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1. Introduction

Let D and A be two nonempty subsets in a metric space. We say that the
pair (D,A) satisfies the fix-finite approximation property (in short F.F.A.P.)
for a family F of maps (or multifunctions) from D to A, if for every f ∈ F
and all ε > 0 there exists g ∈ F which is ε-near to f and has only a finite
number of fixed points. In the particular case where D = A, we say that A
satisfies the F.F.A.P. for F .

H. Hopf [4] proved by a special construction that any finite polyhedron
which is connected and which dimension is greater than one satisfies the
F.F.A.P. for any continuous self-map. Later H. Schirmer [5] extended this
result to any continuous n-valued multifunction. After this J.B. Baillon and
N.E. Rallis showed in [1] that any finite-union of closed convex subsets of a
Banach space satisfies the F.F.A.P. for any compact self-map.

In this paper we study the fix-finite approximation property in normed
vector spaces. We work with the pair (D,A) such that A satisfies the Schauder
condition.

If x is a point of a normed space X and r > 0, then we denote by B(x, r)
the open ball of radius r and center x. A subset K of X is said to be relatively
compact if its closure K is compact. The convex hull of a subset {x1, . . . , xn}
of X is defined by

conv {x1, . . . , xn} =

{

n
∑

i=1

αixi : αi ∈ [0, 1] for i = 1, . . . , n and
n

∑

i=1

αi = 1

}

.
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A subset A of a normed space X is said to enjoy the Schauder condition
if for any nonempty relatively compact subset K of A and every ε > 0 there
exists a finite cover {B(xi, ηxi

) : xi ∈ A, 0 < ηxi
< ε, i = 1, . . . , n} of K such

that for any subset {xil , . . . , xik} of {x1, . . . , xn} with

k
⋂

j=l

B(xij , ηxij
) ∩K 6= ∅

the convex hull of {xil , . . . , xik} is contained in A.

For example, any nonempty convex subset of a normed space X and any
open subset of X satisfies the Schauder condition (see [6]). Also, all finite-
union of closed convex subsets of a Banach space satisfies the Schauder con-
dition (see [1]).

In the present work we first establish the following result (Theorem 3.1): if
A is a nonempty subset of a normed space X satisfying the Schauder condition
and D is a compact subset of X containing A, then the pair (D,A) satisfies
the F.F.A.P. for any n-function.

Secondly we prove (Theorem 3.2): if A is a nonempty subset of a normed
space X satisfying the Schauder condition and D is a path and simply con-
nected compact subset of X containing A, then the pair (D,A) satisfies the
F.F.A.P. for any n-valued continuous multifunction. As consequence we ob-
tain a generalization of the Schrimer’s result [5, Theorem 4.6].

2. Preliminaries

In this section we recall some definitions for subsequent use.
Let X and Y be two Hausdorff topological spaces. A multifunction F :

X → Y is a map from X into the set 2Y of nonempty subsets of Y. The range
of F is F (X) = ∪x∈XF (x).

The multifunction F : X → Y is said to be upper semi-continuous (usc) if
for each open subset V of Y with F (x) ⊂ V there exists an open subset U of
X with x ∈ U and F (U) ⊂ V.

The multifunction F : X → Y is called lower semi-continuous (lsc) if for
every x ∈ X and open subset V of Y with F (x) ∩ V 6= ∅ there exists an open
subset U of X with x ∈ U and F (x′) ∩ V 6= ∅ for all x′ ∈ U.

The multifunction F : X → Y is continuous if it is both upper semi-
continuous and lower semi-continuous.

The multifunction F is compact if it is continuous and the closure of its
range F (X) is a compact subset of Y.
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A point x of X is said to be a fixed point of a multifunction F : X → Y

if x ∈ F (x). We denote by Fix(F ) the set of all fixed points of F.
Let X and Y be two normed spaces. We denote by C(X) the set of

nonempty compact subsets of X. Let A and B be two elements of C(X). The
Hausdorff distance between A and B, dH(A,B), is defined by setting:

dH(A,B) = max {ρ(A,B), ρ(B,A)}

where

ρ(A,B) = sup {d(x,B) : x ∈ A} ,

ρ(B,A) = sup {d(y,A) : y ∈ B}

and

d(x,B) = inf {‖y − x‖ : y ∈ B} .

Let F and G be two compact multifunctions from X to Y. We define the
Hausdorff distance between F and G by setting:

dH(F,G) = sup {dH(F (x), G(x)) : x ∈ X} .

Let ε > 0 and F and G be two compact multifunctions from X to Y. We say
that F and G are ε-near if dH(F,G) < ε.

3. Fix-finite approximation property

3.1. Fix-finite approximation property for n-functions. In this
subsection we study the fix-finite approximation property for n-functions.
First, we recall the definition of an n-function.

Definition 3.1. Let X and Y be two Hausdorff topological spaces. A
multifunction F : X → Y is said to be an n-function if there exist n continuous
maps fi : X → Y , where i = 1, . . . , n, such that F (x) = {f1(x), . . . , fn(x)} for
all x ∈ X and fi(x) 6= fj(x) for all x ∈ X and i, j = 1, . . . , n with i 6= j.

In this subsection we shall prove the following:

Theorem 3.1. Let A be a nonempty subset of a normed space X satisfy-

ing the Schauder condition. If D is a compact subset of X containing A, then

the pair (D,A) satisfies the F.F.A.P. for any n-function F : D → A.

In order to prove Theorem 3.1, we shall need the following lemmas.
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Lemma 3.1. If a nonempty subset A of a normed space X satisfies the

Schauder condition, then for any relatively compact subset K of A and every

ε > 0 there exist a finite polyhedron P contained in A and a continuous map

π : K → P such that ‖π(x)− x‖ < ε for all x ∈ K.

Proof. Let ε > 0 and K be a nonempty relatively compact subset of A.
Since A satisfies the Schauder condition, then there exists a finite cover

{B(xi, ηxi
) : xi ∈ A, 0 < ηxi

< ε, i = 1, . . . , n}

of K such that for all subset {xil , . . . , xik} of {x1, . . . , xn} with
∩k

j=lB(xij , ηxij
) ∩K 6= ∅ the convex hull of {xil , . . . , xik} is contained in A.

For all i = 1, . . . , n, let µi be the continuous function defined by µi(x) =
max(0, ηxi

− ‖x − xi‖), for all x ∈ K. Since for all x ∈ K there exists i ∈
{1, . . . , n} such that ‖x− xi‖ < ηxi

, then
∑n

i=1 µi(x) > 0. Now we can define
a continuous function αi on K by setting:

αi(x) =
µi(x)

∑n
i=1 µi(x)

, i = 1, . . . , n, for all x ∈ K.

Let

Q =
{

{xil , . . . , xik} ⊂ {x1, . . . , xn} : ∩
k
j=lB(xij , ηxij

) ∩K 6= ∅
}

and
P = ∪{xil

,...,xik}∈Qconv {xil , . . . , xik} .

Let π be the map from K to P defined by π(x) =
∑n

i=1 αi(x)xi, for all x ∈ K.

Then, the map π is continuous and satisfies the property ‖π(x) − x‖ < ε for
all x ∈ K.

In [6] we introduced the notion of Hopf spaces. These are metric spaces
satisfying the F.F.A.P. for any compact self-map. By using [6, Theorem 1.3]
and the Schauder condition we obtain the following lemma.

Lemma 3.2. Let A be a nonempty subset of a normed space X satisfying

the Schauder condition. If D is a compact subset of X containing A, then

for all continuous map f : D → A and for every ε > 0, there exist a finite

polyhedron P contained in A and a continuous map g : D → P which is

ε-near to f and has only a finite number of fixed points. In particular every

nonempty compact subset of a normed space satisfying the Schauder condition

is a Hopf space.
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Proof. Since f(D) is a relatively compact subset of A, then by Lemma
3.1 for a given ε > 0, there exist a finite polyhedron P contained in A and
a continuous map πε : f(D) → P such that ‖πε(y) − y‖ < 1

2ε, for all y ∈
f(D). Set fε = πε ◦ f, then the map fε : D → P is continuous and satisfies
‖fε(x)− f(x)‖ < 1

2ε, for all x ∈ D.

By [6, Theorem 1.3] there exists a continuous map g : D → P which is
1
2ε-near to fε and has only a finite number of fixed points. Then, the map g

is ε-near to f because for all x ∈ D, we have:

‖f(x)− g(x)‖ ≤ ‖f(x)− fε(x)‖+ ‖fε(x)− g(x)‖ < ε.

Proof of Theorem 3.1. Let ε > 0 and F : D → A be an n-function. Then,
there exist n continuous maps fi : D → A such that F (x) = {f1(x), . . . , fn(x)}
for all x ∈ D and fi(x) 6= fj(x) for all x ∈ D and i, j = 1, . . . , n with i 6= j.

For all i, j = 1, . . . , n with i 6= j, we define δ(i,j)(F ) = min{‖fi(x)−fj(x)‖ :
x ∈ D}. As each fi is continuous for all i = 1, . . . , n and D is compact, then
for each i, j = 1, . . . , n with i 6= j, we have δ(i,j)(F ) > 0. Therefore,

δ(F ) = min{δ(i,j)(F ) : i, j = 1, . . . , n, i 6= j} > 0.

For a given ε > 0, we set λ = min( 1
2δ(F ),

1
2ε). By Lemma 3.2, for each

i = 1, . . . , n, there exists a map gi : D → A which is λ-near to fi and has only
a finite number of fixed points. Let G : D → A be the multifunction defined
by G(x) = {g1(x), . . . , gn(x)}, for all x ∈ D.

Claim 1. The multifunction G is an n-function. Indeed, if there exists
x0 ∈ D and i, j = 1, . . . , n with i 6= j, such that gi(x0) = gj(x0), then,

‖fi(x0)− fj(x0)‖ ≤ ‖fi(x0)− gi(x0)‖+ ‖fj(x0)− gj(x0)‖ < 2λ.

Therefore, δ(i,j)(F ) < δ(F ). This is a contradiction and our claim is proved.
Claim 2. The multifunction G is ε-near to F. Indeed, for all i = 1, . . . , n

and for every x ∈ D, we have, ‖fi(x)− gi(x)‖ <
1
2ε. Then, dH(F,G) < ε.

Claim 3. The multifunction G has only a finite number of fixed points.
Indeed, Fix(G) = ∪n

i=1Fix(gi) and for all i = 1, . . . , n the maps gi has only a
finite number of fixed points.

Corollary 3.1. Let Ci, for i = 1, . . . ,m, be a finite family of nonempty

convex compact subsets of a normed space, then ∪m
i=1Ci satisfies the F.F.A.P.

for any n-function F : ∪m
i=1Ci → ∪m

i=1Ci.
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3.2. Fix-finite approximation property for n-valued continu-

ous multifunctions. To start this subsection, we give the definition of a
n-valued multifunction.

Definition 3.2. Let X and Y be two Hausdorff topological spaces. A
multifunction F : X → Y is said to be n-valued if for all x ∈ X, the subset
F (x) of Y consists of n points.

Now we recall the definition of the gap of a n-valued multifunction. Let
X and Y be two Hausdorff topological spaces and let F : X → Y be a n-
valued continuous multifunction. Then, we can write F (x) = {y1, . . . , yn} for
all x ∈ X. We define a real function γ on X by

γ(x) = inf {‖yi − yj‖ : yi, yj ∈ F (x), i, j = 1, . . . , n, i 6= j} , for all x ∈ X,

and the gap of F by
γ(F ) = inf {γ(x) : x ∈ X} .

Since the multifunction F is continuous then the function γ is also continuous
[5, p.76]. If X is compact, then γ(F ) > 0.

In this subsection we show the following:

Theorem 3.2. Let A be a nonempty subset of a normed space X satis-

fying the Schauder condition. If D is a path and simply connected compact

subset of X containing A, then the pair (D,A) satisfies the F.F.A.P. for any
n-valued continuous multifunction F : D → A.

We recall the following Lemma due to H. Schrimer [5] which is useful for
the proof of our result.

Lemma 3.3. Let X and Y be two compact Hausdorff topological spaces.

If X is path and simply connected and F : X → Y is a n-valued continuous

multifunction, then F is an n-function.

Proof of Theorem 3.2. Let ε > 0 and F : D → A be a n-valued continuous
multifunction. Then, γ(F ) > 0 and λ = min( 1

4ε,
1
2γ(F )) > 0. By Lemma

3.1 there exist a finite polyhedron P contained in A and a continuous map
π : F (D) → P such that ‖π(y) − y‖ < λ for all y ∈ F (D). Now we define a
continuous multifunction G : D → P by G(x) = (π ◦ F )(x), for all x ∈ D.

Claim 1. The multifunction G is n-valued and 1
2ε-near to F. Indeed, if

x ∈ D such that F (x) = {y1, . . . , yn} , then G(x) = {π(y1), . . . , π(yn)} with
‖yi − π(yi)‖ <

1
4ε for all i = 1, . . . , n.
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Claim 2. There exists an n-function L : D → A which is ε-near to F

and has only a finite number of fixed points. Indeed, from Lemma 3.3 the
multifunction G : D → P is an n-function and by Theorem 3.1 there exists
an n-function L : D → P which is 1

2ε-near to G and has only a finite number
of fixed points. Then, the multifunction L : D → P is ε-near to F and has
only a finite number of fixed points.

As a consequence of Theorem 3.1 and Theorem 3.2 we obtain the following:

Corollary 3.2. Let Ci, for i = 1, . . . ,m, be a finite family of nonempty

convex compact subsets of a normed space such that ∩m
i=1Ci 6= ∅ or Ci∩Cj = ∅

for i 6= j, then ∪m
i=1Ci satisfies the F.F.A.P. for any n-valued continuous

multifunction F : ∪m
i=1Ci → ∪m

i=1Ci.

Proof. Let ε > 0 and F : ∪m
i=1Ci → ∪m

i=1Ci be a n-valued continuous
multifunction. For the proof we distinguish the following two cases.

First Case. Ci ∩ Cj = ∅ for i, j = 1, . . . ,m and i 6= j. We have, F |Ci
:

Ci → ∪m
i=1Ci is a n-valued continuous multifunction for i = 1, . . . ,m. From

Lemma 3.3, the multifunction F |Ci
is a n-function for i = 1, . . . ,m. Therefore,

for each i ∈ {1, . . . ,m} , there exist n continuous maps fij : Ci → ∪m
i=1Ci such

that F (x) = {fi1(x), . . . , fin(x)} for all x ∈ Ci. Now for each j ∈ {1, . . . , n}
we can define a continuous map hj : ∪m

i=1Ci → ∪m
i=1Ci by hj(x) = fij (x) if

x ∈ Ci. It follows that for all x ∈ ∪
m
i=1Ci, we have F (x) = {h1(x), . . . , hn(x)} .

Thus, the multifunction F is an n-function. By Corollary 3.1 there exists a
n-multifunction G : ∪m

i=1Ci → ∪m
i=1Ci which is ε-near to F and has only a

finite number of fixed points.
Second Case. ∩m

i=1Ci 6= ∅. It follows from Theorem 3.2 that ∪m
i=1Ci satisfies

the F.F.A.P. for any n-valued continuous multifunction.

As a particular case of Corollary 3.2 we obtain a generalization of the
Schirmer’s result [5, Theorem 4.6].

Corollary 3.3. If C1 and C2 are two nonempty convex compact sub-

sets of a normed space, then C1 ∪ C2 satisfies the F.F.A.P. for any n-valued

continuous multifunction F : C1 ∪ C2 → C1 ∪ C2.
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