Fix-Finite Approximation Property in Normed Vector Spaces

Abdelkader Stouti
Département de Mathématiques, Faculté des Sciences et Techniques, Université Cadi Ayyad, B.P. 523 Beni-Mellal, Maroc
e-mail: stouti@yahoo.com
(Research paper presented by J.P. Moreno)

AMS Subject Class. (2000): 46A55, 52A07, 54H25
Received November 22, 2000

1. Introduction

Let D and A be two nonempty subsets in a metric space. We say that the pair (D, A) satisfies the fix-finite approximation property (in short F.F.A.P.) for a family \mathcal{F} of maps (or multifunctions) from D to A, if for every $f \in \mathcal{F}$ and all $\varepsilon>0$ there exists $g \in \mathcal{F}$ which is ε-near to f and has only a finite number of fixed points. In the particular case where $D=A$, we say that A satisfies the F.F.A.P. for \mathcal{F}.
H. Hopf [4] proved by a special construction that any finite polyhedron which is connected and which dimension is greater than one satisfies the F.F.A.P. for any continuous self-map. Later H. Schirmer [5] extended this result to any continuous n-valued multifunction. After this J.B. Baillon and N.E. Rallis showed in [1] that any finite-union of closed convex subsets of a Banach space satisfies the F.F.A.P. for any compact self-map.

In this paper we study the fix-finite approximation property in normed vector spaces. We work with the pair (D, A) such that A satisfies the Schauder condition.

If x is a point of a normed space X and $r>0$, then we denote by $B(x, r)$ the open ball of radius r and center x. A subset K of X is said to be relatively compact if its closure \bar{K} is compact. The convex hull of a subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of X is defined by
$\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\}=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i}: \alpha_{i} \in[0,1]\right.$ for $i=1, \ldots, n$ and $\left.\sum_{i=1}^{n} \alpha_{i}=1\right\}$.

A subset A of a normed space X is said to enjoy the Schauder condition if for any nonempty relatively compact subset K of A and every $\varepsilon>0$ there exists a finite cover $\left\{B\left(x_{i}, \eta_{x_{i}}\right): x_{i} \in A, 0<\eta_{x_{i}}<\varepsilon, i=1, \ldots, n\right\}$ of K such that for any subset $\left\{x_{i_{l}}, \ldots, x_{i_{k}}\right\}$ of $\left\{x_{1}, \ldots, x_{n}\right\}$ with

$$
\bigcap_{j=l}^{k} B\left(x_{i_{j}}, \eta_{x_{i_{j}}}\right) \cap K \neq \emptyset
$$

the convex hull of $\left\{x_{i_{l}}, \ldots, x_{i_{k}}\right\}$ is contained in A.
For example, any nonempty convex subset of a normed space X and any open subset of X satisfies the Schauder condition (see [6]). Also, all finiteunion of closed convex subsets of a Banach space satisfies the Schauder condition (see [1]).

In the present work we first establish the following result (Theorem 3.1): if A is a nonempty subset of a normed space X satisfying the Schauder condition and D is a compact subset of X containing A, then the pair (D, A) satisfies the F.F.A.P. for any n-function.

Secondly we prove (Theorem 3.2): if A is a nonempty subset of a normed space X satisfying the Schauder condition and D is a path and simply connected compact subset of X containing A, then the pair (D, A) satisfies the F.F.A.P. for any n-valued continuous multifunction. As consequence we obtain a generalization of the Schrimer's result [5, Theorem 4.6].

2. Preliminaries

In this section we recall some definitions for subsequent use.
Let X and Y be two Hausdorff topological spaces. A multifunction F : $X \rightarrow Y$ is a map from X into the set 2^{Y} of nonempty subsets of Y. The range of F is $F(X)=\cup_{x \in X} F(x)$.

The multifunction $F: X \rightarrow Y$ is said to be upper semi-continuous (usc) if for each open subset V of Y with $F(x) \subset V$ there exists an open subset U of X with $x \in U$ and $F(U) \subset V$.

The multifunction $F: X \rightarrow Y$ is called lower semi-continuous (lsc) if for every $x \in X$ and open subset V of Y with $F(x) \cap V \neq \emptyset$ there exists an open subset U of X with $x \in U$ and $F\left(x^{\prime}\right) \cap V \neq \emptyset$ for all $x^{\prime} \in U$.

The multifunction $F: X \rightarrow Y$ is continuous if it is both upper semicontinuous and lower semi-continuous.

The multifunction F is compact if it is continuous and the closure of its range $\overline{F(X)}$ is a compact subset of Y.

A point x of X is said to be a fixed point of a multifunction $F: X \rightarrow Y$ if $x \in F(x)$. We denote by $\operatorname{Fix}(F)$ the set of all fixed points of F.

Let X and Y be two normed spaces. We denote by $C(X)$ the set of nonempty compact subsets of X. Let A and B be two elements of $C(X)$. The Hausdorff distance between A and $B, d_{H}(A, B)$, is defined by setting:

$$
d_{H}(A, B)=\max \{\rho(A, B), \rho(B, A)\}
$$

where

$$
\begin{gathered}
\rho(A, B)=\sup \{d(x, B): x \in A\} \\
\rho(B, A)=\sup \{d(y, A): y \in B\}
\end{gathered}
$$

and

$$
d(x, B)=\inf \{\|y-x\|: y \in B\}
$$

Let F and G be two compact multifunctions from X to Y. We define the Hausdorff distance between F and G by setting:

$$
d_{H}(F, G)=\sup \left\{d_{H}(F(x), G(x)): x \in X\right\}
$$

Let $\varepsilon>0$ and F and G be two compact multifunctions from X to Y. We say that F and G are ε-near if $d_{H}(F, G)<\varepsilon$.

3. FiX-Finite approximation property

3.1. Fix-Finite approximation property for n-FUNCTIONS. In this subsection we study the fix-finite approximation property for n-functions. First, we recall the definition of an n-function.

Definition 3.1. Let X and Y be two Hausdorff topological spaces. A multifunction $F: X \rightarrow Y$ is said to be an n-function if there exist n continuous maps $f_{i}: X \rightarrow Y$, where $i=1, \ldots, n$, such that $F(x)=\left\{f_{1}(x), \ldots, f_{n}(x)\right\}$ for all $x \in X$ and $f_{i}(x) \neq f_{j}(x)$ for all $x \in X$ and $i, j=1, \ldots, n$ with $i \neq j$.

In this subsection we shall prove the following:
Theorem 3.1. Let A be a nonempty subset of a normed space X satisfying the Schauder condition. If D is a compact subset of X containing A, then the pair (D, A) satisfies the F.F.A.P. for any n-function $F: D \rightarrow A$.

In order to prove Theorem 3.1, we shall need the following lemmas.

LEmma 3.1. If a nonempty subset A of a normed space X satisfies the Schauder condition, then for any relatively compact subset K of A and every $\varepsilon>0$ there exist a finite polyhedron P contained in A and a continuous map $\pi: K \rightarrow P$ such that $\|\pi(x)-x\|<\varepsilon$ for all $x \in K$.

Proof. Let $\varepsilon>0$ and K be a nonempty relatively compact subset of A. Since A satisfies the Schauder condition, then there exists a finite cover

$$
\left\{B\left(x_{i}, \eta_{x_{i}}\right): x_{i} \in A, 0<\eta_{x_{i}}<\varepsilon, i=1, \ldots, n\right\}
$$

of K such that for all subset $\left\{x_{i_{l}}, \ldots, x_{i_{k}}\right\}$ of $\left\{x_{1}, \ldots, x_{n}\right\}$ with $\cap_{j=l}^{k} B\left(x_{i_{j}}, \eta_{x_{i_{j}}}\right) \cap K \neq \emptyset$ the convex hull of $\left\{x_{i_{l}}, \ldots, x_{i_{k}}\right\}$ is contained in A.

For all $i=1, \ldots, n$, let μ_{i} be the continuous function defined by $\mu_{i}(x)=$ $\max \left(0, \eta_{x_{i}}-\left\|x-x_{i}\right\|\right)$, for all $x \in K$. Since for all $x \in K$ there exists $i \in$ $\{1, \ldots, n\}$ such that $\left\|x-x_{i}\right\|<\eta_{x_{i}}$, then $\sum_{i=1}^{n} \mu_{i}(x)>0$. Now we can define a continuous function α_{i} on K by setting:

$$
\alpha_{i}(x)=\frac{\mu_{i}(x)}{\sum_{i=1}^{n} \mu_{i}(x)}, i=1, \ldots, n, \text { for all } x \in K
$$

Let

$$
Q=\left\{\left\{x_{i_{l}}, \ldots, x_{i_{k}}\right\} \subset\left\{x_{1}, \ldots, x_{n}\right\}: \cap_{j=l}^{k} B\left(x_{i_{j}}, \eta_{x_{i_{j}}}\right) \cap K \neq \emptyset\right\}
$$

and

$$
P=\cup_{\left\{x_{i_{l}}, \ldots, x_{i_{k}}\right\} \in Q} \operatorname{conv}\left\{x_{i_{l}}, \ldots, x_{i_{k}}\right\}
$$

Let π be the map from K to P defined by $\pi(x)=\sum_{i=1}^{n} \alpha_{i}(x) x_{i}$, for all $x \in K$. Then, the map π is continuous and satisfies the property $\|\pi(x)-x\|<\varepsilon$ for all $x \in K$.

In [6] we introduced the notion of Hopf spaces. These are metric spaces satisfying the F.F.A.P. for any compact self-map. By using [6, Theorem 1.3] and the Schauder condition we obtain the following lemma.

Lemma 3.2. Let A be a nonempty subset of a normed space X satisfying the Schauder condition. If D is a compact subset of X containing A, then for all continuous map $f: D \rightarrow A$ and for every $\varepsilon>0$, there exist a finite polyhedron P contained in A and a continuous map $g: D \rightarrow P$ which is ε-near to f and has only a finite number of fixed points. In particular every nonempty compact subset of a normed space satisfying the Schauder condition is a Hopf space.

Proof. Since $f(D)$ is a relatively compact subset of A, then by Lemma 3.1 for a given $\varepsilon>0$, there exist a finite polyhedron P contained in A and a continuous map $\pi_{\varepsilon}: f(D) \rightarrow P$ such that $\left\|\pi_{\varepsilon}(y)-y\right\|<\frac{1}{2} \varepsilon$, for all $y \in$ $f(D)$. Set $f_{\varepsilon}=\pi_{\varepsilon} \circ f$, then the map $f_{\varepsilon}: D \rightarrow P$ is continuous and satisfies $\left\|f_{\varepsilon}(x)-f(x)\right\|<\frac{1}{2} \varepsilon$, for all $x \in D$.

By [6, Theorem 1.3] there exists a continuous map $g: D \rightarrow P$ which is $\frac{1}{2} \varepsilon$-near to f_{ε} and has only a finite number of fixed points. Then, the map g is ε-near to f because for all $x \in D$, we have:

$$
\|f(x)-g(x)\| \leq\left\|f(x)-f_{\varepsilon}(x)\right\|+\left\|f_{\varepsilon}(x)-g(x)\right\|<\varepsilon
$$

Proof of Theorem 3.1. Let $\varepsilon>0$ and $F: D \rightarrow A$ be an n-function. Then, there exist n continuous maps $f_{i}: D \rightarrow A$ such that $F(x)=\left\{f_{1}(x), \ldots, f_{n}(x)\right\}$ for all $x \in D$ and $f_{i}(x) \neq f_{j}(x)$ for all $x \in D$ and $i, j=1, \ldots, n$ with $i \neq j$.

For all $i, j=1, \ldots, n$ with $i \neq j$, we define $\delta_{(i, j)}(F)=\min \left\{\left\|f_{i}(x)-f_{j}(x)\right\|\right.$: $x \in D\}$. As each f_{i} is continuous for all $i=1, \ldots, n$ and D is compact, then for each $i, j=1, \ldots, n$ with $i \neq j$, we have $\delta_{(i, j)}(F)>0$. Therefore,

$$
\delta(F)=\min \left\{\delta_{(i, j)}(F): i, j=1, \ldots, n, i \neq j\right\}>0 .
$$

For a given $\varepsilon>0$, we set $\lambda=\min \left(\frac{1}{2} \delta(F), \frac{1}{2} \varepsilon\right)$. By Lemma 3.2, for each $i=1, \ldots, n$, there exists a map $g_{i}: D \rightarrow A$ which is λ-near to f_{i} and has only a finite number of fixed points. Let $G: D \rightarrow A$ be the multifunction defined by $G(x)=\left\{g_{1}(x), \ldots, g_{n}(x)\right\}$, for all $x \in D$.

Claim 1. The multifunction G is an n-function. Indeed, if there exists $x_{0} \in D$ and $i, j=1, \ldots, n$ with $i \neq j$, such that $g_{i}\left(x_{0}\right)=g_{j}\left(x_{0}\right)$, then,

$$
\left\|f_{i}\left(x_{0}\right)-f_{j}\left(x_{0}\right)\right\| \leq\left\|f_{i}\left(x_{0}\right)-g_{i}\left(x_{0}\right)\right\|+\left\|f_{j}\left(x_{0}\right)-g_{j}\left(x_{0}\right)\right\|<2 \lambda .
$$

Therefore, $\delta_{(i, j)}(F)<\delta(F)$. This is a contradiction and our claim is proved.
Claim 2. The multifunction G is ε-near to F. Indeed, for all $i=1, \ldots, n$ and for every $x \in D$, we have, $\left\|f_{i}(x)-g_{i}(x)\right\|<\frac{1}{2} \varepsilon$. Then, $d_{H}(F, G)<\varepsilon$.

Claim 3. The multifunction G has only a finite number of fixed points. Indeed, $\operatorname{Fix}(G)=\cup_{i=1}^{n} \operatorname{Fix}\left(g_{i}\right)$ and for all $i=1, \ldots, n$ the maps g_{i} has only a finite number of fixed points.

Corollary 3.1. Let C_{i}, for $i=1, \ldots, m$, be a finite family of nonempty convex compact subsets of a normed space, then $\cup_{i=1}^{m} C_{i}$ satisfies the F.F.A.P. for any n-function $F: \cup_{i=1}^{m} C_{i} \rightarrow \cup_{i=1}^{m} C_{i}$.
3.2. Fix-finite approximation property for n-valued continuous multifunctions. To start this subsection, we give the definition of a n-valued multifunction.

Definition 3.2. Let X and Y be two Hausdorff topological spaces. A multifunction $F: X \rightarrow Y$ is said to be n-valued if for all $x \in X$, the subset $F(x)$ of Y consists of n points.

Now we recall the definition of the gap of a n-valued multifunction. Let X and Y be two Hausdorff topological spaces and let $F: X \rightarrow Y$ be a n valued continuous multifunction. Then, we can write $F(x)=\left\{y_{1}, \ldots, y_{n}\right\}$ for all $x \in X$. We define a real function γ on X by

$$
\gamma(x)=\inf \left\{\left\|y_{i}-y_{j}\right\|: y_{i}, y_{j} \in F(x), i, j=1, \ldots, n, i \neq j\right\}, \text { for all } x \in X
$$

and the gap of F by

$$
\gamma(F)=\inf \{\gamma(x): x \in X\}
$$

Since the multifunction F is continuous then the function γ is also continuous [5, p.76]. If X is compact, then $\gamma(F)>0$.

In this subsection we show the following:
Theorem 3.2. Let A be a nonempty subset of a normed space X satisfying the Schauder condition. If D is a path and simply connected compact subset of X containing A, then the pair (D, A) satisfies the F.F.A.P. for any n-valued continuous multifunction $F: D \rightarrow A$.

We recall the following Lemma due to H . Schrimer [5] which is useful for the proof of our result.

Lemma 3.3. Let X and Y be two compact Hausdorff topological spaces. If X is path and simply connected and $F: X \rightarrow Y$ is a n-valued continuous multifunction, then F is an n-function.

Proof of Theorem 3.2. Let $\varepsilon>0$ and $F: D \rightarrow A$ be a n-valued continuous multifunction. Then, $\gamma(F)>0$ and $\lambda=\min \left(\frac{1}{4} \varepsilon, \frac{1}{2} \gamma(F)\right)>0$. By Lemma 3.1 there exist a finite polyhedron P contained in A and a continuous map $\pi: F(D) \rightarrow P$ such that $\|\pi(y)-y\|<\lambda$ for all $y \in F(D)$. Now we define a continuous multifunction $G: D \rightarrow P$ by $G(x)=(\pi \circ F)(x)$, for all $x \in D$.

Claim 1. The multifunction G is n-valued and $\frac{1}{2} \varepsilon$-near to F. Indeed, if $x \in D$ such that $F(x)=\left\{y_{1}, \ldots, y_{n}\right\}$, then $G(x)=\left\{\pi\left(y_{1}\right), \ldots, \pi\left(y_{n}\right)\right\}$ with $\left\|y_{i}-\pi\left(y_{i}\right)\right\|<\frac{1}{4} \varepsilon$ for all $i=1, \ldots, n$.

Claim 2. There exists an n-function $L: D \rightarrow A$ which is ε-near to F and has only a finite number of fixed points. Indeed, from Lemma 3.3 the multifunction $G: D \rightarrow P$ is an n-function and by Theorem 3.1 there exists an n-function $L: D \rightarrow P$ which is $\frac{1}{2} \varepsilon$-near to G and has only a finite number of fixed points. Then, the multifunction $L: D \rightarrow P$ is ε-near to F and has only a finite number of fixed points.

As a consequence of Theorem 3.1 and Theorem 3.2 we obtain the following:
Corollary 3.2. Let C_{i}, for $i=1, \ldots, m$, be a finite family of nonempty convex compact subsets of a normed space such that $\cap_{i=1}^{m} C_{i} \neq \emptyset$ or $C_{i} \cap C_{j}=\emptyset$ for $i \neq j$, then $\cup_{i=1}^{m} C_{i}$ satisfies the F.F.A.P. for any n-valued continuous multifunction $F: \cup_{i=1}^{m} C_{i} \rightarrow \cup_{i=1}^{m} C_{i}$.

Proof. Let $\varepsilon>0$ and $F: \cup_{i=1}^{m} C_{i} \rightarrow \cup_{i=1}^{m} C_{i}$ be a n-valued continuous multifunction. For the proof we distinguish the following two cases.

First Case. $C_{i} \cap C_{j}=\emptyset$ for $i, j=1, \ldots, m$ and $i \neq j$. We have, $\left.F\right|_{C_{i}}$: $C_{i} \rightarrow \cup_{i=1}^{m} C_{i}$ is a n-valued continuous multifunction for $i=1, \ldots, m$. From Lemma 3.3, the multifunction $\left.F\right|_{C_{i}}$ is a n-function for $i=1, \ldots, m$. Therefore, for each $i \in\{1, \ldots, m\}$, there exist n continuous maps $f_{i_{j}}: C_{i} \rightarrow \cup_{i=1}^{m} C_{i}$ such that $F(x)=\left\{f_{i_{1}}(x), \ldots, f_{i_{n}}(x)\right\}$ for all $x \in C_{i}$. Now for each $j \in\{1, \ldots, n\}$ we can define a continuous map $h_{j}: \cup_{i=1}^{m} C_{i} \rightarrow \cup_{i=1}^{m} C_{i}$ by $h_{j}(x)=f_{i_{j}}(x)$ if $x \in C_{i}$. It follows that for all $x \in \cup_{i=1}^{m} C_{i}$, we have $F(x)=\left\{h_{1}(x), \ldots, h_{n}(x)\right\}$. Thus, the multifunction F is an n-function. By Corollary 3.1 there exists a n-multifunction $G: \cup_{i=1}^{m} C_{i} \rightarrow \cup_{i=1}^{m} C_{i}$ which is ε-near to F and has only a finite number of fixed points.

Second Case. $\cap_{i=1}^{m} C_{i} \neq \emptyset$. It follows from Theorem 3.2 that $\cup_{i=1}^{m} C_{i}$ satisfies the F.F.A.P. for any n-valued continuous multifunction.

As a particular case of Corollary 3.2 we obtain a generalization of the Schirmer's result [5, Theorem 4.6].

Corollary 3.3. If C_{1} and C_{2} are two nonempty convex compact subsets of a normed space, then $C_{1} \cup C_{2}$ satisfies the F.F.A.P. for any n-valued continuous multifunction $F: C_{1} \cup C_{2} \rightarrow C_{1} \cup C_{2}$.

Acknowledgements

The author is thankful to the learned referee for extremely attentive reading and useful critical remarks to improve the presentation of the paper.

References

[1] Baillon, J.B., Rallis, N.E., Not too many fixed points, Contemporary Mathematics 72 (1988), 21-24.
[2] Berge, C., "Topological Spaces", Oliver and Boyd, Edinburgh and London, (1963).
[3] Brown, R.F., "The Lefschetz fixed point Theorem", Scott, Foresman, and Company, Glenview, Illinois, (1971).
[4] Hopf, H., Über die algebraische Anzahl von Fixpunkten, Math. Z. 29 (1929), 493-524.
[5] SCHIRMER, H., Fix-finite approximation of n-valued multifunctions, Fundamenta Mathematicae, CXXI (1984), $73-80$.
[6] Stouti, A., Théorème d'approximation et espaces de Hopf, Extracta Mathematicae, 16 (1) (2001), 83-92.

