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1. INTRODUCTION.

Probably the principal reason for interest in polynomials is that they are
much easier to work with than the functions which they approximate. Another
excellent reason to study polynomials is that they play a crucial ‘intermediate’
role between linear mappings and arbitrary continuous or differentiable func-
tions.

In this series of lectures, we give a personal introduction to the study of
polynomials, which we hope will clarify the statements made in the above
paragraph. In §2, we define what we mean by polynomials on a Banach space
and we give some fundamental results on polynomials and their norms. We
also describe several approximation results and questions, including the one
(concerning a generalization of the Stone-Weierstrass theorem) which origi-
nally piqued our interest in this area over 25 years ago and which remains
unsolved. In §3, we study norms of polynomials, examining the relation bet-
ween the norm of a polynomial in several variables and its coefficients. Our
principal interest will be in finding lower bounds for the norm of a polyno-
mial. In §4, we study the problem of finding ‘large’ subspaces on which a
polynomial is constant. This topic may at first seem peculiar, since it is by
no means clear (nor true!) that if P(z) = P(y) = ¢, then P(z+y) = c. As we
will see, there are somewhat surprising results which can be obtained in both
the case of real and complex polynomials. Finally, in §5, we study problems
involving the search for Hahn-Banach type theorems concerning extensions of
polynomials from a subspace of a Banach space to the entire space.
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The primary purpose of these notes is to introduce (hopefully) interested
people to this nice area. As a consequence, we have omitted mention of a
number of beautiful, sometimes more technical, current results of colleagues,
to whom we unreservedly apologize. A general work on polynomials in infinite
dimensional spaces, containing this material and much more, is the recent
book by Sean Dineen [13], which also contains an invaluable list of references.

Finally, we thank Manuel Gonzilez for giving us this opportunity to ‘ad-
vertise’ this material.

2. FUNDAMENTAL NOTIONS

Throughout, £ and F' will be complex Banach spaces over R or C. To
define a polynomial on FE, we first need to recall the notion of multilinear
form.

DEFINITION 2.1. (a) Forn € N, L("E, F') denotes the space of continuous
n-linear mappings A: E X --- x E — F. It is easy that L("E, F) is a Banach
space with norm given by

A—||A]l = sup [A(z1, ..., )l
z;€F, |z;]|<1,1<j<n
(b) For n € N, let P("E,F) = {P : E — F: for some A € L("E,F),
we have P(z) = A(z,...,z) for every z € E}. This space, of n-homogeneous
polynomials, is a Banach space under the norm

P—||P|l=  sup [|P(z)]].
z€ER,||z||<1
We say that P is a polynomial on E, writing P € P(E), if P is a finite sum
of homogeneous polynomials.
We write £("E) for L("E, K). By definition, L(°E, F) = F; also, L('E, F)
is just the continuous linear mappings from £ to F. Similar remarks apply to
P"E).

Given an n-homogeneous polynomial P, it is straightforward that we may
take the associated n-linear mapping A to be symmetric; in fact it is not hard
to see that P("E; F') and the space of symmetric n-linear mappings L;("E, F)
are isomorphic as Banach spaces. Note in particular that if P is a scalar valued
2-homogeneous polynomial on K", then P arises from a symmetric bilinear
form A : K* x K* — K, which we may in turn associate with a symmetric
matrix A via A(z,y) = =t Ay.
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If we start with a symmetric n-linear mapping, it is trivial to find the
associated n-homogeneous polynomial. The converse is the content of the
following, which we state in probabilistic form:

THEOREM 2.2. (Polarization Formula) Let r1,...,7, be n independent
normalized random variables on a probability space €. Let z1,...,z, € E,
and let P € P("E, F). Then the associated symmetric n-linear mapping A is
given by the formula

Ay = & [ [0 2 @P(Y S ri)]

=1

Proof. Recall that our hypotheses on the random variables simply mean

that [ |r]> = 1, f[or = 0, and that [,rérf = [, jfnrk for j # k. The
rlght hand side of the equality is 4 times [,77- TP (3 o5_17iTj) =

JoT1- A(Yorjzj, ..., >, mjz;), which equals

n .
Z ( : ) / TIT{I 7"nTJ"A(QH yoes T3)
J1s-+-5Jn Q

OSJl 7---’jn7 Z?:l jt:n

n . _ 4 A
= E ( .)A(w{l, . ,xﬁl")/rlr{l---rnrfl".
Jiy-esn Q

same indices

If some j; > 1, then some other j; = 0, and so the corresponding integral is
0. Consequently, the only non-zero term occurs when all j; = 1, in which case
the above expression is simply n!A(z1,...,2,). |

One case of the polarization formula merits special mention.

COROLLARY 2.3. For z1,...,z,, P, and A as above,

1 n
Alz1,...,2,) = o Z 61"'6nP(ZEj.Tj).
7j=1

ej==%x1,j=1,...,n

The proof of this corollary consists merely of taking n (Bernoulli) random
variables €;, each taking values +1 independently.

Applying Corollary 2.3 to arbitrary unit vectors z1, ..., Z,, we see that
1
Azl < 7 sup, [1P( Zea% )| < —IIPHn
n! st

since each || > 7, €;x;|| has norm at most n. We have proved the following:
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COROLLARY 2.4. Let P be an n-homogeneous polynomial with associated
symmetric n-linear mapping A. Then ||A|| < ”n—7:||P||

A lot of work has been done on finding the best constant C, as a function
of the Banach space E, and extremal polynomials P such that ||A|| < C||P]|.
For instance, if E is Hilbert space, then ||A|| = ||P|| for every n and every
P € P("E); on the other hand, the polynomial P : ¢ - K, P(z) =x1---Zp,
is such that ||A4|| = Z;||P||.

Thus far, we have not given any example of a polynomial on an arbitrary
Banach space. We'll now correct this omission, restricting to the scalar valued
case.

EXAMPLE 2.5. For all ¢ € E* and all n, ¢" € P("E). For certain Banach
spaces, for example E = ¢y, every P € P("E) is a limit of so-called finite
type polynomials, of the form 2_1;:1 ¢j¢;. The same holds for k-homogeneous
polynomials P : £, — K, provided k < p. However, this is by no means true in
general. For instance, the polynomial Z;’ozl x? on /5 cannot be approximated
by such finite-type polynomials.

Our interest in the area of polynomials originated in a question which was
studied by Nemirovskii and Semenov [19] in the late 1960’s and early 1970’s.

QUESTION 2.6. Let E be a Banach space. Let the space of polynomials
on E, P(E), be given the sup-norm on the open unit ball Bg of E. What is
the completion of P(E)?

We will first study Question 2.6 when the underlying field is R. Note that
if dim E < oo, then the answer is given precisely by the Stone-Weierstrass
theorem. Also, for special infinite dimensional E such as cp, the problem has
an easy solution, which we will describe in Remark 2.10. However, the problem
remains open for £ = ¢5. Note that any limit of a sequence of polynomials must
be uniformly continuous on bounded subsets of E. However, we show here that
there are uniformly continuous functions on ¢ which are not approximable
by polynomials. In fact, the following is true.

EXAMPLE 2.7. (A.S. Nemirovski and S. M. Semenov) There is a C* func-
tion g on £y, which is uniformly continuous and which has uniformly conti-
nuous derivatives, which cannot be approximated uniformly on the unit ball
B of £ by any polynomial.
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Proof. For convenience, we prove the result with B being the ball in 45 of
radius 4. Denote by P<,(R") the vector space of all polynomials P : R* — R
of degree at most s. For any ¢ < s, the set of monomials {zj, ---z;,} forms a
basis for the ¢-homogeneous polynomials on R", and there are at most nt < n?
such monomials. Consequently, dim P<,(R") is at most 1 4+ sn®. Call I';, any
collection of points in B, = {z € R": ||z|| < 1} which are maximal with
respect to the following property: For any two different points z and y in ',
||z — y|| > 1/2. The first thing to notice is that there are at least 2" points
in I'y,. Indeed, by maximality of I';,, any point in B,, is within 1/2 of at least
one point of I';,. In other words, By, is a subset of the union Uger, B(z, %) of
the balls in R" of radius 1/2. If 1 denotes Lebesgue measure, it follows that
w(Bn) < > per, #(B(x, 2)) = [Tn|u(B(0, %)), since all the balls have the same
measure, = |Fn|2in u(By) by homogeneity of p.

For each s =1,2,..., let n = n(s) be any integer such that 2" > sn® + 1.
Thus, if C(T'y) = {f : I'n — R} with the max-norm, then dimC(T,,) > 2™ >
dim P<s(R™). What this means is that the restriction mapping r : P<,(R") —
C(T'y), r(P) = P|r,, maps onto a proper subspace of C(I'y). Thus, there must
be a function fs € C(I'y), ||fs|]| = 1, such that ||fs — r(P)|| > 1 for every
P € P<,(R"). In other words, there is a function defined on a finite subset of
B,, which cannot be approximated on B,, by any polynomial of degree at most
s. For each s, we place B,5) C B in such a way that the distance between
any two such balls is at least 1/2. Call T' = U;I',,(,), and rename the points of
[ as {z;: j € N}. Define f : T' = R by f(z;) = fs(z;) provided z; € T\,(y).
Then there can be no polynomial P which can approximate f within 1/2 on
B. Otherwise, if P were such a polynomial of degree s, say, then f; would
have a polynomial approximation to within 1/2, which is false.

Finally, let 8 : R — [—1, 1] be a C*° function which is such that §(0) = 1 and
6(t) = 0 if [t| > 1/8. The function g : o = R, g(z) =3, f(2;)0(||z — z||?),
is the required function. [

The answer to Question 2.6 in the complex case is considerably easier.
First, we need a definition.

DEFINITION 2.8. Let U C E be an open subset of the complex Banach
space E. A function f : U — C is said to be analytic or holomorphic if one of
the following equivalent conditions holds:

(i) The function f has a Fréchet derivative at every point of U.

(ii) For every b € U, there is a Taylor expansion about b which converges
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to f near b. Specifically, for all z in some neighborhood of b, we can write
o
F ()
f(z) = E:OT(HU —b),
n=

where each f(™(b) € P("E).

We denote the space of holomorphic functions on U by H(U). For us,
the only cases of interest will be U = Bpg, the open unit ball of E, and
U = E. It is important to note that if dim £ = oo, then there are plenty
of f € H(E) such that sup,cp, |f(z)] = oc. For instance, if £ = cg or
4y, 1 < p < o0, the function f(z) = Y o2, 2 is an entire function which is
unbounded on the unit ball. Let H(E) denote those functions f € H(E) such
that sup), <k |f(z)| < oo for every k > 0, endowed with the natural metric

induced by the family f ~» supjz <k | f(2)|-

PROPOSITION 2.9. (See, e.g., [13]) If E is a complex Banach space, then
the completion of the space of complex polynomials P(E) is Hy(E).

Proof. This is an immediate consequence of the following easily proved
facts: (i) Hp(F) is complete, (ii) For any f € H,(E), the Taylor series z —
§o0 f™(0)

neo 1 (z) converges uniformly to f on any ball in E. 1

To conclude this section, we mention some positive results related to Ques-
tion 2.6, as well as another open problem.

Suppose that we restrict our attention to the completion of the finite type
polynomials on E. It will be a bit more convenient to consider the space
obtained by taking uniform limits with respect to every ball in E, rather than
just the unit ball Bg of E. We have a reasonably satisfactory answer in the
case of both real and complex Banach spaces.

ProposITION 2.10. [8] (R-case) If E is a real Banach space, then a func-
tion f : E — R is a uniform limit of finite type polynomials on balls of E if and
only if the restriction of f to each bounded subset of E is weakly uniformly
continuous.

(C-case) If E is a complex Banach space whose dual has the approximation
property, then a holomorphic function f : E — C is a uniform limit of finite
type polynomials on the ball of E if and only if the restriction of f to each
bounded subset of E is weakly uniformly continuous.
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Proof. The = direction is straightforward in both the real and complex
cases. For the ‘real’ converse, fix a bounded set B C E and ¢ > 0. Our
assumption on f means that there are § > 0 and functionals ¢, ..., ¢, € E*
such that if z,y € B satisfy |$;(z—y)| <26 (j =1,...,k), then |f(z)—f(y)| <
e. Call ® : E — RF the function taking z € E to (¢1(x),...,¢r(z)). Since
®(B) is compact, there are z1,...,Z,, in B such that for all z € B, ||®(z) —
®(z;)||oc < 0 for some j = 1,...,m. For each such j, let h; : R¥ — [0,1]
be a continuous function such that supp h; C By (®(z;),2d) and such that
> jei hj(y) = 1 for every y € UL Boo(®(;),6). (Such a collection is called a
partition of unity.) Thus, for every z € B,

\Zhj 0 &(z)f(x;) — f ()] = \Zhj 0 ®(z)(f(z;) — f(2))] <e.

Indeed, for each such z, [|®(z) — ®(2;)||c < € for some ¢ and so Y 7", h; o
®(z) = 1. Also, if ||®(z) — ®(zi)||eo < 26, then |f(z;) — f(z)| < €, while if
||®(z) — ®(x;)||co > 26, then h; o ®(z) = 0.

To complete this part of the argument, we approximate each h; by a
polynomial P; : R¥ — R uniformly within € - (m max;{|f(z;)|}) " on ®(B).
We will therefore have the finite type polynomial 377", f(z;)(P; o @) within
2¢ of f on B.

For the ‘complex’ converse, which we sketch, we will need the following
notions: Each n-linear mapping A : £ x --- x E — K can be associated
to a linear mapping C : E — L("'E), given by C(z)(z1,---,%Tn 1) =
A(z,z1,...,2n—1). Moreover, let Ly, (™FE) denote the space of all A € L(™E)
such that the restriction of A to B X --- x B is weakly uniformly continuous
on the unit ball B of E. It is an exercise that the above association will take
an A € Lyy(2E) to a compact linear C : E — E*.

Let f be a holomorphic function on £ which is weakly uniformly conti-
nuous on bounded subsets of F, and let a bounded set B C E and ¢ > 0 be
given. By straightforward arguments involving the Cauchy integral formula
and Cauchy’s inequalities, if f = ) °° | P, is the Taylor expansion of f into
n-homogeneous polynomials, then each P, is itself weakly uniformly conti-
nuous on bounded subsets of E. Also, since f is weakly uniformly continuous
on bounded sets, it is bounded on any ball in E. Therefore, its Taylor series
converges uniformly to f on B. Thus, it suffices to show that each P, can be
uniformly approximated by a finite type n-homogeneous polynomial on B.
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We now use a typical argument which links n-homogeneous polynomials to
certain linear mappings. Namely, to each n-homogeneous polynomial P : £ —
K we first associate the symmetric n-linear A, and this in turn is associated
to the linear mapping C : E — L(" 'E) as indicated above. It isn’t hard
to show that our original polynomial P is weakly uniformly continuous on
bounded subsets of E if and only if A is weakly uniformly continuous on
bounded subsets of E X - - - x E, which in turn is equivalent to the mapping C
being compact with range contained in Ly, (" ' E). We now use our hypothesis
of E* having the approximation property to see that C(-) can be uniformly
approximated on B by a finite sum of the form ) ¢;(-)A;, where ¢; € E* and
Aj € Lyy(" 'E). An induction argument is all that is needed to complete the
proof. 11

Remark 2.11. For the Banach space ¢y, every polynomial is a uniform
limit of finite type polynomials (see, e.g., [20]). Consequently, Proposition
2.10 provides a complete solution to the ‘Stone-Weierstrass’ problem for cg.
In connection with Proposition 2.10, one can show ([2]) that a holomorphic
function f : E — C is weakly uniformly continuous on balls of F if and only
if its Fréchet derivative df : E — E* takes bounded subsets of E to relatively
compact subsets of E*.

Finally, we mention that a ‘neat’ analogous characterization is unknown
for the completion of the algebras generated by all polynomials of degree at
most k, if & > 1.

3. NORMS OF POLYNOMIALS

Let’s fix the max norm on K", and consider a polynomial P : K* — K of
degree £k,

P(z) = Z boz®.

la|<k

In estimating the norm of P from above, there is no better estimate possible
than ||P|| <37, |ba| (just take a polynomial with all b, > 0). However, we
can get some interesting and useful estimates on ||P|| from below in many
situations. This is the theme of this short section.

Although our results will depend heavily on whether K = R or C, the
central theme will be the same: It is possible to obtain estimates of ||P||
from below which are independent of n, the number of variables. In fact, in
the complex case, our estimate is even independent of the degree k of the
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polynomial.

Let’s begin with the complex case. A typical polynomial P : C* — C of
degree k can be written as follows:

P(z)=ap+ [biz1 +... +bpzp] + -+ [(a12]" + -+ anz))
+ other homogeneous terms of degree m)|
+ « -+ + [terms of degree kJ.

THEOREM 3.1. [5] Let P : C* — C be a polynomial of degree k and let
m be an integer, k/2 < m < k. Then, with the above notation, |ag| + |a1| +
-+ lan] < [|P]].

Sketch of Proof. Recall that we are taking ||P|| = max,,| . .. <1 |P(2)]-
The basic idea of the proof is already apparent in the case kK =4 and m = 3,
and we will work with this notationally easier situation. Without loss of
generality, ag > 0. Let s1, s2,..., S, be defined on [0,1] in the following way.

1 if0<t<1/3
sit)={a if1/3<t<2/3
B if2/3<t<1.

Here, 1, and 3 are the cube roots of unity. Assuming that s;_; has been
defined, we define s; as follows: Divide each subinterval of [0, 1] on which s;_;
is constant into three equal subintervals, and let s; be equal to 1 on the first
of these, « on the second, and S on the third. Like the analogous Rademacher
functions, the functions (s;) have the following properties:

(i) |s;(t)] =1 and [ s3(t)dt = 1 (all t and all j).

(ii) fol 81 (t)sjy(t) - -+ s5,(t)dt = 0, provided ! is not a multiple of 3,

(iii) fol ;1 (t)sj,(t)s;,(t)dt = 0, provided the 3 indices ji, jo,j3 are not all
equal.

Choose constants di,...,d; of modulus one so that ajd? > 0. Then,
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1
1P| > |/ P(dys1(t), .. ., dnsn(t))d]
_|/ ao-l-[Zbd/s] 1)df] + -I—[Za]d3/ t)dt

1
+ / other homogeneous terms of degree 3]
0
1
+ / homogeneous terms of degree 4‘.
0
The properties of our s;’s and our choice of d;’s show that the above integral
is merely ag + |a1| +--- + |an|-
We remark that we don’t have an estimate in the situation 1 <m < k/2.
The real case is substantially more complicated. For one thing, the ‘neat’

estimate of the complex case fails.

EXAMPLE 3.2. Let Q1 : R2 — R be given by Q1(x1,z2) = 22 — z2. Then,
using the max-norm on R?, ||Q1|| = 1 although |a1| + |as| = 1| + | — 1| = 2.

Tterating, if Qmy1 : 2™ — R is the 2! —homogeneous polynomial given
by
Qmi1(T1,. - Tom, Tym i1, Toma1) = Quu(T1, ..., Tom)?

— Qm(T2m 41, .., Bymi1)?,

then each Q,, € P(>"R?™). Furthermore, adding the absolute values of the
2™ coefficients a; of 22", we get 2™ = Z?;nl |a;| although ||Qmn|| = 1.

In fact, a similar iterative example, based on Qg : R® — R, Qq(z1,z2,73) =
x%+x%+$§ —X1T2—T2xT3—T3T1, gives a better estimate. One can show that in
this situation, maxo<g;<1,i=1,2,3 |Qo(z1, %2, z3)| = 1. As a result, Q1 € P(*R®)
given by Q1(z1,...,76) = Qo(z1,z2,73)? — Qo(x4,z5,76)? is such that the
sum of the absolute values of the ‘pure’ coefficients of the :1021 gives 6, with
||Q1]| still equal to 1.

Nevertheless, there are estimates which one can obtain which are inde-
pendent of the number of variables, such as the following:
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THEOREM 3.3. [5] Let P : R" — R be a k-homogeneous polynomial,
P(z) = alfﬁlf +---+ anxﬁ + other terms.

Then

< 4k? .
lai| + -+ + |an| < 4k ogxﬁ,?i‘l,___,JP@”

Proof. The proof begins with several reductions. First, there is a subset
L of {1,2,...,n} consisting of coefficients a; having the same sign, such that
| > ier ail > 1/2%°0, |a;|. Without loss of generality L = {1,2,...,m} for
some m and for each ¢ € L, a; > 0. Let’s normalize so that > ;" a; = 1. We'll
fix z; = 0 for 1 > m.

The object of the proof is to show that one can choose values 0 or 1 for
the m variables z1,..., %y in such a way that the required inequality holds.
To do this, we allow each of these m variables to assume values 0 and 1
independently, with respective probabilities 1 — ¢ and ¢. The proof consists in
applying Markov’s inequality to show that for some choice of ¢ € [0,1], the
expected value of P(z1,...,Zm,0,...,0) will be at least ﬁ It will be easy
to proceed from here to the required inequality.

Note that the expected value of ' is ¢, regardless of which positive integer
ji we choose. Analogously, the expected value of wg’x{l is t2, etc. Let’s write
P in the following form:

m
P(x) :Zawf + Z{aaaca: |a| =k, 2 indices of « are # 0}
i=1
+ Z{aaxa: || =k, 3 indices of o are # 0} + ---
+ Z{aaxa: || = k, k indices of « are # 0}.
Thus, since expectation is a linear function, the expectation of P(zq,...,
Zm,0,...,0) is
m
S(H) = ait+ Agt® 4+ AptF =t + Agt® + - + Ath,
i=1
where each

A; = Z{aa: exactly j indices of « are # 0}.
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Let f(y) = S(y—;’l), where y € [—1,1]. Then max;c)11[S(t)| =
maxyc(—1,1] |f(y)|, which by Markov’s inequality is > k—%max[_m] If'(y)| =
ez Maxyeqo. 1] |S'(t)| > 525(0) = . Thus, since the maximum value of S
is at least #, there must be some ¢ for which |S(¢)| > # In other words,
for some choice of 1 = 0 or 1,..., 2, = 0 or L2y = -+ = z, = 0,
[P(z1, ..o, Ty T - - - Tn)| = 557 = 707 Dovey lail-

Remarks 3.4. With somewhat more care, the constant 4 in Theorem 3.3
can be reduced. More importantly, in a number of cases, the exponent k? can
be reduced; however, we don’t know whether &2 can be replaced by something
smaller in general. Let us denote by c(k) the smallest constant which satisfies
the estimate of Theorem 3.3: |a1| + - -+ + |a,| < 4k? MaXo<q;<1,i=1,..,n | P(z)]-
We don’t know the value of ¢(k) for k > 3; in fact, we don’t even know whether
(c(k)) is an increasing sequence.

Note that the maximum we took in Theorem 3.3 was over the first ‘qua-
drant’ only, in n-space; that is, our z; varied only in [0,1] rather than in
[—1,1]. A modification of the argument yields the following:

THEOREM 3.5. [5] Let P : R* — R be a polynomial of degree k, P(x) =
% a;z¥ + other terms. Then

n

Ylail <242 max |P(a,...,a0)]-
i—1 zl,...,xne[—l,l}

We conclude this section with a brief remark on a result in a very similar
spirit. Namely, the following is true concerning norms of products of polyno-
mials:

THEOREM 3.6. [10] Let P, and P, be homogeneous polynomials on a com-
plex Banach space E of degree m1 and meo, respectively. Then

(m1+m2)(m1+m2
mi1 m2
1 Mo

)
[|[PL]|][|P]] < ||P1 P

Proof. We prove the result in the simplest non-trivial case, namely when
P; and P, are elements of E*. The argument in the general case is similar.
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Fix x and y in B, the closed unit ball of E. We have the following easily
verified equality:

2T
@0 = 5= [ (e o+ )il + o).
Thus,
pulllg2l]l = sup |¢1(z)g2(y)| < sup  |di(z + e?y)da(z + eify)|
T,y€EB z,y, 9€[0,27]

< ||grpa|| sup ||z + e“yl|> = 4| p1 2] |-
z,y,0 1

4. ZEROS OF POLYNOMIALS

We next turn our attention to zeros of polynomials, dealing first with
the complex and then the real case. Our interest will be in finding ‘large’
subspaces of E on which a polynomial is constant, in a way we now make
precise.

It is trivial that the nullspace of a linear form on a vector space is a hyper-
plane. In our terminology, to every 1-homogeneous scalar valued polynomial,
there is a vector space of codimension 1 on which the polynomial vanishes. A
direct generalization of this result to polynomials having higher homogeneity
cannot hold: Take P : C* — C given by P(z1,22,23,21) = 22 + --- + 22.
Although (1,4,0,0) and (0, 1,4,0) are both in P~1(0), P(1,1+14,4,0) # 0. Ne-
vertheless, the 2-dimensional subspace {(a,ia,b,1b): a,b € C} is contained in
P~1(0), and it is the generalization of this fact to polynomials which we study
here. Specifically, we study P~1(0) for polynomials P : E — K, showing that
these polynomials are constant on large subspaces. Moreover, the size of these
subspaces depends only on the degree of P and not on P itself. These results
appear to be known to algebraic geometers, but not to very many analysts.
The technique of proof we present here is purely analytical, and uses only one
‘ingredient:’ Given a non-constant entire function f : C¥* — C, where k > 2,
either f~1(0) = 0 or f1(0) is non-compact (see, e.g., [16], p.21).

THEOREM 4.1. [21],[4] There is a function © : N x N = N, O(m,d) =n,
with the following property: For every polynomial P : C* — C, deg P < d,
there is an m-dimensional subspace X C C" such that P|x = P(0).

Idea of Proof. There is no loss if we assume that P(0) = 0. Also, without
loss of generality, we will only work with homogeneous polynomials, obtaining
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for each d a function ©4 which is © restricted to the d-homogeneous polyno-
mials. Indeed, suppose that for each d, we have found a function ©4: N — N
such that for each m € N, every d-homogeneous polynomial in ©4(m) va-
riables vanishes on an m-dimensional subspace. Then a possible value for
O(m,2) is ©2(01(m)). To see this let P = P + P, : C* — C be a poly-
nomial of degree 2 with linear part P; and 2-homogeneous part P, where
n = 02(01(m)). Then P, = 0 on a subspace X of C" of dimension O1(m),
and P; = 0 on a subspace of X of dimension m. Therefore, P|x = 0 on an
m-dimensional subspace of C". In general one possible value for ©(m,d) is
O(m,d) = ©4(04_1(... (©1(m))...)).

As we remarked, ©1(m) = m + 1. To find Oy, let P : C* — C be a
2-homogeneous polynomial (where n is yet to be determined). If n > 2
then the ‘ingredient’ described above applied to the entire function P yields
21 € C", 21 # 0, such that P(z1) =0. Let S; = {z € C": A(z,21) = 0}, where
A is as usual the symmetric bilinear form associated to P. Note that S; can
be written as the direct sum of [21] @ Y,—2, where we associate Y,,_o with
C*2. Consider P|cn-2 : C* 2 - C. If n—2 > 2, then there is zp € C"2, 2, #
0, such that P(z9) = 0. Thus for any scalars a1 and a2, P(a121 + ag22) =
a?P(z1) + 2a1a2A(21,22) + a3P(23). By our choices of z; and 2z, € S, we
see that P(a1z1 + a222) = 0. Proceeding in this way, we see that Os(m) <
2m for every m; that is, every 2-homogeneous polynomial in 2m variables
vanishes on an m-dimensional subspace of C>™. (Now, do we really need that
many variables? In other words, might it be true that every 2-homogeneous
polynomial in £ < 2m variables vanishes on an m-dimensional subspace? In
fact, we show in Example 4.2 that ©9(m) = 2m.)

The general case follows by induction. For example, if P : C* — C is
3-homogeneous, then there is z; € C", 23 # 0, such that P(z;) = 0. Let
S = {z € C": A(z,2z1,21) = 0} = [21]@ C"2. By induction, there is an
[ (n—2)/2 ]-dimensional subspace T} C {z € C* %: A(z,z,21) = 0}. So if
[ (n—2)/2 ] > 2, that is if n > 6, we can find z; € Ty, 22 # 0, such that
P(z2) = 0. The argument proceeds along these lines. 1

QUESTIONS 4.2. (AND AN EXAMPLE) (i) The above argument shows that
©3(2) < 6. That is, every 3-homogeneous polynomial in 6 variables vanishes
on a 2-dimensional subspace. We do not know the exact value of O3(2).
Specifically, might ©3(2) = 57 In other words, might it happen that every 3-
homogeneous polynomial in 5 variables vanishes on a 2-dimensional subspace?
Indeed, we don’t know the exact value of ©,,(d) for any d > 3. The only exact
estimate we know is given in (ii) below:
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(ii) We can show that ©9(m) = 2m. Indeed, consider the polynomial P :
Cm — C, P(2) = ZJQTZ"I zJQ-, which vanishes on the m-dimensional span of
e1 +1i€e2,...,€9m 1 + i€ay. Assume that there were some k > m-dimensional
subspace X on which P was identically 0. Extend the basis f1,..., fi for X to a
basis for C>™, and consider the symmetric matrix of A associated to this basis.
For any j,1, 1 < j,1 <k, we have 2A(f]7fl) = P(f] +fl) _P(f]) _P(fl) =0.
Thus, the 2m x 2m matrix A has a square block of size greater than m
consisting only of (s, making it singular. This is a contradiction, since the

matrix of P with respect to the standard basis is just the identity.

Cheerfully ignoring the polynomial P : R™ — R, P(z) = Y. 22, whose
zero set is well-understood, we next consider the question of finding ‘large’
subspaces in the zero set of real polynomials. Surprisingly perhaps, there are
quite a few things which can be said, even in finite dimensions.

PROPOSITION 4.3. [7] Let P : R™ — R be a symmetric d-homogeneous
polynomial, where d is odd. Then P~'(0) contains a subspace of dimension

[m/2].

Proof. First, recall that P is said to be symmetric if P(z1,...,Zm) =
P(z4,,-..,%4, ) for every permutation o of {1,...,m}. It is not difficult to see
that P can be factored as P(z) = Q(}_; z;, jwi, e D a:;i) for some poly-

nomial Q(y) in d variables. In other words, P(z) = }_, aa(3_;2;)* (3, :B?)O‘?

(225 :v?)"‘d, where the sum is taken over all @ = (ay,...,aq) such that
lay +2ag+- - - +dag = d. Now, for each fixed a, it cannot happen that a; =0
whenever j is odd. Otherwise, the above sum could not be the odd number
d. Hence, in every case, at least one of the «; is odd for some odd j, which
means that the corresponding summand vanishes on any vector of the form
e1 — ez, e3 —ey4,... Hence, P vanishes on span{e; —ea, ..., €m/2—1 — €2(m/2 }>
which completes the proof. |

Thus, for at least some very special polynomials, there are large subspaces
contained in their zero sets, the dimension of which is independent of the
(odd) degree of the polynomial. Further, this argument extends to Banach
spaces with symmetric basis, yielding an infinite dimensional subspace in the
zero set. But, how about more general polynomials? In the 2-homogeneous
case, we have a complete answer whose proof is very simple.

PROPOSITION 4.4. [7] Let P : R™ — R be a 2-homogeneous polynomial.
Then P~1(0) contains a subspace of dimension r = min{p,n} + z, where p,n,
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and z are the respective number of positive, negative, and zero eigenvalues of
the symmetric m x m matrix A associated to P.

Proof. Let A be the m X m matrix associated to P. Since A is symmetric,
there is a basis of R™ with respect to which A is diagonal. There is no loss in
scaling this basis so that A has the following form:

A0 0

0 . A O

0 C App1 O

0 0 Apin -
.00

0 0 0

with all the A; > 0. Since

Spa‘n{el + ep—l—la ey + 2ep—|—27 -3y €pintly-- ek} cP™ ( )
v v P+

the result follows.

Thus, for example, if P(z) = Z] 1 J, thenp =m,n=2z=0,andsor =0
as expected. On the other hand, if P(z) = Z;'n:1(—1)J$j> then r = [m/2].

Of course, for any real polynomial P of odd homogeneity on R™,m >
2, P~1(0) always contains a line: Choosing z so that P(z) > 0, it follows
that P(—z) < 0, and since m > 1 there is a path from z to —z which avoids
the origin. Hence, by the intermediate value theorem, we can find y # 0 such
that P(y) = 0. Hence P(ty) = 0 for every ¢t € R. One can say more:

PROPOSITION 4.5. [7] If P : R™ — R is 3-homogeneous and if m >
1(3"(6n + 5) — 1), then there is a subspace of P~1(0) of dimension [n/2].

This result is rather ugly, to say the least, and far from giving a good
estimate. For instance, as we observed, any odd polynomial in m = 2 variables
will yield a 1-dimensional subspace in its zero set. To satisfy the conditions
in the above proposition with n = 2, the number of variables m must be at
least 38. To say that this result can be improved is an understatement! We
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remark that subspaces of P~1(0), for P homogeneous of odd degree, were
studied nearly fifty years ago in a different setting (see, e.g, [9]).
We believe that the following questions are worthy of investigation.

QUESTIONS 4.6. (1) Let P: R™ — R be a 4-homogeneous polynomial. Is
there a formula similar to that of Proposition 4.4 which enables us to calculate
the dimension of the largest possible subspace of P~1(0)?

(2) Let E be an infinite dimensional real Banach space and let P : E — R
be a k-homogeneous polynomial, where k is odd. Is there an infinite dimen-
sional subspace of £ on which P vanishes? Proposition 4.5 notwithstanding,
we do not even know the answer to this question when &k = 3.

We turn next to the problem of finding subspaces of P~1(0), for homo-
geneous real polynomials P on infinite dimensional Banach spaces. We will
find the following concept useful. A function f : E — R is said to be positive
definite if f(z) > 0 for all z € E except = 0, for which f(0) = 0. It is
easy to see that F admits a positive definite 2-homogeneous polynomial if
and only if there is a continuous linear injection of F into some Hilbert space.
(For instance, if such a polynomial exists with associated symmetric form A,
defining < z,y >= A(x,y) produces an inner product on E.)

THEOREM 4.7. [6] Suppose that E does not admit a positive definite 2-
homogeneous polynomial. Then for every P € P(?E), there is an infinite
dimensional subspace F' C E such that P|p = 0.

Before proving this, we give some examples where the theorem applies and
where it doesn’t apply.

EXAMPLE 4.8. Let E be a separable space with countable dense subset
{zn} of the unit sphere of E. For each n, let ¢, € E* have norm one and
be such that ¢,(z,) = 1. Define the 2-homogeneous polynomial P : E — R
by P(z) = >.°°,1/2"¢,(z)?. If P(y) = 0 for some non-zero vector y, then
we may suppose that the same occurs for a unit vector . This means that
¢n(z) = 0 for every n, even for those n for which ||z — z,|| is very small,
which is a contradiction. The same type of argument works for £, (and more
generally for any C(K) where K is a separable, compact set) and any Hilbert
space H. (For the last assertion, take a complete orthonormal set {u,} and
set P € P(2H), P(z) =Y., z2.) On the other hand, ¢;(I') and £,(T),p > 2,
do not admit positive definite 2-homogeneous polynomials, provided I is an
uncountable index set.
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Proof of Theorem 4.7. Let S = {S C E: S is a subspace of E and P|s =
0}. It is a straightforward exercise to verify that S is inductive, so that we
may apply Zorn’s Lemma to find a maximal element S € S. We will show
that dim .S = oo. If this is not the case, then S is spanned by a finite number
of linearly independent vectors, say vi,...,vn.

Let T = Ngegker Ay, where A, : E — R is the functional: y € £ —
A(z,y). Note that T is also equal to N}_; ker A,,, and that 7" has finite codi-
mension in E.

Claim 1: S C T. To see this, fix y € S. For any z € S, 0 = P(z + y), since
S is a vector space, = P(z) + 245(y) + P(y) = 24,(y). Therefore y € ker A,
for every z € S, which means that y € T.

Thus, we may write T' = S @Y for some infinite dimensional subspace Y.

Claim 2: If y € T and P(y) = 0, then y € S. To see this, for any =z €
S,P(z +y) = P(x) + 2A;(y) + P(y) = 0. Because of the maximality of S, it
follows that y € S.

Therefore, either P|y or —P|Y is positive definite. (If not, there are w, z €
Y such that P(w) < 0 < P(z). Since dimY = oo, there is a path in Y joining
w to z which misses the origin. Thus there is a zero of P on this path,
which contradicts Claim 2.) Let’s agree that Py is positive definite. We
may therefore choose a finite number of functionals {¢1,...,¢,} on E* so
that P+ ) ;4 (/)f is positive definite on 7. Finally, if Il : £ — T is a linear
projection, then Q(z) = (P(z) + Y1, ¢i(z)?) o I(z) + 31 | Ay, (z)? is a 2-
homogeneous positive definite polynomial on E. But this is a contradiction to
our initial hypothesis, and the proof is finished. |

QUESTION 4.9. Since the Banach space F in Theorem 4.7 must of neces-
sity be non-separable, it is natural to ask whether the space F' found in this
theorem is also non-separable. In certain situations, for example if E = £,(T")
where I' is uncountable and p > 4, this question has a positive solution, whose
proof we omit:

THEOREM 4.10. [6] Suppose that E does not admit a positive defin-
ite 4-homogeneous polynomial. Then, every 2-homogeneous and every 3-
homogeneous polynomial on E vanishes on a non-separable subspace of E.

5. EXTENSION OF POLYNOMIALS

Our interest here will be focussed on the following two questions: Let
E C F be two Banach spaces, and let P € P("E).
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(1) Is there an extension P € P("F) of P?

(2) Assuming that we can find such an extension, can we further arrange
for it to have the same norm as ||P||?

As we will see, the answer to (1) is ‘no’ in general, but ‘yes’ in the most
important situation, when F' = E**. And, the answer to (2) will be seen to be
‘yes’ in this same situation. We begin with two general methods for construc-
ting counterexamples to Question 1, and we then present a counterexample
to Question 2.

ExAMPLES 5.1. (i) Consider a pair of Banach spaces E C F with the
property that for some weakly null sequence (z,) C F and some polynomial
P:E — K P(z,) /4 0, but that for every polynomial Q : F — K, Q(z,) — 0.
Then, it is clear that P is not extendible to F. One instance of this occurs with
E =4y C F =(CJ[0,1], the null sequence being the unit vector basis (e,) C £o.
The non-extendible polynomial here is P(z) = 3772, z3 € P(*L2), using the
fact [22] that since C[0, 1] has the (polynomial) Dunford Pettis property, every
polynomial @ : C[0,1] — K is such that Q(e,) — 0.

(ii) T am indebted to Ray Ryan for pointing out the following ‘recipe’
for a counterexample. Let £ C F and G be Banach spaces, and let T' €
L(E,G) be a continuous linear operator which does not admit an extension
to L(F,G**). Define P € P(3(ExG*)) by P(e,g*) = g*(T(e)). Then P cannot
be extended to any P € P(2(F x G*)). Indeed, suppose that P exists, and let
A: (FxG*)x (FxG*) = K be the associated symmetric bilinear form. Let’s
identify A with the linear operator Li: (FxG*) = (FxG")* = (F*xG*).
Define S € L(F,G**) by S(f)(g*) = w20 L ;(f,9*), where 7y is the projection
onto the second coordinate. It is routine to show that S is an extension of T,
which is a contradiction.

One situation in which the above hypotheses are satisfied occurs when
E = G = 4y and F = C[0,1]. If the identify /5 — ¢2 had an extension to
C[0, 1], this would imply that there is a projection of C[0,1] onto £2. But this
is well-known to be false. Note that the associated non-extendible polynomial
in this case is P : £y x C[0,1]* = R, P(z,¢) = ¢(x).

(iii) Let E be the set of all (z1,22,23) € C® such that z; + z + 23 = 0,
considered as a subspace of F = (C3,maz). It is clear that any polynomial P
on E can be extended to a polynomial () on F, for example by setting Q(z) =
Poll(z) where Il : F — E is a projection. However, Martin Schottenloher
has noted [23] that if P € P(?E) is given by P(a + b, —a,—b) = a? + ab + b2,
then ||P|| = 1 but P has no norm preserving extension to F. To see this, let
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v = (1,—1,0) and w = (1,0,—1) be a basis for E, and define P € P(2E) by
P(av+bw) = a? + ab+b%. Any extension Q € P(2F) of P can be described as
follows: Write an arbitrary (z,v,z) € C* as av + bw + cu, where u = (1,0, 0)
is the third basis vector for C2. Then, Q is of the form Q(z,vy,2) = a® + ab+
b2 + %61 + acdy + beds, for constants 61, do, and 3. The proof will be complete
once we show the following two claims:

Claim 1. ||P|| = 1.

Claim 2. ||Q|| > 1 no matter what extension we take.

For Claim 1, note first that ||P|| > P(v) = 1. In order to prove that
||P|| <1, let (z,y,2z) € E have norm 1. We first assume that |z| = |y +z| = 1.
Writing (z,y, 2z) = —yv — 2w, we see that P(z,y,2) = y? + yz + 22, which we
write as y(y + z) + z2. By homogeneity of P, we may assume that y + z = 1,
and it is easily verified that |y + 22| > 1 is impossible. In a similar way, we
consider the cases |y| =1 and |z| = 1.

Next, suppose that the second claim is false; that is assume that some
extension () has norm 1. Let’s evaluate ) at a number of special points.
Evaluating @ at both (1,1, —1) and (1, —1, 1) we get that |14+41| < 1. Similarly,
evaluating at (i,—1,1) and (7,1,—1), we conclude that |1 — §;| < 1. Thus,
01 = 0. Finally, evaluating @ at (1,1,1) and (—1,1,1), we see that |1 — [d2 +
d3]| < 1/3 and also that |3 — [d2 + d3]| < 1. This contradiction concludes the
proof.

See also a recent note by Pierre Mazet [18], on the best constant in the
extension of 2-homogeneous polynomials from a hyperplane of a Banach space.

For the rest of this paper, we will fix our attention on the case where
F = E**. We will show three things:

~ THEOREM 5.2. Given any n and any P € P("E), there is an extension
P e P("E**).

THEOREM 5.3. [11] Given P and P as above, ||P|| = || P||.

Finally, we will show that these results are interesting. We hope that the
reader will agree with this last assertion!

The idea for 5.2 is originally due to R. Arens [1], who was interested in
devising a process to extend bilinear mappings A : X x Y — Z to bilinear
mappings X** x Y** — Z**. Arens’ technique goes as follows.

Let A1 : Z* x X — Y™ be given by

A% ) (y) = 2" (A(z, 9))-
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Let’s follow the same pattern two more times, getting
Ag 1 Y™ X Z* = X*, Ax(y*™,2")(z) = y** (41(z%, x)),
and finally
Ay s X XY™ 5 2% Ay(z™,4*)(2") = 2 (Aa(y™, 2%)).

Let’s denote A3 by A. The first thing to verify is that fl| x %y coincides with
the original bilinear form A. Also, ||A|| = ||A]|. Both assertions are easy. Let’s
do an explicit calculation of A at a point (z**,y**). To do this, we need to recall
that from Goldstine’s theorem, there are nets (z4)o in X, resp. (yg)g in Y,
which converge weak—x to z**, resp. y**. For fixed z* € Z*, Aa(y**,2*) € X*,
and so

A(z™,y™)(2%) = 2™ (A2(y™, 2%)) = lién As(y™, 2" ) (zo) = liény**(Al(z*,wa)).

For each «a, A1(2*,z4) € Y*, and once again we use weak—x convergence to
get that

limy*™ (A1 (2", z4)) = limlim A; (2%, 24)(yg) = limlim 2*(A(z4,y3))-
a a B a B

By an application of the Hahn-Banach theorem, we see that

A(z™,y™) = lim lién A(zq,yp)-
o

In particular, if Z = C and X =Y = E, then we have extended an arbitrary
bilinear form on E X F to one on E** X E**.NWe use this to extend an arbitrary
P € P(’E) to P € P(2E*), by P(z**) = A(z**, z**).

A number of remarks are in order at this stage.

Remarks 5.4. (1) For any z**, P(z**) = lim,, limy, A(Zq,,Ta,), and this
is not in general equal to limy, A(zy, Zq) = lim, P(z4) (which might not even
exist). Although ||A|| = ||4]|, it is by no means clear that ||P|| = [|P||.
Indeed, it appears (at least, at first) that all that can be deduced is that
IIP]| < ||A|| = ||A]| < 2||P||. Of course, Theorem 5.3 answers this question.

(2) The same technique can be used to extend n-homogeneous polynomials
P € P("E) and n-linear forms A : X; x --- x X,, = Z, obtaining

Az, ... z) =lim... lim A(za,, - - ., Ta, ),
a1 an
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and thus f(w**) = A(z**,...,z**). The same unsatisfactory estimate on the
norm of P remains, since all that we know, a priori, is || P|| < ||A]| = [|4]| <
n™ || P

arllPll-

(3) There are many other techniques to extend elements of P("E) in a
norm-preserving way. For example, M. Lindstrom and R. Ryan [17] construct
one such extension (or rather very many such extensions!), by using ultrapo-
wers. Galindo, Garcia, Maestre, and Mujica use so-called Nicodemi sequences
to extend multilinear mappings in [15]. In their work on the Kobayashi metric,
Dineen and Timoney [14] obtain a norm-preserving extension by a somewhat
different ultrapower approach.

(4) Our extension technique involved making a choice of which variable
to extend first. We could as well have done our extension via iterates of the
bilinear mapping B; : Y x Z* — X*, given by By (y,z*)(z) = 2*(A(z,y)). Al-
though the following example shows that the result would have been different
in general, the extended value of P to E** does not vary.

(5) The extension P — P is linear and continuous.

ExAMPLE 5.5. Let A :/¢; x £; — K be given by

Alz,y) = (z1)ye + (w1 +z2+ 23)ya+ -+ (@1 + - + Ton—1)yon + -+
(y)zo+ (i +y2+yz)za+--+ (Y1 + -+ Yon—1)Ton + -

Note that |A(z,y)| < ||z|[1]|y||1, so that A € Ls(%41). Let z** € £* be
a weak—sx* limit point of the net (es), and let y** € £7* be a weak—x limit
point of (egxy1)k. Then,

A(z™,y™) = lim li]gﬂA(QQk_'_l, eon) = lim0 = 0,
n n

since for each fixed n, A(egk1, €2,) Will be 0 provided £ is large. On the other
hand, A(y**,x**) = limy, lim,, A(egx+1,€2,) = limg 1 = 1, since for each fixed
k, A(eagt1,€9n) = 1 for every large n.

The key here is what is known as regularity: A Banach space E is said
to be regular if every continuous linear operator £ — E* is weakly compact.
It is known that regularity of E is equivalent to the condition that for every
A € L(2E), the two extensions (using lim, limg and limg lim, agree).

Let us turn to the proof of the Davie-Gamelin theorem:

Proof of 5.3. We first show for any z** € E**, ||z**|| <1, any € > 0, and
any N € N, there are N points z1,...,zny € Bg, such that

|A(zi,, ... m,) — P(z*)| < €
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whenever 1 <1 < ... <1, <N ang are all distinct. Sin(ie fi(-,w**, LT €
E*, there is 1 € Bp such that |A(z1,z**,...,2**) — P(z*)| < €/n. Next,
choose x9 € Br which satisfies the two conditions:

|A(zo, z**,. .., %) — P(z*")| < ¢/n,

1 *% *% *% *%
|A(z1, 2, 2™, ..., 2™) — A(z1,2™,...,2"")| < ¢/n.
In general, given z1,...,x;_1, we choose x; € Bg satisfying the following:
1 K% *% 1 *% *k
|A(ziys e Ty T, ™, ™) — Ay, .oy, 2™, 2™)] < €/n

whenever 1 < i1 < ... <4; < N. Then for any 41 < ... < iy, we have
|A(ziys-- - Ti,) — 15(35**)| < |A(zi,---,Ti,)

- A(zim .- ’$in—17$**)| +oe
+ |A(z;, , x™, ..., 2*) — P(z*)| < e
Let’s apply this with IV very large and with the corresponding point z =
+(z1+--+zn) € Bg. We claim that |P(z) — P(z**)| < €. Once this claim has
been proved, it will be obvious that ||P|| cannot be larger than ||P||, and the
proof wil be finished. The proof of the claim consists of a counting argument:

|P(z) — P(z*)| = Vuw,... ,w) — A, o)
N N
1 al A [ x* *% 1
N Yo A, m,) — AT = (I +11},
ij=1, j=1,..,n
where I is the sum of |A(z;,,...,z;,) — A(z*,... ,2**)|, over all n-tuples of
distinct indices and I is the sum of |A(z;,,...,z;,) — A(z™,...,z**)| over

the rest of the indices. By the first part of the argument, % < €. Next,
we count how many terms are contained in the summand I7. In I, there
are N(N —1)(N —2)--- (N —n+ 1) terms, and so there are N" — [N(N —
(N —2)---(N —n+1)] terms in II. Each of these terms is bounded by
20| = 2| Al < 2%]|P|| = C, say. Hence,

%g%(N"—[N(N—1)(N—2)---(N—n+1)])
20[1_1(1—%)(1—%)---(1—71];1)],

which tends to 0 as N — oo. 1
An examination of the above proof shows that somewhat more has been
proved:
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COROLLARY 5.6. Given z** € Bp«-, there is a net (o) € Bg such that
P(z,) — P(z**) for every P € P(E).

Now, for the long-awaited interesting part of this section! First, let’s intro-
duce a small bit of notation (cf. Definition 2.8). We will denote by H*°(Bg)
the set {f € H(Bg): [|fllBr = sup| <1 |f(z)| < oo}. The space H*°(Bg) is
the analogue of the classical space H*°(D), where D C C is the open unit
disc.

1> (Bg) is a Banach algebra with identity, since it is clear that || fg||p, <
I|fllBgll9]|Bg- We denote by M(A) the maximal ideal space of the Banach
algebra A. That is, M(A) = {¢: A — C: ¢ is a non-trivial homomorphism};
it is a weak—# compact subset of the unit ball of A*. One can view A as a
subalgebra of C(M(A)), via the Gelfand mapping z € A — £ € C(M(A)),
where Z(¢) = ¢(x) for ¢ € M(A).

In our situation, when A = H*°(Bg), we have even more structure, since
we can embed B — M(A) in the obvious way: § : £ ~ d;, where 0,(f) =
f(z). It is also the case that every homomorphism ¢ € M(A) lies ‘over’ a
point in the closed ball of E**. This is done via the mapping IT : M(A) —
E**, TI(¢) = ¢|g~. Some observations concerning IT should be made:

(a) [|ITI()|| = supg+ep,, |¢(x*)| < 1 since each ¢ € M(A) has norm 1.

(b) II(é;) = z for every z € Bg.

(c) II is weak-* - weak-* continuous.

By Goldstine’s theorem, Br = I1(§(Bg)) is a weak-* dense subset of B+,
and consequently II(M(A)) = Bgs~, which is the closed unit ball of E**. This
is what we wanted to show.

But, aside from the obvious homomorphisms {d,: z € Bg}, what other
homomorphisms are there?

Let’s show how the above results imply that every point in B} gives
rise to a homomorphism. We first show that each f € H*(Bg) extends to an
f € H®(BY), and that in addition ||f||py = ||f]|By.. - First, if f = 32°°, P,
is in H°(Bg), we extend each P, to P, € P("E**). Since f is bounded on B,
an application of the Cauchy-Goursat formula shows that limsup ||P,|[}/" =
limsup || P, ||Y/™ < 1. Thus, f = 3°° , P, defines an analytic function on Bps«.
The next step is to show that f is bounded on Bg++. We do this by showing
that ||f||By = ||fllBges- S0, fix z** € Bgss with [|z**|| = 7 < 1, say, and let
€ > 0. For any m,

o o

@) =Y Pal@™) < Y 1Ba@™) < Y IRl

n=0 n=m+1 n=m+1
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Therefore, for sufficiently large m, |f(z**) — S Pu(a)| < e If (z4) €
rBpg is such that z, — z** weak—x*, then

m

|f(@a) = F(@™)] <If (za) = ) Palwa)]

n=0
m

+1D Pu(ma) = Y Bal@™)| +| D Pula™) — f@™)].
0 n=0 n=0

n=

By Corollary 5.6, | Y31" ¢ Pu(za) — D 0y P, (2**)| = 0 with «. Consequently,
for many a, |f(zq) — f(2**)| < 3e. We have thus proved the following.

COROLLARY 5.7. There is an extension mapping which takes f € H*(Bg)
to f € H*(Bpg+~), such that ||f||p, = ||f|| By -

Moreover, f — f is linear, continuous, and multiplicative; that is, ]/”\_(/] = f -g
for every f,g € H™(Bg). The linearity and continuity have already been
proved, and the multiplicativity follows upon sufficient staring at the way the
extensions are constructed.

How do such homomorphisms lying over points of Bg«~ arise? The easiest
way to construct such a homomorphism is by using Corollary 5.7: For each
z** in the open ball of E**, define 0+ € M(A) by 0z« (f) := f(z**). In this
way, we get a mapping 6 : B« — M(A). This mapping is one-to-one. To
see this, note that if z** # y™ € E**, then there must be z* € E* such that
z**(x*) # y*™*(2*). Thus, dpe (%) 7# Oyex (2*).

At this point, a logical question would be: Why not continue this process?
That is, why not apply our reasoning and Corollary 5.7 two, or three, or more

times? In this way, we would obtain a function & : Bga — M(A), where E*

denotes the fourth dual of F, and then & which would take the ball of the sixth
dual into M(A), etc. The partial answer, whose proof is a bit complicated
(and omitted), is given in the following theorem. For it, we need to give a
slightly altered definition of regularity: We say that E is symmetrically regular
if E satisfies the regularity condition with respect to symmetric continuous
bilinear forms (rather than arbitrary continuous bilinear forms). With this
definition, we can now state our result.

THEOREM 5.8. [3] A complex Banach space E is symmetrically regular

if and only if every homomorphism of the form 5;1, arising from a point of
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the fourth dual of FE, is equal to a homomorphism of the form g;: for some
T** € Bpsx.

In particular, since £; is not symmetrically regular by Example 5.5, there

are points z* in the fourth dual of ¢; such that 5;1 is a homomorphism which
does not correspond to any point of the second dual. And, this leads to some
interesting questions with which we conclude:

QUESTIONS 5.9. (1) Are there points z° of the unit ball of the sixth dual

of /1 which do not correspond to any 5;1?

(2) We do not even know the cardinality of the set of homomorphisms
M(H>®(By,)). Is it strictly smaller than the cardinality of £], which is known
to be at least as big as 22° (see, for example, [12, p.211])? Can we characterize
those points of Bfi‘ which give rise to homomorphisms which do not already

arise from By:+? Is it possible to characterize when two points zt iyt € BZ%

are such that §,4 = 5;1?
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