thorin and their convexity theorem for Lp spaces:

Theorem 2.0.1 (Riesz-Thorin Theorem). Let 1 ≤ p0, p1, q0, q1 ≤ ∞. Let T be an operator
such that both

T : Lp0 → Lq0 and T : Lp1 → Lq1

are bounded. Then T : Lpθ → Lqθ is bounded with norm∥∥∥T : Lpθ → Lqθ

∥∥∥ ≤ ∥∥∥T : Lp0 → Lq0

∥∥∥1−θ ∥∥∥T : Lp1 → Lq1

∥∥∥θ, (2.1)

where
1

pθ
=

1− θ

p0
+

θ

p1
and

1

qθ
=

1− θ

q0
+

θ

q1
.

Equivalently, the function M(p, q) = ∥T : Lp → Lq∥ is log-convex on the following square:

( 1
p0
, 1
q0

)

( 1
p1
, 1
q1

)

(1, 1)

(∞,∞)

1
q1

1
p0

( 1
pθ
, 1
qθ

)

1
p1

1
q0

2.1 The complex method for pairs on the strip
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The starting point of abstract complex interpolation theory seeks to mimicry the situation
for Lp spaces to general Banach spaces: given two Banach spaces X0 and X1, produce a
family (Xθ)θ∈Θ of Banach spaces such that

T : Xθ → Xθ is bounded whenever T : X0 → X0 and T : X1 → X1 are. (2.2)

In this case Xθ is referred to as an interpolation space of X0 and X1.

Let U be a Hausdorff topological vector space. A pair (X0, X1) of Banach spaces is called
(U, i0, i1)-compatible if there exist continuouos injections i0 : X0 → U and i1 : X1 → U.
We will identify X0 and X1 with i0(X0) and i1(X1), so that ij becomes the inclusion map
Xj ⊂ U for each j = 0, 1. When the space U and the given injections are clear from
context, we will refer to (X0, X1) as a Banach couple or simply as a couple.

Given a couple (X0, X1) one can form the sum space X0 + X1 endowed with the norm

∥x∥X0+X1 = inf
x=x0+x1

∥x0∥X0 + ∥x1∥X1

and the intersection space X0∩X1 with the maximum norm ∥x∥X0∩X1 = max{∥x∥X0 , ∥x∥X1}.
Both X0∩X1 and X0+X1 are Banach spaces [7, Lemma 2.3.1] for which there exist obvious
continuous inclusions

X0 ∩X1 ⊂ Xj ⊂ X0 + X1

for each j = 0, 1. Any Banach space X such that X0∩X1 ⊂ X ⊂ X0+X1 with continuous
inclusions will be called an intermediate space for the Banach couple (X0, X1).

We describe now the complex method developed by Calderón in [14]. We denote by S the
strip {z ∈ C : 0 < Re(z) < 1} and by S its closure. Let (X0, X1) be a fixed couple and
define the Calderón space C(X0, X1) as the vector space of all bounded and continuous
functions f : S→ X0 + X1 which are analytic on S and such that

the map t ∈ R 7→ f(j + it) ∈ Xj is bounded and continuous for each j = 0, 1. (2.3)

Lemma 2.1.1 (Vector-valued Hadamard three-line theorem).
Let B be any Banach space and f : S → B a continuous and bounded function which is
analytic on S. Then for any 0 < θ < 1 we have that

∥f(θ)∥B ≤
(

sup
t
∥f(it)∥B

)1−θ (
sup
t
∥f(1 + it)∥B

)θ
Note that all funtions f ∈ C(X0, X1) satisfy the hypotheses of Lemma 2.1.1. Thus, the
expression

∥f∥C = max
j=0,1
{sup
t∈R
∥f(j + it)∥Xj

}

defines a norm on C(X0, X1) which makes it a Banach space [7, Lemma 4.1.1].

Moreover, (2.3) sets the Banach spaces X0 and X1 as boundary conditions for the functions
f ∈ C(X0, X1). Thus the evaluations f(θ) define a space Xθ whose properties depend on
X0 and X1.

Precisely, given any 0 < θ < 1 define the complex interpolation space Xθ = (X0, X1)θ as
the vector space {

x ∈ X0 + X1 : x = f(θ), f ∈ C(X0, X1)
}
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endowed with the quotient norm

∥x∥θ = inf{∥f∥C : f(θ) = x, f ∈ C(X0, X1)}.

By Lemma 2.1.1 the evaluation map δθ : C(X0, X1) → X0 + X1 given by δθ(f) = f(θ) is
bounded, and we can identify Xθ with the quotient space C(X0, X1)/ ker δθ. Continuity of
the evaluation map also yields the continuous inclusion Xθ ⊂ X0 +X1 and using constant
functions one also has X0 ∩X1 ⊂ Xθ, which gives the chain

X0 ∩X1 ⊂ Xθ ⊂ X0 + X1.

It only remains to show whether the interpolation principle (2.2) does hold for Xθ.

Let us call an operator T : X0 + X0 → X0 + X1 interpolating if the operator TC :
C(X0, X1)→ C(X0, X1) given by

TC(f)(z) = T (f(z))

is bounded.

If T : X0 → X0 and T : X1 → X1 are bounded operators, then the linear map TΣ :
X0 + X1 → X0 + X1 defined for x = x0 + x1 ∈ X0 + X1 by

TΣ(x) = T (x0) + T (x1)

is bounded. Indeed,

∥TΣ(x)∥X0+X1 = ∥Tx0 + Tx1∥X0+X1 ≤ ∥T : X0 → X0∥∥x0∥X0 + ∥T : X1 → X1∥∥x1∥X1 .

Taking the infimum on both sides over all representations x = x0 + x1 we deduce that

∥TΣ : X0 + X1 → X0 + X1∥ ≤ max{∥T : X0 → X0∥, ∥T : X1 → X1∥}.

The hypothesis in (2.2) is subsumed in:

Proposition 2.1.1. Let T : X0 → X0 and T : X1 → X1 be bounded operators. Then
TΣ : X0 + X1 → X0 + X1 is interpolating.

Proof. We must show that the induced map TC : C(X0, X1) → C(X0, X1) is well defined
and bounded:

(i) Given f ∈ C(X0, X1), the map z ∈ S 7→ TC(f)(z) = TΣ(f(z)) is continuous (being
the composition of two continuous maps) and bounded since ∥TΣ(f(z))∥X0+X1 ≤
∥TΣ : X0 + X1 → X0 + X1∥ ∥f(z)∥X0+X1 .

S X0 + X1

X0 + X1

f

TC(f)
TΣ
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(ii) TC(f) is analytic on S: given any θ ∈ S one has that

δ′θ

(
TC(f)

)
= lim

z→θ

TΣ(f(z))− TΣ(f(θ))

z − θ
.

Since TΣ is linear and continuous we conclude that δ′θ(TC(f)(z)) = TΣ(f ′(z)). In
fact, the same arguments provide the analogous result for higher order derivatives:

δ
(k)
θ

(
TC(f)

)
= TΣ

(
δ
(k)
θ (f)

)
for any k ∈ N. (2.4)

(iii) Thus TC

(
C(X0, X1)

)
⊂ C(X0, X1) and, moreover,

∥TC(f)∥C = max{sup
t
∥TΣ(f(it))∥X0 , sup

t
∥TΣ(f(1 + it))∥X1}

≤ max{∥T : X0 → X0∥, ∥T : X1 → X1∥}∥f∥C

for any f ∈ C(X0, X1).

Interpolating operators T : X0 + X1 → X0 + X1 satisfy the conclussion of (2.2):

Theorem 2.1.1 (Interpolation principle for operators).
Let T : X0 + X1 → X0 + X1 be an interpolating operator. Then T : Xθ → Xθ is bounded.

Proof. All information is contained in the following commutative diagram

C(X0, X1) X0 + X1

C(X0, X1) X0 + X1

δθ

TC T

δθ

Let x ∈ Xθ be fixed and select f ∈ C(X0, X1) such that f(θ) = x and ∥f∥C ≤
(1 + ε)∥x∥θ. Then

∥Tx∥θ = ∥T
(
f(θ)

)
∥θ = ∥TC(f)(θ)∥θ

≤ ∥TC(f)∥C ≤ ∥TC∥ ∥f∥C ≤ (1 + ε)∥TC∥ ∥x∥θ.

If T : X0 → X0 and T : X1 → X1 are bounded, then we can obtain an explicit bound for
∥TC∥: given any f ∈ C(X0, X1) such that f(θ) = x and ∥f∥C ≤ (1 + ε)∥x∥θ, define the
analytic function

h(z) =
f(z)

∥T : X0 → X0∥1−z ∥T : X1 → X1∥z
.

Then h ∈ C(X0, X1) with ∥h∥C ≤ 1. A direct calculation shows that ∥TC(h)∥C ≤ ∥f∥C,
hence

∥Tx∥θ
∥T : X0 → X0∥1−θ ∥T : X1 → X1∥θ

= ∥TC(h)(θ)∥θ ≤ ∥f∥C ≤ (1 + ε)∥x∥θ.

It follows that

∥T : Xθ → Xθ∥ ≤ ∥T : X0 → X0∥1−θ ∥T : X1 → X1∥θ, (2.5)

which is the log-convexity bound analogous to (2.1).
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2.1.1 Calderón spaces

An apparently innocuous but quite important tool for interpolation theory is the existence
of alternative Calderón spaces that define the same interpolation spaces. Precisely, let us
denote by C0(X0, X1) the subspace of C(X0, X1) formed by all functions f such that

for each j = 0, 1, ∥f(j + it)∥Xj
→ 0, whenever |t| → ∞.

Observe that, given f ∈ C(X0, X1) and δ > 0, the function fδ(z) = eδz
2
f(z) belongs to

C0(X0, X1) with norm ∥fδ∥C ≤ eδ∥f∥C. Since f(θ) = e−δθ2fδ(θ), it is not hard to show
that ∥ · ∥θ can be computed using functions in C0(X0, X1) (see [80, Remark 8.6]). Thus,
we can replace C0 by C in the definition of the interpolation space Xθ.

The advantage of using C0 instead of the original Calderón space comes from the fact that
C0 contains a dense subspace formed by very manageable functions: let C00(X0, X1) be
the space formed by all functions f : S→ X0 ∩X1 of the form

f(z) =
N∑
k=1

fk(z)xk, where xk ∈ X0 ∩X1

and such that fk ∈ C(C,C) vanishes at the infinity, i.e.,

lim
R→∞

sup{|f(z)| : z ∈ S, |Im(z)| ≥ R} = 0.

Lemma 2.1.2. C00(X0, X1) is dense in C0(X0, X1).

See [80, Lemma 8.11] or [7, Lemma 4.2.3] for a proof. One can also substitute the elements
xk ∈ X0 ∩X1 by vectors belonging to any dense subset of X0 ∩X1. Explicit examples of
functions on C00 are given by the family

f(z) = eδz
2

N∑
k=1

eλkzxk, where δ > 0, λk ∈ R and xk ∈ X0 ∩X1.

Two direct and useful consequences are:

Lemma 2.1.3. For each 0 < θ < 1 the intersection space X0 ∩ X1 is dense in Xθ.
Moreover, for any x ∈ X0 ∩X1 we have that

∥x∥θ = inf{∥f∥C : f ∈ C00(X0, X1), f(θ) = x}. (2.6)

The first part is classical and already known by Calderón [14, 9.3], while the “moreover
part” is due to Stafney [86, Lemma 2.5] (see also [80, Lemma 8.11]).

Lemma 2.1.4. Let (X0, X1) be a Banach couple and denote for each j = 0, 1 the closure
of X0 ∩X1 in Xj by Aj. Then for each 0 < θ < 1

C0(X0, X1) = C0(A0, A1) and (X0, X1)θ = (A0, A1)θ.

See [80, Remark 8.13] or [7, 4.2.2] for further comments. A simple example for which
Lemma 2.1.4 applies is the sequence ℓp spaces: (ℓ1, ℓ∞)θ = (ℓ1, c0)θ.
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Any function f ∈ C(X0, X1), being an analytic function on S which continuously extends
to a bounded continuous function on S, admits a Poisson integral representation on S,
i.e., for every z ∈ S there exist a (unique) probability measure µz on ∂S such that

f(z) =

∫
∂S
f(ξ)dµz(ξ)

for all f ∈ C(X0, X1) (see [80, pp. 301-302] or [6, Appendix I]). Moreover, if 0 < θ < 1,
there exist two measures µ0

θ and µ1
θ supported on ∂0 and ∂1, respectively, so that µθ =

µ0
θ + µ1

θ. Thus

f(θ) =

∫
∂S
f(ξ)dµθ(ξ) =

∫
∂0

f(it)dµ0
θ(it) +

∫
∂1

f(1 + it)dµ1
θ(1 + it). (2.7)

For each j = 0, 1, the measure µj
θ is absolutely continuous with respect to the induced

Lebesgue measure dt on ∂j and the corresponding Radon-Nikodym derivative is given by
the Poisson kernels on the strip (see [100]):

dµj
θ(j + it) =

sin(πθ)

2
(

cosh(πt) + (−1)j+1 cos(πθ)
)dt = P j

θ (t)dt.

Moreover, since the representation (2.7) also holds if we assumed that f just were harmonic
on S, using the function Re(z) and the fact that µθ is a probability measure it follows
that ∫

∂0

du0
θ(it) = 1− θ and

∫
∂1

du1
θ(1 + it) = θ. (2.8)

Furthermore, for any 0 < θ < 1 it was shown by Calderón [14, 9.4] (see also [7, Lemma
4.3.2] or [80, Lemma 8.20]) that

∥f(θ)∥θ ≤
∫
∂0

∥f(it)∥X0dµ
0
θ(it) +

∫
∂1

∥f(1 + it)∥X1dµ
1
θ(1 + it). (2.9)

If we denote by ∥f∥Cθ the right side of (2.9), then ∥ · ∥Cθ is a norm on Calderón space
which satisfies by (2.8) that

∥f(θ)∥θ ≤ ∥f∥Cθ ≤ ∥f∥C (2.10)

We will need (2.10) in Chapter 5, since these integral norms are more suitable to work
with averages of analytic functions.

2.2 Some examples of interpolation scales

In this section we give several examples of complex interpolation scales, namely, we de-
scribe the spaces Xθ obtained for some couples (X0, X1). Some of these examples will be
studied in forthcoming sections.

2.2.1 Lp spaces over a σ-finite measure space

Let (Ω, µ) be a σ-finite measure space and, for each 1 ≤ p ≤ ∞, denote by Lp(µ) the
corresponding Banach space of p-integrable functions. The cases of (Rn, λn) with the
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Lebesgue measure and (N, ν) with counting measure are the main examples which we
will consider. Adapted to this context, the claim of Riesz-Thorin Theorem (see Theorem
2.0.1) translates into the interpolation formula

(Lp0(µ), Lp1(µ)) = Lpθ(µ), where 0 < θ < 1 and
1

pθ
=

1− θ

p0
+

θ

p1
. (2.11)

The proof of this fact can be found in [7, Section 5.1] or [80, Th. 8.15], but it essen-
tially reduces to obtaining an homogeneous bounded selection for the evaluation map δθ :
C(Lp0(µ), Lp1(µ)) → Lpθ(µ), i.e., an homogenous map Bpθ : Lpθ(µ) → C(Lp0(µ), Lp1(µ))
such that

Bpθ(x)(θ) = x with ∥Bpθ(x)∥C ≤ C∥x∥θ, for each x ∈ Lpθ(µ).

An explicit expression for Bpθ on a dense subspace of Lpθ(µ) can be obtained in the
following way: define the function p(z)−1 = (1 − z)p−1

0 + zp−1
1 and note that given any

norm one simple function x ∈ Lpθ(µ), the polar decomposition of x gives rise to the
analytic function (observe that sign(x) = x/|x|)

fx(z) = sign(x)|x|
pθ
p(z) = x|x|

(1−z)pθ
p0

+
zpθ
p1

−1 ∈ C(Lp0(µ), Lp1(µ)).

For an arbitrary simple function x ∈ Lpθ we define Bpθ(x) extending the previous map
homogeneously as

Bpθ(x)(z) = ∥x∥pθf x
∥x∥

(z) = x
( |x|
∥x∥pθ

) (1−z)pθ
p0

+
zpθ
p1

−1

∈ C(Lp0(µ), Lp1(µ)). (2.12)

The map Bpθ is a selection for δθ by (2.11) and is isometric in the sense that ∥x∥pθ =
∥Bpθ(x)∥C. As we shall see in forthcoming Section 2.6, the properties of Bpθ will give
further information about the scale of Lp(µ) spaces that is not obtaineable using just
classical interpolation theory.

2.2.2 Weighted Lp spaces

Let (Ω, µ) be a measure space. A weight w : Ω → R is a positive µ-measurable function
that is locally integrable. Given a weight w and 1 ≤ p < ∞, we denote by Lp(w, µ) =
Lp(w) the corresponding weighted Lebesgue space, that is, the Banach space formed by
f ∈ L0(µ) such that w1/pf ∈ Lp(µ) under the norm

∥f∥pw =
(∫

Ω

|f |pwdµ
)1/p

= ∥w1/pf∥p.

Let w0 and w1 be two weights on (Ω, µ). Interpolation of two different weighted Lebesgue
spaces Lp(w0) and Lq(w1) were studied by E. Stein and G. Weiss in [89] (see also [7, Section
5.5]). Here we are interested in the case p = q, for which one has the identification

(Lp(w0, µ), Lp(w1, µ))θ = Lp(w
1−θ
0 wθ

1, µ), for all 0 < θ < 1. (2.13)

The map

Bθ(x)(z) =
(w0

w1

) (z−θ)
p

x =
( w

1/p
0

w
1/p
1

)z−θ

x, for each 0 < θ < 1. (2.14)

defines a bounded homogeneous selection for the evaluation map δθ : C(Lp(w0, µ), Lp(w1, µ))→
Lp(w

1−θ
0 wθ

1, µ) [43, 22]. Note that, unlike the previous case of Lp spaces, the selection
(2.14) is linear in x. If we denote by wθ = w1−θ

0 wθ
1, it is readily verified that

∥Bθ(x)(0 + it)∥pw0 = ∥Bθ(x)(1 + it)∥pw1 = ∥(w1−θ
0 wθ

1)
1/px∥p = ∥x∥pwθ .
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2.2.3 Hardy and Sobolev spaces

Let T ⊂ C be the unit circle and denote by m be the normalized Lebesgue measure on T.
If H(D) stands for the space of complex valued analytic functions on the unit disk, then
the Hardy space Hp(D) is defined as the Banach space

Hp(D) = {f ∈ H(D) : sup
0<r<1

Mp(f, r) <∞},

where

Mp(f, r) =
( 1

2π

∫ 2π

0

|f(reit)|pdm(t)
)1/p

, for each 0 < r < 1,

if 1 ≤ p <∞. In the case p =∞ we consider the usual modification

M∞(f, r) = sup
0<t<2π

|f(reit)|.

There exists a close relationship between Hardy spaces Hp(D) and Lebesgue spaces
Lp(T,m). The celebrated Fatou’s Theorem states that, given any function F (z) =∑

n=0 anz
n ∈ Hp(D), then (see [101, Th. 8]):

(i) the radial limit limr→1 F (reit) = f(eit) exists almost everywhere for t ∈ (0, 2π);

(ii) f admits a Fourier series representation of the form f(t) =
∑∞

n=0 ane
int;

(iii) f ∈ Lp(T) with norm ∥f∥p = sup0<r<1Mp(F, r).

Conversely, let p ≥ 1 and f ∈ Lp(T) such that f(t) =
∑∞

n=0 ane
int. If P (r, θ) =

1−r2

1−2r cos(θ)+r2
is the Poisson kernel on D, then the Poisson formula

F (reiθ) =
1

2π

∫ 2π

0

P (r, θ − t)f(eit)dm(t)

allows us to recover an analytic function F (z) =
∑∞

n=0 anz
n ∈ Hp(D) whose boundary

values are precisely given by f .

Thus, the Hardy space Hp(D) can be identified with the closed subspace Hp(T) ⊂ Lp(T,m)
generated by the polynomials [46, Th. 3.3] (see also [101, 75]). Hence we can consider
the orthogonal projection R : L2(T)→ H2(T) given by

f(t) =
∑
n∈Z

ane
int ∈ L2(T) 7→ R(f)(t) =

∞∑
n=0

ane
int.

Such operator can be extended to a bounded projection R for all 1 < p < ∞ (cf. [101,
Th. 10]), which receives the name of Riesz projection. Using this, one can readily identify
the interpolation scale of Hardy spaces in the reflexive range 1 < p, q <∞ (see [102]):

(Hp(T), Hq(T))θ = Hr(T), where
1

r
=

1− θ

p
+

θ

q
.

To obtain the corresponding selector for the scale of Hardy spaces we will need the fol-
lowing result proved by Boas [8] (see also [75, Th. 0.3]):
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Proposition 2.2.1 (Boas). The map B : Lp(T)→ Hp(T) given by

B
(∑

n∈Z

ane
int
)

= a0 +
∑
n≥1

ane
i(2n)t +

∑
n≥1

a−ne
i(2n−1)t.

is an isomorphism for any 1 < p <∞.

The map B, called the Boas isomorphism, defines by Proposition 2.1.1 the bounded
operator BC : C(Lp(T), Lp∗(T)) → C(Hp(T), Hp∗(T)). Then the map BH

1/2 : H2(T) →
C(Hp(T), Hp∗(T)) defined by

BH
1/2(x)(z) = BC

(
B1/2

(
B−1(x)

))
(z) (2.15)

is a bounded homogeneous selection for δ1/2 : C(Hp(T), Hp∗(T)) → H2(T); that is, a
selection for the Hardy spaces is given by the selection of Lp spaces conjugated by the
Boas isomorphism. This is summarized in the diagram

C(Lp(T), L∗
p(T)) L2(T)

C(Hp(T), H∗
p (T)) H2(T)

δ1/2

BC

B1/2

B

δ1/2

BH
1/2

This previous facts will be important in later sections, as they will imply that the
Rochberg spaces associated to the scale of Hardy spaces are isomorphic to the corre-
sponding Rochberg spaces defined by the scale (L1(T), L∞(T))θ, for 0 < θ < 1.

We focus now in the case of Sobolev spaces. General references for this topic are [72, 1],
although we follow here the description given in [76].

For 1 ≤ p ≤ ∞ and k ∈ N, the Sobolev space W k
p (Rn) is the Banach space of all functions

f : Rn → C whose distributional derivatives up to order k are in Lp(Rn). Precisely,

given a finite sequence α = (αi)
n
i=1 ∈ Nn denote by ∂α = ∂|α|

∂x1
α1 ∂x

α2
2 ··· ∂xn

αn the usual

partial derivative associated to the multi-index α, where |α| =
∑

αi is the order of the
derivative. A function g : Rn → C is said to be the α-th distributional partial derivative
of a function f : Rn → C, denoted by g = Dαf , if satisfies the equation∫

Rn

gφ dx = (−1)|α|
∫
Rn

fDαφdx,

when tested against all infinitely differentiable functions φ : Rn → C with compact
support. The Sobolev space W k

p (Rn) is, for k ∈ N and 1 ≤ p ≤ ∞, the Banach space

W k
p (Rn) = {f : Rn → C : Dαf exist and Dαf ∈ Lp(Rn) for all |α| ≤ k}
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endowed with the norm

∥f∥k,p =


(∑

|α|≤k

∫
Rn |Dαf(x)|p dx

)1/p
, for 1 ≤ p <∞

max|α|≤k ess supx∈Rn|Dαf(x)|, if p =∞

If we consider the space
⊕

|α|≤k Lp(Rn) endowed with the norm

∥(fα)∥p =

{(∑
|α|≤k ∥fα∥pp)1/p, for 1 ≤ p <∞

max|α|≤k ∥fα∥∞, if p =∞

then, by the very definition we have that the map

f ∈ W k
p (Rn) 7→ J(f) = (Dαf)|α|≤k ∈

⊕
|α|≤k

Lp(Rn)

defines an isometric embedding for all 1 ≤ p ≤ ∞. In the particular case where p = 2,
we have that

⊕
|α|≤k L2(Rn) is a Hilbert, hence W k

2 (Rn) is a Hilbert and there exist the

orthogonal projection S :
⊕

|α|≤k L2(Rn) → W k
2 (Rn). Just like the Riesz projection, S

extends to a bounded projection S :
⊕

|α|≤k Lp(Rn)→ W k
p (Rn) for all 1 < p <∞ [76, Th.

4], called the Sobolev projection.

One has for all k ∈ N that

(W k
p (Rn),W k

q (Rn))θ = W k
r (Rn), where

1

r
=

1− θ

p
+

θ

q
and 1 < p, q <∞.

The paper [73] contains a proof which also includes the endpoint space W k
1 (Rn).

Moreover, using the theory of Fourier multipliers it can be shown that W k
p (Rn) is isomor-

phic to Lp(Rn) for each 1 < p < ∞ through an explicit isomorphism (see [76, Th. 6] or
[77]):

Proposition 2.2.2. For each k ∈ N and n ∈ N there exist an isomorphism T : Lp(Rn)→
W k

p (Rn) for all 1 < p <∞.

The operator T does not depend on p (see [76, pp. 1372], the comments before Propo-
sition 8). Therefore, reasoning like we did for the case of Hardy spaces, the map
BW

1/2 : W k
2 (Rn)→ C(W k

p (Rn),W k
p∗(Rn)) given by

BW
1/2(x)(z) = TC

(
B1/2

(
T−1(x)

))
(z)

is a bounded homogeneous selection for the evaluation map δ1/2 : C(W k
p (Rn),W k

p∗(Rn))→
W k

2 (Rn).

2.3 Shifts

Let (X0, X1) be a Banach couple. Given an analytic function f on S and 0 < θ < 1, we

denote by ∆θ
k(f) = 1

k!
δ
(k)
θ (f) the k-th Taylor coefficient of f at θ. Then the linear map
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∆θ
k : C(X0, X1)→ X0 +X1 is continuous. Indeed, applying the Cauchy Integral Theorem

one gets the estimate

∥f (k)(θ)∥X0+X1 ≤
k!

min{θ, 1− θ}k
∥f∥C, (2.16)

and thus ∥∆θ
k∥ ≤ 1

min{θ,1−θ}k (cf. [22, Lemma 3.8]). When θ is fixed, we will denote ∆θ
k

simply by ∆k.

Due to historical reasons (mainly the use of Three lines Theorem in the proof of Riesz-
Thorin Theorem), the usual setting for complex interpolation is the unit strip S on the
complex plane. However, in the next chapter we will need to work with higher order
derivaties of analytic functions on S, and this domain is not as suitable to perform some
of the involved techniques.

Precisely, in the unit disk D, one has the well-known factorization result: if f is analytic
on D and has a zero of order k at 0, then f = zkg, where g is analytic on D.

Therefore:

(i) Taylor coefficients can be shifted by multiplying by zk:

∆m+k(zkg) = ∆m(g) for all m, k ∈ N.

We shall refer to f 7→ zkf as the shift map.

(ii) If A(D, X) denotes the vector valued disk algebra and Ij = {eiθ : jπ < θ < (j +
1)π} ⊂ T for each j = 0, 1, then we may define for any Banach couple (X0, X1) the
Banach space

CD(X0, X1) = {f ∈ A(X0+X1) : f |Ij : Ij → Xj is bounded and continuous, j = 0, 1},

under the norm ∥f∥ = maxj=0,1 supθ∈Ij ∥f(eiθ)∥j. Note that this is an analogue of
Calderón space where the domain used is the unit disk instead of the strip. Then
the map

f ∈ CD(X0, X1) 7→ zf ∈ CD(X0, X1)

is an isometric isomorphism onto the subspace of functions vanishing at 0.

We want to translate property (i) to the open strip S and the usual Calderón space
C(X0, X1). In general, the shift f 7→ zf can not be applied directly since, being an
unbounded domain, multiplication by z is not allowed on the unit strip.
Fix 0 < θ < 1 and pick a conformal mapping φ : S → D vanishing at θ. An example is
given by

φ(z) =
eiπz − eiπθ

eiπz − e−iπθ
, z ∈ S.

Such map is unique up to a rotation by a result of Poincaré [5, 13.14 Lemma]. Moreover,
φ(z) is continuous on the closed strip and satisfies that φ(∂S) ⊂ ∂D. See [80, Chapter 8]
for some further properties of φ.
The map

f ∈ C(X0, X1) 7→ φf ∈ ker δθ ⊂ C(X0, X1) (2.17)

is an isometric linear map. Moreover, any g ∈ ker δθ can be expressed as g = φf for some
unique f ∈ C(X0, X1) (see the proof of [17, Th. 4.1]). Thus the isometric map (2.17) is
onto.
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A simple calculation shows that this map does not shift the coefficients of the analytic
functions f ∈ C(X0, X1). Indeed, by the Leibniz rule we have that

∆n(φf) =
n∑

i=0

∆n−k(φ)∆k(f). (2.18)

We observe that, unless ∆1(φ) = 1 and ∆k(φ) = 0 for all k ̸= 1, the map (2.17) will not
be shifting Taylor coefficients.

Let us amend this. Let P be the polynomial P =
∑

i aiφ
i. Since (2.17) is isometric,

it follows that Pf ∈ C(X0, X1) for any f ∈ C(X0, X1) with ∥Pf∥C ≤
∑

i |ai|∥f∥C. The
following result appears in [12, Lemma 1]:

Lemma 2.3.1. Given m ∈ N and 0 ≤ k ≤ m, there exist a polynomial Pk(φ) of degree
at most m such that for every 0 ≤ i ≤ m,

∆i(Pk(φ)) = δik.

Using this we can construct the desired shift operators on C(X0, X1):

Proposition 2.3.1.

(1) For any n, k ∈ N there exist a bounded linear operator Sk
− : C(X0, X1)→

⋂k−1
j=0 ker ∆k

making the following diagram commutative

C(X0, X1)
⋂k−1

j=0 ker ∆k

Σn

Sk
−

(∆n−1, . . . ,∆0)
(∆n+k−1, . . . ,∆k)

In particular, for any f ∈ C(X0, X1) one has

(∆n+k−1, . . . ,∆k)(Sk
−(f)) = (∆n−1, . . . ,∆0)(f). (2.19)

(2) For any n, k ∈ N there exist a bounded linear operator Sk
+ :
⋂k−1

j=0 ker ∆k → C(X0, X1)
making the following diagram commutative

C(X0, X1)
⋂k−1

j=0 ker ∆k

Σn

(∆n−1, . . . ,∆0)

Sk
+

(∆n+k−1, . . . ,∆k)

In particular, for any f ∈
⋂k−1

j=0 ker ∆j one has

(∆n+k−1, . . . ,∆k)(f) = (∆n−1, . . . ,∆0)(S+(f)). (2.20)
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Proof.

(1) Let f ∈ C(X0, X1) be any function and fix n, k ∈ N. Apply Lemma 2.3.1 to obtain a
polynomial Pk(φ) such that

∆i(Pk(φ)) = δi,k, for all 0 ≤ i ≤ n + k − 1.

Then the map Sk
−(f) = Pk(φ)f defines a bounded operator from C(X0, X1) into⋂k−1

j=0 ker ∆j such that

∆j(Pk(φ)f) =
m∑
l=0

∆j−l(Pk(φ))∆l(f) = ∆j−k(f)

for any k ≤ j ≤ n + k − 1, which gives (2.19).

(2) On the other hand, assume that f ∈
⋂k−1

j=0 ker ∆j and fix n, k ∈ N. Then, as we noted

after (2.17), f is of the form f = φkg where g ∈ C(X0, X1) (see also [22, Proposition
3.10]). Use Lemma 2.3.1 to define the polynomial

P (φ) =
n−1∑
j=0

∆k+j(φ
k)Pj(φ).

Note that for each 0 ≤ j ≤ n− 1 we have that

∆j+k(f) = ∆j+k(φkg) =

j+k∑
i=0

∆j+k−i(φ
k)∆i(g) =

j∑
i=0

∆j+k−i(φ
k)∆i(g).

and

∆j(P (φ)g) =

j∑
i=0

∆j−i(P (φ))∆i(g)

Since ∆j(P (φ)) = ∆k+j(φ
k) for each 0 ≤ j ≤ n− 1, we conclude that

(∆n−1, . . . ,∆0)(P (φ)g) = (∆n+k−1, . . . ,∆k)(f).

If we define Sk
+ :

⋂k−1
j=0 ker ∆j → C(X0, X1) by Sk

+(f) = Sk
+(φkg) = P (φ)g, then this

operator is linear and bounded: observe that for each 0 ≤ j ≤ n − 1 we have that there
exist Mj such that ∥Pjg∥C ≤Mj∥g∥C and that ∥f∥C = ∥φkg∥C = ∥g∥C, hence

∥Sk
+(f)∥C =

∥∥∥ n−1∑
j=0

∆k+j(φ
k)Pj(φ)g

∥∥∥
C
≤

n−1∑
j=0

|∆j+k(φk)|∥Pjg∥C

≤
n−1∑
j=0

|∆j+k(φk)|Mj∥g∥C ≤ C∥g∥C = C∥f∥C.

Proposition 2.3.1 will be crucial in the following chapters to work with the truncated
sequence of Taylor coefficients of f ∈ C(X0, X1). For any k ∈ N, the shift maps Sk

+ and
Sk
− can be used to prove that translations on Taylor coefficients (2.19) and (2.20) are

continuous (see Subsection 3.1).
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2.4 Reiteration and duality

When studying the properties of the spaces Xθ obtained from a given Banach couple
(X0, X1), in some cases one does not need to work with the whole scale (Xθ)0≤θ≤1, but
just with a suitable neighborhood of Xθ. The following result is known as the Reiteration
Theorem.

Proposition 2.4.1. Let (X0, X1) be a Banach couple pair and 0 ≤ α < β ≤ 1. Then for
any 0 < θ < 1 the identity(

(X0, X1)α, (X0, X1)β

)
θ

= (X0, X1)(1−θ)α+θβ (2.21)

holds with equality of norms.

The main point is that the linear map C : C(X0, X1)→ C
(

(X0, X1)α, (X0, X1)β

)
, defined

by C(f)(z) = f
(
(1 − z)α + zβ

)
is a contraction (see [14, 32.3]). A proof of Proposition

2.4.1 can be found in [40].

We discuss now duality issues involving interpolation spaces. A detailed account is given
in Cwikel’s notes [41]. Let (X0, X1) be a Banach couple and suppose that X is an inter-
mediate space in such a way that both inclusions X0 ∩ X1 ⊂ X ⊂ X0 + X1 have dense
range. Then dualizing one obtains a chain

(X0 + X1)
∗ ⊂ X∗ ⊂ (X0 ∩X1)

∗.

of continous inclusions for the dual spaces. Using that X0 ∩ X1 ⊂ X is dense, one can
identify the dual space of X by the action of functionals f ∈ (X0∩X1)

∗ on X0∩X1 ⊂ X.
Precisely, if we denote by ⟨·, ·⟩X0∩X1 the duality between X0 ∩ X1 and (X0 ∩ X1)

∗, then
X∗ coincides with the subspace of y ∈ (X0 ∩X1)

∗ such that

∥y∥ = sup
x∈X0∩X1

|⟨x, y⟩X0∩X1| <∞.

For a general x ∈ X, the duality ⟨·, ·⟩X : X ×X∗ → C is given by

⟨x, x∗⟩X = lim
n→∞
⟨xn, x

∗⟩X0∩X1 (2.22)

where (xn)n ⊂ X0 ∩X1 is any sequence converging to x for ∥ · ∥X (cf. [41, Fact 1.8]).

A natural setup where the previous density assumption holds is when X0 ∩ X1 is dense
in both endpoints X0 and X1. In such case, we will say following Cwikel [41, Def. 1.3]
that (X0, X1) is a regular couple. Note that if (X0, X1) is a Banach couple that is not
regular, by Lemma 2.1.4 we can always consider the regular couple (A0, A1) where Aj is
the closure of X0 ∩X1 in Xj, which has the same interpolation spaces as (X0, X1).

If (X0, X1) is a regular couple we can apply the same reasoning as before to X = X0 and
X = X1. Thus, for each j = 0, 1 the chain of inclusions X0 ∩X1 ⊂ Xj ⊂ X0 + X1 can be
dualized to yield

(X0 + X1)
∗ ⊂ X∗

j ⊂ (X0 ∩X1)
∗.

Using the analogous identifications of X∗
0 and X∗

1 indicated by the duality (2.22) one has
the equalities

(X0 + X1)
∗ = X∗

0 ∩X∗
1 and (X0 ∩X1)

∗ = X∗
0 + X∗

1 ,
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and the corresponding dual norms ∥ · ∥(X0+X1)∗ and ∥ · ∥(X0∩X1)∗ coincide, respectively,
with the maximum and infimum norm associated to the Banach couple (X∗

0 , X
∗
1 ). Hence

X∗
0 ∩X∗

1 = (X0 + X1)
∗ ⊂ X∗

j ⊂ (X0 ∩X1)
∗ = X∗

0 + X∗
1 .

Moreover, given any interpolation space (X0, X1)θ of a regular couple, then (X0, X1)
∗
θ

satisfies that

X∗
0 ∩X∗

1 ⊂ (X0, X1)
∗
θ ⊂ X∗

0 + X∗
1 .

Hence the dual space is an intermediate space for the dual Banach couple (X∗
0 , X

∗
1 ). In this

context, Calderón proved in [14, 12.1] the remarkable fact that, under suitable hypothesis,
this dual space is just the interpolation space of the dual couple.

Proposition 2.4.2 (Duality Theorem). Let (X0, X1) be a regular couple such that either
X∗

0 or X∗
1 has the Radon-Nikodym property. Then for any 0 < θ < 1 we have

(X0, X1)
∗
θ = (X∗

0 , X
∗
1 )θ

with equality of norms. The duality is given by (2.22).

Recall that reflexive spaces or separable dual spaces have the Radon-Nikodym property
[3, Prop. 5.5.6]. A proof of Proposition 2.4.2 is given in [80, Th. 8.37].

We examine now some results related to Proposition 2.4.2 that we shall use in forthcoming
Section 3.5. Let (X0, X1) be a regular couple and (X∗

0 , X
∗
1 ) the dual couple. Given

f ∈ C00(X0, X1) and g ∈ C00(X∗
0 , X

∗
1 ) the complex-valued function h given by

z ∈ S 7→ h(z) = ⟨f(z), g(z)⟩X0∩X1

is continuous on S, analytic on S and bounded above by ∥f∥C ∥g∥C.

Indeed, by definition f(z) =
∑N

i=1 φi(z)xi and g(z) =
∑M

j=1 ηj(z)x∗
j where xi ∈ X0 ∩X1

and x∗
i ∈ X∗

0 ∩X∗
1 ⊂ (X0 ∩X1)

∗. Then

h(z) = ⟨f(z), g(z)⟩X0∩X1 =
〈 N∑

i=1

φi(z)xi,

M∑
j=1

ηj(z)x∗
j

〉
X0∩X1

=
M∑
j=1

N∑
i=1

ηj(z)φi(z)⟨xi, x
∗
j⟩X0∩X1 .

Since φi, ηj ∈ C(C,C) for all i, j (cf. Lemma 2.1.2), it follows that h is analytic on the
open strip and continuous on S. Moreover, h is clearly bounded since it is a (finite)
linear combination of bounded functions. In fact, since f(j + it) ∈ X0 ∩ X1 ⊂ Xj and
g(j + it) ∈ X∗

0 ∩X∗
1 ⊂ X∗

j for any j = 0, 1, one has for any t ∈ R that

|h(j + it)| =
∣∣〈f(j + it), g(j + it)

〉
X0∩X1

∣∣ =
∣∣〈f(j + it), g(j + it)

〉
Xj

∣∣
=
∣∣∣〈 N∑

i=1

φi(j + it)xi,
M∑
j=1

ηj(j + it)x∗
j

〉
Xj

∣∣∣
≤
∥∥∥ N∑

i=1

φi(j + it)xi

∥∥∥
Xj

∥∥∥ M∑
j=1

ηj(j + it)x∗
j

∥∥∥
X∗

j

,

where we have used (2.22) for X = Xj (see [41] around equation (1.3)).
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Thus, for any z ∈ S it follows that

|h(z)| ≤ max
j=0,1

sup
t
|h(j + it)| ≤ max

j=0,1
sup
t

{∥∥∥ N∑
i=1

φi(j + it)xi

∥∥∥
Xj

∥∥∥ M∑
j=1

ηj(j + it)x∗
j

∥∥∥
X∗

j

}
≤ ∥f∥C ∥g∥C.

This implies the existence of a bounded bilinear map

C00(X0, X1)× C00(X∗
0 , X

∗
1 )→ C0(C,C)

defined by (f, g) 7→ h ∈ C0(C,C), where h(z) = ⟨f(z), g(z)⟩X0∩X1 . By Lemma 2.1.2 the
subspace C00(−,−) is dense in C0(−,−), hence:

Lemma 2.4.1. If (X0, X1) is a regular couple, then there is a bilinear contraction B :
C0(X0, X1)× C0(X∗

0 , X
∗
1 )→ C0(C,C) given by

B(f, g)(z) = ⟨f(z), g(z)⟩XRe(z)
= lim

n→∞
⟨fn(z), gn(z)⟩∆,

where (fn)n∈N ⊂ C00(X0, X1) and (gn)n∈N ⊂ C00(X∗
0 , X

∗
1 ) are converging sequences to f

and g respectively.

2.5 Stein’s interpolation principle

Let (M,µ) and (N, ν) be two σ-finite measure spaces and denote by S(µ) and S(ν) the
corresponding spaces of simple functions and L0(ν) the space of ν-measurable functions.

In 1956, some years prior the work of Calderón on complex interpolation, Elias Stein had
proven in [87] an outstanding generalization of Riesz-Thorin Theorem: instead of using a
fixed operator T one can consider a family of linear maps (Tz)z∈S ⊂ L(S(µ), L0(ν)) which
varies analytically on the strip and satisfies some regularity hypothesis.

Precisely, suppose that for each z ∈ S one has defined a linear map Tz : S(µ) → L0(ν)
such that

H(z) = ⟨Tz(f), g⟩ =

∫
N

Tz(f) gdν <∞ (2.23)

for all f ∈ S(µ) and g ∈ S(ν). Then the family (Tz)z∈S is called:

(i) analytic if, for f ∈ S(µ) and g ∈ S(ν), the map (2.23) is analytic on S and extends
continuously to the closed strip S;

(ii) admissible if f ∈ S(µ) and g ∈ S(ν), the map (2.23) has admissible growth [90, pp.
205]:

sup
y∈R

∣∣e−a|y| log |H(x + iy)|
∣∣ <∞ for all 0 ≤ x ≤ 1 and some a < π.

Under the previous considerations Stein obtains:

Theorem 2.5.1 (Stein Interpolation Theorem).
Let (Tz)z∈S ⊂ L(S(µ), L0(ν)) be an admissible analytic family of operators. Assume that

∥Titf∥q0 ≤M0(t)∥f∥p0 and ∥T1+it∥q1 ≤M1(t)∥f∥p1 ,
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where f ∈ S(µ) and, for each j = 0, 1, Mj : R→ R satisfies the bound

sup
t∈R

∣∣e−a|t| logMj(t)
∣∣ <∞ for some a < π.

Then for all f ∈ S(µ) and any 0 < θ < 1 we have that

∥Tθf∥qθ ≤ eM(θ)∥f∥pθ ,

where

M(θ) =

∫
∂0

logM0(t)dµ
0
θ(it) +

∫
∂1

logM1(t)dµ
1
θ(1 + it) <∞.

In particular, Tθ extends to a bounded operator Lpθ(µ)→ Lqθ(ν).

In light of Stein’s theorem, many authors were interested in obtaining a generalization of
Theorem 2.5.1 to couples (X0, X1) of Banach spaces. Here we follow the description given
by Cwikel and Janson in [42]. The setting of Stein’s theorem assumes the existence of a
suitable family of linear maps which are defined on a common dense subspace of Lp(µ)
spaces, namely, the subspace of simple functions. In the case of a general couple, the
natural substitute in view of Lemma 2.1.3 is the intersection space X0 ∩X1.

Thus, given a family of linear maps (Tz)z∈S ⊂ L(X0,∩X1, X0+X1), in analogy with (2.23)
we say that the family is analytic if, for each x ∈ X0 ∩X1 and y ∈ (X0 + X1)

∗, the map

H(z) = ⟨Tz(x), y⟩ ∈ C(C,C), (A)

namely, H is analytic on S and bounded and continuous on S. Equivalently, for each
x ∈ X0 ∩ X1 the map fx(z) = Tz(x) : S → X0 + X1 is bounded, weakly continuous and
analytic on S.

The analytic family is called uniformly bounded if, for all x ∈ X0 ∩ X1, it satisfies the
boundary conditions

∥Titx∥X0 ≤M0∥x∥X0 and ∥T1+itx∥X1 ≤M1∥x∥X1 (B)

for all t ∈ R and some constants M0,M1 > 0. Thus, the map fx(z) = Tz(x) verifies that
f |∂j : ∂j → Xj boundedly, althought it is not necessarily continuous.

Despite that both conditions (A) and (B) are stronger than the ones appearing in Stein’s
interpolation Theorem, Cwikel and Janson showed [42, Th. 1] that, in general, such
conditions are not enough to guarantee that Tθ : Xθ → Xθ is bounded: Tθ(Xθ) lies in a
strictly bigger space that contains Xθ.

For this reason we assume a further condition that the family must satisfy:

for each x ∈ X0 ∩X1, the function fx(·) = T·(x) : S→ X0 + X1 ∈ C(X0, X1). (I)

Note that (I) improves the boundary conditions of both (A) and (B) adding, for each
x ∈ X0 ∩X1, that:

(i) the function fx(z) = Tz(x) : ∂S→ X0 + X1 is continuous;

(ii) for each j = 0, 1 the function

fx(z) = Tz(x) : ∂j → Xj

is bounded and continuous.
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Any analytic family (Tz)z∈S satisfying (I) will be called interpolating . With this in hand,
the following result is the desired generalization of Stein’s theorem:

Theorem 2.5.2 (Stein interpolation principle).
Let (X0, X1) be a compatible couple and (Tz)z∈S ⊂ L(X0 ∩X1, X0 + X1) an interpolating
family of operators. Assume that the uniform bound (B) holds for this family. Then there
exist a bounded operator T C : C00(X0, X1)→ C(X0, X1) given by

T C(f)(z) = Tz(f(z)).

Proof. Despite not being expressed in these terms, the proof is the same that appears in
[42, Th. 1] (see also [80, Th. 8.28]).

Let f ∈ C00(X0, X1) and consider the function g(z) = Tz(f(z)) = T C(f)(z). Since (Tz)z
is interpolating and f is of the form

f(z) =
N∑
i=1

φi(z)xi,

where xi ∈ X0 ∩X1 and φi ∈ C(C,C), we deduce that

g(z) =
N∑
i=1

φi(z)Tz(xi) ∈ C(X0, X1).

Moreover, using the bound for (Tz)z on the boundary of S we deduce that

∥g∥C = max
j=0,1

{
sup
t
∥Tj+it(f(j + it))∥Xj

} ≤ max
j=0,1
{Mj sup

t
∥f(j + it)∥Xj

}

≤ max{M0,M1}∥f∥C.

Corollary 2.5.1. Assume that conditions of Theorem 2.5.2 hold. Then for any 0 < θ < 1
one has that

∥Tθ(x)∥θ ≤ ∥T C∥∥x∥θ for all x ∈ X0 ∩X1.

In particular, Tθ extends to a bounded operator on Xθ.

Proof. Let x ∈ X0∩X1 and use Lemma 2.1.3 to obtain f ∈ C00(X0, X1) such that f(θ) = x
and ∥f∥C ≤ (1 + ε)∥x∥θ. Then

∥Tθx∥θ = ∥Tθ(f(θ))∥θ = ∥T C(f)(θ)∥θ ≤ ∥T C(f)∥C ≤ ∥T C∥∥f∥C ≤ ∥T C∥(1 + ε)∥x∥θ.

Taking the infimum over all possible f gives the result.

Since X0 ∩X1 is dense in Xθ (cf. Lemma 2.1.3) the second claim follows.

Note the similarities with the proofs of Proposition 2.1.1 and Theorem 2.1.1. We also
stress the fact that one could impose weaker growth conditions on (B) analogous to that
of Stein’s Theorem (see [42, Th. 2]), but we shall not pursue this line here since Theorem
2.5.2 will be enough for our purposes.

The easiest example of interpolating family is given by the constant family, Tz = T for
every z ∈ S, where T is interpolating (cf. before Proposition 2.1.1). This case recovers
Theorem 2.1.1. A non-trivial example is the following one studied in [25]:
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Example 1. We consider the pair (ℓ∞, ℓ1) and a sequence u = (un)n∈N ⊂ ℓ2 of normalized
block vectors in ℓ2. Let us denote by

un =

pn∑
j=pn−1+1

uj
nej

the coordinates of un. We define for each x ∈ c00 the linear map fx(z) = Tz(x) : S→ ℓ∞
given by

Tz(x) = x · |u|2z =
∑
n∈N

xn(sign(un)|un|2z) =
∑
n∈N

xn

[ pn∑
j=pn−1+1

sign(uj
n)|uj

n|2zej
]
.

Here |un| denotes the sequence whose coordinates are the modulus of those of un; the
same applies to the sign sequence sign(un). Thus, each z ∈ S defines the multiplication
operator

sign(up0+1
1 )|up0+1

1 |2z 0 0

sign(up0+2
1 )|up0+2

1 |2z 0 0
... 0 0

0 sign(up1+1
2 )|up1+1

2 |2z 0

0 sign(up1+2
2 )|up1+2

2 |2z 0

0
... 0

0 0 sign(up2+1
3 )|up2+1

3 |2z
0 0 sign(up2+2

3 )|up2+2
3 |2z

0 0
...


Then the family (Tz)z∈S ⊂ L(c00, ℓ∞) defined as above satisfies that

for each x ∈ c00, the function fx(·) = T·(x) : S→ ℓ∞ ∈ C(ℓ∞, ℓ1).

Indeed:

(1) For each x ∈ c00 we have that Tz(x) : S→ ℓ∞ is ∥ · ∥∞-bounded. Indeed, note that
|un|2z = |un|2Re(z)|un|iIm(z) and, since ||un|it| = 1 for any t ∈ R, one has

∥sign(un)|un|2z∥∞ = ∥sign(un)|un|2Re(z)∥∞ for all z ∈ S.

Moreover, given z ∈ [0, 1] we have that sign(un)|un|2z ∈ ℓ1/z ⊂ ℓ∞. In fact,

∥sign(un)u2z
n ∥ℓ1/z =

pn∑
j=pn−1+1

(|uj
n|2z)1/z =

pn∑
j=pn−1+1

|uj
n|2 = 1

since the sequence (un)n were normalized in ℓ2. Thus ∥sign(un)|un|2z∥∞ ≤ 1 for
each n ∈ N, and hence

∥Tz(x)∥∞ = ∥
∑
n

xn(sign(un)|un|2z)∥∞ ≤
∑
n

|xn| = ∥x∥ℓ1 <∞

for all z ∈ S.
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(2) For each x ∈ c00 we have that Tz(x) : S→ ℓ∞ is ∥ · ∥∞-continuous. Let z, w ∈ S and
observe that

∥Tz(x)− Tw(x)∥∞ =
∥∥∥∑

n

xn

[
sign(un)(|un|2z − |un|2w)

]∥∥∥
∞

≤
∑
n

|xn|∥|un|2z − |un|2w∥∞

≤
∑
n

|xn| sup
j
{
∣∣|uj

n|2z − |uj
n|2w

∣∣}.
Since x has finite support, the previous sum has finitely many vectors. Thus, since
z ∈ S 7→ |uj

n|2z is continuous for each j, we may choose δ such that ∥Tz(x) −
Tz(w)∥∞ < ε if |z − w| < δ.

(3) Applying the same argument as in (2) one gets that the family is analytic in S: the
derivative of the family at z0 is given by

d

dz
Tz(x)|z=z0 = x · (2|u|2z0 log |u|) =

∑
n

xn

(
2sign(un)|un|2z0 log |un|

)
=
∑
n

xn

(
2

pn∑
j=pn−1+1

sign(uj
n)|uj

n|2z0 log |uj
n|ej
)
.

Then using the same ideas as in (2) it follows that∥∥∥Tz0(x)− Tw(x)

z0 − w
− d

dz
Tz(x)|z=z0

∥∥∥
∞
≤
∑
n

|xn| sup
j

{∣∣∣ |uj
n|2z0 − |uj

n|2w

z0 − w
−2|uj

n|2z0 log |uj
n|
∣∣∣}.

Since for each j the function |uj
n|2z is complex-valued analytic on S, that supremum

goes to zero as w → z0.

Moreover, for each j = 0, 1 we have that the map t ∈ R 7→ Tj+it(x) ∈ ℓ1/j is bounded and
continuous:

(i) For j = 0 and t ∈ R one has that

∥Tit(x)∥∞ = ∥
∑
n

xn(sign(un)|un|2it)∥∞ = sup
j
{|xn||sign(uj

n)|||uj
n|2it|} = ∥x∥∞.

The calculations made in (2) shows that Tit(x) : ∂1 → ℓ∞ is also continuous.

(ii) Using that ∥un∥ℓ2 = 1, for j = 1 and t ∈ R it follows that

∥T1+it(x)∥ℓ1 =
∥∥∥∑

n

xn(sign(un)|un|2+2it)
∥∥∥
ℓ1

=
∥∥∥∑

n

xn

pn∑
j=pn−1+1

sign(uj
n)|uj

n|2|uj
n|2itej

∥∥∥
ℓ1

=
∑
n

|xn|
( pn∑

j=pn−1+1

|sign(uj
n)||uj

n|2
)

=
∑
n

|xn|∥un∥ℓ2 = ∥x∥ℓ1 .
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Moreover, for t, t0 ∈ R it follows that

∥T1+it(x)− T1+it0(x)∥ℓ1 =
∑
n

|xn|
pn∑

j=pn−1+1

∣∣|uj
n|2
∣∣∣∣∣|uj

n|2it − |uj
n|2it0

∣∣∣.
Since x has finite support and the function |uj

n|2it is continuous for all j, we conclude
that T1+it(x) : ∂0 → ℓ1 is ∥ · ∥ℓ1-continuous.

If we consider the subspace

C∆00(ℓ∞, ℓ1) =
{
f ∈ C00(ℓ∞, ℓ1) : f =

N∑
i=1

φi(z)xi, xi ∈ c00
}
,

then taking into account that c00 is dense in ℓ1 it follows that C∆00(ℓ∞, ℓ1) is dense in
C00(ℓ∞, ℓ1); in particular, Lemma 2.1.3 holds replacing C00(ℓ∞, ℓ1) by C∆00(ℓ∞, ℓ1). More-
over, by (i) and (ii) above the boundary operators Tj+it : ℓ1/j → ℓ1/j are into isometries
for each j = 0, 1 and t ∈ R. Then a direct modification of the proofs of Theorem 2.5.2
and Corollary 2.5.1 yields for any 0 < θ < 1 that

∥Tθ(x)∥(ℓ∞,ℓ1)θ ≤ ∥x∥(ℓ∞,ℓ1)θ for all x ∈ c00.

Consequently, there exist for each 0 < θ < 1 a bounded contraction Tθ : ℓ1/θ → ℓ1/θ. In
particular, for θ = 1/2 we have

T1/2(x) =
∑
n

xn(sign(un)|un|) =
∑
n

xnun,

which is the usual isometric multiplication operator on ℓ2.

Despite its simplicity, this previous example will be extensively used in later sections. Is
one of the main tools to study the properties of Rochberg spaces associated to the scale
of ℓp spaces.

2.6 A primer on derived spaces

We close this chapter with a brief outline of the cycle of ideas developed in the papers
[37, 36, 83]. The key idea, emphasized by the authors of [36], is that many operators
studied in analysis can be regarded as the evaluations of a suitable analytic operator-
valued function (Φz)z. In [37] Coifman, Rochberg and Weiss used this idea to obtain (see
[53, 88] for background on the involved concepts):

Theorem 2.6.1 (Coifman-Rochberg-Weiss Commutator Theorem). Let b ∈ BMO(Rn)
be a function of bounded mean oscillation and T : L2(Rn)→ L2(Rn) a Calderón-Zygmund
operator. Then for any 1 < p <∞ there exist a constant C(p) > 0 such that

∥T (bf)− bT (f)∥p ≤ C(p)∥f∥p, for all f ∈ Lp(Rn). (2.24)

Rochberg and Weiss figured out in [83] that Theorem 2.6.1 could be extended to the
broader context of complex interpolation using the following observation: higher order
derivatives ∆k(f) of analytic maps f ∈ C(X0, X1) can give further information about the
interpolation spaces Xθ. The simplest way to see this is employing the results of Section
2.3 regarding shift maps. In the particular case where n = k = 1, Proposition 2.3.1 yields:
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Lemma 2.6.1. For any 0 < θ < 1, the linear map ∆θ
1|ker δθ : ker δθ → Xθ is bounded and

onto.

This was noted by Carro, Cerdà and Soria [17] in their study of abstract frameworks for
interpolation methods; the main point is that althought f ′(θ) need not to be in Xθ, it will
as long as f(θ) = 0. Thus, Lemma 2.6.1 can be sistematically used in the following way:

choose f, g ∈ C(X0, X1) such that f(θ) = g(θ). Then h = f − g ∈ ker δθ satisfies that
h′(θ) = f ′(θ)− g′(θ) ∈ Xθ.

This idea has been termed the cancellation principle in some papers (see [43]). We briefly
discuss the concepts of derived space and differential map of a Banach couple (X0, X1)
introduced by Rochberg and Weiss in [83] and how using the cancellation principle one can
obtain a commutator estimate analogous to (2.24) on any interpolation space (X0, X1)θ.

2.6.1 The derived space

Recall from Subsection 2.3 that given any couple (X0, X1), the maps ∆θ
0 and ∆θ

1 are
bounded for any 0 < θ < 1. We fix θ and omit the superscript in ∆j from the rest of this
section. We observe that (

∆1,∆0

)
: C(X0, X1)→

(
X0 + X1

)2
given by (∆1,∆0)(f) = (∆1(f),∆0(f)) = (f ′(θ), f(θ)) is a bounded operator. Then we
can consider the range of (∆1,∆0),

(∆1,∆0)
(
C(X0, X1)

)
= {(f ′(θ), f(θ)) : f ∈ C(X0, X1)} (2.25)

endowed with the quotient norm

∥(x, y)∥dθ = inf{∥g∥C : (∆1,∆0)(f) = (x, y)}.

The Banach space (2.25) is called the derived space and can be identified with the quotient
space C(X0, X1)/(ker ∆1 ∩ ker ∆0). We will denote it by d(X0, X1)θ or simply dXθ.

We discuss the close relationship that exists between Xθ and dXθ. First note that there
is a natural quotient map π : dXθ → Xθ given by π(x, y) = y. Thus we can form the
short exact sequence

0 −−−→ kerπ −−−→ dXθ
π−−−→ Xθ −−−→ 0

Since kerπ = {(x, 0) : (x, y) ∈ dXθ} we can identify this subspace isomorphically with Xθ

by Lemma 2.6.1. Thus, there is a short exact sequence

0 −−−→ Xθ
i−−−→ dXθ

π−−−→ Xθ −−−→ 0 (2.26)

given by i(x) = (x, 0) and π
(
x, y)

)
= y.

Let us describe the quasilinear map defining (2.26). Choose an homogeneous bounded
selection Bθ : Xθ → C(X0, X1) for ∆0. Then the map Ωθ : Xθ → X0 + X1 defined by

Ωθ(x) = ∆1(Bθ(x))
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is quasilinear on Xθ with ambient space X0 +X1. Indeed, Ωθ is clearly homogeneous and
satisfies for any x, y ∈ Xθ that

∥Ωθ(x + y)− Ωθ(x)− Ωθ(y)∥θ =
∥∥∆1

[
Bθ(x + y)−Bθ(x)−Bθ(y)

]∥∥
θ
. (2.27)

Since the function inside the brackets vanishes on θ, we deduce by Lemma 2.6.1 that

(2.27) ≤ C ′(∥Bθ(x + y)∥C + ∥Bθ(x)∥C + ∥Bθ(y)∥C
)
≤ C(∥x∥θ + ∥y∥θ)

for some positive constant C. Moreover, if we had picked a different selection Vθ for ∆0,
then ℧θ = ∆1Vθ is equivalent to Ωθ since for every x ∈ ℓ2 one has

∥Ωθ(x)− ℧θ(x)∥θ = ∥∆1(Bθ(x)− Vθ(x))∥θ ≤ C∥x∥θ,

where the last inequality follows from Lemma 2.6.1. It turns out that the twisted sum
space Xθ ⊕Ωθ

Xθ = {(x, y) ∈ (X0 +X1)×Xθ : x−Ωθ(y)} coincides as a set with dXθ and
the norm ∥ · ∥dθ is equivalent to the canonical quasinorm

∥(x, y)∥ = ∥x− Ωθ(y)∥θ + ∥y∥θ

induced by Ωθ. This last claim is consequence of Lemma 2.6.1 yet again; we delay the
proof until next chapter since an analogous fact holds for general Rochberg spaces.

The quasilinear map Ωθ : Xθ ↷ Xθ receives the name of differential map of the scale at θ.
A simple example is given by the Banach couple (L2(w0), L2(w1)) formed by two weighted

Lebesgue spaces: by (2.14) an homogenoeus bounded selection B : L2(w
1/2
0 w

1/2
1 ) →

C(L2(w0), L2(w1)) for ∆0 is Bw(x) =
(

w0

w1

) (z−θ)
2

x. Since the selection is linear the dif-

ferential map is also linear and is defined by Ωθ(x) = 1
2
x log

(
w0

w1

)
. In this case the derived

space dL2(w
1/2
0 w

1/2
1 ) is isomorphic to L2(w

1/2
0 w

1/2
1 )⊕ L2(w

1/2
0 w

1/2
1 ). Now we turn our at-

tention to bounded operators on dXθ. Let T be an interpolating operator for the couple
(X0, X1) and consider the diagonal linear map(

T 0
0 T

)
: dXθ −→ dXθ (2.28)

given by (x, y) ∈ dXθ 7→ (Tx, Ty). Then we have a commutative diagram

0 Xθ dXθ Xθ 0

0 Xθ dXθ Xθ 0

i

T

π

T

i π

where the middle arrow is the linear map (2.28). Recall what was discussed in Chapter 1
about operators on Z2: once we have a twisted sum, to bound an operator on it translates
into diverse conditions on the entries. In this diagonal case, the boundedness of (2.28) is
equivalent (see Corollary 1.2.2) to

T ◦ Ωθ − Ωθ ◦ T : Xθ → Xθ is bounded.

41



This is precisely the commutator estimate

∥[T,Ωθ](x)∥θ = ∥T
(
Ωθ(x)

)
− Ωθ

(
T (x)

)
∥θ ≤ C∥x∥θ.

To prove this last commutator estimate let us consider the diagram

C(X0, X1) Xθ

C(X0, X1) Xθ

∆0

TC

Bθ

T

∆0

Bθ

Then given any x ∈ Xθ, we can define the function

hx = Bθ(T (x))− TC(Bθ(x)) ∈ C(X0, X1),

which satisfies that ∥hx∥C ≤ 2∥Bθ∥(∥T : Xθ → Xθ∥ + ∥TC∥)∥x∥θ. It follows that
hx ∈ ker ∆0, and thus ∆1(hx) ∈ Xθ by Lemma 2.6.1. Recall by (2.4) that ∆1(TC(f)) =
T (∆1(f)); hence for some constant C > 0 we have that

∥[T,Ωθ](x)∥θ = ∥∆1(hx)∥θ ≤ ∥hx∥C ≤ C∥x∥θ.

This gives the Rochberg-Weiss Commutator Theorem:

Theorem 2.6.2 (Rochberg-Weiss Commutator Theorem). Let (X0, X1) be a compatible
couple and T an interpolating operator. Then for each 0 < θ < 1, the commutator
[T,Ωθ] : Xθ → Xθ is bounded.

In this section we bound the diagonal operator (2.28) using commutator estimates. In the
following chapter we will see it the other way around: we will show that once the theory
has been stablished, to bound the operator (2.28) is rather simple and just an application
of the interpolation principle for operators explained in Theorem 2.1.1.

2.6.2 The derived spaces generated by the pair (ℓ∞, ℓ1)

We end this chapter relating its ideas to the fundamental example of twisted Hilbert space
studied in Chapter 1, the Kalton-Peck space. To this end, let us identify the derived space
of the scale (ℓ∞, ℓ1). As we shown in (2.12), if p−1 = θ a bounded homogeneous selection
for ∆0 : C(ℓ∞, ℓ1)→ ℓp is given, for any x ∈ c00 ⊂ ℓp, by

Bp(x)(z) = x
( |x|
∥x∥p

)pz−1

. (2.29)

The differential map on a given x ∈ c00 is the first Taylor coefficient of (2.29), i.e.,

Ωp(x) = ∆1(Bp(x)) = p x log
( |x|
∥x∥p

)
. (2.30)

If we set p = 2 we deduce that the differential map Ω2 : c00 → ℓ∞ is just a multiple of the
Kalton-Peck map (1.2). However, if we choose an arbitrary x ∈ ℓ2 then (2.29) does not
necessarily belong to C(ℓ∞, ℓ1), and thus Ωp(x) is not defined as in (2.30). There are two
ways of avoiding this problem:
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� The first one is to consider a bigger Calderón space G(ℓ∞, ℓ1) for which (2.29) belongs
to if x ∈ ℓ2. Then one can work with the expression Ωp(x) explicitely for every
x ∈ ℓ2. A possible choice for G(ℓ∞, ℓ1) is given in [12, pp. 298]: the space of analytic
functions f : S→ ℓ∞ which extends to a σ(ℓ∞, ℓ1) continuous function F : S→ ℓ∞
and such that ∥F∥G = sup{∥F (j + it)∥ℓ1/j , t ∈ R} is finite.

� The second approach is to observe that any quasilinear map Ω2 : c00 ↷ ℓ2 can
be extended to a unique (up to equivalence) quasilinear map Ω̃2 : ℓ2 ↷ ℓ2 (see
[62, Theorem 3.1] and [10, Section 3.3]). In this case dℓ2 can be regarded as the
completion of (c00 ⊕KP c00, ∥ · ∥Z2).

In both of the previous cases we can identify dℓ2 with the Kalton-Peck space studied in
Chapter 1. We will follow the second approach, which from the practical side means that
all results obtained via the representation dℓ2 = Z2 are obtained first for (c00⊕KPc00, ∥·∥Z2)
and then extended by density to Z2.

One of the main problems left over at the end of Chapter 1 was how to obtain specific

bounded operators on Z2; we posed the examples C2 =

(
C 0
0 C

)
and H2 =

(
H 0
0 H

)
,

where H is the Hilbert matrix and C the Cesàro operator (see (1.13)). In order to show
that C2 and H2 are bounded we have to bound the commutators [KP, H] : ℓ2 → ℓ2 and
[KP, C] : ℓ2 → ℓ2 (see (1.14) and (1.15)).

Now that we have identified Z2 as the derived space of the scale (ℓ∞, ℓ1) at θ = 1/2, the
commutator bounds (1.14) and (1.15) are almost inmediate by well known facts:

(i) The Hilbert matrix H is bounded on ℓp spaces for every 1 < p <∞ [54, Section 9.2]
with norm

∥H∥ℓp→ℓp =
π

sin(π
p
)
.

(ii) The Cesàro operator C is bounded on ℓp spaces for every 1 < p <∞ [54, 326] with
norm

∥C∥ℓp→ℓp =
p

p− 1
.

Now, since these operators are not bounded on the endpoints ℓ∞ and ℓ1, we can not apply
directly Rochberg-Weiss Commutator Theorem to the couple (ℓ∞, ℓ1). However, we can
apply a modification of the Reiteration Theorem (cf. Proposition 2.4.1) to this case: given
any 1 < p < 2, we can consider the couple (ℓp, ℓ

∗
p) which also has ℓ2 as interpolation space

at θ = 1/2. In this case the selection is given for x ∈ c00 by (see (2.12))

B̂2(x)(z) = x
( |x|
∥x∥2

) 2(1−z)
p

+ 2z
p∗−1

,

and so the differential map is Ω̂2(x) = ∆1

(
B̂2(x)

)
=
(

2
p∗
− 2

p

)
x log

(
|x|
∥x∥2

)
. Thus, if we

apply Theorem 2.6.2 to the couple (ℓp, ℓ
∗
p) we deduce that

[Ω̂2, H] : c00 → ℓ2 and [Ω̂2, C] : c00 → ℓ2

are bounded. Using that c00 is dense in ℓ2 and that both the differential maps, the one
appearing in (2.30) and Ω̂2, differ by a constant, we conclude that

[KP, H] : ℓ2 → ℓ2 and [KP, C] : ℓ2 → ℓ2
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are bounded.

A further important estimate is (1.10), which was used in Section 1.2. Using interpolation
methods, (1.10) is direct: any bounded sequence a ∈ ℓ∞ defines a continuous operator on
ℓp for all 1 ≤ p ≤ ∞ given by pointwise multiplication τa(x) = ax =

∑
n anxn. Then a

direct application of Theorem 2.6.2 provides

∥[KP, τa]∥2 = ∥KP(τ(x))− τa
(
KP(x)

)
∥2 = ∥KP(ax)− aKP(x)∥2 ≤ C∥x∥2.
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Chapter 3

Rochberg spaces

In this chapter we define Rochberg spaces and discuss the general properties they satisfy.
Most results can be regarded as direct generalizations of the main theorems discussed in
Chapter 2: reiteration, duality and interpolation principles.

3.1 Definition of Rochberg spaces

Given a couple (X0, X1), 0 < θ < 1 and n ∈ N, the n-th Rochberg space at θ is defined as
the space of first n Taylor coefficients of analytic functions f ∈ C(X0, X1), i.e.,

Rn(X0, X1)θ =
{

(∆θ
n−1, . . . ,∆

θ
0)(f) : f ∈ C(X0, X1)

}
(3.1)

endowed with the quotient norm

∥x∥n = inf{∥f∥C : (∆θ
n−1, . . . ,∆

θ
0)(f) = x}.

Thus Rn(X0, X1)θ can be identified with the quotient space

C(X0, X1)/
n−1⋂
j=0

ker ∆θ
k. (3.2)

Note that Xθ = R1(X0, X1)θ and dXθ = R2(X0, X1)θ. From now on, we will omit the
superscript θ on the linear maps ∆θ

k if there is no real necessity. Given any 1 ≤ k, l < n
we can consider the following two natural operators:

the inclusion map il,n : (X0 + X1)
l → (X0 + X1)

n given by

il,n(xl−1, . . . , x0) = (xl−1, . . . , x0, 0,
(n−l). . . , 0).

the projection map πn,k : (X0 + X1)
n → (X0 + X1)

k given by

πn,k(xn−1, . . . , x0) = (xk−1, . . . , x0).

The restriction of πn,k to Rn(X0, X1)θ defines a quotient map

πn,k : Rn(X0, X1)θ → Rk(X0, X1)θ.

The fact that il,n : Rl(X0, X1)θ → Rn(X0, X1)θ also defines a bounded operator depends
on the following property: given any string (xl−1, . . . , x0) of l Taylor coefficients of some
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f ∈ C(X0, X1), there exist a positive constant C and g ∈ C(X0, X1) whose n Taylor
coefficients are

(xl−1, . . . , x0, 0,
(n−l). . . , 0) and ∥g∥C ≤ C∥f∥C.

This is precisely what the Shift operator S
(n−l)
− of Proposition 2.3.1 does: g = S

(n−l)
− (f) ∈⋂n−l−1

j=0 ker ∆j satisfies that (∆n−1, . . . ,∆n−l)(S
(n−l)
− (f)) = (∆l−1, . . . ,∆0)(f) and that

∥g∥C ≤ ∥S(n−l)
− ∥∥f∥C. Therefore, the inclusion map il,n : Rl(X0, X1)θ → Rn(X0, X1)θ

is well defined and bounded.

Rochberg spaces can be naturally fitted in short exact sequences, something hinted at
first in [82] and explictly proved in [12]:

Proposition 3.1.1. For any k, l ≥ 1 such that n = k+l there exist a short exact sequence

0 −−−→ Rl(X0, X1)θ
il,n−−−→ Rn(X0, X1)θ

πn,k−−−→ Rk(X0, X1)θ −−−→ 0 (3.3)

Proof. First note that πn,k ◦ il,n = 0, so il,n

(
Rl(X0, X1)θ

)
⊂ kerπn,k. To see the other

inclusion, we must show that given an analytic function f ∈ C(X0, X1) whose Taylor

coefficients are (∆n−1, . . . ,∆0)(f) = (xn−1, . . . , xk, 0,
(k). . ., 0), there exist g ∈ C(X0, X1)

with ∥g∥C ≤ C∥f∥C and such that (∆l−1, . . . ,∆0)(g) = (xn−1, . . . , xk). Proposition 2.3.1
yields Sk

+(f) = g.

Using Proposition 3.1.1, Rochberg spaces can be intertwined forming the commutative
diagrams

0 0

Rj(X0, X1)θ Rj(X0, X1)θ

0 Rl(X0, X1)θ Rl+k(X0, X1)θ Rk(X0, X1)θ 0

0 Rl−j(X0, X1)θ Rl+k−j(X0, X1)θ Rk(X0, X1)θ 0

0 0

ij,l ij,l+k

il,l+k

πl,l−j πl+k,l+k−j

πl+k,k

il−j,l+k−j πl+k−j,k

for l, k ≥ 1 and 1 ≤ j < l. Using this last diagram one can show that the sequence (3.3)
is non-trivial as long as the case l = k = 1 is non-trivial. Precisely (see [12, Corollary 6]):

Proposition 3.1.2. If the sequence

0 −−−→ R1(X0, X1)θ
i1,2−−−→ R2(X0, X1)θ

π2,1−−−→ R1(X0, X1)θ −−−→ 0

is non-trivial then (3.3) is non-trivial for all k, l ≥ 1.
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Proof. Given any k ∈ N, consider the diagram (here we omit the arrows and the 0’s to
ease readability)

R1(X0, X1)θ R1(X0, X1)θ

R2(X0, X1)θ Rk(X0, X1)θ Rk−2(X0, X1)θ

R1(X0, X1)θ Rk−1(X0, X1)θ Rk−2(X0, X1)θ

Note that if the vertical middle sequence is trivial then the left vertical sequence is trivial.
Indeed, if P : Rk(X0, X1)θ → R1(X0, X1)θ defines a retraction for i1,k, then Pi2,k is a
retraction for i1,2. Thus, by hypothesis

0 −−−→ R1(X0, X1)θ
i1,k−−−→ Rk(X0, X1)θ

πk,k−1−−−−→ Rk−1(X0, X1)θ −−−→ 0

is non trivial for all k ∈ N. Now consider the diagram

Rl−1(X0, X1)θ Rl−1(X0, X1)θ

Rl(X0, X1)θ Rl+k(X0, X1)θ Rk(X0, X1)θ

R1(X0, X1)θ Rk+1(X0, X1)θ Rk(X0, X1)θ

To end the proof observe that if the horizontal middle sequence is trivial, then the lower
horizontal sequence is also trivial (note that πl+k,k+1S : Rk(X0, X1)θ → Rk+1(X0, X1)θ is
a linear selection if S : Rk(X0, X1)θ → Rl+k(X0, X1)θ is).

3.1.1 Representation of Rn(X0, X1)θ as a twisted sum

We focus now in identifying the quasilinear maps defining the short exact sequence (3.3).
This is completely analogous to what we did for the case of derived spaces in Section 2.6.
We choose a bounded homogeneous selection Bk

θ for the quotient map

(∆k−1, . . . ,∆0) : C(X0, X1) −→ Rk(X0, X1)θ

and define the map Ωk,l : Rk(X0, X1)→ (X0 + X1)
l given for x ∈ Rk(X0, X1)θ by

Ωk,l(x) =
(
∆k+l−1, . . . ,∆k

)
Bk

θ (x).
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Proposition 2.3.1 ensures that Ωk,l : Rk(X0, X1)θ ↷ Rl(X0, X1)θ is quasilinear: note that
for any x, y ∈ Rk(X0, X1)θ we have

Ωk,l(x + y)− Ωk,l(x)− Ωk,l(y) =
(
∆k+l−1, . . . ,∆k

)(
Bk

θ (x + y)−Bk
θ (x)−Bk

θ (y)
)
.

By definition f = Bk
θ (x + y)−Bk

θ (x)−Bk
θ (y) ∈

⋂k−1
j=0 ker ∆j and thus(

∆k+l−1, . . . ,∆k

)
(f) =

(
∆l−1, . . . ,∆0

)
(Sk

+(f))

by Proposition 2.3.1. It follows that Ωk,l(x+y)−Ωk,l(x)−Ωk,l(y) ∈ Rl(X0, X1)θ and that

∥Ωk,l(x + y)− Ωk,l(x)− Ωk,l(y)∥l ≤ ∥Sk
+∥∥Bk

θ (x + y)−Bk
θ (x)−Bk

θ (y)∥C
≤ C

(
∥x∥k + ∥y∥k

)
.

Ωk,l depends on the selection Bk
θ . However, any other selection V k

θ defines an equivalent
quasilinear map since

∥(∆l+k−1, . . . ,∆k)
(
Bk

θ (x)− V k
θ (x)

)
∥l ≤ C∥x∥k

by Proposition 2.3.1 yet again. Cheating a bit, the maps Ωk,l will also be called differen-
tials. The quasilinear map Ωk,l defines the twisted sum space

Rl(X0, X1)θ⊕Ωk,l
Rk(X0, X1)θ = {(x, y) ∈ (X0+X1)

l×Rk(X0, X1)θ : x−Ωk,l(y) ∈ Rl(X0, X1)θ}

endowed with the quasinorm

∥(x, y)∥l,k = ∥x− Ωk,l∥l + ∥y∥k.

The fact that Ωk,l is the quasilinear map defining the sequence (3.3) is contained in the
following result (see [12, Prop. 7]):

Proposition 3.1.3. Rl+k(X0, X1)θ = Rl(X0, X1)θ⊕Ωk,l
Rk(X0, X1)θ as sets and the quasi-

norms ∥ · ∥l+k and ∥ · ∥l,k are equivalent.

Proof. Let (x, y) = (xl−1, . . . , x0, yk−1, . . . , y0) ∈ Rl+k(X0, X1)θ be the string of first l + k
Taylor coefficients of some f ∈ C(X0, X1). Then y ∈ Rk(X0, X1)θ and thus (Ωk,l(y), y) ∈
Rl+k(X0, X1)θ. Therefore, (x − Ωk,l(y), 0) = (x, y) − (Ωk,l(y), y) ∈ Rl+k(X0, X1). Let
h ∈ C(X0, X1) be a function with (x − Ωk,l(y), 0) as Taylor coefficients and such that
∥f∥C ≤ (1 + ε)∥(x− Ωk,l(y), 0)∥l+k.

By Proposition 2.3.1 it follows that

x− Ωk,l(y) = (∆l−1, . . . ,∆0)(S
k
+(h)) = (∆l+k−1, . . . ,∆k)(h),

hence

∥x− Ωk,l(y)∥l ≤ ∥Sk
+(h)∥C ≤ ∥Sk

+∥(1 + ε)∥(x− Ωk,l(y), 0)∥l+k

≤ (1 + ε)∥Sk
+∥
(
∥(x, y)∥l+k + ∥(Ωk,l(y), y)∥l+k

)
≤ (1 + ε)∥Sk

+∥
(
∥(x, y)∥l+k + ∥y∥k

)
≤ 2(1 + ε)∥Sk

+∥ ∥(x, y)∥l+k.

We conclude that ∥(x, y)∥l,k = ∥x− Ωk,l(y)∥l + ∥y∥k ≤ 3∥Sk
+∥∥(x, y)∥l+k.
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To see the other inequality, let (x, y) ∈ Rl(X0, X1)θ⊕Ωk,l
Rk(X0, X1)θ, so that x−Ωk,l(y) ∈

Rl(X0, X1)θ and y ∈ Rk(X0, X1)θ. Define the function

h = Sk
−
(
Bl

θ(x− Ωk,l(y))
)

+ Bk
θ (y) ∈ C(X0, X1),

where Sk
− is the shift of Proposition 2.3.1. Then

(∆l+k−1, . . . ,∆k,∆k−1, . . . ,∆0)(h) = (x, y) ∈ Rl+k(X0, X1)θ

and
∥(x, y)∥l+k ≤ ∥h∥C ≤ (1 + ε)∥Sk

+∥
(
∥x− Ωk,l(y)∥l + ∥y∥k

)
.

Proposition 3.1.3 shows that, for each n ∈ N, there exist a family of Rochberg spaces
{Rn(X0, X1)θ}0<θ<1 at “level n”, and the differential maps are interlacing such levels:

{R4(X0, X1)θ}0<θ<1

{R3(X0, X1)θ}0<θ<1

C(X0, X1)

{R2(X0, X1)θ}0<θ<1

{Xθ}0<θ<1

∆0

(∆1,∆0)

(∆2,∆1,∆0)

(∆3,∆2,∆1,∆0)

Ω1,1

Ω1,2

Ω1,3

Recall from Subsection A.1.2 that any quasilinear map Ω has associated an inverse quasi-
linear map Ω−1 : Ran(Ω) ↷ Dom(Ω). Thus, in the case of Ωl,k we also have the short
exact sequence

0 −−−→ Dom(Ωk,l)
ik,l+k

−−−→ Rl+k(X0, X1)θ
πl+k,l

−−−→ Ran(Ωk,l) −−−→ 0 (3.4)

given by ik,l+k(xk−1, . . . , x0) = (0, . . . , xk−1, . . . , x0) and πl+k,l(xl+k−1, . . . , x0) = (xl+k−1, . . . , xk).

By Proposition 3.1.3 we have

Dom(Ωk,l) =
{(

∆k−1, . . . ,∆0

)
(f) : f ∈

l+k−1⋂
j=k

ker ∆j

}
(3.5)

with (quasi)-norm ∥x∥Domk,l
= ∥Ωk,l(x)∥l + ∥x∥k. Similarly, we have

Ran(Ωk,l) =
{

(∆l+k−1, . . . ,∆k)(f) : f ∈ C(X0, X1)
}
. (3.6)

Using both (3.5) and (3.6) we can provide a description of Ω−1
k,l : pick a homogeneous

bounded selection Bl+k−1,k
θ for the quotient map

(∆l+k−1, . . . ,∆k) : C(X0, X1)→ Ran(Ωk,l)
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and set Ω−1
k,l (x) =

(
∆k−1, . . . ,∆0

)
Bl+k−1,k

θ (x) for x ∈ Ran(Ωk,l). Observe that

Bl+k−1,k
θ (x + y)−Bl+k−1,k

θ (x)−Bl+k−1,k
θ (y) ∈

l+k−1⋂
j=k

ker ∆j,

and thus by (3.5) it follows that

∥Ω−1
k,l (x + y)− Ω−1

k,l (x)− Ω−1
k,l (y)∥Domk,l

≤ C(∥x∥Rank,l + ∥y∥Rank,l)

for every x, y ∈ Ran(Ωk,l). An analogous proof to that of Proposition 3.1.3 shows that
Ω−1

k,l does indeed define (3.4). Note also that we have a chain of continuous inclusions

Dom(Ω1,n) ⊂ · · · ⊂ Dom(Ω1,1) ⊂ Xθ ⊂ Ran(Ω1,1) ⊂ · · · ⊂ Ran(Ωn,1) (3.7)

The range inclusions follow by shifting Taylor coefficients using Proposition 2.3.1, while
domain inclusion follow using repeatedly Proposition 3.1.3: if i < j and x = (0, . . . , 0, x) ∈
Dom(Ω1,j) ⊂ R1+j, note that

∥x∥Dom1,i
= ∥(0, . . . , 0, x)∥1,i ≤ Ci∥(0, . . . , 0, x)∥1+i

≤ Ci∥(0, . . . , 0, x)∥i+1 + Ci∥Ω1+i,j−i(0, . . . , 0, x)∥j−i

≤ Ci,j∥(0, . . . , 0, x)∥1+j ≤ Ki,j∥(0, . . . , 0, x)∥1,j = ∥x∥Dom1,j
.

3.1.2 Natural subspaces and quotients

Most of of the discussion about domain and range spaces can be generalized in the fol-
lowing way: fix n ∈ N and a subset A ⊂ {0, 1, . . . , n− 1}. Then define:

XA = {∆A(f) = (∆i(f))i∈A : f ∈ C(X0, X1)}

endowed with the quotient norm ∥x∥A = inf{∥f∥C : ∆A(f) = x} and

XA = {x = (xn−1, . . . , x0) ∈ Rn(X0, X1)θ : xi = 0, i ∈ A}

endowed with the (quasi)-norm ∥x∥n of Rn(X0, X1)θ. If we denote by [i, j] = {k ∈ N : i ≤
k ≤ j} ⊂ {0, . . . , n− 1}, then

(a) X [l−1,0] = Rl(X0, X1)θ and X[l−1,0] = Rn−l(X0, X1)θ.

(b) X [n−1,l] = Ran(Ωl,n−l) and X[n−1,l] = Dom(Ωl,n−l).

For any A ⊂ {0, . . . , n− 1} there is a short exact sequence

0 −−−→ XA −−−→ Rn(X0, X1)θ
πA

−−−→ XA −−−→ 0 (3.8)

given by πA(xn−1, . . . , x0) = (xi)i∈A.
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3.2 Basic results on Rochberg spaces

In Chapter 2 we used the alternative Calderón space C0 to define interpolation spaces
since it was useful to apply density arguments. We can do the same for the general case
of Rochberg spaces. To be precise, let us denote by R0

n(X0, X1)θ the Rochberg spaces
obtained by replacing C(X0, X1) by C0(X0, X1) in their definition (3.1). Propositions
3.1.1 and 3.1.3 hold for R0

n. The following result was obtained in [11, Lemma 3.2] in a
broader context:

Lemma 3.2.1. R0
n(X0, X1)θ = Rn(X0, X1)θ up to equivalence of norms.

Proof. Since C0(X0, X1) ⊂ C(X0, X1) one has continuous inclusions R0
n(X0, X1)θ ⊂

Rn(X0, X1)θ for every n ∈ N. Thus we can consider the commutative diagram

0 R0
1(X0, X1)θ R0

2(X0, X1)θ R0
1(X0, X1)θ 0

0 R1(X0, X1)θ R2(X0, X1)θ R1(X0, X1)θ 0

i1,2 π2,1

i1,2 π2,1

where vertical arrows are the formal inclusions. Since R0
1(X0, X1)θ = R1(X0, X1)θ with

equality of norms (see the comments before Lemma 2.1.2) we deduce that the middle
arrow is an isomorphism by the 3-lemma [10, 2.1.3]. An induction argument on n and k
provides a proof for the rest of the cases.

The following result generalizes Lemma 2.1.3. It is basically the same argument provided
by Stafney [86, Lemma 2.5] and generalized to derived spaces in [39, Lemma 3.3.6].

Lemma 3.2.2. For any 0 < θ < 1 the space (X0 ∩ X1)
n is dense in Rn(X0, X1)θ.

Moreover, for any x ∈ (X0 ∩X1)
n one has

∥x∥n = inf{∥f∥C : f ∈ C00(X0, X1), (∆n−1, . . . ,∆0)(f) = x}. (3.9)

Proof. Let x ∈ Rn(X0, X1)θ and f ∈ C0(X0, X1) such that (∆n−1, . . . ,∆0)(f) = x. Then
by Lemma 2.1.2 there exist g ∈ C00(X0, X1) such that ∥f − g∥C < ε. Thus

∥x− (∆n−1, . . . ,∆0)(g)∥n ≤ ∥f − g∥C < ε.

To see the second statement, let x = (xn−1, . . . , x0) ∈ (X0 ∩ X1)
n and f ∈ C00(X0, X1)

such that (∆n−1, . . . ,∆0)(f) = x. Such function can be defined in the following way:
consider f0(z) = e(z−θ)2x0 and define by recursion

f1(z) =
φ(z)

φ′(θ)
e(z−θ)2(x1−∆1(f0)), · · · , fn−1(z) =

φ(z)n−1e(z−θ)2

(n− 1)!φ′(θ)n−1

(
xn−1−

n−2∑
j=0

∆n−1(fj)
)
.

Since ∆k

(
φ(z)k

k!φ′(θ)k
e(z−θ)2x

)
= x and ∆k(fi) = 0 for all k < i, taking f(z) =

∑n−1
j=0 fj(z) we

deduce that ∆k(f) = xk for all k = 0, . . . , n−1. Moreover, f ∈ C00 because each fj ∈ C00.
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Now, by the very definition of ∥ · ∥n as quotient norm, there exist g ∈
⋂n−1

k=0 ker ∆k ⊂
C0(X0, X1) such that ∥f − g∥C < ∥x∥n + ε. Since g ∈

⋂n−1
k=0 ker ∆k we can apply the shift

operator to obtain Sn
−(g) ∈ C0(X0, X1). Note that we can use the shift g 7→ g

φn . Taking

into account that Sn
−(g) ∈ C0 and that C00(X0, X1) ⊂ C0(X0, X1), there exist h ∈ C00

that approximates Sn
−(g), namely, ∥Sn

−(g) − h∥C < ε. Then g − φnh = φn(Sn
−(g) − h) ∈⋂n−1

k=0 ker ∆k, and using that |φ(z)| ≤ 1 for all z ∈ S, we deduce that

∥g − φnh∥C = ∥φn(Sn
−(g)− h)∥C = ∥Sn

−(g)− h∥C < ε.

Thus, it follows that

∥x∥n = ∥(∆n−1, . . . ,∆0)(f − φnh)∥n ≤ ∥f − φnh∥C ≤ ∥f − g∥C + ∥g − φnh∥C
< ∥x∥n + 2ε.

Since f − φnh ∈ C00(X0, X1), we conclude (3.9).

3.2.1 Singular exact sequences of Rochberg spaces

Recall from the Appendix A.1.1 that a short exact sequence 0 → Y → X → Z → 0 is
singular if the quotient map X → Z is a strictly singular operator. One fundamental
example of singular exact sequence is the Kalton-Peck sequence (1.3).

In the next chapter we will study the Rochberg spaces Rn(ℓ∞, ℓ1)1/2. Since Z2 =
R2(ℓ∞, ℓ1)1/2, we may ask whether the sequences

0 −−−→ Rl(ℓ∞, ℓ1)θ
il,l+k−−−→ Rl+k(ℓ∞, ℓ1)θ

πl+k,k−−−→ Rk(ℓ∞, ℓ1)θ −−−→ 0

are also singular for l+k > 2. The following result from [12, Prop. 9] gives an affirmative
answer:

Proposition 3.2.1. If π2,1 : R2(X0, X1)θ → R1(X0, X1)θ is singular then πn,k :
Rn(X0, X1)θ → Rk(X0, X1)θ is singular for any n, k ∈ N.

Proof. First note that πn,1 = π2,1 ◦ π3,2 ◦ · · · ◦ πn,n−1 and thus πn,1 is singular for every
n ∈ N by hypothesis and the ideal property of S. Moreover, since πn,k = πk+1,k ◦ πn,k+1,
it suffices to show that πk+1,k is strictly singular for every k ∈ N. We will proceed by
induction on k ∈ N. The case k = 1 holds by hypothesis, hence we can assume it true for
k ≥ 1. Now observe that we have a commutative diagram of the form

0 0

R1(X0, X1)θ R1(X0, X1)θ

0 Rk−1(X0, X1)θ Rk(X0, X1)θ R1(X0, X1)θ 0

0 Rk−2(X0, X1)θ Rk−1(X0, X1)θ R1(X0, X1)θ 0

0 0

πk−1,k−2 πk,k−1

πk,1
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Since πk,1 and πk−1,k−2 are strictly singular, we conclude that πk,k−1 is singular by Propo-
sition A.1.3.

3.3 Rochberg’s Commutator Theorem

Let T : X0+X1 → X0+X1 be an interpolating operator for the couple (X0, X1) and TC the
induced operator on C(X0, X1) given by TC(f)(z) = T (f(z)). The Interpolation Principle
(cf. Theorem 2.1.1) implies that T : Xθ → Xθ is bounded. Rochberg noticed that this
same principle could be used to define bounded operators on Rn(X0, X1)θ for any 0 <

θ < 1. Given f ∈ C(X0, X1), the sequence of Taylor coefficients
(

∆k

(
TC(f)

))
k∈N

, already

hinted in Proposition 2.1.1 (see (2.4)), is as follows: since T is linear and continuous

∆k

(
TC(f)

)
= T

(
∆k(f)

)
for any f ∈ C(X0, X1). (3.10)

Thus

(
∆k

(
TC(f)

))
k∈N

=


. . .

T
T

T
T




...

∆3(f)
∆2(f)
∆1(f)
∆0(f)

 (3.11)

It follows that TC preserves the kernels
⋂n−1

j=0 ker ∆j for any n ∈ N and we have a commu-
tative diagram

0
⋂n−1

j=0 ker ∆j C(X0, X1) Rn(X0, X1)θ 0

0
⋂n−1

j=0 ker ∆j C(X0, X1) Rn(X0, X1)θ 0

TC TC Tn

The operator TC induces a bounded operator Tn on Rn(X0, X1) given by

Tn(x) =


T

. . .

T
T

T




xn−1

...
x2

x1

x0

 = (Txn−1, . . . , Tx0), (3.12)

and whose norm is bounded above by ∥TC∥. This essentially proves [82, Th. 5.1]:

Theorem 3.3.1 (Rochberg Commutator Theorem). Let (X0, X1) be a Banach couple and
T an interpolating operator. Then:

(1) The diagonal operator Tn : Rn(X0, X1)θ → Rn(X0, X1)θ is bounded.

(2) For any n = k + l one has the commutator estimate∥∥Ωk,l

(
Tk(x)

)
− Tl

(
Ωk,l(x)

)∥∥
l
≤ C∥x∥k,

for some constant C depending only on T .
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Proof. (1) Given x ∈ Rn(X0, X1)θ take f ∈ C(X0, X1) such that ∥f∥C ≤ (1 + ε)∥x∥Rn .
Then by (3.10) we deduce that

∥Tn(x)∥n = ∥(∆n−1, . . . ,∆0)(TC(f))∥n ≤ ∥TC(f)∥C ≤ ∥TC∥(1 + ε)∥x∥n.

To prove (2) observe the commutative diagram

0 Rl(X0, X1)θ Rn(X0, X1)θ Rk(X0, X1)θ 0

0 Rl(X0, X1)θ Rn(X0, X1)θ Rk(X0, X1)θ 0

il,n

Tl

πn,k

Tn Tk

Ωk,l

il,n πn,k

Ωk,l

By (1) all involved operators are bounded. Then using Corollary 1.2.5 the conclusion
follows.

Corollary 3.3.1. Let n ∈ N and A ⊂ {0, . . . , n− 1}. Assume that T is interpolating for
(X0, X1). Then:

(i) Tn : XA → XA is bounded.

(ii) T|A| : XA → XA is bounded.

Proof. (i) is inmediate since XA is a subspace of Rn(X0, X1)θ and Tn acts diagonally on
Rn(X0, X1)θ. To see (ii), note by (i) and (3.8) that there exist a commutative diagram

0 XA Rn(X0, X1)θ XA 0

0 XA Rn(X0, X1)θ XA 0

Tn Tn
T|A|

Corollary 3.3.2. If T is interpolating for (X0, X1), then

(1) Tk : Dom(Ωk,l)→ Dom(Ωk,l) is bounded.

(2) Tl : Ran(Ωk,l)→ Ran(Ωk,l) is bounded.

(3) For any x ∈ Ran(Ωk,l) we have that

∥Ω−1
k,l

(
Tk(x)

)
− Tl

(
Ω−1

k,l (x)
)
∥Domk,l

≤ C∥x∥Rank,l .

Proof. The first two statements follow by Corollary 3.3.1 while (3) is a consequence of (1)
and (2) using the inverse representation (3.4).
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3.4 Reiteration of Rochberg spaces

Let us agree for the remainder of this section that given a Banach couple (X0, X1) and
0 < α < θ < β < 1, we denote by:

� Rn(0, 1) the Rochberg spaces associated to (X0, X1) at (1− θ)α + θβ.

� Rn(α, β) the Rochberg spaces associated to (Xα, Xβ) at θ.

� Ωθ the differential map associated to (X0, X1)θ and Ω̂θ the differential map associ-
ated to (Xα, Xβ)θ.

Proposition 2.4.1 yields that R1(0, 1) coincides with R1(α, β) with equality of norms. We
shall see that Rn(0, 1) and Rn(α, β) are isomorphic. First we will need the following
reiteration result for differential maps obtained in [26, Proposition 3.7] (see also [22,
Theorem 4.15]):

Proposition 3.4.1. Let (X0, X1) be a Banach couple and 0 < α < θ < β < 1. Then

Ω̂θ = (β − α)Ω(1−θ)α+θβ.

Proof. Note that given f ∈ C(X0, X1), the operator C : C(X0, X1)→ C(Xα, Xβ) given by

C(f)(z) = f
(
(1− z)α + zβ

)
is bounded with ∥C(f)∥ ≤ ∥f∥ (see Section 2.4). Consider now a homogeneous bounded
selection B : X(1−θ)α+βθ → C(X0, X1) for the evaluation operator δ(1−θ)α+βθ : C(X0, X1)→
X(1−θ)α+βα. Taking into account the reiteration identity X(1−θ)α+βθ = (Xα, Xβ)θ, we
conclude that the map CB : (Xα, Xβ)θ → C(Xα, Xβ), defined for each x ∈ X(1−θ)α+βθ by

CB(x)(z) = B(x)
(
(1− z)α + βz

)
,

is a homogeneous bounded selection for the evaluation map δ̂θ : C(Xα, Xβ)→ (Xα, Xβ)θ.

Therefore, the differential map Ω̂θ is defined, for each x ∈ (Xα, Xβ)θ, by:

Ω̂θ(x) = δ̂′θ
(
CB(x)

)
= B′(x)

(
(1− z)α + βz

)
(−α + β)|z=θ

= (β − α)δ′((1−θ)α+βθ)B(x)

= (β − α)Ω(1−θ)α+βθ.

We show now the reiteration result for Rochberg spaces:

Proposition 3.4.2. The spaces Rn(0, 1) and Rn(α, β) are isomorphic.

Proof. Denote by c = β − α; we will show that the map (cn−1, . . . , c, 1) : Rn(0, 1) →
Rn(α, β) given by

(cn−1, . . . , c, 1)
(
(xn−1, . . . , x0)

)
= (cn−1xn−1, . . . , cx1, x)

is an isomorphism. Let us proceed by induction: (c, 1) : R2(0, 1)→ R2(α, β) is bounded:
by Proposition 3.4.1 it follows that

∥(c, 1)(x, y)∥R2(α,β) = ∥cx− Ω(α, β)y∥R1(α,β) + ∥y∥R1(α,β)

= ∥cx− cΩ(0, 1)y∥R1(0,1) + ∥y∥R1(0,1)

= c∥x− Ω(0, 1)y∥R1(0,1) + ∥y∥R1(0,1)

≤ max{c, 1}∥(x, y)∥R2(0,1).
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Since we have a commutative diagram

0 // R1(0, 1)

c

��

// R2(0, 1)

(c,1)
��

// R1(0, 1) //

1
��

0

0 // R1(α, β) // R2(α, β) // R1(α, β) // 0

where all the vertical arrows are bounded and c : R1(0, 1)→ R1(α, β) is an isomorphism,
we conclude by the 3-lemma that (c, 1) : R2(0, 1)→ R2(α, β) is an isomorphism.

Passing to the next level we prove that (c2, c, 1) : R3(0, 1)→ R3(α, β) is bounded: using
Proposition 3.4.1 and the definition of Ω1,2 we deduce that

∥(c2, c, 1)(x, y, z)∥R3(α,β) = ∥(c2x, cy)− Ω1,2(α, β)z∥R2(α,β) + ∥z∥R1(α,β)

= ∥(c2, c)
(
(x, y)− Ω1,2(0, 1)z

)
∥R2(α,β) + ∥z∥R1(0,1)

= |c|∥(c, 1)
(
(x, y)− Ω1,2(0, 1)z

)
∥R2(α,β) + ∥z∥R1(0,1)

≤ |c|∥(c.1)∥∥(x, y)− Ω1,2(0, 1)z∥R2(0,1) + ∥z∥R1(0,1)

≤ K∥(x, y, z)∥R3(0,1).

We have a commutative diagram

0 // R1(0, 1)

c2

��

// R3(0, 1)

(c2,c,1)
��

// R2(0, 1) //

(c,1)

��

0

0 // R1(α, β) // R3(α, β) // R2(α, β) // 0

where all arrows are bounded and c2 and (c, 1) are isomorphisms. Hence, (c2, c, 1) :
R3(0, 1)→ R3(α, β) is an isomorphism. Proceeding in this way inductively we finish the
proof.

A quite important conclusion is that Tn : Rn(0, 1) → Rn(0, 1) is bounded if and only if
Tn : Rn(α, β)→ Rn(α, β) is bounded. This suggests that boundness of Tn at Rn(X0, X1)θ
only depends on the behaviour of T on a neighborhood of the interpolation scale at θ.

Corollary 3.4.1. Suppose that T is interpolating for the couple (Xα, Xβ). Then Tn :
Rn(0, 1)→ Rn(0, 1) is bounded.

Proof. It follows from Rochberg Commutator Theorem that Tn is bounded on Rn(α, β).
By Proposition 3.4.2 there exist an isomorphism of the form (cn−1, . . . , c, 1) : Rn(0, 1)→
Rn(α, β). Then given any (xn−1, . . . , x0) ∈ Rn(0, 1) we deduce that

∥Tn(xn−1, . . . , x0)∥Rn(0,1) = ∥(Txn−1, . . . , Tx0)∥Rn(0,1)

=
∥∥∥( 1

cn−1
cn−1Txn−1, . . . ,

1

c
cTx1, Tx0

)∥∥∥
Rn(0,1)

=
∥∥∥( 1

cn−1
, . . . ,

1

c
, 1
)
(Tcn−1xn−1, . . . , T cx1, Tx0)

∥∥∥
Rn(0,1)

≤ C∥(Tcn−1xn−1, . . . , T cx1, Tx0)∥Rn(α,β)

= C∥Tn(cn−1xn−1, . . . , cx1, x0)∥Rn(α,β)

≤ K∥(cn−1xn−1, . . . , cx1, x0)∥Rn(α,β)

= K∥(cn−1, . . . , c, 1)(xn−1, . . . , x0)∥Rn(α,β)

≤M∥(xn−1, . . . , x0)∥Rn(0,1).
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Corollary 3.4.2. Given 1 < p < ∞ one has that Rn(Hp(T), Hp∗(T))θ is isomorphic to
Rn(L1(T), L∞(T))θ.

Proof. By Proposition 2.2.1, the Boas isomorphism B is interpolating for the couple
(Lp(T), Lp∗(T)). Thus Bn : Rn(Lp(T), Lp∗(T))θ → Rn(Hp(T).Hp∗(T))θ is an isomor-
phism for any 0 < θ < 1 by Rochberg’s Commutator Theorem. A direct applicaction of
Proposition 3.4.2 finishes the proof.

3.5 Duality for Rochberg spaces

Given a regular couple (X0, X1) that is (X0 + X1, i0, i1)-compatible, the dual couple
(X∗

0 , X
∗
1 ) is

(
(X0 ∩X1)

∗, i∗0, i
∗
1

)
-compatible (see Subsection 2.4), and we can consider the

Rochberg spaces Rn(X∗
0 , X

∗
1 )θ and the associated short exact sequences

0 −−−→ Rl(X
∗
0 , X

∗
1 )θ

il,n−−−→ Rn(X∗
0 , X

∗
1 )θ

πn,k−−−→ Rk(X∗
0 , X

∗
1 )θ −−−→ 0 (3.13)

At the same time, dualizing the short exact sequence (cf. Appendix A.1.3)

0 −−−→ Rk(X0, X1)θ
ik,n−−−→ Rn(X0, X1)θ

πn,l−−−→ Rl(X0, X1)θ −−−→ 0 (3.14)

we obtain the short exact sequence

0 −−−→ Rl(X0, X1)
∗
θ

π∗
n,l−−−→ Rn(X0, X1)

∗
θ

i∗k.n−−−→ Rk(X0, X1)
∗
θ −−−→ 0 (3.15)

The following result was first obtained for finite dimensional spaces by Rochberg himself
[82, Th. 4.1] and later extended to the infinite dimensional case by Cabello, Castillo and
Corrêa in [11, Section 5]. It shows that (3.13) and (3.15) are (in the terminology of [9])
isomorphically equivalent sequences:

Theorem 3.5.1. [Duality for Rochberg spaces] Let (X0, X1) be a regular couple such that
either X∗

0 or X∗
1 has the Radon-Nikodym property. Then Rn(X0, X1)

∗
θ is isomorphic to

Rn(X∗
0 , X

∗
1 )θ via the map Dn : Rn(X∗

0 , X
∗
1 )θ → Rn(X0, X1)

∗
θ defined for (xn−1, . . . , x0) ∈

(X0 ∩X1)
n by

Dn(x∗
n−1, . . . , x

∗
0)(xn−1, . . . , x0) =

n−1∑
i=0

⟨xi, x
∗
n−j−1⟩X0∩X1 .

Proof. Fix x∗ = (x∗
n−1, . . . , x

∗
0) ∈ (X∗

0 ∩ X∗
1 )n and x = (xn−1, . . . , x0) ∈ (X0 ∩ X1)

n. By
Lemma 3.2.2 we can pick f ∈ C00(X0, X1) and g ∈ C00(X∗

0 , X
∗
1 ) such that

� (∆n−1, . . . ,∆0)(f) = x and ∥f∥C ≤ (1 + ε)∥x∥n;

� (∆n−1, . . . ,∆0)(g) = x∗ and ∥g∥C ≤ (1 + ε)∥x∗∥n.

By Lemma 2.4.1 and (2.16) the function h(z) = ⟨f(z), g(z)⟩X0∩X1 belongs to C00(C,C)
and satisfies

∆n(h) =
n∑

k=0

⟨∆k(f),∆n−k(g)⟩X0∩X1

and that

|∆n(h)| ≤ ∥f∥C ∥g∥C
dist(θ, ∂S)n−1

.
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Now note that |Dn(x∗)(x)| = |∆n(h)| ≤ C(θ, n)∥x∥n ∥x∗∥n; thus Dn(x∗)(·) defines a linear
functional on (X0 ∩ X1)

n ⊂ Rn(X0, X1)θ. Since (X0 ∩ X1)
n is dense in Rn(X0, X1)θ by

Lemma 3.2.2, we can extend Dn(x∗)(·) to a linear functional on the whole Rochberg space.
Now, since (X∗

0 ∩ X∗
1 )n is dense in Rn(X∗

0 , X
∗
1 )θ, the operator Dn can be extended to a

bounded operator on Rn(X∗
0 , X

∗
1 )θ. To conclude the proof we just have to show that

Dn is an isomorphism onto. This reduces to an induction and chasing argument on the
commutative diagram

0 −−−→ Rl(X
∗
0 , X

∗
1 )θ

il,n−−−→ Rn(X∗
0 , X

∗
1 )θ

πn,k−−−→ Rk(X∗
0 , X

∗
1 )θ −−−→ 0

Dl

y Dn

y Dk

y
0 −−−→ Rl(X0, X1)

∗
θ

π∗
n,l−−−→ Rn(X0, X1)

∗
θ

i∗k,n−−−→ Rk(X0, X1)
∗
θ −−−→ 0

Indeed, the diagram is commutative:

� Beginning at the upper left corner, given (x∗
l−1, . . . , x

∗
0) ∈ Rl(X

∗
0 , X

∗
1 )θ then

Dn(il.n(x∗
l−1, . . . , x

∗
0))(xn−1, . . . , x0) = Dn

(
(x∗

l−1, . . . , x
∗
0, 0,

(k). . ., 0)
)
(xn−1, . . . , x0).

Going the other way around gives the same

Dl(x
∗
l−1, . . . , x

∗
0)
(
πn,l(xn−1, . . . , x0)

)
= Dl(x

∗
l−1, . . . , x

∗
0)(xl−1, . . . , x0).

� Starting now at the upper middle space, given (x∗
n−1, . . . , x

∗
0) ∈ Rn(X∗

0 , X
∗
1 )θ one

has

Dk

(
πn,k(x∗

n−1, . . . , x
∗
0)
)
(xk−1, . . . , x0) = Dk(x∗

k−1, . . . , x
∗
0)(xk−1, . . . , x0),

while

Dn(x∗
n−1, . . . , x

∗
0)
(
ik,n(xk−1, . . . , x0)

)
= Dn(x∗

n−1, . . . , x
∗
0)(xk−1, . . . , x0, 0,

(l). . ., 0).

If l = k = 1 then D1 is just the isomorphism induced by the Duality Theorem (cf.
Proposition 2.4.2), hence D2 is injective and surjective by the 3-lemma, and thus an
isomorphism. This implies by induction on l and k that Dn is an isomorphism for all
n ∈ N.

If we denote by Ω⋆
k,l the differential map of the dual couple and Ω∗

k,l the dual of Ωk,l (i.e.
the quasilinear map defining (3.15)) then the final part of the proof yields the commutator
bound ∥∥Dl

(
Ω⋆

k,l(x
∗
k−1, . . . , x

∗
0)
)
− Ω∗

k,l

(
Dk(x∗

k−1, . . . , x
∗
0)
)∥∥

l
≤ ∥(x∗

k−1, . . . , x
∗
0)∥k.

We end this section noting that the operator Dn induces a bilinear pairing

ωn : Rn(X∗
0 , X

∗
1 )θ ×Rn(X0, X1)θ → C

given by ωn(x, y) = Dn(x)(y). We shall make extensive use of this pairing in the next
chapter, so we include here a visual depiction of how it acts. If

x∗
n−1 x∗

n−2 · · · x∗
2 x∗

1 x∗
0

xn−1 xn−2 · · · x2 x1 x0
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represents the components of two vectors x∗ = (x∗
n−1, . . . , x

∗
0) ∈ Rn(X∗

0 , X
∗
1 )θ and x =

(xn−1, . . . , x0) ∈ Rn(X0, X1)θ, then ωn(x, y) is obtained by flipping the componentes of x
to reach

x∗
n−1 x∗

n−2 · · · x∗
2 x∗

1 x∗
0

x0 x1 · · · xn−3 xn−2 xn−1

and operating coordinatewise and summing over all terms:

x∗
n−1 x∗

n−2 · · · x∗
2 x∗

1 x∗
0

x0 x1 · · · xn−3 xn−2 xn−1

⟨x0, x
∗
n−1⟩ + ⟨x1, x

∗
n−2⟩ · · · ⟨xn−3, x

∗
2⟩ + ⟨xn−2, x

∗
1⟩ + ⟨xn−1, x

∗
0⟩

3.6 Stein’s principle for Rochberg spaces

Recall from Section 3.3 that if T is interpolating, the Interpolation Principle gives that
Tn : Rn(X0, X1)θ → Rn(X0, X1)θ is bounded. As we noted in (3.12), the induced operator
Tn on Rn(X0, X1)θ is just the initial n× n lower submatrix of (3.11). Keeping this idea,
if we use an interpolating family of operators (Tz)z ⊂ L(X0 ∩ X1, X0 + X1), Stein’s
Interpolation Principle (cf. Theorem 2.5.2) gives that T C : C00(X0, X1) → C(X0, X1) is
bounded, where T C(f)(z) = Tz(f(z)).

In this case the family (Tz)z will also induce a bounded operator on Rn(X0, X1)θ. To see
how it is defined we have to obtain the sequence of Taylor coefficients(

∆k

(
T C(f)

))
k∈N

for all k ∈ N and f ∈ C00(X0, X1). (3.16)

Unlike the previous case, the matrix that gives (3.16) from the sequence
(
∆k(f)

)
k∈N is not

diagonal, but upper triangular. Let us check this: since (Tz)z is analytic, it satisfies that
⟨Tz(x), y⟩ is complex valued analytic on S for all x ∈ X0 ∩X1 and y ∈ (X0 +X1)

∗; this is
equivalent to the fact that the map z ∈ S 7→ Tz ∈ L(X0∩X1, X0+X1) is itself analytic (see
[93, Chapter V]). Therefore, the derivatives dn

dzn
Tz exist and belong to L(X0∩X1, X0+X1).

These can be related to Tz via the Cauchy Integral Formula and by the expression (see
[38, Chapter 4, §4]):〈 dn

dzn
Tz(x), y

〉
=

dn

dzn
⟨Tz(x), y⟩ for all x ∈ X0 ∩X1, y ∈ (X0 + X1)

∗.

Now, if Tz(f) ∈ C(X0, X1) is considered for a given f ∈ C00(X0, X1), we can take its
derivative at θ like any other function on Calderón space:

∆1

(
Tz(f)

)
=

dTz

dz |θ
(f(θ)) + Tθ(f

′(θ)) ∈ X0 + X1,

the equality being a consequence of the chain rule. Note that this is well defined since
f ∈ C00(X0, X1), and thus f(θ), f ′(θ) ∈ X0 ∩X1. Hence, if we apply succesively the chain
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rule to Tz(f) we obtain

dk

dzk

(
Tz(f)

)
=

k∑
i=0

(
k

i

)
di

dzi
Tz

(
f (k−i)

)
.

Thus

∆k

(
Tz(f)

)
=

k∑
i=0

[ 1

i!

di Tz

dzi

]
|θ

(
∆k−i(f)

)
. (3.17)

We deduce

(
∆k(T C(f))

)
k∈N

=



. . . . . . . . .
...

. . . Tθ
1
1!

d Tz

dz |θ
1
2!

d2 Tz

dz2 |θ
· · · · · · 1

k!
dk Tz

dzk |θ

0 Tθ
1
1!

d Tz

dz |θ
1
2!

d2 Tz

dz2 |θ
· · · 1

(k−1)!
dk−1 Tz

dzk−1 |θ

. . . . . . . . . . . .
...

· · · 0 Tθ
1
1!

d Tz

dz |θ
1
2!

d2 Tz

dz2 |θ

· · · 0 Tθ
1
1!

d Tz

dz |θ

· · · 0 Tθ





...
∆5(f)

∆4(f)

∆3(f)

∆2(f)

∆1(f)

∆0(f)



We denote by Lθ
n the corresponding n× n lower submatrix

Lθ
n =



Tθ
1
1!

d Tz

dz |θ
1
2!

d2 Tz

dz2 |θ
· · · 1

(k−1)!
dk−1 Tz

dzk−1 |θ

...
. . . . . . . . .

...

0 0 Tθ
1
1!

d Tz

dz |θ
1
2!

d2 Tz

dz2 |θ

0 0 0 Tθ
1
1!

d Tz

dz |θ

0 0 0 0 Tθ


We are ready to state Stein’s Interpolation Theorem for Rochberg spaces. This result was
hinted first by Rochberg [82, pp. 257] and studied by Carro in [16] and by Castillo and
Ferenczi in [25].

Theorem 3.6.1. Let (X0, X1) be a Banach couple and (Tz)z∈S ⊂ L
(
X0 ∩ X1, X0 + X1

)
an interpolating family of operators. Then for any 0 < θ < 1 the linear map Lθ

n :
(X0 ∩X1)

n → Rn(X0, X1)θ is bounded, and thus it can be extended to a bounded operator

Lθ
n : Rn(X0, X1)θ → Rn(X0, X1)θ.
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Proof. Given x = (xn−1, . . . , x0) ∈ (X0∩X1)
n ⊂ Rn(X0, X1)θ, there exist by Lemma 3.2.2

a function f ∈ C00(X0, X1) such that (∆n−1, . . . ,∆0)(f) = x and ∥f∥C ≤ (1+ε)∥x∥n. Then
by Stein’s Interpolation Principle (cf. Theorem 2.5.2) we have that T C(f) ∈ C(X0, X1).
Thus by (3.17) we conclude that

∥Lθ
n(x)∥n = ∥(∆n−1, . . . ,∆0)(T

C(f))∥n ≤ ∥T C∥∥f∥C ≤ (1 + ε)∥T C∥∥x∥n.

Since (X0 ∩X1)
n is dense in Rn(X0, X1)θ by Lemma 3.2.2, the result follows.

We apply Theorem 3.6.1 to Example 1 of Chapter 2. In this case, the family (Tz)z∈S ⊂
L
(
c00, ℓ∞

)
given for each x ∈ c00 by

Tz(x) = x · |u|2z =
∑
n

xn(sign(un)|un|2z)

satisfied that fx(·) = T·(x) : S→ ℓ∞ ∈ C(ℓ∞, ℓ1) for every x ∈ c00, i.e., (Tz)z satisfies the
interpolating condition (I) for the couple (ℓ∞, ℓ1) on a dense subspace of ℓ1, which is the
intersection subspace for the couple (ℓ∞, ℓ1). This is enough to apply Theorem 3.6.1 (see
the case n = 1 at the end of Section 2.5) and deduce that the corresponding triangular
operator Lθ

n is bounded on Rn(ℓ∞, ℓ1)θ. To obtain Lθ
n note that

dkTz

dzk |θ
(x) = 2k x ·

(
|u|2θ logk−1 |u|

)
= 2k

∑
n

xn(sign(un)|un|2θ logk−1 |un|).

Setting θ = 1/2 one has that

1

k!

dkTz

dzk |z=1/2

(x) =
2k

k!
x · u logk−1 |u| = 2k

k!

∑
n

xnun logk−1 |un|.

Thus, it follows that the operator

T u
n =



u 1
1!
u log |u| 1

2!
u log2 |u| · · · 1

(n−1)!
u logn−1 |u|

...
. . . . . . . . .

...

0 0 u 1
1!
u log |u| 1

2!
u log2 |u|

0 0 0 u 1
1!
u log |u|

0 0 0 0 u


is bounded on Rn(ℓ∞, ℓ1)1/2. We will refer to T u

n as a block operator . Moreover, since
there exist a commutative diagram

0 Rl(X0, X1)θ Rl+k(X0, X1)θ Rk(X0, X1)θ 0

0 Rl(X0, X1)θ Rl+k(X0, X1)θ Rk(X0, X1)θ 0

T u
l T u

l+k T u
k

and T u
1 : ℓ2 → ℓ2 is an isometric embedding, we deduce that T u

n is an isomorphic embedding
for all n ∈ N.
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Chapter 4

Rochberg spaces generated by the
pair (ℓ∞, ℓ1)

In this chapter we focus in studying the Rochberg spaces defined by the Banach couple
(ℓ∞, ℓ1). We obtained most of the results in [33] and [30], but our presentation here closely
follows the structure of [31]. We will denote by Rn the Rochberg space Rn(ℓ∞, ℓ1)1/2. Thus
R1 and R2 are respectively the Hilbert space ℓ2 and the Kalton-Peck space Z2. If n = l+k
we have the short exact sequence

0 −−−→ Rl

il,n−−−→ Rn

πn,k−−−→ Rk −−−→ 0 (4.1)

generated by the differential map Ωk,l : Rk → ℓl∞. We are interested in the case l = n− 1
and k = 1 since in this case the differential map Ω1,n−1 : ℓ2 → ℓn−1

∞ can be explicitly
identified on a dense subspace of ℓ2. Recall that Ω1,n−1 is defined for each x ∈ ℓ2 by

Ω1,n−1(x) =
(
∆n−1, . . . ,∆1

)
(B1/2(x)),

where B1/2 : ℓ2 → C(ℓ∞, ℓ1) is an homogeneous bounded selector for the quotient map
∆0. As we explained in Section 2.2.1, the map (2.12) provides an example of selector for
finitely supported vectors, and thus for x ∈ c00 one has

KPk(x) := ∆k(B1/2(x)) =
2k

k!
x logk |x|

∥x∥2
=
(2k

k!
xn logk |xn|

∥x∥2

)
n∈N

.

Hence the differential map Ω1,n−1 : c00 → ℓ∞ is

KP1,n−1(x) =
(
KPn−1(x), . . . ,KP2(x),KP(x)

)
=
(2k

k!
x logk |x|

∥x∥2

)n−1

k=0
.

Note that Kalton-Peck map is precisely KP1,1. Therefore, Rn can be described as the
completion of

Rn = {(xn−1, . . . , x0) ∈ ℓn−1
∞ × c00 : (xn−1, . . . , x1)− KP1,n−1(x0) ∈ Rn−1}

endowed with the quasinorm

∥(xn−1, . . . , x0)∥1,n−1 = ∥(xn−1, . . . , x0)− KP1,n−1(x0)∥n−1 + ∥x0∥ℓ2 .

As we noted in Section 2.6.2 for the case of Z2 = R2, all results in this chapter that
involve an explicit expression for KP1,n−1 must be proven first for (cn−1

00 ⊕KP1.n−1 c00, ∥ · ∥n)
and then extended by density to Rn.

Now we note a couple of basic facts concerning Rn:
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(1) Rn has all 3SP-properties (see Subsection A.2 for the definition) that ℓ2 has. This
is inmediate using (4.1) and induction n. In particular, Rn is superreflexive and
ℓ2-saturated for every n ∈ N [27, 4.5 and 3.2.d].

(2) Let (en)n∈N be the canonical basis of ℓ2. Then the sequence (ul)l∈N defined by

unm+k = (0, . . . ,
(k)

em+1, . . . , 0) for every 0 ≤ k ≤ n− 1 and m ≥ 0, (4.2)

is a basis for Rn. Indeed, we claim that the sequence of closed subspaces (Xm)m∈N
given by

Xm = span
{

(em, 0, . . . , 0), (0, em, 0, . . . , 0), . . . , (0, . . . , 0, em)
}

(4.3)

defines a symmetric finite dimensional decomposition of Rn. Since dim(Xm) = n for
every n ∈ N, we can select the basis (unm+k)n−1

k=0 for each Xm and then the spliced
sequence

(
(unm+k)n−1

k=0

)
m≥0

forms a basis for Rn [18, Prop. 6.5].

To prove the previous claim we have to show that, given any permutation σ : N→ N
and a sequence of signs ε = (εi)i∈N, the natural projection

(
Pσ,ε

)
n

(
xn−1, . . . , x0

)
=
( ∞∑

k=0

εkx
k
n−1eσ(k), . . . ,

∞∑
k=0

εkx
k
0eσ(k)

)
(4.4)

is uniformly bounded on Rn. This follows by the Commutator Theorem: since (en)n
is a basis for ℓp with 1 ≤ p <∞, we have that the natural projections

Pm

( ∞∑
k=1

xkek

)
=

m∑
k=0

xkek

associated to (en)n are uniformly bounded on ℓp for every 1 ≤ p < ∞. Then Pm

is interpolating for the couple (ℓ∗p, ℓp) where p > 1, and thus by Corollary 3.4.1 we
conclude that

(Pm)n

( ∞∑
k=0

xk
n−1ek, . . . ,

∞∑
k=0

xk
0ek

)
=
( m∑

k=0

xk
n−1ek, . . . ,

m∑
k=0

xk
0ek

)
is bounded on Rn. To show that (4.4) is bounded, we use the operators

Pσ,ε

( ∞∑
k=0

xnen

)
=

∞∑
k=0

εkxkeσ(k),

which are uniformly bounded on ℓp for all 1 ≤ p <∞ since (en)n is symmetric.

For future use, we remark that the canonical sequence (en)n∈N is a symmetric basis for
Dom(KP1,n−1). The proof is a consequence of (4.4) being bounded, since Dom(KP1,n−1) is
a natural subspace for Rn (see also Corollary 3.3.2).
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4.1 Basic sequences in Rn

It is a classical result that Hilbert spaces only admit one type of seminormalized basic
sequence, meaning that any seminormalized basic sequence has a subsequence equivalent
to the canonical basis of ℓ2. Kalton and Peck [62, Th. 5.4] showed that every normalized
basic sequence in Z2 has a subsequence equivalent to either the canonical basis of ℓ2 or of
ℓf . This fact has deep implications on the structure of the space:

� It is the basic ingredient to show that Z2 has no complemented subspace with
unconditional basis.

� It provides a simple and automatic proof for the singularity of KP, which plays a
key role in the proof of Proposition 1.1.2 (see also the Section 4.3).

This situation was pushed forward in [23], where the analogous result is proved for the
third Rochberg space R3. The same result is true in general: the n-th Rochberg space Rn

has exactly n types of basic sequences that coincide with the canonical bases of domain
spaces Dom(KP1,j) for 0 ≤ j ≤ n− 1. Note that we have a chain of continuous inclusions
(see (3.7))

Dom(KP1,n−1) ⊂ Dom(KP1,n−2) ⊂ · · · ⊂ Dom(KP1,1) ⊂ Dom(KP1,0) = ℓ2 (4.5)

From here, the delicate part of the proof relies in two technical results, Lemma 4.1.1
and Proposition 4.1.1, that identify Dom(KP1,j) as the Orlicz space generated by the
function fj(t) = t2 log2j t. This is done by studying the asymptotic behaviour of
∥
∑

xnen∥Dom(KP1,j) = ∥(0, . . . , 0,
∑

xnen)∥Rj+1
.

Lemma 4.1.1. Let (un)n∈N be a normalized block basic sequence in ℓ2. Then the sequence
wn = (KP1,n−1(un), un) is equivalent to the usual basis of Dom(KP1,n−1).

Proof. We shall prove that if (xn)n∈N is a sequence of scalars in ℓ2, i.e.,
∑

n xnen ∈ ℓ2,
then ∑

n

xnwn ∈ Rn if and only if
∑
n

xnen ∈ DomΩ1,n−1.

Consider the block operator T u
n associated to the sequence u = (un)n. Recall by Subsection

3.6 that this is an isomorphic embbeding defined by

T u
n =


u KP1(u) KP2(u) · · · KPn−1(u)
0 u KP1(u) KP2(u) · · ·
0 0 u KP1(u) KP2(u)
0 0 0 u KP1(u)
0 0 0 0 u

 (4.6)

where KPk(u) denotes the linear map defined by KPk(u)(en) = 2k

k!
uk logk |uk|. In particular,

for k = 0 this is the usual multiplication operator u(en) = un on ℓ2. Then note that∑
n

xnwn = (
∑
n

xnKP1,n−1(un),
∑
n

xnun) = T u
n(0 . . . , 0,

∑
n

xnen).
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Indeed:

TU(0, . . . , 0,
∑
n

xnen) =
(
KPn−1(u)(

∑
n

xnen), . . . ,KP1(u)(
∑
n

xnen), u(
∑
n

xnen)
)

=
(∑

n

xnKP
n−1(u)(en), . . . ,

∑
n

xnKP
1(u)(en),

∑
n

xnu(en)
)

=
(∑

n

xnKP
n−1(un), . . . ,

∑
n

xnKP
1(un),

∑
n

xnun

)
=
(∑

n

xn

(
KPn−1(un), . . . ,KP1(un)

)
,
∑
n

xnun

)
=
(∑

n

xnKP1,n−1(un),
∑
n

xnun

)
.

Thus, taking into account that block operators are isomorphic embeddings we deduce
that

∥
∑
n

xnwn∥ = ∥TU(0, . . . , 0,
∑
n

xnen)∥ ∼ ∥(0, . . . , 0,
∑
n

xnen)∥Rn .

This means that
∑

n xnwn converges if and only if (0, . . . , 0,
∑

n xnen) converges in Rn;
equivalently, if and only if

∑
n xnen converges in Dom(KP1,n−1).

If, in the statement of Lemma 4.1.1, we consider that (un)n is just a seminormalized
block basic sequence, then the associated block operator T u

n defined as in (4.6) is still an
isomorphic embedding. Indeed, since (un)n is seminormalized, the operator

τ∥u∥(x) =
∑
n

∥un∥xn

is invertible and interpolating for the couple (ℓ∞, ℓ1). By the Commutator Theorem
(τ∥u∥)n : Rn → Rn is bounded. Moreover, if we denote by v the normalized sequence
vn = un

∥un∥ , then T u
n = T v

n ◦ (τ∥u∥)n. Thus T u
n is an isomorphic embedding, being the

composition of two of them. This gives that the sequence (KP1,n−1(un), un)m is also
equivalent to the canonical basis of Dom(KP1,n−1).

We now show that the domain spaces Dom(KP1,j), for 0 ≤ j ≤ n− 1, are Orlicz sequence
spaces.

Proposition 4.1.1. For 0 ≤ j ≤ n− 1 the space Dom(KP1,j) is isomorphic to the Orlicz
space ℓfj generated by the Orlicz function

fj(t) = t2 log2j t

Proof. Let us fix some notation and ideas to ease the process:

� KP1,n−1(x) = x
[
2j

j!
logj x

]n−1

j=1
for normalized x.

� To estimate ∥(0, . . . , 0, x)∥n we need to perform n− 1 steps until arriving to ∥ · ∥ℓ2 .
We will simplify the later norm to plain ∥ · ∥.

Step 1.

⋆ = ∥uKP1,n−1(x)− KP1,n−1(xu)∥n−1 =

∥∥∥∥∥xu
[

2j

j!
logj x

]n−1

j=1

− xu

[
2j

j!
logj xu

]n−1

j=1

∥∥∥∥∥
n−1
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Step 2. ∥∥∥∥∥x
[

2j

j!
logj x

]n−1

j=1

∥∥∥∥∥
n−1

=

∥∥∥∥∥x
[

2j

j!
logj x

]n−1

j=2

− KP1,n−2(α1x log x)

∥∥∥∥∥
n−2

where α1 is the first coefficient of
[
2j

j!
logj x

]n−1

j=1
(namely, 2). Thus, adding and subtracting

α1 log xKP1,n−2(x) one gets

⋆ ≤

∥∥∥∥∥x
[

2j

j!
logj x

]n−1

j=2

− α1 log xKP1,n−2(x)

∥∥∥∥∥
n−2

+ ∥α1 log xKP1,n−2(x)− KP1,n−2(α1x log x)∥n−2

≤

∥∥∥∥∥x
[

2j

j!
logj x

]n−1

j=2

− α1 log xKP1,n−2(x)

∥∥∥∥∥
n−2

+ α1∥ log x∥∞∥x∥.

but also

⋆ ≥

∥∥∥∥∥x
[

2j

j!
logj x

]n−1

j=2

− α1 log xKP1,n−2(x)

∥∥∥∥∥
n−2

− α1∥ log x∥∞∥x∥.

In other words, up to an order ∥ log x∥ term,

⋆ ∼

∥∥∥∥∥x
[

2j

j!
logj x

]n−1

j=2

− α1 log xKP1,n−2(x)

∥∥∥∥∥
n−2

Now

⋆ =

∥∥∥∥∥x
[

2j

j!
logj x

]n−1

j=2

− xα1 log x

[
2j

j!
logj x

]n−2

j=1

∥∥∥∥∥
n−2

=

∥∥∥∥∥x
[

2j

j!
logj x

]n−1

j=2

− α1

[
2j

j!
logj+1 x

]n−2

j=1

∥∥∥∥∥
n−2

=

∥∥∥∥∥x
[

2j+1

j + 1!
logj+1 x

]n−2

j=1

− α1

[
2j

j!
logj+1 x

]n−2

j=1

∥∥∥∥∥
n−2

=

∥∥∥∥∥x
[(

2j+1

j + 1!
− α1

2j

j!

)
logj+1 x

]n−2

j=1

∥∥∥∥∥
n−2

with first coefficient α2 = 22

2!
− α1

2
1!

.

Step 3. Keeping up with the same ideas

⋆ =

∥∥∥∥∥x
[(

2j+1

j + 1!
− α1

2j

j!

)
logj+1 x

]n−2

j=1

∥∥∥∥∥
n−2

∼

∥∥∥∥∥x
[(

2j+1

j + 1!
− α1

2j

j!

)
logj+1 x

]n−2

j=2

− α2 log2 x

[
2j

j!
logj x

]n−3

j=1

∥∥∥∥∥
n−3
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up to a α2∥ log2 x∥∞ term. Thus

⋆ =

∥∥∥∥∥x
[(

2j+1

j + 1!
− α1

2j

j!

)
logj+1 x

]n−2

j=2

− α2

[
2j

j!
logj+2 x

]n−3

j=1

∥∥∥∥∥
n−3

=

∥∥∥∥∥x
[(

2j+2

j + 2!
− α1

2j+1

j + 1!

)
logj+2 x− α2

2j

j!
logj+2 x

]n−3

j=1

∥∥∥∥∥
n−3

=

∥∥∥∥∥x
[(

2j+2

j + 2!
− α1

2j+1

j + 1!
− α2

2j

j!

)
logj+2 x

]n−3

j=1

∥∥∥∥∥
n−3

So the pattern seems clear now: after n− 1 steps,

⋆ =

∥∥∥∥x (
2n−1

n− 1!
− α1

2n−2

n− 2!
− · · · − αn−1

2

1!

)
logn−1 x

∥∥∥∥
and therefore x logn−1 x ∈ ℓ2 means

∑
x2 log2(n−1) x finite, namely, the element x belongs

to the Orlicz space ℓfn−1 defined by the Orlicz function fn−1.

The combination of Lemma 4.1.1 and Proposition 4.1.1 yields, by an induction argument,
that there exist n types of (normalized) basic sequences in Rn.

Theorem 4.1.1. Every normalized basic sequence in Rn admits a subsequence equivalent
to the basis of one of the spaces ℓfj , 1 ≤ j ≤ n.

Proof. Let wk = (xk
n−1, . . . , x

k
0) be a normalized basic sequence in Rn. If ∥xk

0∥ −→ 0 then

∥(xk
n−1, . . . , x

k
0)−

(
(xk

n−1, . . . , x
k
1)− KP1,n−1(x

k
0), 0

)
∥n = ∥(KP1,n−1(x

k
0), xk

0)∥n → 0.

Thus, passing to a subsequence and using a standard perturbation of bases argument,
we can assume that wk is a basic sequence in Rn−1 that therefore admits a subsequence
equivalent to the basis of one of the spaces ℓfj , 0 ≤ j ≤ n − 2 by induction hypothesis
and [62, Theorem 5.4].

If ∥xn
0∥ ≥ ε > 0 then we can assume after perturbation that there is a block basic sequence

(un)n∈N in ℓ2 so that
∑
∥xk

0 − uk∥ <∞. Since

(xk
n−1, . . . , x

k
0) = (xk

n−1, . . . , x
k
0)− (KP1,n−1(uk), uk) + (KP1,n−1(uk), uk)

=
(
(xk

n−1, . . . , x
k
1)− KP1,n−1(uk), xk

0 − uk

)
+ (KP1,n−1(uk), uk).

and xk
0 − uk → 0, we can assume (by the first part of the proof) that

(
(xk

n−1, . . . , x
k
1) −

KP1,n−1(uk), xk
0 − uk

)
k

admits a subsequence equivalent to the canonical basis of ℓfj for
some 0 ≤ j ≤ n − 2. On the other hand, by Lemma 4.1.1 and Proposition 4.1.1 the
sequence

(
KP1,n−1(uk), uk

)
k

is equivalent to the canonical basis of ℓfn−1 .

We conclude that, up to a subsequence, (wk)k is equivalent to the canonical basis of ℓfn−1 .
Indeed, if

∑
tk
(
KP1,n−1(uk), uk

)
converges, then

∑
tk
(
(xk

n−1, . . . , x
k
1) − KP1,n−1(uk), xk

0 −
uk

)
converges because ℓfn−1 ⊂ ℓfn−2 ⊂ · · · ⊂ ℓf1 ⊂ ℓ2. Thus, passing to a subsequence if

necessary, the sum∑
tk(xk

n−1, . . . , x
k
0) =

∑
tk
(
(xk

n−1, . . . , x
k
1)−KP1,n−1(uk), xk

0−uk

)
+
∑

tk
(
KP1,n−1(uk), uk

)
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converges. Conversely, if
∑

tkwk converges, then
∑

tk
(
KP1,n−1(uk), uk

)
converges. If not,

then∥∥∥∑ tkwk

∥∥∥
Rn

=
∥∥∥∑ tk

(
(xk

n−1, . . . , x
k
1)− KP1,n−1(uk), xk

0 − uk

)
+
∑

tk
(
KP1,n−1(uk), uk

)∥∥∥
Rn

≥
∥∥∥∑ tk

(
KP1,n−1(uk), uk

)∥∥∥
Rn

−
∥∥∥∑ tk

(
(xk

n−1, . . . , x
k
1)− KP1,n−1(uk), xk

0 − uk

)∥∥∥
Rn

∼
∥∥∥∑ tkek

∥∥∥
ℓfn−1

−
∥∥∥∑ tkek

∥∥∥
ℓfj

,

and taking into account that fn−1 and fj are not equivalent Orlicz functions, it follows
that

∑
k tkwk does not converge, a contradiction.

Observe that the proof also works if we assume that the basic sequence (wk)k∈N is seminor-
malized instead of normalized. Just note that the case n = 2 proved by Kalton and Peck
in [62, Th. 5.4] is also true for seminormalized sequences (cf. [63, Lemma 3]), since every
seminormalized basic sequence in ℓ2 is equivalent to the canonical basis [3, Remark 2.1.2].
Up from here we would use Lemma 4.1.1 for the case in which (un)n is seminormalized.

The existence of block operators T u
n is the key to prove the preceding result. If X is

a twisted Hilbert space generated by a Banach couple of Orlicz sequence spaces and
(uk)k ⊂ ℓ2 is a sequence of normalized blocks, we know no method to show that the
sequence

(
Ω1,1(uk), uk

)
k

is equivalent to the usual basis of Dom(Ω1,1) out of the case of
ℓp spaces.

Corollary 4.1.1. Let (xn)n ⊂ Rn be a seminormalized basic sequence in Rn such that
∥πn,1xn∥ ≥ ε > 0. Then (xn)n admits a subsequence equivalent to the canonical basis of
ℓfn−1.

Proof. The proof of Theorem 4.1.1 gives that (xn)n is equivalent, up to a subsequence,
to some basic sequence of the form (KP1,n−1(un), un)n, where (un)n is a seminormalized
block basic sequence in ℓ2. Now Lemma 4.1.1 and Proposition 4.1.1 finish the proof.

Corollary 4.1.2. Suppose that (zm)m ⊂ Rn is a seminormalized basic sequence equivalent
to the canonical basis of ℓ2. Then ∥πn.n−1zm∥ → 0.

Proof. We are going to show that if the thesis does not hold, then (zm)m admits a sub-
sequence equivalent to some basic sequence (v1, . . . , vk) in Rk where ∥vk∥ ≥ ε > 0. This
implies by Corollary 4.1.1 that, up to a subsequence, it is equivalent to the canonical basis
of ℓfk−1

. This is absurd, since ℓ2 is not ismorphic to ℓfj for any j ∈ N.

To that end, let (zm)m = (z1, z2, . . . , zn)m be a seminormalized basic sequence in Rn

equivalent to the canonical basis of ℓ2 such that

∥πn,n−1zm∥ = ∥(z2, . . . , zn)m∥ ≥ ε > 0.

Since ∥(z2, . . . , zn)m∥n−1 = ∥(z2, . . . , zn−1)− KP1,n−2(zn)∥n−2 + ∥zn∥, there are two possi-
bilities:

� If ∥zn∥ ≥ ε0 > 0, then ∥πn,1zm∥ > 0 and by Corollary 4.1.1 we deduce that (zn)n
has a subsequence equivalent to the canonical basis of ℓfn−1 , which is absurd since
ℓ2 is not isomorphic to ℓfn−1 .
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� If ∥zn∥ → 0 then

∥(z1, . . . , zn)m−
(
(z1, . . . , zn−1)m−KP1,n−1(zn), 0

)
∥ = ∥(KP1,n−1(zn), zn)∥ = ∥zn∥ → 0.

Thus, using a perturbation argument and passing to a subsequence we can assume
that (z1, . . . , zn)m is a basic sequence in Rn−1. More precisely, there exist a basic
sequence (vm)m = (v1, . . . , vn−1)m ⊂ Rn−1 such that

∥(z1, . . . , zn)m − (v1, . . . , vn−1, 0)m∥ ≤ 2−m

and both sequences are equivalent.

Now, we have that

∥πn,n−1(v1, . . . , vn−1, 0)m∥ ≥ ∥πn,n−1(z1, . . . , zn)m∥ − ∥πn,n−1

(
(z1, . . . , zn)m − (v1, . . . , vn−1, 0)m

)
∥

≥ ∥πn,n−1(z1, . . . , zn)m∥ − ∥(z1, . . . , zn)m − (v1, . . . , vn−1, 0)m∥
≥ ε− 2−m.

For m sufficiently big, we deduce (passing to a subsequence) that

∥πn,n−1(v1, . . . , vn−1, 0)m∥n−1 ≥ ε1 > 0.

This is the same to say as ∥πn−1,n−2(v1, . . . , vn−1)∥n−1 ≥ ε1 > 0. Hence we can apply
the same argument inductively to reach, in the worst case scenario to a seminormalized
basic sequence (um)m = (u1, u2)m in Z2, equivalent to a subsequence of (zm)m, such that
∥u2∥ > 0. Thus, it admits a subsequence equivalent to the canonical basis of ℓf , which is
impossible since ℓ2 is not isomorphic to ℓf .

Corollary 4.1.3. For any n ∈ N, the natural quotient map πn,n−1 : Rn → Rn−1 is strictly
singular.

Proof. Assume that πn,n−1 is an isomorphism on some infinite dimensional subspace
X ⊂ Rn. Since Rn is ℓ2-saturared, X contains an infinite dimensional subspace Y ⊂ X
isomorphic to ℓ2, and generated by a normalized basis (yn)n ⊂ Y equivalent to the canon-
ical basis of ℓ2. Since πn,n−1|Y is an isomorphism, we have that ∥πn,n−1yn∥ ≥ ε > 0. This
contradicts Corollary 4.1.2.

Since πn,k = πk+1,k ◦ · · · ◦πn−1,n−2 ◦πn,n−1, by the ideal property of SS and Corollary 4.1.3
we deduce that:

Corollary 4.1.4. The natural quotient map πn,k : Rn → Rk is strictly singular for every
n, k ∈ N with n > k. Equivalently, KPk,l is singular for every k, l ∈ N.

This would also follow by the combination of Proposition 1.1.1 and Proposition 3.2.1.
Here we provide a different proof which is closer in spirit to that of Kalton and Peck [62,
Th. 6.4]. Using Corollary 4.1.4 and Proposition A.1.4 we deduce:

Corollary 4.1.5. Given any Banach space X and 1 ≤ k ≤ n − 1, a bounded operator
T : Rn → X is strictly singular if and only if T ◦ ik,n : Rk → Rn is striclty singular.

We include here an important consequence of Theorem 4.1.1:

Proposition 4.1.2. Rn does not embbed in Rm whenever n > m.
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Proof. Assume that n > m and that T : Rn ↪→ Rm defines an isomorphic embedding.
If (uj

k)k∈N denotes the canonical basis of ℓfj then (Tun−1
k )k is a seminormalized basic

sequence in Rm equivalent to the canonical basis of ℓfn−1 . From Theorem 4.1.1 we deduce
that (Tun−1

k )k admits a subsequence equivalent to the canonical basis ℓfj for some 0 ≤ j ≤
m− 1 < n. Since (un−1

k )k is symmetric, it implies that both ℓfn−1 and ℓfj are isomorphic,
which is a contradiction.

Proposition 4.1.2 was proved in [11, Section 4] estimating the type-2 constants in the
form am,2(Rn) ∼ logn−1m. Our proof is conceptually similar, since its main point is that
one cannot embbed the domain space ℓfn−1 into Rj, because that forces it to coincide,
up to equivalence of norms, with ℓfj for some j < n − 1, which can not occur since the
assymptotic growth of their Orlicz functions is different.

4.2 Duality for Rn

It is a direct consequence of Lemma 2.1.4 that C0(ℓ∞, ℓ1) = C0(c0, ℓ1). Hence, given any
0 < θ < 1 one has R0

n(ℓ∞, ℓ1)θ = R0
n(c0, ℓ1)θ isometrically. By Lemma 3.2.1 it follows

that R0
n(c0, ℓ1)θ = Rn(c0, ℓ1)θ and R0

n(ℓ∞, ℓ1) = Rn(ℓ∞, ℓ1) with equivalent norms. By

Theorem 3.5.1 we deduce that the linear map D̂n : Rn(ℓ1, ℓ∞)1/2 → Rn(ℓ∞, ℓ1)
∗
1/2 given

for any (yn−1, . . . , y0) ∈ (ℓ1)
n and (xn−1, . . . , x0) ∈ Rn(ℓ1, ℓ∞)1/2 ⊂ (ℓ∞)n by

D̂n(xn−1, . . . , x0)(yn−1, . . . , y0) =
n−1∑
i=0

⟨xi, yn−i−1⟩ℓ1

is an isomorphism. Now note that Rn(ℓ∞, ℓ1)1/2 is isometrically isomorphic to
Rn(ℓ1, ℓ∞)1/2 via the map un : Rn(ℓ∞, ℓ1)1/2 → Rn(ℓ1, ℓ∞)1/2 given by

un

(
(xn−1, . . . , x0)

)
=
(
(−1)n−1xn−1, . . . ,−x1, x0

)
as a consequence of the fact that the map f ∈ C(X0, X1) 7→ f ∈ C(X0, X1) given by
f(z) = f(1 − z) defines an isometric isomorphism for any Banach couple (X0, X1) (see
[80, pp. 305]).

If we denote by Dn = D̂nun : Rn → R∗
n we deduce that Rn is isomorphic to its dual:

Theorem 4.2.1. The map Dn : Rn → R∗
n given for any (xn−1, . . . , x0), (yn−1, . . . , y0) ∈

Rn by

Dn(xn−1, . . . , x0)(yn−1, . . . , y0) =
n−1∑
i=0

(−1)i⟨xi, yn−i−1⟩. (4.7)

defines an isomorphism between Rn and its dual.

Since (yn−1, . . . , y0) ∈ Rn, it follows that yn−i−1 ∈ Ran(KPn−i−1,1), and thus ⟨xi, yn−i−1⟩
has to be understood in the sense of (2.22): as the limit limk⟨xi, y

k
n−i−1⟩ℓ1 where

(ykn−i−1)k ⊂ ℓ1 converges to yn−i−1 in ∥ · ∥RanKPn−i−1,i
. From now on, we will use this

convention without further mention. We have a commutative diagram

0 −−−→ Rl(ℓ∞, ℓ1)1/2
il,n−−−→ Rn(ℓ∞, ℓ1)1/2

πn,k−−−→ Rk(ℓ∞, ℓ1)1/2 −−−→ 0

(−1)kul

y un

y uk

y
0 −−−→ Rl(ℓ1, ℓ∞)1/2

il,n−−−→ Rn(ℓ1, ℓ∞)1/2
πn,k−−−→ Rk(ℓ1, ℓ∞)1/2 −−−→ 0
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Combining this last diagram with the one appearing during the proof of Theorem 3.5.1
we obtain:

Theorem 4.2.2. For any l + k = n there exist a commutative diagram

0 −−−→ Rl

il,n−−−→ Rn

πn,k−−−→ Rk −−−→ 0

(−1)kDl

y Dn

y Dk

y
0 −−−→ R∗

l

π∗
n,l−−−→ R∗

n

i∗k,n−−−→ R∗
k −−−→ 0

Theorem 4.2.2 shows that
(−1)kDlKPk,l ≡ KP∗

l,kDk. (4.8)

A consequence of this is:

Corollary 4.2.1. For any k, l ∈ N we have that

(i) The spaces Dom(KPl,k)∗ and Ran(KPk,l) are isomorphic.

(ii) The spaces Ran(KPl,k)∗ and Dom(KPk,l) are isomorphic.

Proof. First note that (X0 ∩ X1)
k ⊂ Dom(Ωk,l) for every k ∈ N. Indeed, given

(x1, . . . , xk) ∈ (X0 ∩ X1)
k we deduce using constant functions that xi ∈ Dom(Ω1,i).

Equivalently, that (0, . . . , 0, xi) ∈ Rl+i. Then using the embeddings il+i,l+k it follows
that

yi = (0, (l+i−1). . . , 0, xi, 0,
(k−i). . . , 0) ∈ Rl+k.

Hence
∑k

i=1 yi = (0, . . . , 0, x1, x2, . . . , xk) ∈ Rl+k, i.e., (x1, . . . , xk) ∈ Dom(Ωk,l).

By Lemma 3.2.2 we deduce that Dom(Ωk,l) is dense in Rk, and thus Ωk,l : Rk → (ℓ∞)l is
a quasilinear map with dense domain. By Proposition A.1.5 we have that

Ran(KP∗
l,k) = Dom(KPl,k)∗ and Dom(KP∗

l,k) = Ran(KPl,k)∗. (4.9)

On the other hand, equation (4.8) implies by Lemma A.1.1 that

Dom((−1)kDlKPk,l) = Dom(KP∗
l,kDk) and Ran((−1)kDlKPk,l) = Ran(KP∗

l,kDk).
(4.10)

Since Dk and (−1)kDl are both isomorphisms, it follows that:

(a1) Dom((−1)kDlKPk,l) and Dom(KPk,l) coincide up to equivalence of norms;

(a2) Ran((−1)kDlKPk,l) and Ran(KPk,l) are isomorphic;

(a3) Ran(KP∗
l,kDk) and Ran(KP∗

l,k) coincide up to equivalence of norms;

(a4) Dom(KP∗
l,kDk) and Dom(KP∗

l,k) are isomorphic.

Using (4.9), (a3), (4.10) and (a2) we deduce (i). The claim (ii) follows by (4.9), (a4),
(4.10) and (a1).

In the particular case l = 1, Corollary 4.2.1 and Proposition 4.1.1 imply that Ran(KPi,1)
is isomorphic to Dom(KP1,i)

∗ = ℓ∗fi . Thus, the range space Ran(KPi,1) can be identified
with the Orlicz space ℓgi generated by the dual Orlicz function to fi, which in this case is
given by gi(t) = t2 log−2i t (see [71, Example 4.c.1]).

Corollary 4.2.2. For any n > l the operator il,n : Rl → Rn is strictly cosingular.

Proof. By Theorem 4.2.2 we have that il,n = D−1
n ◦ π∗

n,l ◦
(
(−1)kDl

)
. Since πn,l is strictly

singular by Corollary 4.1.4, we deduce by Proposition B.0.1 that π∗
n,l is strictly cosingular.

The result follows because SC is an operator ideal [78, 1.10].
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4.2.1 Involution in L(Rn)

Theorem 4.2.1 enables us to define an involution on the space of bounded operators
L(Rn) analogous to the Hilbert space adjoint. Precisely, consider the bilinear map-
ping ωn : Rn × Rn → C induced by (4.7), i.e., the map given for any (x, y) =(
(xn−1, . . . , x0), (yn−1, . . . , y0)

)
∈ Rn ×Rn by

ωn(x, y) = Dn(x)(y) =
n−1∑
i=0

(−1)i⟨xi, yn−i−1⟩.

Given any operator T : Rn → Rn and x ∈ Rn, the map ωn(x, T (·)) : Rn → C defines a
bounded linear functional in Rn by Theorem 4.2.1. Then there exist x′ ∈ Rn such that

ωn(x′, y) = ωn(x, Ty) for all y ∈ Rn.

Since ωn is bilinear, this defines a map T+ : Rn → Rn given by T+x = x′ satisfying

ωn(x, Ty) = ωn(T+x, y) for all x, y ∈ Rn. (4.11)

The preceding comments just show that, for any T ∈ L(Rn), the following diagram is
commutative:

Rn
Dn−−−→ R∗

n

T+

y yT ∗

Rn
Dn−−−→ R∗

n

and thus
T+ = D−1

n T ∗Dn. (4.12)

If we assume the convention that the duality ⟨x, y⟩ is sesquilinear on x and linear on y,
then the map Dn : Rn → R∗

n is an antilinear isomorphism (meaning that it is linear and
conjugate homogeneous) in the same way as the natural isomorphism H → H∗ between a
Hilbert space ant its dual. By (4.12), T+ is linear being the composition of two antilinear
maps. Note that for any T,W ∈ L(Rn) and α ∈ C we have that

(T + W )+ = T+ + W+ and (αT )+ = αT+.

It is also clear that (WT )+ = T+W+. Moreover, since ωn(x, y) = (−1)n+1ωn(y, x)we
deduce that the map T 7→ T+ defines an involution on L(Rn): for any x, y ∈ Rn we have

ωn(T++x, y) = ωn(x, T+y) = (−1)n+1ωn(T+y, x) = (−1)n+1ωn(y, Tx) = ωn(Tx, y).

Hence ωn

(
(T++ − T )x, y

)
= 0 for all x, y ∈ Rn. Since Dn is an isomorphism we deduce

that (T++ − T )x = 0 for all x ∈ Rn, namely, that T++ = T .

Clearly T+ is bounded if and only if T is. Moreover, T+ inherits most properties of the
dual operator T ∗. For instance:

� T+ has closed range if and only if T has.

� T+ is an isomotphic embedding if and only if T is onto.

� T+ ∈ Φ+ if and only if T ∈ Φ−. In the case T+ = T , T ∈ Φ+ implies T ∈ Φ.
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To grasp some ideas about how the involution + works let us see how the matrix represen-
tation of an operator on Rn changes through +. For the sake of clarity, let us restrict our-

selves to the space Rn
n defined as the span of the first n2 vectors unm+l = (0, . . . ,

(l)
em, . . . , 0)

of the canonical basis. Equivalentely,

Rn
n = {x = (xn−1, . . . , x0) ∈ Cn2

: ∥(xn−1, . . . , x1)− KP1,n−1(x0)∥Rn
n−1

+ ∥x0∥ℓn2 <∞}

where xl = (xi
l)
n
i=1 and

KP1,n−1(x0) =
((

xl
0 logn−1 |xl

0|
∥x0∥

)n
l=1

, . . . ,
(
xl
0 log

|xl
0|

∥x0∥
)n
l=1

)
∈ C(n−1)n.

An operator T : Rn
n → Rn

n is given by an n× n matrix of the forma11 · · · a1n
...

. . .
...

an,1 · · · ann

 (4.13)

where each entry aij represents also a n × n matrix on Cn. If we consider the duality
⟨·, ·⟩ on ℓn2 , then given any (xn−1, . . . , x0), (yn−1, . . . , y0) ∈ Rn

n, we may consider on Rn
n the

same duality map as in the infinite dimensional case

ωn

(
(xn−1, . . . , x0), (yn−1, . . . , y0)

)
=

n−1∑
i=0

(−1)i⟨xi, yn−i−1⟩.

We show now the matrix representation of T+. Note that

ωn

(
(xn−1, . . . , x0), T (yn−1, . . . , y0)

)
= ωn

(
(xn−1, . . . , x0), (

n−1∑
j=0

a1,j+1yn−j−1, . . . ,
n−1∑
j=0

an,j+1yn−j−1)
)

=
n−1∑
i=0

(−1)i⟨xi,
n−1∑
j=0

ai+1,j+1yn−j−1⟩

=
n−1∑
i=0

(−1)i
n−1∑
j=0

⟨xi, ai+1,j+1yn−j−1⟩

=
n−1∑
i=0

(−1)i
n−1∑
j=0

⟨a∗i+1,j+1xi, yn−j−1⟩

=
n−1∑
j=0

[ n−1∑
i=0

(−1)i⟨a∗i+1,j+1xi, yn−j−1⟩
]

=
n−1∑
j=0

[
⟨
n−1∑
i=0

(−1)ia∗i+1,j+1xi, yn−j−1⟩
]

=
n−1∑
j=0

(−1)j(−1)j
[
⟨
n−1∑
i=0

(−1)ia∗i+1,j+1xi, yn−j+1⟩
]

=
n−1∑
j=0

(−1)j
[
⟨
n−1∑
i=0

(−1)i+ja∗i+1,j+1xi, yn−j+1⟩
]

= ωn

(
T+(xn−1, . . . , x0), (yn−1, . . . , y0)

)
,
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where T+ : Rn
n → Rn

n is the linear map defined by the matrix

a∗n,n −a∗n−1,n a∗n−2,n · · · (−1)na∗2,n (−1)n+1a∗1,n
−a∗n,n−1 a∗n−1,n−1 −a∗n−2,n−1 a∗n−3,n−1 · · · (−1)na∗1,n−1

a∗n,n−2 −a∗n−1,n−2 a∗n−2,n−2
. . . . . . · · ·

... a∗n−1,n−3
. . . a∗3,3 −a∗2,3 a∗1,3

(−1)na∗n,2
...

. . . −a∗3,2 a∗2,2 −a∗1,2
(−1)n+1a∗n,1 (−1)na∗n−1,1 · · · a∗3,1 −a∗2,1 a∗1,1


(4.14)

Thus, if T : Rn
n → Rn

n comes defined by a matrix with coefficients (ai,j) then the co-
efficientes of the matrix defining T+ are ((−1)i+ja∗n−j+1,n−i+1). This means that if we
restrict ourselves to vectors formed by any diagonal entries of the matrix (4.13), say

a = (ai,i+c)
n−|c|
i=1 where c ∈ {−n + 1, . . . , n − 1}, then duality just reverse the ordering of

(−1)ca.

A similar argument can be applied to settle the infinite dimensional case (see [30]): every
operator in T : Rn → Rn admits a representation of the form

T =


α1 β1 δ1 · · · ε
γ1 α2 β2 δ2 · · ·
... γ2 α3 β3 δn−2

π1
. . . γ3 α4 βn−1

φ π2 · · · γn−1 αn

 (4.15)

where all entries are linear maps between suitable sequence spaces (see the beginning
of Section 1.2 for a discussion in the case n = 2). If we represent T with respect to
the canonical basis (ul)l∈N of Rn, then we can apply to (4.15) the preceding calculations
shown for (4.13) and (4.14). Thus, it follows that the operator T+ is

α∗
n −β∗

n−1 δ∗n−2 · · · (−1)n+1ε∗

−γ∗
n−1 α∗

n−1 −β∗
n−2 δ∗n−3 · · ·

... −γ∗
n−2 α∗

n−2 −β∗
n−3 δ∗1

(−1)nπ∗
2

. . . −γ∗
n−3 α∗

n−3 −β∗
1

(−1)n+1φ∗ (−1)nπ∗
1 · · · −γ∗

1 α∗
1

 (4.16)

(L(Rn),+) is not a C∗-algebra because it does not satisfy the identity

∥T+T∥ = ∥T+∥∥T∥ = ∥T∥2 for any T ∈ L(Rn). (4.17)

Indeed, the operator T = i1,nπn,1 : Rn → Rn is given by T (xn−1, , . . . , x0) = (x0, 0, . . . , 0).
It is inmediate that if Iℓ2 denotes the identity map on ℓ2, then T has the matrix repre-
sentation 

0 0 · · · 0 Iℓ2
0 0 0 · · · 0
... 0 0 0

...

0
. . . 0 0 0

0 0 · · · 0 0
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Therefore, either by a direct calculation or by (4.16), we deduce that T+ = −T . Since
T 2 = 0 we conclude that (4.17) fails. We will prove in Section 4.3 that SS(Rn) is a closed
+-subalgebra of L(Rn), and thus (L(Rn)/SS(Rn),+) is an algebra. However, it is still
unsettled whether such quotient algebra is a C∗-algebra.

Let us see an application of the previous duality results:

Proposition 4.2.1. Suppose that T : Rn → Rn is the linear map

T =


α1 β1 δ1 · · · ε
... α2 β2 δ2 · · ·
γ1

. . . α3 β3 δn−2

π1 γ2
. . . α4 βn−1

φ π2 γ3 · · · αn

 (4.18)

where all entries are scalar multiples of the identity map. Then T is bounded if and only
if is of the form 

α β δ · · · ε
0 α β δ · · ·
... 0 α β δ

0
. . . 0 α β

0 0 · · · 0 α

 (4.19)

Proof. To see that (4.19) is bounded note that we can decompose (4.19) as a sum αI +∑n−1
i=1 ηiAi where ηi are scalars and

Ai =


0 · · · I · · · 0
0 0 · · · I · · ·
... 0 0 · · · I

0
. . . 0 0 · · ·

0 0 · · · 0 0


is the linear map having all null entries except at the i-th superdiagonal (defined by
elements ak,l such that |k − l| = i − 1). We have that Ai = in−i,n ◦ πn,n−i for each
1 ≤ i ≤ n− 1, hence (4.19) is bounded being a sum of bounded operators.

We will prove the converse by induction on n; the case n = 1 has nothing to prove, while
the case n = 2 is the Johnson-Lindenstrauss-Schechtman Theorem (cf. Corollary 1.2.3).
Thus, we assume that the result is true for Rn−1. Consider the bounded homogenous
map B : ℓ2 → Rn given by B(x) = (KP1,n−1(x), x) = (KPn−1(x), . . . ,KP(x), x). If (4.18)
is bounded then

φKP + π2 = πn,1 ◦ T ◦ i2,n ◦ πn,2 ◦B : ℓ2 → ℓ2

is bounded; hence, φ = 0. By the same reason, the map

π2 KP + γ3 = πn,2 ◦ T ◦ i3,n ◦ πn,3 ◦B : ℓ2 → ℓ2

is bounded. Thus π2 = 0. We can work inductively showing that all entries of the last row
are null with the exception of αn. This implies that the restriction of T to Rn−1 defines
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a (n− 1)× (n− 1) scalar bounded matrix on Rn−1, and thus we can apply induction on
the upper-left (n− 1)× (n− 1) submatrix to conclude that T has the form

α β · · · θ1 ε
0 α β · · · θ2
... 0 α β · · ·
0

. . . 0 α βn−1

0 0 · · · 0 αn

 (4.20)

Now we can consider the +-adjoint of (4.20) given by


αn −βn−1 · · · (−1)nθ2 ε

0 α −β · · · (−1)nθ1
... 0 α −β · · ·
0

. . . 0 α −β
0 0 · · · 0 α


Applying induction once again we deduce that T is equal to

α β · · · θ1 ε
0 α β · · · θ2
... 0 α β · · ·
0

. . . 0 α β
0 0 · · · 0 α

 (4.21)

Using the same decomposition argument as in the initial part of the proof we deduce that
(4.21) is bounded if and only if

V =


0 0 · · · θ1 0
0 0 0 · · · θ2
... 0 0 0 · · ·
0

. . . 0 0 0
0 0 · · · 0 0

 (4.22)

is bounded, which means that for any x ∈ ℓ2 we have

∥(θ1 − θ2)KP(x)∥ℓ2 ≤ ∥(θ1KP(x), θ2x)∥Z2 ≤ Cn∥(θ1KP(x), θ2x, 0, . . . , 0)∥n
= Cn∥V ◦B(x)∥n ≤ Kn∥x∥ℓ2 .

and this finally forces θ1 = θ2.

Proposition 4.2.1 is a natural generalization of the Johnson-Lindenstrauss-Schechtman
Theorem (Corollary 1.2.3) to Rn. Note also that the proof essentially depends on two
facts: KP is unbounded and the duality identity (4.16).
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4.2.2 Symplectic operators

Let T : Rn → Rn be a bounded operator. We say that T is a symplectic operator if
preserves ωn:

ωn

(
Tx, Ty

)
= ωn(x, y), for all x, y ∈ Rn. (4.23)

The meaning of the name will be clarified in forthcoming Section 4.4. Taking into account
that ωn separates duals and that

ωn(Tx, Ty) = ωn(T+Tx, y), for all x, y ∈ Rn,

it follows that operator T is symplectic if and only if T+T = I. Moreover, any symplectic
operator has complemented range: the map P = TT+ defines a bounded projection
onto T (Rn). In the paper [30] we studied symplectic operators on Banach spaces. A
simple example of symplectic operator is the following one: take a bijection σ : N → N
and a sequence of signs (εi)i ⊂ {−1, 1}N. Then the isometry τ : ℓ∞ → ℓ∞ given by
τ(x) =

(
εixσ(i)

)
i∈N is interpolating for (ℓ∞, ℓ1). Then the induced operator

τn =


τ

. . .

τ
τ

τ


is symplectic by (4.16). More elaborated and crucially important examples are the block
operators:

Theorem 4.2.3. Let (un)n∈N be a sequence of normalized blocks in ℓ2. Then the block
operator T u

n is symplectic, i.e.,

ωn(T u
nx, T

u
ny) = ωn(x, y) for all x, y ∈ Rn.

In particular, block operators have complemented range.

Proof. It is enough to prove that T u
n preserves ωn on the basis vectors (4.2). To avoid

confussion with notation, let us denote by xi,k the vector of Rn having ei at the kth

position and zeroes in the other coordinates:

xi,k =
(
0, . . . , 0,

(k)
ei , 0, . . . , 0

)
, 0 ≤ k ≤ n− 1, i ∈ N.

Thus, we shall prove that

ωn(T u
n(xi,k), T u

n(xj,l)) = ωn(xi,k, xj,l). (4.24)

First, suppose that k + l = n− 1. By definition

ωn(T u
n(xi,k), T u

n(xj,l))

= ωn

(( 2k−1

(k − 1)!
ui logk−1 |ui|, . . . , ui, . . . , 0

)
,
( 2l−1

(l − 1)!
uj logl−1 |uj|, . . . , uj, . . . , 0

))
= (−1)k⟨ui, uj⟩ = ωn(xi,k, xj,l).
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If k + l < n− 1 then (4.24) cancels out as we are multiplying by zeroes. If k + l > n− 1
then ωn(xi,k, xj,l) = 0 and (4.24) becomes, after setting m = k + l − (n− 1),

ωn(T u
n(xi,k), T u

n(xj,l)) (4.25)

= (−1)k
〈
ui,

2m

m!
uj logm |uj|

〉
+ (−1)k+1

〈21

1!
ui log |ui|,

2m−1

(m− 1)!
uj logm−1 |uj|

〉
+ · · ·+ (−1)k+m

〈2m

m!
ui logm |ui|, uj

〉
= (−1)k

m∑
p=0

(−1)p
〈2p

p!
ui logp |ui|,

2m−p

(m− p)!
uj logm−p |uj|

〉
.

If i ̸= j then all summands in (4.25) are null because ui and uj have disjoint support. In
particular ⟨ui, uj⟩ = 0 and the result follows. If i = j then note that

〈2p

p!
ui logp |ui|,

2m−p

(m− p)!
ui logm−p |ui|

〉
=

2m

p!(m− p)!

N∑
ν=0

uν
i u

ν
i logm |uν

i |.

Thus, for some constant C(ui) depending on ui, (4.25) becomes

(−1)kC(ui)
[ m∑

p=0

(−1)p
2m

p!(m− p)!

]
= (−1)kC(ui)

[ m∑
p=0

(−1)p
2m

m!

(
m

p

)]
= (−1)kC(ui)

2m

m!

[
m∑
p=0

(−1)p
(
m

p

)]
.

Now, the Binomial Theorem 0 = (1−1)m =
∑m

k=0

(
m
k

)
1m−k(−1)k cancels out all terms.

4.3 Operators on Rn

Operators on ℓp spaces behave as follows: given a Banach space X and 1 ≤ p < ∞, any
operator T : ℓp → X is either strictly singular or invertible on some complemented copy
of ℓp. The proof reduces to classical facts about basic sequences in ℓp (see [3, Section 2.1]
for the following claims): if T is not strictly singular, then we can assume that it is an
isomorphism on some infinite dimensional subspace E ⊂ ℓp generated by a normalized
block basic sequence of the canonical basis (en)n. But any such space E is complemented
and isometrically isomorphic to ℓp. Kalton proved in [59] that operators on Z2 satisfy the
same property (see Proposition 1.1.2). One of the main results of this section shows that
the same is true for Rn: every operator T : Rn → X is strictly singular or invertible on
some complemented copy of Rn.

Reduced to its bare bones, the proof essentially depends on two facts:

(1) The quotient map πn,n−1 : Rn → Rn−1 is strictly singular (cf. Corollary 4.1.4).

(2) The existence of a large family of isomorphic embeddings with complemented range
formed by the so called block operators T v

n .
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Fact (1) is a global to local principle: as a consequence, T : Rn → X is strictly singular
if and only if T|ℓ2 : ℓ2 → X is strictly singular. Thus, one has that T is invertible on some
subspace W ⊂ ℓ2 generated by some normalized block basic sequence w. On the other
hand, fact (2) will be used as a local to global principle: once we have the subspace W ⊂ ℓ2
on which T is invertible, we can consider the associated block operator Tw

n ∈ L(Rn) and
obtain that TTw

n is invertible on the whole ℓ2 ⊂ Rn. And this is strong enough to force the
desired property. Using the results about operators we will obtain several consequences
on the structure of Rn which we study in further subsections: unconditional structure,
operator ideals, Fredholm operators and a generalized version to Rn of Proposition 1.2.5
and the hyperplane problem for Z2.

We begin with an important result that will be used in this chapter. It was noted by
Kalton [59] for Z2:

Proposition 4.3.1. If T : Rn → Rn is not strictly singular then there exists α ̸= 0 and
block operators Tw

n and T v
n such that TTw

n − αT v
n is strictly singular.

Proof. Since T : Rn → Rn is not strictly singular, by Corollary 4.1.5 we deduce that T
is not strictly singular in ℓ2. Thus, there exist some infinite dimensional subspace Y ⊂ ℓ2
such that T |Y is an isomorphism. Using the Bessaga-Pe lczyński Selection Principle [3,
Prop. 1.3.10], we can assume that Y is generated by a normalized block basic sequence
(wm)m. If we denote by zn = (wn, 0, . . . , 0) ∈ i1,n(ℓ2) ⊂ Rn, it follows that the sequence
(Tzm)m ⊂ Rn is a seminormalized basic sequence equivalent to the canonical basis of
ℓ2. By Corollary 4.1.2 we deduce that ∥πn,n−1Tzm∥ → 0. Hence, there exist a sequence
(xm)m ⊂ i1,n(ℓ2) ⊂ Rn such that ∥xm − Tzm∥ → 0. Thus, passing again to subsequences
and using a perturbation argument we have that

∥xm − Tzm∥ ≤ 2−m,

where (xm)m is basic and seminormalized (since (Tzn)n is) in i1,n(ℓ2). By Bessaga-
Pe lczyński selection principle and passing to subsequences yet again, we deduce that
there exist some seminormalized block basic sequence (um)m of (en)n ⊂ i1,n(ℓ2) such that

∥Tzm − (um, 0, . . . , 0)∥ ≤ 2−m.

Now observe that the sequence (∥un∥)n is bounded on R and such that

0 < α = inf ∥un∥ ≤ sup ∥un∥ ≤ β <∞.

Thus, there exist a converging subsequence (∥unk
∥)k; we may assume that it converges to

α. Passing to a subsequence we can ssume that |∥un∥ − α| ≤ 2−n. It follows then∥∥∥Tzn − α
( un

∥un∥
, 0 . . . , 0

)∥∥∥ =
∥∥∥Tzn − (un, 0, . . . , 0) + (un, 0, . . . , 0)− α

( un

∥un∥
, 0, . . . , 0

)∥∥∥
≤ ∥Tzn − (un, 0, . . . , 0)∥

+
∥∥∥∥un∥

( un

∥un∥
, 0, . . . , 0

)
− α

( un

∥un∥
, 0, . . . , 0

)∥∥∥
≤ 2−n + |∥un∥ − α| ≤ 2−n+1.

Summing all up, passing to subsequences if necessary, we deduce that there exist normal-
ized block basic sequences (wm)m and (vm)m =

(
um

∥um∥

)
m

of (en)n ⊂ ℓ2, and α ̸= 0 such
that

∥T (wm, 0, . . . , 0)− α(vm, 0, . . . , 0)∥ ≤ 2−m. (4.26)
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Define Tw
n and T v

n as the block operators associated to the sequences (wm)m and (vm).
Then

∥TTw
n (en, 0, . . . , 0)− αT v

n(en, 0, . . . , 0)∥ = ∥T (wm, 0, . . . , 0)− α(vm, 0, . . . , 0)∥ ≤ 2−m.

Define tn = (TTw
n − αT v

n)(en, 0, . . . , 0) ∈ Rn and consider the following operator K̂ given
by

K̂(x, . . . , 0) =
∞∑
n=1

(en, . . . , 0)∗
(
(x, . . . , 0)

)
tn, for each (x, . . . , 0) ∈ ℓ2 ⊂ Rn.

Since
∑∞

n=1 ∥(en, . . . , 0)∗∥∥tn∥ =
∑∞

n=1 ∥tn∥ < ∞ we have that K̂ is nuclear. If we
denote by K : Rn → Rn the natural nuclear extension to Rn, then K is compact and
(TTw

n −αT v
n −K)(ℓ2) = 0, so TTw

n −αT v
n −K is stricty singular by Corollary 4.1.5. Since

K is compact, it follows that TTw
n − αT v

n is strictly singular.

We will use several times the following classical result about complemented subspaces.
See [92, 1.1] or [2, 2.2] for a proof:

Lemma 4.3.1. Let T : X → Y be a bounded operator between two Banach spaces. If
M ⊂ X is a closed subspace such that T |M is an isomorphism and Y = T (M)⊕N , then
X = M ⊕ T−1(N).

We prove now the main result of this section:

Theorem 4.3.1.

� Every operator T : Rn → X into any Banach space X is either strictly singular, or
an isomorphism on a complemented copy of Rn.

� Every operator T : Rn → Rn is strictly singular or an isomorphism on a comple-
mented copy E of Rn such that T (E) is also complemented.

Proof. For the first part, let us assume that T : Rn → X is not strictly singular. Then it
follows by Corollary 4.1.5 that T ◦ i1,n : ℓ2 → X is not strictly singular. We distinguish
two cases: asume first that T ◦ i1,n is an isomorphism and consider the following diagram:

ℓ2 ℓ2

0 Rn X ⊕Rn X 0

0 Rn−1 PO X 0

i1,n i1,n

(T,1)

πn,n−1 Q

where i1,n(x) = (Tx, i1,nx). Since the diagram is commutative and πn,n−1 is strictly
singular, we deduce that Q(T, 1) is strictly singular. Now, by definition we have that
Q(T, 1) = Q(T, 0) + Q(0, 1) and Q(0, 1) is an embedding. Indeed, we can assume after
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normalization that ∥(T ◦ i1,n)−1∥ ≤ 1. From this it follows

∥Q((0, x))∥ = inf
y∈ℓ2
∥(0, x)− i1,n(y)∥ = inf

y∈ℓ2
∥(0, x)− (Ty, y)∥

= inf
y∈ℓ2
∥(−Ty, x− y)∥ = inf

y∈ℓ2
{∥Ty∥+ ∥x− y∥}

≥ inf
y∈ℓ2
{∥T−1∥−1 ∥y∥+ ∥x∥ − ∥y∥} ≥ inf

y∈ℓ2
{∥x∥+ (∥T−1∥−1 − 1)∥y∥}

≥ ∥x∥.

In particular, Q(0, 1) is an upper semi-Fredholm operator, hence Q(T, 0) = Q(T, 1) −
Q(0, 1) is also an upper semi-Fredhom operator by Proposition B.1.2. Thus, Q(T, 0) it is
an isomorphism on some finite codimensional subspace of Rn. Hence, the same is true
for T , and since Rn is isomorphic to its kn-codimensional subspaces, we conclude that T
is an isomorphism on a complemented subspace isomorphic to Rn. On the other hand,
if T ◦ i1,n is not an isomorphism on the whole ℓ2, then there exist a infinite dimensional
subspace W ⊂ ℓ2 generated by a normalized block basic sequence (wn)n of (en)n such that
T |W is an isomorphism. Consider the operator TTw

n : Rn → X, where Tw
n is the block

operator associated to (wn)n. Then TTw
n ◦ i1,n = T |W is an isomorphism on ℓ2, and by

the first part of the proof it is an isomorphism on a n-codimensional subspace of E ⊂ Rn.
Hence T is an isomorphism on Tw

n (E), which is a complemented isomorphic copy of Rn.

To prove the second part we assume again that T : Rn → Rn is not strictly singular.
Then by Proposition 4.3.1 there exist block operators Tw

n and T v
n , and α ̸= 0 such that

TTw
n −αT v

n is strictly singular. Then by Theorem 4.2.3 we have that (T v
n)+T v

n = I, hence

α−1(T v
n)+TTw

n = I + S,

where S is strictly singular. By Proposition B.1.2 we deduce that α−1(T v
n)+TTw

n is Fred-
holm of index 0. Then there exist decompositions

Rn = F ⊕M and Rn = (T v
n)+TT v

n(F )⊕N,

where M and N are both of the same finite dimension and (T v
n)+TTw

n is an isomoprhism
on F . Then TTw

n is an isomorphism on F , hence T is an isomorphism on Tw
n (F ) = E.

Now observe that both E and T (E) are complemented: since Rn = (T v
n)+TTw

n (F ) ⊕ N
and (T v

n)+ is an isomorphism on TTw
n (F ), it follows by Lemma 4.3.1 that:

Rn = TTw
n (F )⊕

(
(T v

n)+
)−1

(N) = T (E)⊕
(
(T v

n)+
)−1

(N). (4.27)

Similarly, since T is an isomorphism on E, it follows again by Lemma 4.3.1 and (4.27)
that

Rn = E ⊕
(
(T v

n)+T
)−1

(N).

To end the proof just note that, since F is finite codimensional in Rn and Rn is isomorphic
to its mn-codimensional subspaces, F contains a complemented subspace L isomorphic
to Rn. Then T is an isomorphism on E ′ = Tw

n (L) ⊂ Tw
n (F ) = E and both T (E ′) and E ′

are complemented because E and T (E) were.

Corollary 4.3.1. Every operator T : Rn → Rk is strictly singular for every k < n.

Proof. This is a direct consequence of Theorem 4.3.1 and Proposition 4.1.2.
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Corollary 4.3.1 is blatantly false for general Rochberg spaces. The case of weighted Hilbert
spaces is a simple counterexample since the differential map Ω1,n−1 : R1(ℓ2(w0), ℓ2(w1))1/2 ↷
Rn−1(ℓ2(w0), ℓ2(w1))1/2 is linear, and thus all Rochberg spaces are isomorphic to each other
by induction on n (see [31, Section 5]).

Corollary 4.3.2. Every infinite dimensional complemented subspace of Rn contains a
further complemented subspace isomorphic to Rn.

An inmediate consequence of Corollary 4.3.2 is:

Corollary 4.3.3. Rn has no complemented copies of Rk for any k < n.

Corollary 4.3.4. If Rn = Rn ⊕ F with F infinite dimensional, then F is isomorphic to
Rn.

Proof. It follows from Pe lczyński’s decomposition argument [3, Th. 2.2.3] that if F is a
complemented subspace of Rn and F ⊕F ≃ F then F is isomorphic to Rn. By Corollary
4.3.2 one has that F ≃ Rn ⊕N , and therefore by hypothesis

F ⊕ F ≃ F ⊕Rn ⊕N ≃ Rn ⊕N ≃ F.

4.3.1 Unconditional structure of Rn

We describe the unconditional structure of Rn. The following result was obtained by
Kalton and Peck in [62, Corollary 6.9] for n = 2 and in [23, Prop. 7.10] for n = 3.

Proposition 4.3.2. Rn has no unconditional basis.

Proof. If (xn)n were an unconditional basis, then (yn)n =
(

xn

∥xn∥

)
n

is also a (non-

necessarily) equivalent unconditional basis. Then by Theorem 4.1.1 the sequence (yn)n
admits a subsequence equivalent to the canonical basis of ℓ2 or some ℓfj for 1 ≤ j ≤ n−1.
Since (yn)n is unconditional, this subspace spanned by the subsequence is complemented
in Rn. Now note that every Orlicz space ℓfj contains a complemented copy of ℓ2; indeed,
if (un)n is a normalized block basic sequence in ℓfj such that limn→∞ ∥un∥∞ = 0 then
(un)n is equivalent to the canonical basis of ℓ2 [69, Lemma 2] and its closed linear span is
complemented [69, Lemma 5]. It follows that Rn contains a complemented copy of ℓ2, a
contradiction with Corollary 4.3.3.

A stronger result can be obtained using the following result of Casazza and Kalton [19,
Th. 3.8]: let X be a Banach space and (Vn)n∈N an unconditional finite dimensional decom-
position of X such that supn∈N dimVn <∞. If X has l.u.st then X has an unconditional
basis.

Theorem 4.3.2. Rn has no l.u.st. In particular, Rn is not complemented in a Banach
lattice.

Proof. As we noted in (4.3), Rn has an UFDD (Xm)m∈N where

Xm = span{(em, 0, . . . , 0), . . . , (0, . . . , 0, em)}

and supm dimXm = n <∞. Thus, by the aforementioned result by Casazza and Kalton,
we deduce that Rn has l.u.st if and only if it has an unconditional basis. By Proposition
4.3.2 it follows that Rn does not have l.u.st.
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This last result was proved for n = 2 by Johnson, Lindenstrauss and Schechteman in [57,
Th. 4]. Their approach can be generalized to Rn using Proposition 4.2.1 (see also [31,
Th. 6.8]), which provides an alternative proof of Theorem 4.3.2.

Taking into account that a complemented subspace of Banach space with l.u.st also have
l.u.st, combining Corollary 4.3.2 with Theorem 4.3.2 yields:

Corollary 4.3.5. Rn has no complemented copies of Banach spaces with l.u.st. In par-
ticular, Rn contains no complemented Banach lattice.

4.3.2 Operator ideals in L(Rn)

In this subsection we will see that the lattice of closed ideals in L(Rn) is quite simple due
to Theorem 4.3.1. In particular, using that Rn is isomorphic to its dual we shall prove that
strictly singular and strictly cosingular operators on Rn coincide. The following result is
the basic ingredient for the proof; the argument is a modification of [99, Th. 6.2].

Lemma 4.3.2. Assume that T : Rn → Rn is not strictly singular. Then there exist
operators A,B ∈ L(Rn) such that IRn = ATB.

Proof. By the second part of Theorem 4.3.1 we have that if T is not strictly singular,
then it is an isomorphism on some complemented subspace E isomorphic to Rn and such
that T (E) is also complemented. Let W : Rn → T (E) be any isomorphism and i denote
the corresponding inclusion. Then we have a commutative diagram of the form

Rn
T−−−→ Rn

i

x xi

E
T |E−−−→ T (E)

W←−−− Rn

Then IRn = W−1 ◦ T ◦
(
(T |E)−1 ◦W

)
. Now observe that defining A = W−1 and B =

(T |E)−1 ◦W ends the proof. Indeed, we have that W−1 : T (E) → Rn, and since T (E)
is complemented we can extend it to an operator (which we still denote by) W−1 on Rn.
On the other hand (T |E)−1 ◦W : Rn → E and E ⊂ Rn, so (T |E)−1 ◦W ∈ L(Rn).

Recall that a proper ideal A(X) is the unique maximal ideal if it contains every proper
ideal of X.

Theorem 4.3.3.

(1) SS(Rn) = SC(Rn) is the unique maximal ideal of L(Rn).

(2) K(Rn) ⊊ SS(Rn).

Proof. (1) If T ∈ SC(Rn) then by Theorem 4.3.1 it follows that T ∈ SS(Rn); indeed, if
T is not strictly singular then by Lemma 4.3.2 we deduce that the identity I = ATB is
strictly cosingular by the ideal property of SC, which is impossible. The other inclusion
is also direct applying duality: if T ∈ SS(Rn) then T ∗ ∈ SC(R∗

n). Since T+ = D−1
n T ∗Dn

we deduce that T+ ∈ SC(Rn) by the ideal property of SC. Then by the first part of the
proof we conclude that T+ ∈ SS(Rn). Then applying duality once again we deduce that
T ∈ SC(Rn). The fact that SS(Rn) is the only maximal operator ideal follows by Lemma
4.3.2: any ideal A(Rn) which contains a non-strictly singular operator must contain the
identity. To see (2) note that the operator i1,n ◦ πn,1 : Rn → Rn is strictly singular by
Corollary 4.1.4 but it is not compact (consider the sequence (0, . . . , 0, en) ∈ Rn).
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A useful consequence of Theorem 4.3.3 is that T ∈ SS(Rn) if and only if T+ ∈ SS(Rn).
The following corollary is key to understand the properties of the involution + : L(Rn)→
L(Rn).

Corollary 4.3.6. Let T : Rn → Rn be any operator. If T+T is strictly singular then T
is strictly singular.

Proof. If T is not strictly singular, by Proposition 4.3.1 there exists α ̸= 0 and block
operators Tw

n , T
v
n such that TTw

n = αT v
n + S with S ∈ S(Rn). Since S+ is also strictly

singular, by Theorem 4.2.3 we deduce that

(Tw
n )+T+TTw

n = (TTw
n )+TTw

n = (α(T v
n)+ + S+)(αT v

n + S) = α′(T v
n)+T v

n + S ′ = α′I + S ′,

where S ′ ∈ S(Rn). Since T+T is strictly singular, this implies that the identity I is
strictly singular, a contradiction.

As we explained in Appendix B.1, both operator ideals SS and SC are contained in the
operator ideal In of inessential operators, which coincides with the perturbation class of
Fredholm operators. Thus, using Theorem 4.3.3 we can give a complete answer to the
Perturbation Class Problem for the Rochberg spaces Rn (see the diagram in Section B.1):

Corollary 4.3.7. PΦ(Rn) = PΦ+(Rn) = PΦ−(Rn) = SS(Rn).

We stress the fact that Rn does not satisfy the usual hypothesis (see [51, 49]) that imply
the thesis of Corollary 4.3.7.

To end this subsection we study how strictly singular relate to compact operators on Rn.
More precisely, note that the example T = i1,n ◦ πn,1 of non compact strictly singular
operator satisfies that T 2 = 0. In fact, the operator S = in−1,n ◦ πn,n−1 is also strictly
singular, not compact, and such that Sn−1 = T . Thus, if we compose S with itself n times,
the operator is 0 (in particular compact). This last fact generalizes to: the composition of
n strictly singular operators on Rn is compact. To show it, we introduce some notation:

Definition 1. Let us say that a seminormalized basic sequence (xn)n ⊂ Rn has type fj,
for 0 ≤ j ≤ n− 1, if it is equivalent to the canonical basis of ℓfj , where ℓf0 = ℓ2.

The following result shows the behaviour of type fj sequences under the action of strictly
singular operators. What we obtain is that any strictly singular operator acts like a
decreasing shift on the type of a seminormalized basic sequence, meaning that (Sxn)n
must be norm null or have a lower type than that of (xn)n whenever S ∈ SS(Rn).

Lemma 4.3.3. Let (xn)n be a seminormalized basic sequence sequence of type fk and
S ∈ SS(Rn). Then (Sxn)n has a norm null subsequence or a seminormalized basic
subsequence of type fj where j < k.

Proof. Let (xn)n be of type fk for some 0 ≤ k ≤ n − 1 and assume that (Sxn)n has no
norm-null subsequence. Then passing to a subsequence que have that ∥Sxn∥ ≥ ε > 0.
Thus, (Sxn)n is seminormalized and weakly null since S is bounded and (xn)n is basic in a
reflexive space, hence shrinking. Using the Bessaga-Pe lczyński selection principle we can
assume that (Sxn)n is seminormalized and basic. By Theorem 4.1.1 we have that (Sxn)n
has a (seminormalized basic) subsequence (Sxnl

)l of type fj for 0 ≤ j ≤ k − 1. Indeed,
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(Sxnl
)l can not be of type fk because S is strictly singular. Moreover, we have the chain

of continuous and proper inclusions

ℓfn−1 ⊂ ℓfn−2 ⊂ · · · ⊂ ℓf1 ⊂ ℓ2 (4.28)

and those spaces are not isomorphic. Then, if (Sxnl
)l were of type fj por some j > k

then, up to a subsequence,

∥
∑

alel∥ℓfj ∼ ∥
∑

alSxnl
∥ ≤ ∥S∥∥

∑
alxnl

∥ ∼ ∥
∑

alel∥ℓfk .

Since by (4.28) we have the inequality ∥x∥ℓfk ≤ ∥x∥ℓfj , we conclude that the bases of ℓfk
and ℓfj are equivalent, a contradiction.

Compare the following theorem with known results [48] on Lp spaces:

Theorem 4.3.4. If S1, . . . , Sn ∈ SS(Rn) then S1 · · ·Sn ∈ K(Rn).

Proof. Recall that an operator T on a reflexive Banach space is compact if and only if
for every normalized weakly null sequence (xn)n, we have that (Txn)n has a norm-null
subsequence.
Let (xn)n be a normalized weakly null sequence. Then passing to a subsequence and using
the Bessaga-Pe lczyński selection principle we can assume by Theorem 4.1.1 that (xn)n is
of type fk for some 0 ≤ k ≤ n− 1. Consider now the sequence (S1xn)n. By Lemma 4.3.3
we have two possibilities:

(1) ∥S1xnk
∥ → 0 for some subsequence;

(2) (S1xn)n has a seminormalized basic subsequence of type fj for some j < k.

In the first case S1 is compact an thus the product S1 · · ·Sn is also compact. In the second
case we can consider the sequence (S2S1xn)n and use Lemma 4.3.3 again to reach either
to a norm-null subsequence or to a further subsequence of (S2S1xn)n that is of type fm for
m < j < k. It is clear that this process can be repeated at most n times, the number of
types of basic sequences, until reaching to a norm null subsequence. Thus (S1 · · ·Snxn)n
has a norm-null subsequence, hence S1 · · ·Sn ∈ K(Rn).

4.3.3 Semi-Fredholm operators on Rn

We focus now in studying specific properties of semi-Fredholm operators on Rn, a topic we
considered in [33]. We begin with a result in the spirit of Proposition A.1.4 for Fredholm
operators: the upper semi-Fredholm character of an operator T : X → W on singular
twisted sums only depends on its behaviour on the kernel of the quotient map.

Proposition 4.3.3. Suppose that 0 → Y
i→ X

q→ Z → 0 is a singular sequence. Then
T : X → W is upper semi-Fredholm if and only if Ti : Y → W is upper semi-Fredholm.

Proof. Since i : Y → X is an embedding, the direct implication is inmediate by standard
properties of upper semi-Fredholm operators (cf. Proposition B.1.1). Conversely, suppose
that T /∈ Φ+. Then there exist an infinite dimensional closed subspace M ⊂ X so
that T |M is compact (see Remark 1 in Appendix B.1). Since q : X → Z is strictly
singular, Proposition A.1.2 guarantees the existence of an infinite dimensional subspace
N ⊂ ker(q) = Y and a compact operator K : N →M such that (I + K) : N →M is an
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isomorphic embedding. It follows that Ti|N is compact, hence Ti /∈ Φ+. Indeed, if (yn)n ⊂
N is a bounded sequence then T (I + K)(yn) has a convergent subsequence since T |M is
compact and (I + K)(N) ⊂ M . Taking into account that T (I + K)(yn) = Tyn + TKyn
and that TK is compact, it follows that Tyn has a convergent subsequence.

The following proposition is an analogue of Corollary 4.3.6 for Fredholm operators:

Proposition 4.3.4. If T ∈ Φ+(Rn) then T+T ∈ Φ(Rn).

Proof. Since (T+T )+ = T+T , it is enough to show that T+T ∈ Φ+(Rn). Suppose that
T+T ̸∈ Φ+(Rn). Then by Proposition 4.3.3 and Corollary 4.1.4 it follows that T+T ı1,n ̸∈
Φ+(ℓ2,Rn). Thus, there exists an infinite dimensional closed subspace M ⊂ X so that
T+Ti1,n|M is compact. We can assume that M is generated by a normalized block basic
sequence (wn)n in ℓ2. Therefore, if we denote by iw : ℓ2 → ℓ2 the isometric embedding
defined by iwen = wn, then T+T ı1,niw is compact. Let Tw

n be the block operator associated
to the sequence (wn)n. Since T+TTw

n ı1,nen = T+Ti1,niwen for each n ∈ N, we deduce that
T+TTw

n i1,n is compact; hence T+TTw
n is strictly singular by Proposition A.1.4. Thus

(Tw
n )+T+TTw

n ∈ SS(Rn), hence by Corollary 4.3.6 it follows that TTw
n ∈ SS(Rn), and so

T /∈ Φ+(Rn).

As an application we obtain that all copies of Rn in Rn are complemented:

Theorem 4.3.5. Every subspace of Rn isomorphic to Rn is complemented.

Proof. Let T ∈ L(Rn) an isomorphism into with R(T ) = M . Then T+T ∈ Φ(Rn) by
Proposition 4.3.4 and thus, the subspace N(T+) ∩ R(T ) ⊂ R(T ) is finite dimensional. If
we denote by N the complement

R(T ) = N ⊕
(
N(T+) ∩R(T )

)
then N is finite codimensional on R(T ) = M and T+ is an isomorphism on N . Then
T+(N) is finite codimensional on Rn since T+T is Fredholm; therefore, T+(N) is comple-
mented on Rn and so is N by Lemma 4.3.1. As N is finite codimensional in M , it follows
that M is complemented in Rn.

In fact, not only the range of isomorphic embeddings Rn → Rn are complemented, but
also those of any semi-Fredhom operator:

Theorem 4.3.6. Every semi-Fredholm operator on Rn has complemented kernel and
range.

Proof. If T ∈ Φ+(Rn) then the kernel is finite dimensional, and the range R(T ) is comple-
mented using the arguments of Theorem 4.3.5. If T ∈ Φ−(Rn) then R(T ) is finite codimen-
sional and T ∗ ∈ Φ+(R∗

n). Taking into account that Rn is isomorphic to R∗
n we conclude

that R(T ∗) is complemented using the first part of the theorem, hence N(T ) = ⊥R(T ∗)
is also complemented.
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4.3.4 The hyperplane problem on Rn

Recall Proposition 1.2.5 from Section 1.2.4: if one has a commutative diagram

0 // ℓ2 //

T
��

Z2
//

��

ℓ2 //

S
��

0

0 // ℓ2 // Z2
// ℓ2 // 0

then T − S is compact. Equivalently, the difference between the diagonal entries of any
upper triangular operator (

T □
0 S

)
: Z2 → Z2 (4.29)

is strictly singular. As we explained in Section 1.2.6, the result is closely related to
Johnson-Lindenstrauss-Schechteman Conjecture and the hyperplane problem; its main
point is that any Fredholm operator of the form (4.29) has even index.

We are interested in generalizing to Rn both the JLS-conjecture and the hyperplane
problem. Since Rn is isomorphic to its n-codimensional subspaces, the natural conjecture
that extends the hyperplane problem to this setting is:

Problem 4 (Generalized Hyperplane Problem). Is Rn isomorphic to its k-codimensional
subspaces for 1 ≤ k ≤ n−1? Equivalently, does there exist a Fredholm operator T ∈ L(Rn)
that has index km for 1 ≤ k ≤ n− 1 and m ∈ N?

Obtaining a formulation of JLS-Conjecture in Rn requires some work. Note that given
an upper triangular operator on Rn,

R =


a11 a12 a13 · · · a1,n−1 a1n
0 a22 a23 a24 · · · a2n
0 0 a33 a34 a35 · · ·
0 0 0 · · · · · · · · ·
0 0 0 · · · an−1n−1 an−1n

0 0 · · · 0 0 ann

 ∈ L(Rn)

then, for any k < n, the operator R defines two upper triangular operators on lower
Rochberg spaces: its restriction to Rk

Rk =


a11 a12 a13 · · · a1,k−1 a1k
0 a22 a23 a24 · · · a2k
0 0 a33 a34 a35 · · ·
0 0 0 · · · · · · · · ·
0 0 0 · · · ak−1k−1 ak−1k

0 0 · · · 0 0 akk

 ∈ L(Rk)

and the corresponding induced operator on the quotient space

Rn−k =


ak+1k+1 ak+1k+2 ak+1k+3 · · · ak+1,n−1 ak+1n

0 ak+2k+2 ak+2k+3 ak+2k+4 · · · ak+2n

0 0 ak+3k+3 ak+3k+4 ak+3k+5 · · ·
0 0 0 · · · · · · · · ·
0 0 0 · · · an−1n−1 an−1n

0 0 · · · 0 0 ann

 ∈ L(Rn−k)
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Thus, there is a commutative diagram

0 // Rk
//

Rk

��

Rn
//

R
��

Rn−k
//

KPn−k,k

||

Rn−k

��

0

0 // Rk
// Rn

// Rn−k
//

KPn−k,k

bb 0

.

We obtain now a generalization of Proposition 1.2.5:

Theorem 4.3.7. If R ∈ L(Rn) then Rk −Rk ∈ SS(Rk) for every k < n.

Proof. We work inductively. The case n = 2 is just Proposition 1.2.5. The case n = 3
will help us to explain the strategy: an upper triangular operator

R =

 α β ε
0 γ δ
0 0 η

 ∈ L(R3)

generates the two commutative diagrams:

0 // Z2
//

R2

��

R3
//

R
��

ℓ2

R1

��

// 0

0 // Z2
// R3

// ℓ2 // 0

0 // ℓ2 //

R1

��

R3
//

R
��

Z2

R2

��

// 0

0 // ℓ2 // R3
// Z2

// 0

Since R2 ∈ L(Z2), α− γ is compact by induction; and since R2 ∈ L(Z2), (R2)1− (R2)
1 =

γ − η is compact as well. Therefore α − γ is compact too. Since α − γ is the restriction
of the operator

R2 −R2 =

(
α β
0 γ

)
−
(

γ δ
0 η

)
=

(
α− γ β − δ

0 γ − η

)
to ℓ2, it follows that R2 −R2 must be strictly singular.

Assume the result has been proved for n− 1 and pick R ∈ L(Rn). Then using induction
on Rn−1 and on Rn−1 we deduce, respectively, that

aii − ajj ∈ K(ℓ2) for all 1 ≤ i, j ≤ n− 1

and
aii − ajj ∈ K(ℓ2) for all 2 ≤ i, j ≤ n.

Hence aii − ajj is compact in ℓ2 for any 1 ≤ i, j ≤ n. Given any 1 ≤ k ≤ n− 1, we have
that Rk −Rk equals

a11 a12 a13 · · · a1k
0 a22 a23 · · · a2k
0 0 a33 · · · a3k
0 0 0 · · · · · ·
0 0 0 · · · akk

−


an−k+1n−k+1 an−k+1n−k+2 · · · · · · an−k+1n

0 an−k+2n−k+2 an−k+2n−k+3 · · · · · ·
0 0 · · · · · · · · ·
0 0 · · · an−1n−1 an−1n

0 · · · 0 0 ann


and thus, Rk −Rk is strictly singular in Rk since its restriction to ℓ2 is strictly singular.
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Corollary 4.3.8. Given a commutative diagram

0 // Rn
//

T
��

R2n
//

��

Rn
//

S
��

0

0 // Rn
// R2n

// Rn
// 0

in which T and S are upper triangular operators then T − S is strictly singular.

Corollary 4.3.9. If an upper triangular operator

T =


a11 a12 a13 · · · a1,n−1 a1n
0 a22 a23 a24 · · · a2n
0 0 a33 a34 a35 · · ·
0 0 0 · · · · · · · · ·
0 0 0 · · · an−1n−1 an−1n

0 0 · · · 0 0 ann

 ∈ L(Rn)

is a Fredholm operator, then ind(T ) is a multiple of n.

Proof. Since there is a commutative diagram

0 // ℓ2 //

a11
��

Rn
//

T
��

Rn−1

Rn−1

��

// 0

0 // ℓ2 // Rn
// Rn−1

// 0

we have that T is Fredholm if and only if a11 and Rn−1 are Fredholm, in which case
ind(T ) = ind(a11) + ind(Rn−1). We can reason inductively on Rn−1 to reach that

ind(T ) =
n∑

i=1

ind(aii).

Since the differences aii − ajj are compact for every 1 ≤ i, j ≤ n, the invariance of the
index under compact perturbations (cf. Subsection B.1) implies that ind(aii) = ind(ajj)
and the result follows.

Taking into account Corollary 4.3.9, any Fredholm operator T ∈ L(Rn) of the form
T = S + U , where S ∈ SS(Rn) and U ∈ L(Rn) is upper triangular, has index equal
to a multiple of n. Hence we can formulate a general version of Johnson-Lindenstrauss-
Schechteman as follows:

Conjecture 2 (Generalized JLS-conjecture). Any bounded operator T : Rn → Rn is a
strictly singular perturbation of an upper triangular operator on Rn.

A positive answer to this last problem solves the Generalized Hyperplane Problem dis-
cussed above.
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4.4 Rn is a non trivial symplectic Banach space

In this section we will work with RR
n , the real version of Rn, namely, the subspace of Rn

formed by real sequences (xn−1, . . . , x0) ∈ ℓR∞ which belong to Rn. Since KP preserves
real sequences, this subspace is closed (just use that ℓR2 is closed in ℓC2 and induction on
∥ · ∥n) and defines an analogous short exact sequence

0 −→ RR
l −→ RR

n −→ RR
k −→ 0 (4.30)

to its complex counterpart. Most results proven for Rn also work for its real version. In
particular, if (un)n is a normalized block basic sequence in ℓR2 ⊂ ℓC2 , then the corresponding
block operator T u

n : RR
n → RR

n is bounded on RR
n . Hence the quotient map of (4.30)

is singular using the analogous result to Corollary 4.1.4. Moreover, the bilinear map
ωn : Rn ×Rn → C restricts to real values: if x, y ∈ RR

n then

ωR
n (x, y) = ωn(x, y) =

n−1∑
i=0

(−1)i⟨xi, yn−i−1⟩ ∈ R. (4.31)

By the complex case it follows that DR
n : RR

n → (RR
n)∗ is injective and bounded. Using

that D1 : ℓR2 → (ℓR2 )∗ is an isomorphism, an induction and chasing argument over the
diagram

0 // RR
l

//

(−1)kDl

��

RR
n

//

Dn

��

RR
k

//

Dk

��

0

0 // (RR
l )∗ // (RR

n)∗ // (RR
k )∗ // 0

implies that DR
n : RR

n → (RR
n)∗ is bijective as in the complex setting.

A bilinear map ω : X×X → R on a real Banach space X is said to be a linear symplectic
form if

(1) ω is continuous, i.e., |ω(x, y)| ≤ K∥x∥ ∥y∥ for all x, y ∈ X.

(2) ω is alternating: ω(x, y) = −ω(y, x) for all x, y ∈ X.

(3) the induced map Dω : X → X∗ given by Dω(x)(y) = ω(x, y) is an isomorphism
onto.

In this case, (X,ω) is called a symplectic Banach space.

Any symplectic Banach space is necessarily isomorphic to its dual and reflexive by the
Hahn-Banach Theorem. In fact, one has the following result (see [30, Lemma 2.2] or [59,
pp. 98-99] for an explicit proof):

Lemma 4.4.1. A continuous alternating bilinear map ω on real Banach space X is sym-
plectic if and only if X is reflexive and Dω : X → X∗ is isomorphism into.

There is a direct method to construct symplectic Banach spaces: take any reflexive Banach
space Y and consider E = Y ⊕ Y ∗ under the alternating form ΩY : E ⊕ E → R given by

ΩY [(z, z∗), (w,w∗)] = w∗(z)− z∗(w).

Then (Y ⊕Y ∗,ΩY ) is a symplectic Banach space. Two symplectic Banach spaces (X1, ω1)
and (X2, ω2) are equivalent if there exist a linear isomorphism T : X1 → X2 so that

91



ω2(Tx, Ty) = ω1(x, y) for all x, y ∈ X. Observe that this is the same as saying that the
following diagram is commutative:

X1
T //

Lω1

��

X2

Lω2

��
X∗

1 X∗
2T ∗

oo

A symplectic Banach space (X,ω) is said trivial if it is equivalent to some symplectic
Banach space of the form (Y ⊕ Y ∗,ΩY ).

In the late seventies there were some interest in obtaining specific examples of symplectic
Banach spaces due to their connections with the theory of Banach manifolds (see [63,
98, 30] for a detailed account). Up to that moment, the only known symplectic Banach
spaces were:

� Even finite dimensional Banach spaces.

� The infinite dimensional Hilbert spaces.

� The (trivial) symplectic spaces of the form (Y ⊕ Y ∗,ΩY ) given previously.

Moreover, Weinstein showed in [98, Corollary 5.2] that all symplectic structures on a given
Hilbert space are equivalent, thus trivial. For this reason, Weinstein asked if non-trivial
symplectic Banach space existed at all. According to him, an equivalent way of checking
triviality of symplectic Banach spaces is the following: given a symplectic Banach space
(X,ω), call a subspace F ⊂ X isotropic if

ω(x, y) = 0 for all x, y ∈ F.

A subspace F ⊂ X is a Langrangian subspace if F is isotropic, complemented in X and its
complement is also isotropic. Now, if F is Lagrangian and X is decomposed as X = F⊕G,
then G can be identified with F ∗ via the isomorphism φ : G→ F ∗ defined by

φ(x)(y) = ω(x, y), for any x ∈ G and y ∈ F. (4.32)

Here φ(x) is obtained restricting the induced map Lω : X → X∗ to G and composing
with the projection X∗ → F ∗ (see [98, pp. 336]). It follows that (X,ω) is equivalent
to the trivial symplectic space (F ⊕ F ∗,ΩF ). Conversely, if (X,ω) is equivalent to the
trivial symplectic structure (Y ⊕ Y ∗,ΩY ) via an isomorphism T : X → Y ⊕ Y ∗, then
T−1(Y × {0}) is a Lagrangian subspace of X.

Using this approach, Kalton and Swanson [63] showed that (ZR
2 , ω

R
2 ) is a symplectic Ba-

nach space such that any isotropic subspace is finite dimensional, thus proving that Z2

has no Lagrangian subspace, solving in the negative the question raised by Weinstein.

We studied in [30] symplectic Banach spaces and, in particular, the Rochberg spaces RR
n

were added to the list of non-trivial symplectic spaces. To see this observe first that RR
n

is symplectic for all n ≥ 1:

Theorem 4.4.1. All Rochberg spaces RR
n are symplectic.
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Proof. Observe that ωR
n is alternated if and only if n is even; so, the result holds for even

n by the comments at the beginning of this section. For n odd, consider the isomorphism
σ : ℓ2 → ℓ2 given by σ(x) = (−x2, x1,−x4, x3, . . .). Then σ is interpolating for (ℓ∞, ℓ1).
Since σ preserves real sequences we deduce that the induced diagonal operator σn is
bounded on RR

n . We define the bilinear map ωn : RR
n ×RR

n → R given by

ωn

(
(xn−1, . . . , x0), (yn−1, . . . , y0)

)
= ωR

n

(
(xn−1, . . . , x0), σn(yn−1, . . . , y0)

)
=

n−1∑
i=0

(−1)i⟨xi, σyn−i−1⟩.

This map is now alternated due to the fact that σ∗ = −σ. Indeed,

ωn

(
(xn−1, . . . , x0), (yn−1, . . . , y0)

)
=

n−1∑
i=0

(−1)i⟨xi, σyn−i−1⟩

=
n−1∑
i=0

(−1)i⟨σ∗xi, yn−i−1⟩

=
n−1∑
i=0

(−1)i (−1)⟨σxi, yn−i−1⟩

= (−1)
n−1∑
i=0

(−1)i⟨yn−i−1, σxi⟩

= (−1)
n−1∑
j=0

(−1)n−j−1 ⟨yj, σxn−j−1⟩

= (−1)
n−1∑
j=0

(−1)j⟨yj, σxn−j−1⟩

= −ωn

(
(yn−1, . . . , y0), (xn−1, . . . , x0)

)
.

Boundedness follows from the boundness of ωn and σn:∣∣ωn(x, y)
∣∣ =

∣∣ωR
n (x, σny)

∣∣ ≤ K ∥x∥ ∥σny∥ ≤ C∥x∥ ∥y∥.

To obtain that (RR
n , ωn) is symplectic it suffices by Lemma 4.4.1 to show that the induced

linear map Lωn : RR
n → (RR

n)∗ is an isomorphism into. Assume that there exists x ∈ RR
n

such that Lωn(x)(y) = 0 for all y ∈ RR
n . Thus Lωn(x)(σny) = 0 for all y ∈ RR

n . Taking
into account that σn is invertible in RR

n , it follows that Lωn(x)(y) = 0 for all y ∈ RR
n , so

that x = 0. Moreover, as σn is an isomorphism, its clear that ωn has closed range because
ωR
n has closed range.

Note that even Rochberg spaces are symplectic spaces in a natural way. The case of odd
Rochberg spaces required to “twist” the duality ωR

n with a complex structure on RR
n , i.e.,

a bounded operator T : RR
n → RR

n such that T 2 = −I. If n is even and T ∈ L(RR
n) then

we can define the adjoint operator T+ ∈ L(RR
n) in the same way as we did in Subsection

4.2.2:
ωR
n (T+x, y) = ωR

n (x, Ty) for all x, y ∈ RR
n .

It was proved in Theorem 4.2.3 that block operators preserve ωn; thus if T u
n is a block

operator defined by some normalized block basic sequence (un)n ⊂ ℓR2 , then T u
n preserves

the symplectic map ωR
n , i.e., block operators preserve the symplectic structure.
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For odd n, we have a different duality given by ωn, and so a new involution ♯ on L(RR
n)

defined as:
ωn(T ♯x, y) = ωn(x, Ty) for all x, y ∈ RR

n .

To prove that (R2n, ω
R
2n) and (R2n−1, ω2n−1) are also non-trivial symplectic spaces we will

show, like Kalton and Swanson did for ZR
2 , that any isotropic subspace F ⊂ RR

n must be
finite dimensional. To see this, note that if P : RR

n → RR
n is a bounded projection onto

some isotropic subspace F , then by (4.32) we have ωR
n (Px, Py) = 0 for all x, y ∈ RR

n . It
follows that:

(i) If n is even, P+P = 0;

(ii) If n is odd, P ♯P = 0.

Using (i) we can prove:

Corollary 4.4.1. (RR
2n, ω

R
2n) has no Lagrangian subspace.

Proof. By Corollary 4.3.6 it follows that P is strictly singular. Since P is a projection,
we conclude that P has finite range. Thus, any isotropic complemented subspace of RR

2n

is finite dimensional.

To obtain the same result for odd Rochberg spaces we need an analogue of Corollary 4.3.6
for the involution ♯. First note that if T ∈ L(RR

2n−1) then

ω2n−1(T
♯x, y) = ω2n−1(x, Ty) = ωR

2n−1(x, σnTy) for all x, y ∈ RR
2n−1.

Thus T ♯ =
(
σnT

)+
= T+σ+

n = −T+σn. Using this last identity we can obtain:

Lemma 4.4.2. If T ∈ L(RR
2n−1) and T ♯T is strictly singular, then T is strictly singular.

Proof. Assume that T is not strictly singular. By Proposition 4.3.1 there exists α ̸= 0
and block operators T u

2n−1, T
v
2n−1 such that TT u

2n−1 = αT v
2n−1− S with S strictly singular.

Therefore

(T u
2n−1)

♯T ♯TT u
2n−1 = (TT u

2n−1)
♯TT u

2n−1 =
(
(αT v

2n−1)
♯ − S♯

)
(αT v

2n−1 − S)

= α′(T v
2n−1)

♯T v
2n−1 + S ′ = −α′(T v

2n−1)
+σnT

v
2n−1 + S ′,

where S ′ is strictly singular. This means that if T ♯T is strictly singular, then
(T v

2n−1)
+σnT

v
2n−1 must be strictly singular, but since σnT

v
2n−1 is invertible, (T v

2n−1)
+ must

be strictly singular, as well as T v
2n−1, which is a contradiction since block operators are

never strictly singular.
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Chapter 5

Rochberg spaces for other
interpolation scales

In this chapter we will study the Rochberg spaces associated to the couple formed by the
2-convexified Tsirelson space T2 and its dual. The main objective is to prove that they
are weak Hilbert spaces (see Section 5.1 below for the definition). Suárez had already
proved in [91] that the second Rochberg space dT2 is weak Hilbert. His proof depends
on quite technical estimates about the sequence of local type 2 constants am,2(dT2). In
the general case we need to obtain an analogous estimate for the local type 2 constants
am,2

(
Rn(T2, T ∗

2 )1/2
)
.

We prove first that for general Banach couples the constant am,2

(
Rn(X0, X1)θ

)
does essen-

tially depend only on am,2(Xj) for j = 0, 1. This result is a generalization of the estimate
obtained by Suárez in [91, Prop. 3] for n = 2. We will use the norm (see (2.10))

∥f∥Cθ =

∫
∂0

∥f(it)∥X0dµ
0
θ(it) +

∫
∂1

∥f(1 + it)∥X1dµ
1
θ(1 + it).

to ease some calculations.

Proposition 5.0.1. If g ∈ C(X0, X1) then ∥(∆n−1, . . . ,∆0)(g)∥n ≤ Cn−1∥g∥Cθ .

Proof. We will work by induction on n; the case n = 1 is (2.10). Let (xn−1, . . . , x0) =
x ∈ Rn(X0, X1)θ and let f ∈ C(X0, X1) such that (∆n−1, . . . ,∆0)(f) = x and ∥f∥C ≤
(1 + ε)∥x∥n. If we denote x = (xn−1, x

n−2) then we can decompose

x = (xn−1, . . . , x0) = (xn−1 − Ωn−1,1(x
n−2), 0, (n−1). . . , 0) + (Ωn−1,1(x

n−2), xn−2).

Both elements belong to Rn(X0, X1)θ:

(1) (∆n−1, . . . ,∆0)(f −Bn−1
θ (xn−2)) = (xn−1 − Ωn−1,1(x

n−2), 0, (n−1). . . , 0)

(2) (∆n−1, . . . ,∆0)(B
n−1
θ (xn−2)) = (Ωn−1,1(x

n−2), xn−2, . . . , x0)

where Bn−1
θ : Rn−1(X0, X1)θ → C(X0, X1) is an homogeneous bounded selector for

(∆n−2, . . . ,∆0). Thus it follows that

∥(xn−1, . . . , x0)∥n ≤ ∥(xn−1 − Ωn−1,1(x
n−2), 0, . . . , 0)∥n + ∥(Ωn−1,1(x

n−2), xn−2, . . . , x0)∥n.
(5.1)
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Now observe the bound on the second summand:

∥(Ωn−1,1(x
n−2), xn−2)∥n = ∥(∆n−1, . . . ,∆0)(B

n−1
θ (xn−2))∥n

≤ ∥Bn−1
θ (xn−2)∥C ≤ C∥(xn−2, . . . , x0)∥n−1 (5.2)

= ∥(∆n−2, . . . ,∆0)(f)∥n−1 ≤ Kn−2∥f∥Cθ , (5.3)

where in the last inequality we used induction on n− 1.

To bound the first summand of (5.1) we note that since h = f−Bn−1
θ (xn−2) ∈

⋂n−2
j=0 ker ∆j,

then h = φn−1
θ g for some g ∈ C(X0, X1) (see [22, Lemma 3.8-(2)] or [12, Lemma 3]) and

∆n−1(h) = (n− 1)!φ′(θ)n−1∆0(g). Then

G(z) = (n− 1)!φ′(θ)n−1g(z) = (n− 1)!φ′(θ)n−1 h(z)

φn−1
θ (z)

∈ C(X0, X1).

satisfies ∆n−1(h) = ∆0(G). Moreover:

∥G∥Cθ = (n− 1)!|φ′(θ)n−1|
∫
∂0

1

|φ(it)|n−1
∥h(it)∥X0dµ

θ
0(it)

+ (n− 1)!|φ′(θ)n−1|
∫
∂1

1

|φ(1 + it)|n−1
∥h(1 + it)∥X1dµ

θ
1(1 + it)

= (n− 1)!|φ′(θ)n−1| ∥h∥Cθ ≤ Cn−1(∥f∥Cθ + ∥Bn−1
θ (xn−2)∥Cθ).

By (5.2) we deduce that there exist a constant Cn−1 such that

∥(xn−1 − Ωn−1,1(x
n−2), 0, . . . , 0)∥n ≤ Cn−1∥f∥Cθ . (5.4)

Combine (5.3) and (5.4) in (5.1) to end the proof.

Corollary 5.0.1. Suppose that f ∈ ker δθ. Then ∥(∆n, . . . ,∆1)(f)∥n ≤ Kn∥f∥Cθ .

Proof. If f ∈ ker δθ, then by Proposition 5.0.1 we have that

∥(∆n, . . . ,∆1)(f)∥n ∼ ∥(∆n, . . . ,∆0)(f)∥n+1 ≤ Cn∥f∥Cθ .

The proof of the following proposition depends on several lemmata involving probabilistic
estimates about sums of functions of the Calderón space, estimates that we will prove
later. To ease readability we explicitly state the notation that we will use:

� Let us write Rn = Rn(X0, X1)θ.

� B will be a bounded homogeneous selection for ∆0 : C(X0, X1)→ Xθ.

� K(z) = 1
am,2(X0)1−z am,2(X1)z

.

� Bε(z) =
∑m

j=1 εjB(xj)(z).

� Fε ∈ C(X0, X1) will be the function

Fε(z) = K(z)
m∑
j=1

εjB(xj)(z) = K(z)Bε(z).

� Σn−1 =
∑n−1

k=1
1
k!

logk
(

am,2(X0)

am,2(X1)

)(
(∆n−1−k, . . . ,∆0)(B(z)), (k−1). . . , 0

)
.
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� ∇(n−1)
ε =

∥∥∥∑m
j=1 εjΩ1,n−1(xj)− Ω1,n−1

(∑m
j=1 εjxj

)∥∥∥
n−1

.

� □n−1
ε =

∥∥∥Ω1,n−1(
∑m

j=1 εjxj)−
∑m

j=1 εjΩ1,n−1(xj)− Σn−1

∥∥∥
n−1

.

Proposition 5.0.2. If (X0, X1) is a couple, then for any 0 < θ < 1 there exists a function
fn such that

am,2(Rn(X0, X1)θ) ≤ fn(am,2(X0), am,2(X1), am,2(Xθ)).

Proof. If ξj = (xn
j , . . . , x

2
j , x

1
j) ∈ Rn then

E
∥∥∥ m∑

j=1

εjξj

∥∥∥
n

= E
∥∥∥ m∑

j=1

εj(x
n
j , . . . , x

2
j)− Ω1,n−1(

m∑
j=1

εjx
1
j)
∥∥∥
n−1

+ E
∥∥∥ m∑

j=1

εjx
1
j

∥∥∥
θ

≤ E
∥∥∥ m∑

j=1

εj
(
(xn

j , . . . , x
2
j)− Ω1,n−1(x

1
j)
)∥∥∥

n−1

+ E
∥∥∥ m∑

j=1

εjx
1
j

∥∥∥
θ

+ E
∥∥∥Ω1,n−1

( m∑
j=1

εjx
1
j

)
−

m∑
j=1

εjΩ1,n−1(x
1
j)
∥∥∥
n−1

≤ am,2(Rn−1)
( m∑

j=1

∥(xn
j , . . . , x

2
j)− Ω1,n−1(x

1
j)∥2n−1

)1/2
+ am,2(Xθ)

( m∑
j=1

∥x1
j∥2θ
)1/2

+ E∇(n−1)
ε

≤ 2
(
am,2(Rn−1) + am,2(Xθ)

)( m∑
j=1

∥ξj∥2n
)1/2

+ E∇(n−1)
ε .

The estimate of forthcoming Lemma 5.0.4 yields

E∇(n−1)
ε ≤ E□(n−1)

ε + E∥Σn−1∥n−1

≤ γ
( m∑

j=1

∥ξj∥2n
)1/2

+ E∥Σn−1∥n−1,

where γ = Cn∥B∥
(
am,2(Xθ) + am,2(X0)

1−θ am,2(X1)
θ
)

. By Lemma 5.0.2 it follows:

E∇(n−1)
ε ≤

(
γ + η

)( m∑
j=1

∥ξj∥2n
)1/2

,

where

η =
[ n−2∑
k=1

1

k!

∣∣∣ logk (am,2(X0)

am,2(X1)

)∣∣∣Cn−k∥B∥max{am,2(X0), am,2(X1)}+
1

(n− 1)!

∣∣∣ logn−1
(am.2(X0)

am,2(X1)

)∣∣∣am,2(Xθ)
]
.

Summing all up, we have:

E
∥∥∥ m∑

j=1

εjξj

∥∥∥
n
≤ 2
(
am,2(Rn−1) + am,2(Xθ)

)( m∑
j=1

∥ξj∥2n
)1/2

+
(
γ + η

)( m∑
j=1

∥ξj∥2n
)1/2

=
(

2
(
am,2(Rn−1) + am,2(Xθ)

)
+ γ + η

)( m∑
j=1

∥ξj∥2n
)1/2

.
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A straightforward induction argument is enough to conclude with the proof.

We prove now the anounced technical lemmata needed in the proof of Proposition 5.0.2.

Lemma 5.0.1.

am,2(X0)
1−θ am,2(X1)

θ(∆n−1, . . . ,∆1)(Fε) =
m∑
j=1

εjΩ1,n−1(xj) + Σn−1.

Proof. Using the generalized Leibniz rule for derivatives we have that

(∆n−1, . . . ,∆1)(Fε) =
( 1

(n− 1)!

n−1∑
k=0

(
n− 1

k

)
B(n−1−k)

ε (θ)K(k)(θ), . . . , B′
ε(θ)K(θ) + Bε(θ)K ′(θ)

)
.

If we isolate the terms that multiply the highest derivative of the function Bε(z) in each
component we obtain the summands:( 1

(n− 1)!
Bn−1

ε (θ)K(θ), . . . , B′
ε(θ)K(θ)

)
= K(θ)

m∑
j=1

Ω1,n−1(xj)

and ( 1

(n− 1)!

n−1∑
k=1

(
n− 1

k

)
B(n−1−k)

ε (θ)K(k)(θ), . . . , Bε(θ)K ′(θ)
)
. (5.5)

Now rewrite (5.5) as

( n−1∑
k=1

1

k!(n− 1− k)!
B(n−1−k)

ε (θ)K(k)(θ), . . . , Bε(θ)K ′(θ)
)
.

Now we repeat the same process with this last summand: we isolate the terms that
multiply the highest derivative of Bε(z) in each component to reach

(5.5) =
( 1

(n− 2)!
B(n−2)

ε (θ)K ′(θ), . . . , Bε(θ)K ′(θ)
)

+
( n−1∑

k=2

1

k!(n− 1− k)!
B(n−1−k)

ε (θ)K(k)(θ), . . . , 0
)
.

The first summand is K(θ) log am.2(X0)
am,2(X1)

(∆n−2, . . . ,∆0)(Bε) while the second is

( n−1∑
k=2

1

k!(n− 1− k)!
B(n−1−k)

ε (θ)K(k)(θ),
n−2∑
k=2

1

k!(n− 2− k)!
B(n−2−k)

ε (θ)K(k)(θ), . . . , 0
)
. (5.6)

Isolating the highest derivatives of Bε in (5.6) yet again we deduce that

(5.6) =
1

2!
K(θ) log2

(am,2(X0)

am,2(X1)

)(
(∆n−3, . . . ,∆0)(Bε(z)), 0

)
+
( n−1∑

k=3

1

k!(n− 1− k)!
B(n−1−k)

ε (θ)K(k)(θ),
n−2∑
k=3

1

k!(n− 2− k)!
B(n−2−k)

ε (θ)K(k)(θ), . . . , 0
)
.
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Working inductively it follows that

am,2(X0)
1−θ am,2(X1)

θ(∆n−1, . . . ,∆1)(Fε) =
m∑
j=1

εjΩ1,n−1(xj)

+
n−1∑
k=1

1

k!
logk

(am,2(X0)

am,2(X1)

)(
(∆n−1−k, . . . ,∆0)(Bε(z)), (k−1). . . , 0

)
Lemma 5.0.2. If

η =
[ n−2∑
k=1

1

k!

∣∣∣ logk (am,2(X0)

am,2(X1)

)∣∣∣Cn−k∥B∥max{am,2(X0), am,2(X1)}+
1

(n− 1)!

∣∣∣ logn−1
(am.2(X0)

am,2(X1)

)∣∣∣am,2(Xθ)
]

then

E∥Σn−1∥n−1 ≤ η
( m∑

j=1

∥ξj∥2n
)1/2

,

Proof. First note that obviously (∆n−2, . . . ,∆0)(Bε) ∈ Rn−1 by definition. Observe that

the elements
(

(∆n−1−k, . . . ,∆0)(Bε),
(k−1). . . , 0

)
are in Rn−1 for each k = 2, . . . , n− 1: they

are the image of (∆n−2, . . . ,∆0)(Bε) by the operator in−k,n−1 ◦ πn−1,n−k : Rn−1 → Rn−1.
Therefore∥∥∥ n−1∑

k=1

1

k!
logk

(am,2(X0)

am,2(X1)

)(
(∆n−1−k, . . . ,∆0)(Bε),

(k−1). . . , 0
)∥∥∥

n−1

≤
n−1∑
k=1

1

k!

∣∣∣ logk
(am,2(X0)

am,2(X1)

)∣∣∣∥((∆n−1−k, . . . ,∆0)(Bε),
(k−1). . . , 0

)
∥n−1 = (♣)

Corollary 5.0.1 shows that there exist a constant Ck depending only on k such that

∥
(
(∆n−1−k, . . . ,∆0)(Bε),

(k−1). . . , 0
)
∥n−1 ∼ ∥(∆k, . . . ,∆0)(Bε)∥k+1 ≤ Ck∥Bε∥Cθ .

Therefore

(♣) ≤
n−2∑
k=1

1

k!

∣∣∣ logk
(am,2(X0)

am,2(X1)

)∣∣∣Cn−k∥Bε∥Cθ +
1

(n− 1)!

∣∣∣ logn−1
(am.2(X0)

am,2(X1)

)∥∥∥ m∑
j=1

εjxj

∥∥∥
θ
.

Averaging at both sides in last inequality and using forthcoming Lemma 5.0.3 we conclude
that

E(♣) ≤
[ n−2∑

k=1

1

k!

∣∣∣ logk
(am,2(X0)

am,2(X1)

)∣∣∣Cn−k∥B∥max{am,2(X0), am,2(X1)}

+
1

(n− 1)!

∣∣∣ logn−1
(am.2(X0)

am,2(X1)

)∣∣∣am,2(Xθ)
]( m∑

j=1

∥xj∥2θ
)1/2

≤
[ n−2∑

k=1

1

k!

∣∣∣ logk
(am,2(X0)

am,2(X1)

)∣∣∣Cn−k∥B∥max{am,2(X0), am,2(X1)}

+
1

(n− 1)!

∣∣∣ logn−1
(am.2(X0)

am,2(X1)

)∣∣∣am,2(Xθ)
]( m∑

j=1

∥ξj∥2n
)1/2

.
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Lemma 5.0.3. E∥Bε∥Cθ ≤ ∥B∥max{am,2(X0), am,2(X1)}
(∑m

j=1 ∥xj∥2θ
)1/2

.

Proof. Note that

∥Bε∥Cθ =

∫
∂0

∥∥∥ m∑
j=1

εjB(xj)(it)
∥∥∥
X0

dµ0
θ(it) +

∫
∂1

∥∥∥ m∑
j=1

εjB(xj)(1 + it)
∥∥∥
X1

dµ1
θ(1 + it).

Averaging at both sides of last equality we deduce that

E∥Bε∥Cθ =

∫
∂0

E
∥∥∥ m∑

j=1

εjB(xj)(it)
∥∥∥
X0

dµ0
θ(it) +

∫
∂1

E
∥∥∥ m∑

j=1

εjB(xj)(1 + it)
∥∥∥
X1

dµ1
θ(1 + it)

≤ am.2(X0)

∫
∂0

( m∑
j=1

∥B(xj)(it)∥2X0

)1/2
dµ0

θ(it)

+ am,2(X1)

∫
∂1

( m∑
j=1

∥B(xj)(1 + it)∥2X1

)1/2
dµ1

θ(1 + it)

≤ am.2(X0)

∫
∂0

( m∑
j=1

∥B(xj)∥2C
)1/2

dµ0
θ(it)

+ am,2(X1)

∫
∂1

( m∑
j=1

∥B(xj)∥2C
)1/2

dµ1
θ(1 + it)

≤ ∥B∥max{am,2(X0), am,2(X1)}
( m∑

j=1

∥xj∥2θ
)1/2

Lemma 5.0.4. E□ε ≤ Cn∥B∥
(
am,2(Xθ) + am,2(X0)

1−θ am,2(X1)
θ
)(∑m

j=1 ∥xj∥2θ
)1/2

.

Proof. By Lemma 5.0.1

□ε =
∥∥∥Ω1,n−1

( m∑
j=1

εjxj

)
−

m∑
j=1

εjΩ1,n−1(xj)− Σn−1

∥∥∥
Rn−1

=
∥∥∥(∆n−1, . . . ,∆1

)[
B
( m∑

j=1

εjxj

)
− am,2(X0)

1−θ am,2(X1)
θFε

]∥∥∥
Rn−1

.

Taking into account that the function inside the brackets vanishes on θ, it follows by
Corollary 5.0.1 that

□ε ≤ Cn

(
∥B
( m∑

j=1

εjxj

)
∥Cθ + am,2(X0)

1−θ am,2(X1)
θ∥Fε∥Cθ

)
. (5.7)

Since E
∥∥B(∑m

j=1 εjxj

)∥∥
C ≤ ∥B∥am,2(Xθ)

(∑m
j=1 ∥xj∥2θ

)1/2
and by [91, Lemma 1] we have

E∥Fε∥Cθ ≤ ∥B∥
( m∑

j=1

∥xj∥2θ
)1/2

;

averaging in (5.7) we conclude

E□ε ≤ Cn∥B∥
(
am,2(Xθ) + am,2(X0)

1−θ am,2(X1)
θ
)( m∑

j=1

∥xj∥2θ
)1/2

.
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5.1 The space T2

A finite dimensional subspace E of a Banach space X is said to be M -complemented if
there exist a projection P : X → X onto E such that ∥P∥ ≤ M . The subspace E is

C-euclidean if d(E, ℓ
dim(E)
2 ) ≤ C.

A Banach space X is weak Hilbert if there exist 0 < δ < 1 and a constant C such
that every n-dimensional subspace E ⊂ X contains a C-euclidean and C-complemented
subspace F in X with dim(F ) ≥ δ dim(E). This is not the original definition, but it is
equivalent [79, Th. 12.2]. The fundamental example of weak Hilbert space which is not a
Hilbert space is the 2-convexification of Tsirelson space.

Let us recall first the definition of Tsirelson space following [20]: given finite subsets
E,F ⊂ N denote by E < F that maxE < minF , and define Ex =

∑
n∈E xn for any

x =
∑

n xn ∈ c00. The norm of Tsirelson space is defined inductively: one fixes x ∈ c00
and consider the following sequence of norms (∥ · ∥m)∞m=0

∥x∥0 = ∥x∥c0

∥x∥m+1 = max
{
∥x∥m, 12 max

[∑k
j=1 ∥Ejx∥m

]}
, for m ≥ 0,

where the inner maximum is defined over all possible choices of finite subsets E1, . . . , Ek

such that k ≤ E1 < E2 < · · · < Ek.

One has for every fixed x ∈ c00 and every m ∈ N that ∥x∥m ≤ ∥x∥m+1 ≤ ∥x∥ℓ1 . Thus,
the limit ∥x∥T := limm→∞ ∥x∥m exist for every x ∈ c00 and defines a norm on c00. The
Tsirelson space T is the completion of c00 with the norm ∥ · ∥T .

The 2-convexified Tsirelson space T2 is defined as the completion of c00 under the norm∥∥∥∑xnen

∥∥∥
T2

=
∥∥∥∑ |xn|2ej

∥∥∥1/2
T

.

The basic facts concerning T2 are:

(1) Both T2 and its dual T ∗
2 are weak Hilbert spaces [79, Chapter 13]. In particular,

they are both reflexive [79, Th. 14.1].

(2) The canonical basis (en)n ⊂ T2 and the dual basis (e∗n)n ⊂ T ∗
2 are both unconditional

[20, Th. X.e.3].

Let us denote by Em ⊂ T2 and by E∗
m ⊂ T ∗

2 the complemented subspaces

Em = span{ej : j ≥ m} and E∗
m = span{e∗j : j ≥ m}.

The following result highlights the importance of the subspaces Em and E∗
m (see [20, Prop.

A.b.2]):

Lemma 5.1.1. Given any m ∈ N, there exists a constant C > 0 such that every 55m-
dimensional subspace of Em ⊂ T2 is C-euclidean.

Lemma 5.1.1 also holds for T ∗
2 if one replaces Em by the subspace E∗

m (see the comments
in [20, pp. 130]). Using both facts it follows that for any m ∈ N one has

max{a55m ,2(Em), a55m ,2(E
∗
m)} ≤ C. (5.8)
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Recall that given a Banach space X and subspaces Y ⊂ X and Z ⊂ X∗, Y is called
λ-norming over Z if

∥z∥ ≤ λ sup{|z(y)| : ∥y∥ ≤ 1}

for every z ∈ Z. We will need the following result of Johnson [55, Lemma 1.6]:

Proposition 5.1.1. Let Y ⊂ X and Z ⊂ X∗ be closed subspaces such that Y is λ-
norming over Z. If every 5m-dimensional subspace of Y is K-euclidean then every sub-
space E ⊂ Z with dim(E) ≤ m is 3λK-euclidean and 3λK-complemented in X∗.

5.2 The Rochberg spaces Rn

(
T2, T ∗2

)
There exist a continuous injective operator ℓ2 → T2 with dense range, and thus by [35,
Corollary 4.3] (see also [97, Corollary 1] or [80, Prop. 8.86]) we have the interpolation
identity (

T2, T ∗
2

)
1/2

= ℓ2.

Here T ∗
2 denotes antidual of T2, namely, the Banach space T ∗

2 with the scalar multiplica-
tion α⊙ x = αx. We will call RT

n the Rochberg space Rn

(
T2, T ∗

2

)
1/2

. This space satisfies

the following properties:

(i) Since T2 is reflexive and (see the proof of [80, Prop. 8.86])(
T ∗
2 ,
(
T ∗
2

)∗)
1/2

=
(
T ∗
2 , T ∗∗

2

)
1/2

=
(
T ∗
2 , T2

)
1/2

=
(
T2, T ∗

2

)
1/2

=
(
T2, T ∗

2

)
1/2

,

we deduce from Theorem 3.5.1 that RT
n is isomorphic to its dual by the map DT

n :
RT

n → (RT
n )∗ given, for (xn−1, . . . , x0) ∈ RT

n and (yn−1, . . . , y0) ∈ (X ∩X∗)n, by

DT
n (xn−1, . . . , x0)(yn−1, . . . , y0) =

n−1∑
i=0

(−1)i⟨xi, yn−i−1⟩. (5.9)

(ii) Since both bases (en)n and (e∗n)n are unconditional, the sequence of closed subspaces

Xm = span{(0, . . . , 0,
(l)
em, 0, . . . , 0) : 0 ≤ l ≤ n− 1}

define an UFDD of RT
n . Thus, the sequence (ul)l≥1 defined in (4.2) is a basis for

RT
n .

If we consider the complemented subspaces

Vm = span{ul : l ≥ mn− (n− 1)}

then Vm = Rn(Em, E
∗
m)1/2. This follow by applying the projection

Pk≥m

(
(xn)n

)
= (xn)n≥m

to the corresponding endpoints of the couple
(
T2, T ∗

2

)
.

Once we have Proposition 5.0.2, the proof that RT
n is weak Hilbert closely follows the

arguments of Suárez [91], and thus we will just give a sketch of a proof:
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Theorem 5.2.1. RT
n is weak Hilbert for all n ∈ N.

Proof.

(i) Use (5.8) and Proposition 5.0.2 applied to the couple (Em, E
∗
m) to obtain that for

every 55m-dimensional subspace E ⊂ Vm = Rn(Em, E
∗
m)1/2 one has that a55m ,2(E) ≤

C <∞ for some positive constant C not depending on m.

Since RT
n is isomorphic to its dual by the duality (5.9), it follows by the definition of

DT
n that this map restricts to an isomorphism D̂T

n : Vm → V ∗
m. Thus a55m ,2(V

∗
m) ≤

Ma55m ,2(Vm) for some constant M > 0. Hence for every 55m-dimensional subspace
of Vm it follows that

c55m ,2(E) ≤ a55m ,2(E
∗) ≤ a55m ,2(V

∗
m) ≤Ma55m ,2(Vm) ≤M ′ <∞.

We deduce from Kwapień bound (C.2) that the 55m-dimensional subspaces of Vm

are K-Hilbertian for some constant K.

(ii) Using that Vm is reflexive and applying two times Proposition 5.1.1, first to Vm

and later to V ∗
m, it follows by (i) that every m-dimensional subspace E ⊂ Vm is

K-euclidean and 9K-complemented in Vm; since Vm is complemented in RT
n , we

conclude furthermore that E is L-complemented in RT
n for some constant L.

(iii) First note that if E is a 2mn-dimensional subspace of RT
n then

F = E ∩ span{ul : l ≥ mn− (n− 1)} = E ∩ Vm

is a subspace of Vm such that

dim(F ) ≥ 2mn− (mn− n) = mn + n ≥ m.

Thus, setting C = max{9K,L} we deduce by (ii) that F contains a C-euclidean
and C-complemented subspace of RT

n .

Therefore, given an arbitrary N -dimensional E ⊂ RT
n where N = 2mn + k with

0 ≤ k ≤ 2mn − 1, it follows that E contains a C-euclidean and C-complemented
subspace F such that

dim(F ) ≥ m ≥ 1

4n
(2mn + k) =

1

4n
dim(E).

There is a further problem concerning RT
n that we have been unable to solve: to decide

if RT
n and RT

m are isomorphic when n ̸= m. We know by a deep result of Kalton [60, Th.
7.6] that the sequence 0 −→ RT

1 −→ RT
2 −→ RT

1 −→ 0 is not trivial. This implies by
Proposition 3.1.2 that 0 −→ RT

l −→ RT
l+k −→ RT

k −→ 0 is not trivial for any l, k ∈ N.
In particular, RT

n and RT
1 = ℓ2 are not isomorphic for n ≥ 2. However, it could happen

that all Rochberg spaces RT
n are isomorphic for n ≥ 2. We conjecture that the Rochberg

spaces RT
n are not isomorphic.
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Appendix A

Short exact sequences and
quasilinear maps

This appendix deals with the theory of short exact sequences of Quasi-Banach spaces, for
which our basic references are the books [10, 27] and the recent paper [28].

A short exact sequences of Quasi-Banach spaces is a diagrams composed by Quasi-Banach
spaces and operators of the form

0 −−−→ Y
i−−−→ X

q−−−→ Z −−−→ 0 (A.1)

where the kernel of each arrow coincides with the image of the preceding one. Note that
the first and last arrow tell us, respectively, that i is injective and that q is surjective.
There are two direct ways to obtain sequences of the form (A.1): either with a quotient
map q : X → Z, in which case one completes the diagram with the kernel

0 −−−→ ker q −−−→ X
q−−−→ Z −−−→ 0

or either with an isomorphic embedding i : Y → X, in which case the completion is
obtained by the cokernel

0 −−−→ Y
ı−−−→ X −−−→ X/i(Y ) −−−→ 0

All sequences (A.1) are particular instances of the previous types: since the sequence
is exact, q is a quotient map by the Open Mapping Theorem; hence ker q = i(Y ) is a
closed subspace of X and Z is isomorphic to the quotient space X/i(Y ). Therefore, short
exact sequences provide an unified way of representing a Quasi-Banach space X having a
subspace Y with an associated quotient Z.

Given any two Quasi-Banach spaces Y, Z, we can always form the short exact sequence

0 −−−→ Y
j−−−→ Y ⊕ Z

π−−−→ Z −−−→ 0

where j(y) = (y, 0) and π(y, z) = z, referred to as the trivial sequence. We say that two
short exact sequences 0→ Y → X1 → Z → 0 and 0→ Y → X2 → Z → 0 are equivalent
if there exist an isomorphism T : X1 → X2 making the following diagram conmmute

0 −−−→ Y −−−→ X1 −−−→ Z −−−→ 0∥∥∥ T

y ∥∥∥
0 −−−→ Y −−−→ X2 −−−→ Z −−−→ 0

A short exact sequence is called trivial if it is equivalent to the trivial sequence. Equiva-
lently (see [10, 27] for a proof)
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� There exist a retraction operator r : X → Y for i.

� There exist a section operator s : Z → X for q.

A.1 Quasilinear maps

The key discovery of Kalton [58] (althought a forerunner concept appears in [47, 81])
is that exact sequences of Quasi-Banach spaces correspond to certain (in general not
linear nor bounded) maps F : Z → Y called quasilinear maps. In this work we will be
using quasilinear maps which do not necessarily take values in Y , but in a strictly bigger
superspace. This point of view was treated in [28]. Precisely, let X, Y be Quasi-Banach
spaces and suppose that Y is a subspace of some Banach space Σ. Then an homogeneous
map F : X → Σ is quasilinear from X to Y with ambient space Σ, something we denote
by F : X ↷ Y , if for all x, y ∈ X one has that F (x + y) − F (x) − F (y) ∈ Y and there
exist a constant M > 0 such that

∥F (x + y)− F (x)− F (y)∥Y ≤ C
(
∥x∥X + ∥y∥X

)
. (A.2)

The homogeneity property plus the estimate (A.2) imply that the set

Y ⊕F X =
{

(y, x) ∈ Σ×X : y − F (z) ∈ Y
}

is a vector space and a Quasi-Banach space when endowed with the quasinorm

∥(y, x)∥ = ∥y − F (x)∥Y + ∥x∥X . (A.3)

Hence, any quasilinear map F : X ↷ Y induces a short exact sequence

0 −−−→ Y
i−−−→ Y ⊕F X

q−−−→ X −−−→ 0

Note that the quasinorm of Y ⊕F X is just the norm of the direct sum that has been
“twisted” by means of a quasilinear map. Thus, it is customary referring to Y ⊕F X as
a twisted sum of Y and X.

The previous discussion reduces the study of short exact sequences to that of quasilinear
maps. The next step is to decide when two given quasilinear maps define equivalent
sequences. Let F,G : X ↷ Y be two quasilinear maps with the same ambient space Σ.
We say that F and G are equivalent, and we denote it by F ≡ G, if they define equivalent
short exact sequences. The following result was provided by Kalton and Peck [62, Th.
2.4] (see also [28, Section 2]):

Proposition A.1.1. Two quasilinear F,G : X ↷ Y with the same ambient space Σ are
equivalent if and only if there exist a linear map L : X → Σ such that (F−G−L) : X → Y
is bounded in the sense that

∥Fx−Gx− Lx∥Y ≤ C∥x∥X for all x ∈ X.

Since the zero map 0 : X ↷ Y defines a trivial exact sequence, a simple consequence of
Proposition A.1.1 is that a quasilinear F defines the trivial exact sequence if and only if
there exist a linear map L : X → Σ such that F − L : X → Y is bounded. In this case
we say that F is a trivial quasilinear map.

An important fact concerning twisted sums is that (A.3) is just a quasinorm, and thus,
in general, Y ⊕F X need not to be isomorphic to a Banach space. However, if X has type
p > 1 (for instance, if X is superreflexive), then (A.3) is equivalent to a norm [58, Th.
2.6] and hence Y ⊕F X is isomorphic to a Banach space. In fact, all twisted sums studied
in this work will be isomorphic to Banach spaces.
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A.1.1 Singular quasilinear maps

A quasilinear map F : X ↷ Y is singular if the quotient map of the associated short
exact sequence

0 −−−→ Y −−−→ Y ⊕F X −−−→ X −−−→ 0 (A.4)

is strictly singular; in this case we will also say that Y ⊕F X is a singular twisted sum and
that the sequence (A.4) is singular. It can be proven [10, Prop. 9.1.2] that F : X ↷ Y
is singular if and only if its restriction to any infnite dimensional subspace of X is not
trivial. Recall the following characterization of strictly singular quotient maps:

Proposition A.1.2. A quotient map Q : Z → Z/Y is strictly singular if and only if for
every infinite dimensional subspace Z ′ ⊂ Z there exist an infinite dimensional subspace
Y ′ ⊂ Y and a nuclear operator K : Y ′ → Z ′ such that i + K : Y ′ → Z ′ defines an
isomorphic embedding, where i : Y → Z.

A proof can be found in [34, Prop. 3.2]. We will need the following criteria for strictly
singular maps on commutative diagrams proved in [12, Lemma 8]:

Proposition A.1.3. Suppose we have a commutative diagram

0 −−−→ A
ı−−−→ B

ρ−−−→ C −−−→ 0

τ

y T

y ∥∥∥
0 −−−→ A′ −−−→ B′ −−−→ C −−−→ 0

where both ρ and τ are strictly singular. Then T is strictly singular.

The strictly singular character of any operator defined on a singular twisted sum only
depends on its behaviour on the kernel of the quotient map. The proof appears in [29,
Prop. 11] along with many related results (see also [10, Chapter 9]).

Proposition A.1.4. Let W be any Banach space and 0→ X
i→ Y

ρ→ Z → 0 a singular
exact sequence. Then any operator τ : Y → W is strictly singular if and only if τ |X :
X → W is strictly singular.

A.1.2 Domain and range spaces. Inverse representation

Given a quasilinear map Ω : X ↷ Y with ambient space Σ we consider the following two
spaces:

� The domain space Dom(Ω) = {x ∈ X : Ω(x) ∈ Y } endowed with the quasinorm
∥x∥D = ∥Ω(x)∥Y + ∥x∥X .

� The range space Ran(Ω) = {ω ∈ Σ: (ω, x) ∈ Y ⊕Ω X} = {ω ∈ Σ: exist x ∈
X such that ω − Ω(x) ∈ X} endowed with the quotient quasinorm ∥ω∥R =
inf{∥(ω, x)∥Ω : (ω, x) ∈ Y ⊕Ω X}.

Thus, Dom(Ω) can be identified with the closed subspace {x ∈ X : (0, x) ∈ Y ⊕Ω X}
and Ran(Ω) can be identified with the quotient (Y ⊕Ω X)/Dom(Ω). One clearly has that
Ω : Dom(Ω) → X and Ω : X → Ran(Ω) are bounded. In particular, Ω : X → Y is
bounded if and only if Dom(Ω) = X and Ran(Ω) = Y . Moreover, the domain and range
spaces only depend on the equivalence class of Ω:
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Lemma A.1.1. If Ψ is equivalent to Ω then Dom(Ψ) = Dom(Ω) and Ran(Ψ) = Ran(Ω).

By their very definition, the domain space and range space fit into a short exact sequence

0 −−−→ Dom(Ω)
j−−−→ Y ⊕Ω X

p−−−→ Ran(Ω) −−−→ 0 (A.5)

given by j(x) = (0, x) and p(ω, x) = ω. It was shown in [28, Section 3] that (A.5) is
generated by a quasilinear map Ω−1 : Ran(Ω) ↷ Dom(Ω) with ambient space X such
that:

(1) The quasinorm ∥ · ∥Ω is equivalent to the quasinorm induced by (A.5), in the sense
that there exist positive constants m,M such that

m∥(ω, x)∥Ω ≤ ∥x− Ω−1(ω)∥D + ∥ω∥R ≤M∥(ω, x)∥Ω,

for every (β, x) ∈ Y ⊕Ω X.

(2) Dom(Ω−1) = Y and Ran(Ω−1) = X.

By (2) it follows that

Ω−1 ◦ Ω : X → X and Ω ◦ Ω−1 : Ran(Ω)→ Ran(Ω)

and
Ω ◦ Ω−1 : Y → Y and Ω−1 ◦ Ω : Dom(Ω)→ Dom(Ω)

are bounded; by this reason Ω−1 is called the inverse of Ω. If we combine (2) with (1)
then we obtain a symmetric situation represented by the diagram

Ran(Ω)

Y Y ⊕Ω X X

Dom(Ω)

Ω−1

Ω−1

Ω

Ω

A.1.3 Duality of twisted sums

We briefly comment some results about duality of twisted sums. Suppose we have a
quasilinear map Ω : X ↷ Y with ambient space Σ defining a short exact sequence of
Banach spaces

0 −−−→ Y
i−−−→ Y ⊕Ω X

q−−−→ X −−−→ 0

Then the Hahn-Banach Theorem implies that the dual sequence

0 −−−→ X∗ q∗−−−→ (Y ⊕Ω X)∗
i∗−−−→ Y ∗ −−−→ 0 (A.6)

is also exact [27, 2.2.d]. If Dom(Ω) is dense in X then the operator J : Dom(Ω) × Y →
Y ⊕ΩX given by J(x, y) = (y, x) is injective and has dense range. Hence the dual operator

J∗ : (Y ⊕Ω X)∗ → (Dom(Ω))∗ × Y ∗
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is also injective with dense range; moreover, note that X∗ can be regarded as a subspace
of (Dom(Ω))∗. Given a bounded homogenous selection B for the map i∗ in (A.6), one can
define a map Ω∗ : Y ∗ → (Dom(Ω))∗ by the expression

B(y) = J∗(Ω∗y, y
)
, for all y ∈ Y ∗.

In [28, Section 4] it was proved that Ω∗ : Y ∗ ↷ X∗ is quasilinear with ambient space
Dom(Ω)∗ and such that X∗⊕Ω∗ Y ∗ is isomorphic to (Y ⊕Ω X)∗. The map Ω∗ is called the
dual of Ω and defines (A.6). The next result shows the relationship between the domain
and range spaces of Ω and that of the dual map Ω∗ (see [28, Prop. 4.7]):

Proposition A.1.5. Let Ω : X ↷ Y a quasilinear map such that Dom(Ω) is dense in X.
Then:

(i) Dom(Ω∗) = Ran(Ω)∗.

(ii) Ran(Ω∗) = Dom(Ω)∗.

A.2 3-space properties and twisted Hilbert spaces

A 3-space problem ask to decide whether for every short exact sequence

0 −−−→ Y −−−→ X −−−→ Z −−−→ 0

where both Y and Z have property P , the twisted sum X has P . When a 3-space problem
has an afirmative answer, the property P is labeled as a 3-space property . Examples
include the properties of being reflexive, separable or isomorphic to c0. The clasical source
that studies 3-space problems is [27].

Enflo, Lindenstruss and Pisier showed in [47] that “being isomorphic to a Hilbert space”
is not a 3-space property. Precisely, there is a short exact sequence

0 −−−→ ℓ2 −−−→ X −−−→ ℓ2 −−−→ 0

where X is not isomorphic to a Hilbert space. Any such space X is called a nontrivial
twisted Hilbert space. The Kalton-Peck space Z2 studied in Chapter 1 is a fundamental
example of twisted Hilbert space.
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Appendix B

Operator ideals

Denote by L the class of all operators acting between Banach spaces. Following Pietsch
[78] we say that a subclass of operators A ⊂ L is an operator ideal if, for every pair of
Banach spaces X, Y , the component A(X, Y ) := A ∩ L(X, Y ) satisfies that:

(1) Finite range operators belong to A(X, Y );

(2) T + U ∈ A(X, Y ) for all T, U ∈ A(X, Y );

(3) If X0 and Y0 are Banach spaces, then WTU ∈ A(X0, Y0) whenever
W ∈ L(Y, Y0), T ∈ A(X, Y ) and U ∈ L(X0, X).

Conditions (2) and (3) imply that, for each Banach spaces X, Y , the component A(X, Y )
is a linear subspace of L(X, Y ). When X = Y we shall denote the component of an
operator ideal by A(X) or A if no confusion arises. Given an operator ideal A, there is a
rather general way to produce new operator ideals out of A. Pietsch list in [78, I, Chapter
4] eight natural ways of doing so, which he calls procedures. The most relevant for us are
the closure and the dual procedures:

� The closure ofA, denoted byA, is defined by its components as the closuresA(X, Y )
in L(X, Y ).

� The dual operator ideal is defined on its components by

Ad(X, Y ) = {T ∈ L(X, Y ) : T ∗ ∈ A(Y ∗, X∗)}.

An operator ideal A is closed if A = A and symmetric when A = Ad.

Plenty of specific examples have appeared since the inception of the theory. We refer the
reader to [78, 45, 44, 95] for a comprehensive list of examples and applications to Operator
Theory and Banach space Theory. Here we are mainly concerned with three classical
operator ideals: compact operators, strictly singular operators and strictly cosingular
operators. Recall that an operator T : X → Y is compact if it takes bounded sets into
relative compact sets. Equivalently, if for every bounded sequence (xn) in X, the sequence
(Txn) has a converging subsequence. The class of compact operators forms a closed and
symmetric ideal which we denote by K.

On the other hand, a bounded operator T : X → Y is:

� strictly singular if its restriction T |M to any infinite dimensional subspace M ⊂ X
is never an isomorphism.
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� strictly cosingular if for every infinite codimensional subspace N ⊂ Y , the compo-
sition QNT : X → Y/N is not surjective.

We denote by SS and SC the classes of strictly singular and strictly cosingular operators,
respectively. Both classes are closed operator ideals [78, 1.9 and 1.10] that, in general,
strictly contain K.

We recall now an important result due to Pe lczyński [74], which relate both ideals by
duality:

Proposition B.0.1.
SSd ⊂ SC and SCd ⊂ SS.

Hence, in the particular case of reflexive spaces, an operator T : X → Y is strictly singular
(cosingular) if and only if T ∗ : Y ∗ → X∗ is strictly cosingular (singular).

The following key result concerning strictly singular operators was obtained by Kato [64]
(see also [71, 2.c.4] or [78, 1.9.3] for a proof):

Proposition B.0.2. An operator T ∈ L(X, Y ) is strictly singular if and only if for every
ε > 0 there exist a further infinite dimensional subspace M ⊂ X such that T |M is compact
and ∥T |M∥ ≤ ε.

B.1 Fredholm operators and perturbation classes

We shall describe now some properties of Fredholm operators. Here we will follow the
description given in [50].

Definition 2. Let T be an operator between Banach spaces. Then T is said to be

� upper semi-Fredholm if T has finite dimensional kernel and closed range. We shall
denote this by T ∈ Φ+(X, Y ).

� lower semi-Fredholm if T has finite codimensional range. We denote it by T ∈
Φ−(X, Y ).

� Fredholm if is both upper and lower semi-Fredholm.

We shall denote these three classes, repectively, by Φ+(X, Y ), Φ−(X, Y ) and Φ(X, Y ).
When X = Y we abbreviate it to Φ±(X). The following proposition appears in [50,
A.1.5] and summarizes the elemental properties of semi-Fredholm operators:

Proposition B.1.1. Let T ∈ L(X, Y ) and S ∈ L(Y, Z) be any operators. Then

� If T ∈ Φ+(X, Y ) and S ∈ Φ+(Y, Z) then ST ∈ Φ+(X,Z).

� If ST ∈ Φ+ then T ∈ Φ+.

� If T ∈ Φ−(X, Y ) and S ∈ Φ−(Y, Z) then ST ∈ Φ−(X,Z).

� If ST ∈ Φ− then T ∈ Φ−.

� T ∈ Φ+(X, Y ) if and only if T ∗ ∈ Φ−(Y ∗, X∗).

114



Remark 1. A simple fact that will be used later is the following well-known observation:
an operator T ∈ Φ+(X, Y ) if and only if T |M is not compact for any infinite dimensional
subspace M ⊂ X:

� Suppose that T /∈ Φ+. If T (X) is not closed then T is not an isomorphism on any
finite codimensional subspace of X (if it were on, say X0 ⊂ X, then T (X0) is closed
in Y and finite codimensional in T (X), thus T (X) is closed). Then Proposition
B.0.2 yields that T |M is compact on some infinite dimensional subspace.

If, on the other hand, T (X) is closed but T /∈ Φ+, then T |ker(T ) = 0 is obviously
compact.

� Conversely, assume that T ∈ Φ+(X, Y ). If N is a closed complement of kerT then
T is an isomorphism on N , and for every infinite dimensional subspace M of X the
intersection N ∩M is infinite dimensional. Hence T |M is not compact.

One can associate to any semi-Fredholm operator T ∈ Φ(X, Y ) a value in Z∪{−∞,+∞}
called the index of T defined by

ind(T ) = dim(kerT )− dim
(
Y/T (X)

)
.

A classical result of Fredholm theory states that this index remains invariant under com-
pact perturbations of T [65, IV, Th. 5.26]. One can replace the class of Fredholm operators
by Φ+ and the operator ideal K by SS to obtain the analogous stability property:

Proposition B.1.2. If T ∈ Φ+(X, Y ) then T + S ∈ Φ+(X, Y ) and ind(T + S) = ind(T )
for all S ∈ SS(X, Y ).

This result is due to Kato [64, 5. Th. 2] (see also [71, 2.c.10]). Shortly thereafter
Vladimirskii showed [96, Corollary 1] the dual result that lower semi-Fredholm are stable
under strictly cosingular perturbations (see also [84, C.V. Th. 3.4] or [78, Section 26.6.8]):

Proposition B.1.3. If T ∈ Φ−(X, Y ) then T + L ∈ Φ−(X, Y ) and ind(T + L) = ind(T )
for all L ∈ SC(X, Y ).

On the other hand, an operator T ∈ L(X, Y ) is called inessential , denoted by In(X, Y ),
whenever IX − LT ∈ Φ(X) for all L ∈ L(Y,X) (equivalently, such that IY − TS ∈ Φ(Y )
for all S ∈ L(Y,X)). Inessential operators were introduced by Kleinecke [66], who proved
that In form a closed operator ideal containing both SS and SC (cf. also [78, Section
26.7]).

The preceding discussion about perturbation theory of Fredholm operators can be stated
in a slightly more general way: given a class A ⊂ L of bounded operators, its perturbation
class PA is defined by its components when A(X, Y ) ̸= ∅ as

PA(X, Y ) = {T ∈ L(X, Y ) : T + L ∈ A(X, Y ), for all L ∈ A(X, Y )}.

This definition is due to Lebow and Schechter, who proved in [68, Th. 2.7] that inessential
operators In are precisely the perturbation class of Fredholm operators, i.e., In = PΦ.
The aforementioned Propositons B.1.2 and B.1.3 imply that SS ⊂ PΦ+ and SC ⊂ PΦ−.
Moreover, the stability of the index for semi-Fredholm operators implies that PΦ+ ∪
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PΦ− ⊂ In (see [15, 5.6.9] or [51, Proposition 3.3]). The following diagram resumes the
situation (here the arrows denote a formal inclusion):

SS PΦ+

K SS ∩ SC PΦ+ ∪ PΦ− In = PΦ

SC PΦ−

The perturbation class problem [49, 51] asked whether

SS(X, Y ) = PΦ+(X, Y ) and SC(X, Y ) = PΦ−(X, Y ) (B.1)

for all Banach spaces X, Y . Note that when the perturbation class problem has an affir-
mative answer, the perturbation class provide an intrisic description of the classes PΦ+

and PΦ−, something which were asked by Gohberg, Markus and Feldman in [48].

It is known [49] that the identities (B.1) only hold for concrete examples (see also [85]
and [51, Section 5] and the references therein for a detailed account).
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Appendix C

Some local properties of a Banach
space

Given a finite sequence (xi)
n
i=1 of vectors in X, we denote by

E
∥∥∥ n∑

i=1

εixi

∥∥∥
X

the average over all choices of signs (εi)
n
i=1 ⊂ {−1, 1}n. If 1 ≤ p ≤ 2 then we define

an,p(X) as the infimum of the constants a > 0 such that for every (xi)
n
i=1 ⊂ X we have

the bound

E
∥∥∥ n∑

i=0

εixi

∥∥∥
X
≤ a
( n∑

i=0

∥x∥pX
)1/p

.

A Banach space X has type p if ap(X) = supn∈N an,p(X) < ∞. Similarly, for 2 ≤ q ≤ ∞
we define cn,q(X) as the infimum of the constants c > 0 such that for every (xi)

n
i=1 we

have that ( n∑
i=0

∥x∥qX
)1/q
≤ cE

∥∥∥ n∑
i=0

εixi

∥∥∥
X
.

A Banach space X has cotype q of cq(X) = supn∈N cn,q(X) < ∞. There exist several
relations between the local type/cotype constants of a given Banach space. Here we note
that cn,2(X

∗) ≤ an,2(X) for every n ∈ N [44, Prop. 11.10].

Given two isomorphic Banach spaces X and Y , the Banach-Mazur distance between X
and Y is defined as

d(X, Y ) = inf{∥T∥ ∥T−1∥ : T : X → Y is an isomorphism}. (C.1)

Let X be a n-dimensional subspace. Then d(X, ℓn2 ) is finite and the infimum in (C.1) is
attained [3, Lemma 7.4.6]. Therefore, taking into account that

E
∥∥∥ m∑

i=1

εixi

∥∥∥
X
≤ ∥T−1∥E

∥∥∥ m∑
i=1

εiT (xi)
∥∥∥
ℓn2

≤ d(X, ℓn2 )
( m∑

i=1

∥xi∥2X
)1/2

it follows that an,2(X) ≤ d(X, ℓn2 ). An important result due to Kwapień is (see [3, Theorem
7.4.7] for a proof):
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Proposition C.0.1. If X has type 2 and cotype 2 then there exist a Hilbert space H such
that

d(X,H) ≤ a2(X) c2(X).

In particular, X is isomorphic to a Hilbert space.

If X is n-dimensional, then a result of Tomczak-Jaegermann [94, Th. 2] combined with
Kwapień’s result yields a universal constant M such that

d(X, ℓn2 ) ≤ a2(X)C2(X) ≤Man,2(X) cn,2(X). (C.2)
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