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Abstract

Objective: Voice analysis based systems offer low-cost, highly available
automatic diagnostic aid for Parkinson’s disease (PD) detection anywhere a
smartphone with a broadband connection is available. However, reliability de-
pends on factors affecting the communication channel. In this paper the effects
of recording device mismatch are analyzed. Multicondition training (MCT) is
proposed to improve robustness against that mismatch. Methods: An experi-
ment on 30 PD patients and 30 healthy subjects was designed. 3 vocalizations of
sustained \a\ were recorded using a smartphone. These recordings, along with a
simulation of 8 additional smartphones, were analyzed. Acoustical features were
extracted and averaged per patient and recording device. Machine learning was
used to distinguish healthy from PD patients by using different combinations
of train-test smartphones. Results: By using the same device for training and
testing, a 10% best-worse mean accuracy drop is observed. The gap among
different devices reaches 37%. MCT retains 90% of the maximum accuracy and
exceeds a 20% mean accuracy while lowers dispersion of the aggregated results
obtained with single condition. Smartphone position shows a direct impact on
performance. Conclusion: Recording device has a major effect on results. It is
also found that red positioning of the recording device might also be influential.
Using MCT appears to improve robustness. Significance: Results support the
use of mobile devices to create an automated PD detection test. It is also en-
couraged to consider the use of MCT to obtain more robust and reliable results
across different devices.

Keywords: Parkinson’s disease, Microphone simulation, Machine learning,
Diagnosis aid, Channel mismatch robustness.

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder usually classified
as a motor function disease. It is characterized by the presence of bradykinesia,
rigidity and tremor [1]. It is estimated that more than 8 million people world-
wide suffer from PD. The population group aged over 65 accumulates most of
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the patients, and the percentage rapidly grows as the population reaches 80
years old. The prevalence shows an age-standardized rate of 106.28 per 100,000
inhabitants, with an increasing percentage change of 155.5% in the 1990-2019
period [2].

A reliable diagnostic test for PD has yet to be available. A range of novel
techniques have been developed in order to obtain an early PD diagnosis. Ex-
amples are found in [3], using electroencephalograms; [4] finds markers in mag-
netic resonance images; or [5], analyzing motion of upper and lower extremities.
However, their availability as a general diagnostic method is low.

Voice analysis has been proposed as a non-invasive low-cost method for PD
detection and assessment. 75%-95% of people with PD suffers from some sort
of speech impairment [6], so voice analysis is a potential candidate to become
an additional biomarker that can be used for PD diagnosis. This has led to the
research of early detection of PD by analyzing different aspects of voice impair-
ment, for which sustained vowels [7], running speech [8], and diadochokinesis
tests [9] have been considered. Also, a variety of machine learning techniques
have been proposed, from classical approaches [10] to state-of-the-art deep learn-
ing methods [11]. [12, 13] provide a thorough review of voice assessment ap-
proaches in the context of PD and other diseases.

One of the advantages that these non-invasive diagnostic techniques offer is
ubiquity. The omnipresence of mobile technology allows to carry a recording
device with broadband connectivity in the form of a smartphone. This tech-
nology gives both practitioners and patients access to advanced diagnostic aid
tools almost everywhere. In fact, PD related telemedicine systems have long
been developed [14], with a recent focus on mobile devices [15, 16].

The concept of channel robustness is commonly applied in relation to speech
classification systems, meaning that perturbations affecting the channel do not
critically decrease the system performance. The use of the term robustness
with this meaning is often present in the scientific literature related to speech
classification systems [17].

Channel robustness covers several factors that may produce variations in the
outcomes of the experiments (noise, differences in the recording device...). In
this work we focus on recording device variability. Most studies refer to a single
recording device for all of their voice samples, while those showing a variety
of devices, it is due to the use of a variety of databases. As a consequence,
they do not offer isolation of a single element on the channel, since recording
environments are markedly different. This leads to lack of generalization, a
common problem in machine learning known as domain adaptation. Training
datasets are often small compared to the target population, and testing data
sources do not often match training data [18].

These differences can even cause an unnoticed bias, leading to unwanted
discrimination [19]. However, little effort has been made in studying the vari-
ability induced by differences in the communication channel. To the authors’
best knowledge, [20] is the only published study about the robustness of tele-
monitoring systems against the impact of such differences, in this case mobile
telephony network. In fact, it points out the need of a detailed microphone
comparison.

In the present study we isolate the recording device and focus the attention
on the effects of this element of the communication channel. The research
hypothesis is that the recording setup has significant impact on the outcome of



the classifier, especially if the training process is made using a dataset obtained
with a different setup than that used to record new unseen samples.

First, we study robustness against recording device variability of an auto-
matic detection aid system. Then, we propose multicondition training (MCT)
[21] as a useful generalization technique: we test its ability to improve robust-
ness against differences between training and application devices. We show
that this technique increases the ability of the machine learning model to dis-
tinguish healthy from PD diagnosed subjects when tested against previously
unseen recording devices.

2. Materials and methods

The influence of smartphone as recording device has been studied by means
of simulation. We used an in-house collected voice database, and designed a
methodology to add the recording behavior of an assortment of smartphones to
the recordings. Later, we trained a machine learning classifier to test the differ-
ences on classification accuracy due to the smartphone change. The following
subsections provide details on each element of the experiment.

2.1. Participants

60 subjects volunteered for the experiment: 30 of them affected with PD, and
30 of them healthy. This number is in line with other research on PD assessment
using vocal recordings [22, 23]. All subjects affected by PD were recruited
in collaboration with the Asociacion Regional de Parkinson de Extremadura
(ARPE). The inclusion criteria were that all of them should have been formally
diagnosed with PD, and that their medical reports were available.

Healthy subjects were later recruited to approximately match the age and
sex distribution of PD patients with the only requirement of neither having
been diagnosed with PD nor having PD related symptomatology at recording
time. All participants signed an informed consent. The research protocol was
supervised and approved by the Bioethics Committee of the Universidad de
Extremadura.

The group of people with PD is composed of 24 men and 6 women, with
mean (standard deviation) age of 70.27 (9.54). The time since diagnosis was
9.93 (6.16) years. The Hoehn and Yahr stages ranged from 2 to 3, with a median
stage of 2.5, i.e., patients in a mild-to-moderate condition. All the subjects were
medicated with levodopa and the mean time since the last intake was 2.21 (1.32)
hours.

2.2. Vocal task and recording equipment

For each subject included in the study, three different recordings were per-
formed in a single session. Subjects were asked to vocalize an open \a\, for at
least 5 seconds, as steadily as possible in both pitch and volume. Open \a\ is
commonly used in research on automatic detection and assessment systems for
voice impairment related diseases. Its ubiquity throughout different languages,
and the simplicity of the experimental settings involved are the main reasons
[10, 24].

The voice recordings were made using the same smartphone, model BQ
Aquaris V, at a same sampling frequency of 44.1 kHz, and resolution of 16



bits. The setup for each recording session was the same: the distance from
the speaker’s mouth was about 30 cm, with the smartphone horizontally held,
touchscreen up, and oriented so that the microphone points directly towards
the source.

All the recordings were performed in the same room at the ARPE facilities
under similar acoustical conditions. The room was not acoustically treated,
although at recording time it was quiet. A trained person was present at all times
in each recording session to ensure that all the participants properly followed
the protocol, and to register the required complementary information.

Before any computation was made, all of the recordings were trimmed down
in order to eliminate any leading or trailing silence. Also, one second segments
were used to extract the considered speech features (see section 2.4), a duration
deemed long enough [25]. This process was performed using Audacity software
(release 2.0.5).

2.3. Recording device simulation

Different devices record the same sound in a disparate way, given the dis-
similarities in design, component selection, and construction. The divergence
can go from subtle, when comparing two specimens of the same model, to wide,
when comparing models from different manufacturers, age, price range, or other
features.

For our purposes, the ideal situation would be being able to record the same
vocalization simultaneously using as many smartphones as possible. However,
this situation is far from feasible: two devices can not be in the same position,
and location influences the voice acquisition process since the human voice is
not omnidirectional [26]. Furthermore, to the authors’ best knowledge, database
collection for any PD study has not considered the recording device variability
problem.

Smartphone influence goes far beyond pure microphone frequency response.
The recording system of a modern smartphone might include signal processing
such as noise cancellation, compression or equalization. However, vendors do
not offer information on their recording stacks. For that reason, recording device
simulation seems to be an adequate alternative.

Having access to the original recording device, and to an assortment of smart-
phones, we can experimentally determine their individual frequency responses.
We can process the recordings so that we subtract the effects of the original de-
vice, and estimate what the recording would have been if some another device
had been used instead.

For the smartphone simulation, eight different devices were considered: Ap-
ple iPhone (model A1533); Apple iPhone S and Apple iPhone S(2) (model
A1688), without and with an external battery attached respectively, which al-
ters the microphone opening; iPhone SE (model A2296); OnePlus Nord (model
AC2003); Realme 8 (model RMX3241); Redmi Note 9 Pro (model M2003J6B2G);
and Samsung A51 (model SM-A515F /DSN). The selection criteria was having
a variety of manufacturers, with high market penetration and relatively afford-
able. Microphone placement for each of them is shown in Fig. 1.

We followed the TEC 60268-4:2018 standard for microphone testing to the
extent possible. It describes the way a microphone should be tested in order to
obtain its characteristics, including frequency response and directional pattern.



(a) BQ Aquaris. (b) Apple iPhone. (c) Apple iPhone S.

(d) Apple iPhone S(2). (e) Apple iPhone SE. (f) OnePlus Nord.

(g) Realme 8. (h) Redmi Note 9. (i) Samsung A51.

Figure 1: Microphone placement for all the devices.

(b) Position 2. 45° slant suspended.

(a) Position 1. Horizontally suspended.

(c) Position 3. Vertically suspended. (d) Position 4. On a table.

Figure 2: Test setup for each source-smartphone positioning.

The standard is intended for stand alone microphones, thus not all requirements
could be fulfilled since smartphone recording is a black box where processing is
unknown.

Testing was made in an anechoic chamber located at Array Processing Lab



(Universidad de Valladolid). The loudspeaker model was Hedd Audio Type 07,
which has a frequency response of -3 dB in the range 38-40,000 Hz. As for
the reference microphone, we used Behringer ECM8000, with a frequency re-
sponse of -3 dB in the range 20-20,000 Hz. The frequency swipes and recordings
were made using Audacity software (release 2.0.5) and the sound interface was
TASCAM US-322.

A total of 4 different orientations were tested: 3 different pitch angles (ro-
tation around X-axis): 0°, position 1, Fig. 2a; 45°, position 2, Fig. 2b; and
90°, position 3, Fig. 2c. The device microphone as the center point for rotation
was always considered, thus microphone placement relative to the sound source
remained the same. Also, an extra position was tested by placing the smart-
phone on a horizontal surface as could be a table, which is not considered in the
standard, Fig. 2d.

For positions 1-3 the sound source was located at a distance of 30 cm from
the microphone and, due to the technical difficulties of placing the reference
microphone and the device under test in the exact same spot in space, substitu-
tion method was discarded and simultaneous comparison method was used. For
position 4, distance to the sound source was located 20 cm over the horizontal
plane where the smartphone is lying, and the distance to the source was still
30 cm. In this case, substitution method was used, placing the reference micro-
phone without the horizontal surface present in the same spot as the smartphone
microphone would later be placed.

A continuous frequency sweep was performed in the 0-22,050 Hz range which,
along with distance to the source, follows IEC 60268-4:2018 standard. Fig. 3
shows the magnitude of the Fourier Transform for a sample recording using each
device simulation in each position.

Given that 1 second length recordings were used, at a sampling rate of
44,100 Hz, frequency responses were obtained with a resolution of 1 Hz. The
frequency gains for BQ Aquaris-V were subtracted from each recording spectral
analysis to obtain a “clean” recording without device influence. Then, frequency
gains for each device were added so we could simulate each device influence. The
gains were applied by transforming the signal to frequency domain using Fourier
Transform, operating with the gains obtained for each device, and reconstructing
the signal by means of Inverse Fourier Transform.

2.4. Feature extraction

35 features were initially considered, including Cepstral Peak Prominence,
Correlation Dimension, First Minimum in Mutual Information, Glottal to Noise
Excitation, Harmonic to Noise Ratio, Hurst’s Exponent, Jitter, Lempel Ziv
Complexity, Mel Frequency Cepstral Coefficients, Multifractal Spectrum Width,
Permutation Entropy, Pitch Period Entropy, Recurrence Period Density En-
tropy, Shannon’s Entropy, Shimmer, and Zero Crossing Rate.

More detailed information on the considered features can be found in [12,
27]. They have been widely used in studies on pathological speech since they
measure different speech impairment aspects. Also, a feature selection process is
performed (see Subsection 2.5) to select and employ only the most useful ones.

2.5. Variable selection and classification

As stated in section 2.2, three vocal samples were collected from each par-
ticipant. Those samples were individually processed, simulating 8 additional
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Figure 3: Test setup for each source-smartphone positioning.

devices in 4 positions, and totaling 36 device/position combinations. Features
were extracted for all the subjects, obtaining a data matrix of 180 voice samples
x 35 acoustical features for each combination. Later, the values for each feature
were averaged per patient, reducing the matrix size to 60 x 35 and the result
was used as input data.

Different experiments were conducted by changing train and test datasets.
For each device/position combination we built a machine learning model con-
sisting in three steps: feature selection, grid search, and classification. The
goal was to maximize accuracy. This process follows the methodology shown in
[27]. In this case, we used a passive aggressive classifier because it yielded high
accuracy levels and low computation times in early research stages.

The initial number of features is large compared to the number of voice
samples, with a ratio close to 1/2. This could lead to overfitting problems in
the train phase, and limited statistics for valuable results. Therefore, reducing
the number of features is a critical step in the pipeline.

Feature selection was performed using Recursive Feature Elimination with
Cross Validation (RFECV). This technique obtains an optimal size smaller fea-
ture subset by discarding the least important features in an iterative process.
This was repeated 500 times using a 2-fold cross validation scheme. The number
of repetitions was chosen looking for stability, and is based in the law of large
numbers (LNN), which states that the larger the number of trials, the closer
to the expected value the average will be. The resulting subsets were stored
and used in a sorting mechanism so that the features could be ranked by their
prevalence in the selections. This ranking would be later used to obtain a small



working subset.

Grid search looks for the best hyperparameters given a dataset and a clas-
sifier. A passive aggressive classifier was used, matching the one used in the
feature selection step, and training data was set to match feature selection as
well. At this point, the system must be oblivious to the testing samples to be
used.

Finally, for each train/test device and position combination, we found the
feature subset that yielded the best accuracy for that specific combination, which
brought to an end the feature selection process. Those subsets are small com-
pared to the initial one, therefore small compared to the dataset size, alleviating
the feature number to sample size ratio problem. To obtain these small sets we
trained the classifier 35 times using the n most important features according
the rank obtained in the feature selection phase, being n = 1...35. Finally, we
found which classifier yielded the highest accuracy, thus finding a small feature
subset for each cross validation split. This was repeated for each train/test
device and position combination.

We used a stratified shuffle and split strategy as model validation and gen-
eralization technique. Cross validation enables us to generalize the performance
of the machine learning model and obtain an estimate of the classification accu-
racy if tested against new samples, as long as those samples come from a dataset
with similar statistical characteristics. We are looking specifically towards the
influence of recording devices on the outcomes. Therefore, it is of interest to
maintain every other constraint constant. Stratification ensures that the pro-
portion of healthy/pathological subjects is constant across training and testing
sets. The number of splits was 1000, with a 2/3 (40 subjects) training size and
1/3 (20 subjects) testing size. The number of splits was chosen based on LNN.

Also, random sampling was conditioned so the n-th split for each phone-
position combination selects the same individuals for testing and training, thus
the differences in accuracy can only be attributed to splitting.

2.6. Multicondition training

Whenever a classifier is built with samples from a single data acquisition
setup, the system may specialize in the environmental characteristics of the
experimental setup, and may lack accuracy if tested with samples from other
sources. Therefore, it is necessary to develop strategies to avoid this problem.
MCT, which takes into consideration the variability of acquisition conditions
in the training dataset [21], has proven to be useful to improve robustness of
classifiers for Reinke’s space diseases in an environment affected by noise [28].

Differences in the recording equipment and its relative position to the subject
may also degrade the performance when this source of variability has not been
taken into account in the training process. The robustness of a multicondition
trained classifier based on the different smartphone frequency responses has
been tested. The performance of this system is compared with the aggregated
results obtained when training with a smartphone recordings and testing with
a different smartphone; the aimed improvement should be assessed not only in
the mean accuracy, but also in the dispersion of the results obtained.

Among the different multicondition strategies available, [28] has shown that
asymmetry (using only one recording per subject independently of the number
of recording conditions present in the dataset) is the right strategy.



Training phase for MCT follows the same schema than single condition train-
ing: A feature selection phase, followed by grid search and classification. Two
different approaches were studied: First, each recording in the train set was af-
fected by a randomly selected device, and all the recordings in the test set were
affected by the same device, named all to one; secondly, both train and test
sets were affected by a randomly selected device, named all to all. The devices
were chosen so that the proportion of recordings affected by each device was
constant, with the limitation of split size and number of devices being coprime
integers.

Finally, the umpteenth split for each cross validation step selects the same
individuals for each set, which are also the same individuals for the n-th split
in single condition training (see Subsection 2.5). Thus, the differences in results
between steps in cross validation are to be attributed only to splitting, and the
differences between single, all to one MCT, and all to all MCT, can be attributed
merely to the training strategy.

2.7. Statistical analysis

Descriptive statistics such as mean, standard deviation, and coefficient of
variation have been considered. Coefficient of variation is a dimensionless rela-
tive dispersion measure that is defined as C'V = s/Z, where s stands for standard
deviation and T for mean. Statistical hypothesis tests have been used to report
statistically significant differences between groups. When normality condition
could be assumed, unpaired t-tests for the homoskedastic and heteroskedastic
cases were applied because of their statistical power [29]. Otherwise, the non-
parametric counterpart (Mann-Whitney U test) was applied [30]. Both tests
provide a p-value that can be thought of as the probability of finding the data
under the assumption of the null hypothesis, i.e. under the hypothesis of no
difference between groups. P-values lower than 0.05 reported statistically sig-
nificant differences.

3. Results and discussion

We have studied the influence that changing the recording device and its
relative position to the subject might have on the performance of the system.

Fig. 4 shows the accuracy obtained for all the combinations for training
device, testing device, and position, as discussed in section 2.3. It is notice-
able how the BQ Aquaris-BQ Aquaris-Position 1 combination yields the best
accuracy overall (0.822). The original recording device and experimental setup
should be expected to get the best results since the recordings have not been
processed and nothing had to be simulated.

Not every position shows an even behavior. Fig. 4c shows a higher homo-
geneity in results for position 3, with a more equal “heat” across all training-
testing combinations than Figs. 4a, 4b, and 4d. For a smartphone common use
case, the microphone points towards speaker’s face when the user is making a
phone call; that direction is normal to the smartphone screen so it is pointing
towards sound source in position 3 experiments, which explains the good results.

Position 4 yields surprising results, overperforming positions 1-3 in 49, 43,
and 47 out of 81 combinations, respectively. It is commonly advised for any
measurement procedure where microphones are involved that the microphone
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(d) Position 4. On a table.

(c) Position 3. Vertically suspended.

Figure 4: Classification accuracy obtained with every training-testing device combination for
each of the device positions considered.

should be far enough from reflective surfaces [31]. However, in our experiments,
placing the phone on a horizontal surface shows better behavior than positions
1 and 2.

Table 1 is consistent with this analysis. It shows the mean value and coef-
ficient of variation for all the accuracies shown in each Fig. 4 subfigure. Mean
accuracy increases from position 1 to position 2, and from position 2 to position
3, while the coefficient of variation decreases. This explains the homogeneity
perceived for position 3 where the "heat" seems more evenly distributed in the
subfigure. Also, accuracy values are higher in general.

Position
1 2 3 4
Average | 0.701 | 0.718 | 0.729 | 0.731
Ccv 0.103 | 0.085 | 0.052 | 0.073

Table 1: Average accuracy and coefficient of variation for each subfigure in Fig. 4, training
and testing with a single device.

10



Position Type N | Mean | Stand. Dev. | P-value
Position 1 i e | 72 [ 0692 007 <00
Position 2 |y e 7y o0 T 06— <0
Position 3 |yt 7 0720 T 057 —] <0
Position 1 e | 72 0725 | 0055 <00

Table 2: Count, mean, and standard deviation for one-one comparison.

Position 4 shows higher mean accuracy than position 3, and positions 1
and 2 consequently. However, the coefficient of variation is higher than that of
position 3, showing a slight advantage for the latter, while it is still lower than
the coefficients of positions 1 and 2. This places position 4 as the second best
setup, very close to position 3. Given the sound source position relative to the
microphone, the smartphone angle is a = arcsin(20/30) ~ 42°, close to that
of position 2. The reason for this improvement is not clear: reflections on the
surface and resonances should be accounted for, and, instinctively, one might
expect a degradation in performance, but the data shows the opposite.

Every combination other than BQ Aquaris-BQ Aquaris should be affected
by the simulation, with some undetermined side effects than might induce error
into the system. However, looking at the main diagonal in Figs.4a-4d, where
the training and testing recording/simulated device is the same, it is shown that
the performance of all the systems is similar regardless its position, showing
accuracies in the 0.73-0.82 range. This combination is always at least a 89% of
the BQ Aquaris-BQ Aquaris-Position 1 combination, thus retaining most of the
classifying ability.

Furthermore, the matched diagonal elements seem to yield better results
than mismatched experiments. This is supported by the statistical analysis
shown in Fig. 5 and Table 2. Mean accuracy for matched devices is almost even
across all positions, in the vicinity of 0.77, whereas mismatched experiments
lose between 11% and 7% depending on the position. Error bars shown in Fig.
5 underline the improving effect of matched over mismatched experiments. A
hypothesis test has also been applied. The results reveal that in all positions
there exist statistically significant differences in accuracies between matched and
mismatched conditions, being the values for mismatched lower. All p-values
were lower than 0.001.

Based on the matched-mismatched differences in accuracy, we proceeded to
train the system under an MCT schema, testing its capacity to improve the
system robustness. Fig. 6b shows results for the experiments carried out: For
each position we train the classifier with a mixture of multiple recording devices
and test their abilities against an individual device recordings. It is worth
noting that for MCT the train/test split is stratified in both PD /healthy ratio
and recording device prevalence, so differences in results can be attributed, like
in single condition experiments, to the patients selected for each cross validation
split.

For comparison purposes, we show in Fig. 6a the row-wise mean accuracy
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Figure 5: Classification accuracy obtained with every training-testing device combination for
each of the device positions considered.

obtained in Figs.4a-4d. Each column summarizes results for single phones as
test devices in a position. We can see that in this situation MCT improves the
mean classifier performance for each position and for each recording device under
test, since the results exceed the equivalent mean values for all the combinations.
Exceptions are found in position 2-iPhone S(2), position 2-Realme 8, position 3-
Samsung Ab51, and position 4-Realme 8 simulations. However, these exceptions
in MCT barely underperform a 2% from the mean, whilst the mean improvement
in accuracy due to MCT is about 4%, with peaks of 8%.

The fact that MCT gets better average results and lower error (Fig. 7)
points out that MCT might contribute to build more robust systems. This is
also backed by the statistical analysis results shown in Table 3: the difference
between MCT and SC is more than one standard deviation apart and shows
statistically significant differences (p-value < 0.05). This underscores the MCT
usefulness to improve robustness. Position 2 is an exception to this, although
its p-value is 0.058, very close to statistical significance.

Comparing position performance, both position 1 and position 2 seem more
homogeneous with MCT (Fig. 6b) than they do without using it (Fig. 4a).
Also, the growing trend of accuracies for positions 1, 2, and 3 appears to remain
with MCT, and position 4 still rivals with position 3 results. This qualitative
analysis is supported by Table 4: Compared with Table 1, averages obtained per
position are higher with MCT in all cases, and coefficients of variation are lower
as well. It is remarkable how, in this case, position 4 yields the best results,
beating those obtained for position 3.

Finally, Table 5 shows the results obtained for an all to all MCT experiment
(using a train set and a test set built with a mixture of all recording devices).
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Figure 6: Comparison between mean accuracy obtained attending to position. Mean testing
device accuracy versus MCT mean accuracy.

Position | Type | N | Mean | Stand. Dev. | P-value
P | ORS00
roion? [l o LT 00— o
Poiont o LT 00 o
P o LT 002

Table 3: Count, mean, standard deviation, and p-value for MCT and SC.

Position
1 2 3 4
Average | 0.728 | 0.738 | 0.753 | 0.762
[6AY 0.039 | 0.038 | 0.020 | 0.008

Table 4: Average accuracy and coefficient of variation for each column in Fig. 6b, MCT with
all the devices and testing with a single device.

The average accuracy values for positions 1-4 are consistent to the mean ac-
curacy shown in Table 4 as should be expected: the low all to one CV values
suggest that an all to all experiment should yield an average close to the mean
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Figure 7: Classification accuracy obtained with every training-testing device combination for
each of the device positions considered.

Position
1 2 3 4
| Average | 0.724 | 0.734 | 0.754 | 0.762

Table 5: Mean accuracies for MCT, all devices in training and testing sets.

average of the all to one experiments, which is the case. In fact, the differ-
ence of Table 5 values from those shown in Table 4 is lower than 0.01% in all
cases, and specifically lower than 0.001% for positions 3 and 4. Those results
lie within error in positions 3 and 4, which are consistently yielding the most
stable results.

For the sake of completeness, since in diagnostic tools sensitivity and speci-
ficity are important metrics, we also include their values as supplementary data.
In the case of MCT, the mean sensitivity (specificity) values obtained after test-
ing will all the devices, are 0.737 (0.711), 0.744 (0.724), 0.772 (0.737), 0.782
(0.743), for positions 1, 2,3 and 4, respectively. Therefore, the proposed MCT
system is more sensitive than specific. In the case of a screening test for a
disease, the role of sensitivity is more critical than that of specificity

Although the goal of this study is to analyze the effects of changing the
recording device, accuracy obtained for the realistic scenario, where we use BQ
Aquaris smartphone for both train and test phases, is on par with related liter-
ature. For example, [32] uses a variety of phonemes from PC-Gita and Viswan-
than’s databases for PD detection. Using \a\ phoneme it reaches an accuracy
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of 0.693 and 0.858, respectively. On its side, [33] uses Neurovoz, ItalianPVS
and mPower databases with accuracies of 0.854, 0.990, and 0.754, respectively,
always using \a\ phoneme.

There have been some efforts in studying the reliability of smartphones as
a source of data for voice health assessment [34, 35]. They show that certain
features are more affected than others, and consider smartphones as a valid
recording device. They compare the error of an assorted set of smartphones
performance against a studio microphone, but do not get into the automatic
assessment phases.

Regarding selected features, there exists a high variability on experimental
conditions: 9 single condition feature selection experiments per position; 1 mul-
ticondition feature selection experiment per position in all to one configuration;
and 1 in all to all configuration. However, an examination of the most selected
features shows that, for each experiment, the 10 most used features are a subset
of the following: Glottal to Noise Excitation, Lempel Ziv Complexity, Mel Fre-
quency Cepstral Coeflicients 3, 5, 6, 9, 10, 11, 13, Cepstral Peak Prominence,
and First Zero in Correlation Function.

Those features are usually considered in scientific literature [12]. Some of
them also stand out as reliable: in [33], experiments with different databases
show that MFCCs are usually ranked among the most important features they
considered. The prevalence of the aforementioned features across every exper-
iment shows that, for PD, these might be the most robust ones among the
features considered, which should be further investigated.

All of the experiments were designed having in mind that future health
telemonitoring, specifically voice assessment, and particularly PD diagnosis and
monitoring, will probably be linked to the development of smartphones and
their capabilities. Many efforts have been already made, like mPower initiative
[36], recruiting volunteers and recording their voices among other motor and
cognitive tests for PD monitoring, or Parkinson Voice Initiative [37], collecting
telephone-quality recordings from subjects from seven different countries. In
the case of PD, [20] suggests the necessity of a detailed comparison of different
microphones from different smartphones to complete the analysis of the full
communication path in a hypothetical telemonitoring system.

This paper fills that gap. Results obtained in matched conditions show that
most modern smartphones provide adequate recording systems for this particu-
lar application. Furthermore, the quality of the recording device is not nearly as
important as a right setup for experimentation. It is worth stressing that in this
paper we do not intend to recommend a specific recording device, but to under-
line the importance of training with a variety of sound sources. Environmental
influence has been tested in previous work [27, 28]. The present paper com-
plements them in channel description even though those studies revolve around
voice conditions other than PD.

However, the results can be transposed to any other condition. The experi-
ments test the influence of recording device and their positioning in the outcome
of a statistical learning algorithm. The fact that we can compare positioning
of the same device allows us to discard any other influential factor, since the
experimental setup fully isolates the considered variables. The differences in
simulation between two different positions given a smartphone, or between two
smartphones having selected a position, can only be attributed to that change,
as the anechoic chamber eliminates any noise source other than those inherent
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to the recording system, and the ones already present in the original recording.

Moreover, the present results can be further extended to any other telemon-
itoring setup. In this paper, we have considered .wav lossless voice recordings.
Other efforts in telemedicine development use real time connections. To the
authors’ best knowledge, influence of other channels than that of cell phone
networks have not been tested. However, there is a wide range of commercial
voice over IP solutions, and it is a hot topic in communications development
mostly due to current teleworking needs. All of these solutions will necessarily
be placed after voice sampling, and therefore the recording setup would have an
influence on them all, whether it is live or recorded.

4. Conclusions

We have studied the effects of smartphone selection and placement in the
accuracy of an automatic detection aid system for PD based on voice recordings.
Experimental results indicate that it is a good practice to test the system using
recordings obtained with the same device used for testing. If we acknowledge
the variability in recording devices used for a widespread technology, results
may vary. Differences up to 37% were found when using other smartphone than
that used for training.

We have also proposed a methodology to overcome the limitation in recording
device selection by using MCT. This technique offers lower results dispersion
with an increase in accuracy compared to the averaged results of single condition.
However, further studies would be required to increase the statistical power of
the results, involving a higher number of voice samples.

Also, we have found that recording device position relative to the speaker
has a high impact on results. Holding the phone vertically right in front of the
speaker yields the best results, and placing the phone atop a table is the second
best option.
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