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Abstract

Background and Objective: A new expert system is proposed to discriminate
healthy people from people with Parkinson’s Disease (PD) in early stages by
using Diadochokinesis tests.
Methods: The system is based on temporal and spectral features extracted
from the Voice Onset Time (VOT) segments of /ka/ syllables, whose bound-
aries are delimited by a novel algorithm. For comparison purposes, the ap-
proach is applied also to /pa/ and /ta/ syllables. In order to develop and
validate the system, a voice recording database composed of 27 individuals
diagnosed with PD and 27 healthy controls has been collected. This database
reflects an average disease stage of 1.85± 0.55 according to Hoehn and Yahr
scale. System design is based on feature extraction, feature selection and
Support Vector Machine learning.
Results: The novel VOT algorithm, based on a simple and computationally
efficient approach, demonstrates accurate estimation of VOT boundaries on
/ka/ syllables for both healthy and PD-affected speakers. The PD detection
approach based on /k/ plosive consonant achieves the highest discrimination
capability (92.2% using 10-fold cross-validation and 94.4% in the case of
leave-one-out method) in comparison to the corresponding versions based on
the other two plosives (/p/ and /t/).
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Conclusion: A high accuracy has been obtained on a database with a lower
average disease stage than previous articulatory databases presented in the
literature.

Keywords: Expert system; Acoustic features; Classification;
Diadochokinesis (DDK); Parkinson’s disease (PD); Speech disorders.

1. Introduction

Expert systems have been used in almost every field of medicine, being
diagnosis the dominant decision-making issue. A survey on expert systems for
diagnosis support in the field of neurology is presented in [1]. The key element
of an expert system is the knowledge base. Complex areas in medicine require
extensive knowledge that may be extracted from clinical datasets [2, 3, 4].
The primary aim of this research is to design an expert system for early
detection of Parkinson’s disease (PD).

PD is the second most common neurodegenerative disorder after Alzhei-
mer’s disease. According to the Parkinson’s Disease Foundation, an esti-
mated 7 to 10 million people worldwide are living with this medical con-
dition. This disease is a chronic neurodegenerative disorder caused by the
progressive degeneration and death of dopaminergic neurons, that play a key
role in coordinating the movement at level of muscle tone.

Voice and speech, as dependent on laryngeal, respiratory and articulatory
functions, may also be affected in patients with PD [5]. Acoustic analysis
on recorded speech signals can help to detect subtle abnormalities in speech
that may not be perceptible to listeners [6]. Some authors have considered
measures extracted from speech recordings and machine learning techniques
to discriminate healthy people from those with PD [7, 8, 9, 10, 11, 12]. These
techniques have a great potential to establish efficient biomarkers that may
help neurologists in their diagnoses or allow primary care physicians to refer
the patient to a neurology unit.

The medical literature describes numerous advantages that may be as-
sociated with early intervention in PD [13]. Besides medical treatment, PD
patients should have access to other type of services including physiotherapy
or speech and language therapy. Therefore, successfully addressing early di-
agnoses of people with PD is a key issue to improve the patients’ quality of
life. However, it is estimated that 20% of people with PD remain undiagnosed
[14].

2



An important drawback to test the effectiveness of a detection method-
ology in an early-stage scenario is the scarcity of data. Therefore, one of
the primary goals of this investigation was to build a new voice recording
database. In order to check a system for early diagnosis of PD, patients
between 1 and maximum 2.5 of the Hoehn and Yahr (H&Y) scale have been
considered [15]. This corresponds to cases from very mild to mild stages. To
the best of the authors’ knowledge, the experimental results shown have been
obtained on a database with lower average disease stage (1.85± 0.55 accord-
ing to H&Y scale) in comparison to previous articulatory datasets reported
in the literature.

Note that the goal of this work is not to track progression of concrete
symptoms or search for a correlation between speech impairment and H&Y
stage, but to predict disease presence in an automatic way as early as possible.
Stage 1 (H&Y) represents the earliest definable stage of PD with current
diagnostic. So if a computer-aided system is able to predict that the disease
is present (even in the case of patients at low H&Y stages), this means that
this system is able to detect the disease in an automatic way, without the
need of a neurologist, with the consequent cost saving. Once the disease is
detected by a general practitioner, the patient should be forwarded to the
neurology unit for further tracking of the disease.

There are several speaking tasks that could be used to evaluate voice dis-
orders in PD based on the extraction of phonation, articulation or prosody
features. Most of the approaches for automatic detection of PD from speech
are based on sustained vowel phonations, where the speaker attempts to
produce a vowel sound as steady as possible in terms of amplitude and fun-
damental frequency. This type of vocal task enables the measurement of
dysphonic aspects of speech. By using features extracted from sustained
vowels, accuracy rates between 73.5% to 100% have been reported depend-
ing on the feature selection and classification techniques based on the dataset
provided in [7] (see [11]). However, it is important to note that these ap-
proaches lead to overoptimistic estimations of the accuracy rates, since they
are based on replicated measurements (6 voice recordings per subject) and
the dependent nature of the observations has not been taken into account
[16, 17]. [12] demonstrate the first classification approach for PD detec-
tion that takes into account the underlying within-subject dependence of the
replicated recordings by using the dataset provided in [7]. In this case the
accuracy rate was 90.4%. In spite of this, it is necessary to highlight the
key role that this dataset has played in the development of this research line,
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allowing the investigation with new linear and nonlinear features.
Articulatory difficulties represent an important manifestation of speech

disorders in PD. This fact motivates the search for features extracted from
speaking tasks involving quick movements of the articulators. Diadochoki-
nesis (DDK) tests are one of the most common tools to evaluate articulatory
impairments in both research and clinical assessment contexts. DDK tasks
typically measure the subject’s ability to repeat a consonant−vowel (C-V)
combination with bilabial, alveolar, and velar places of articulation, quickly
and at a rhythmic timing. Subjects are asked to repeat a combination of the
three-syllable train, for example, /pa/-/ta/-/ka/, as fast as possible.

In [18], the authors presented an approach to discriminate PD from
healthy controls (HCs) based on features extracted from DDK utterances.
This study was based on 24 individuals diagnosed with PD and 22 HCs, all
of them Czech native speakers. The task was repeated twice per speaker
resulting in the acquisition of 80 utterances in total. The within-subject de-
pendence of the utterances was not taken into account. The approach was
based on 13 features representing six different articulatory aspects of speech:
vowel quality, coordination of laryngeal and supralaryngeal activity, preci-
sion of consonant articulation, tongue movement, occlusion weakening, and
speech timing. The authors achieved best success rates of 87.1% (using 10-
fold cross-validation) and 88.4% (with the leave-one-out (LOO) method) on
a database reflecting disease stages of 2.2± 0.5 (H&Y scale).

In [17], the authors performed discrimination of PD from HCs based on
phonation, articulation and prosody, by using different speaking tasks (in-
cluding rapid syllable repetition). Three different languages (Spanish, Ger-
man and Czech) were considered. The reported accuracy was 99% for Spanish
in the case of features extracted from the unvoiced segments of DDK utter-
ances. These segments were modeled by using 12 Mel Frequency Cepstrum
Coefficients (MFCCs) and the energy measured over 25 bands based on the
Bark scale. However, it is necessary to remark that the patients had a mean
H&Y stage of 2.3± 0.8, including patients in advanced stages. In the case of
Czech language, where the mean stage is slightly lower 2.2±0.5, the reported
accuracy when using the unvoiced segments is reduced to 93.1%. In general,
the lower the disease stage, the more challenging the diagnosis task is, since
the speech impairment is less severe.

DDK utterances cover three types of syllables (/pa/, /ta/ and /ka/),
composed of two regions with completely different characteristics (plosive
consonant and vowel segments). Some previous studies in clinical assess-
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ment contexts have shown irregular articulation of velar stops by speakers
with PD. In [19], the authors report imprecise velar contact in PD, after
an investigation based on real-time dynamic magnetic resonance imaging.
[20] point out that velopharyngeal control may be impaired in PD. In [21],
the authors indicate that syllable /ka/ is more impaired than /pa/ and /ta/.
This allows to hypothesize that automatic diagnosis based on /k/ segments
should provide better performance than in the case of /p/ or /t/ segments.
However, to the best of the authors’ knowledge, a validation of this hypoth-
esis in an automatic detection scenario has not been reported. In [17] and
[18], the authors extract features from different unvoiced segments (/p/, /t/
and /k/), but there is no distinction between the three plosives, that is, it is
not considered which one would perform best in the development of a clas-
sification approach based on a single plosive. The focus only on one type
of syllable saves computational effort since it avoids feature extraction tasks
on the other types of syllables. Here three different classification experi-
ments on the three plosive segments have been performed and the results are
comparatively analyzed for an early-stage PD database.

Voice Onset Time (VOT) is defined as the duration of the part of the
syllable (/pa/, /ta/ or /ka/, in this work) between initial burst and vowel
onset. Since all the acoustic features are extracted from VOT segments,
an accurate estimation of VOT is necessary. This accuracy must be also
guaranteed in the case of dysarthric speech. A simple and intuitive algorithm
is proposed, that provides accurate results both for healthy and dysarthric
speakers.

Using the proposed segmentation algorithm, several features have been
considered that may be sensitive to possible articulatory deficits due to
dysarthria. Both temporal and spectral features based on VOT segments
have been considered. The former group is based on time durations [6, 18],
whereas the latter one includes MFCC-based features [22] and spectral mo-
ments [23]. In a different context, but also related to plosive consonants, [24]
demonstrate accurate discrimination of articulation place based on a combi-
nation of different types of features, including temporal and spectral ones,
and in particular MFCC-based features.

Spectral moments measure the shape of the energy distribution in the
spectrum. In the context of PD, spectral moments have been applied to the
analysis of long-time average spectra from a standard reading sample in [25]
and have been used to describe fricatives occurring in the word initial position
of a reading passage in [26]. However, to the best of the authors’ knowledge,
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the use of spectral moments extracted from voiceless stop consonants for PD
detection has not been reported yet.

The outline of this paper is as follows. Section 2 presents the main infor-
mation on participants and speech recordings. It also explains the proposed
VOT extraction algorithm. Details about the global feature extraction pro-
cess and the data analysis are also given in Section 2. In Section 3, the
experimental results are presented. A discussion is presented in Section 4.
Finally, Section 5 shows the conclusion.

2. Methods

2.1. Participants

A total of 54 Spanish native speakers participated in the study, 27 of
which (9 women and 18 men) were diagnosed with PD. There are more men
than women diagnosed with PD by a ratio 2:1, so the collected database
reflects the gender distribution in the global PD population [27]. Their mean
age (± standard deviation) was 68.41±10.38 years. All of them were at very
mild or mild stages in the H&Y scale (mean disease stage 1.85±0.55). All of
them were medicated according to their neurologist’s prescription and were
members of the Asociación Regional del Parkinson de Extremadura (Spain).

Table 1 contains information about the PD-affected patients in this study.
This information includes gender, age in years, H&Y stage, treatment and
time lapse since last intake in hours.

In addition, 27 HC subjects (9 women and 18 men) with no history of
neurological or communication disorders were recruited. Their mean age
was 69.22± 11.05 years. Age distribution showed no statistically significant
differences between both groups (t=0.279, p-value=0.781).

The research protocol was approved by the Bioethical Committee from
the University of Extremadura. All subjects signed an informed consent.

2.2. Vocal task and speech recording

The vocal task was to perform steady /pa/-/ta/-/ka/ syllable train rep-
etitions as constantly and as quickly as possible during at least 4 seconds.

The speech recordings were made using a portable computer with an ex-
ternal sound card (TASCAMUS322) and a headband microphone (AKG 520)
featuring a cardiod pattern and positioned at approximately 4 cm from the
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ID Gender Age HY Treatment Last dose
PD-01 M 46 1 Azilect, Madopar, Mirapexin 2
PD-02 F 65 2 Azilect, Mirapexin, Stalevo 1.5
PD-03 F 70 2.5 Azilect, Mirapexin, Stalevo 2.5
PD-04 M 70 2 Rolpryna, Simenet Plus 1.5
PD-05 M 75 1 Azilect, Simenet 3
PD-06 M 80 1 Sumial 4.5
PD-07 M 66 2.5 Requip, Stalevo 5
PD-08 F 73 2.5 Azilect, Simenet Plus Retard 5
PD-09 M 53 1 Azilect, Neupro, Stalevo. 1
PD-10 M 77 2 Mirapexin, Simenet 1.5
PD-11 M 60 2 Neupro 2.25
PD-12 M 79 2 Simenet 2.5
PD-13 M 72 1 Azilect 4
PD-14 M 69 2 Azilect, Mirapexin, Simenet Plus 1.25
PD-15 M 74 2 Azilect, Requip, Stalevo 2.5
PD-16 F 69 2 Azilect, Simenet Plus 1.25
PD-17 M 70 2 Azilect, Neupro, Rolpryna 4
PD-18 M 69 1.5 Azilect, Requip, Stalevo 2.75
PD-19 F 56 1.5 Madopar, Mirapexin, Neupro 3
PD-20 M 71 2.5 Azilect, Neupro, Simenet Plus 4.5
PD-21 F 51 2.5 Neupro 0.1
PD-22 F 83 2.5 Azilect, Rivotril, Stalevo 4.5
PD-23 M 60 2.5 Rivotril, Stalevo 0.1
PD-24 M 49 1 Azilect, Mirapexin, Stalevo 1.5
PD-25 M 82 2 Simenet Plus 2
PD-26 F 79 1.5 Madopar 2.75
PD-27 F 79 2 Simenet Plus 4

Table 1: Description of the PD patients.
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lips. The digital recording was carried out at a sampling rate of 44.1 KHz and
a resolution of 16 bits/sample by using Audacity software1 (version 2.0.5).

The recordings were made in a quiet room, which had no acoustic treat-
ment. These recording conditions were consistent during the whole data
collection process.

2.3. VOT extraction algorithm

The first step was to develop an algorithm suitable for the extraction of
VOT also in cases of dysarthric speech. A novel approach has been proposed.
Fig. 1 represents the corresponding block diagram.

Amplitude 
Envelope (Hilbert)

Smoothing and 
convolution

Vowel onset 
estimation

Vowel onset 
tunning (ZCR)

Consonant onset 
estimation

Consonant onset 
tunning (Var)

s"t$

v"t$

Figure 1: VOT extraction algorithm.

The algorithm for VOT detection is based on the calculation of a smoothed
amplitude envelope of the signal by means of Hilbert transform. Then, the
envelope is convolved with a differenced Gaussian window of 10 milliseconds.
This process allows to simplify the envelope with a second smooth for detec-
tion tasks. In general, the energy that represents the vowel is significantly
higher than that of the consonant. So, the vowel onset can be estimated as
the first prominent peak of the amplitude envelope with respect to the initial
burst. The peak amplitude threshold is the mean value of the first half of
the convolved amplitude envelope. However, there are subjects that produce
very energetic stops. Approaches based exclusively on amplitude envelopes
may fail in these cases leading to false vowel onset estimations. In [28], vowel
onset estimation is addressed by using a Bayesian Step Changepoint Detector
(BSCD). The novel approach presented here is based on an automatic Zero
Crossing Rate (ZCR) tuning with the aim of checking that the estimated
vowel onset was not set in a consonant region. The first estimation moves to
the following peak of the amplitude envelope if the ZCR in the proximity of

1https://sourceforge.net/projects/audacity/
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the considered peak is higher than the average ZCR. This tuning circumvents
false vowel onset estimations in the case of energetic consonants in a more
simple and computationally efficient way. Fig. 2 shows these algorithm steps
applied on a /ka/ syllable uttered by a PD-affected speaker.
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Figure 2: Vowel onset estimation on /ka/ syllable uttered by a PD patient. a) Original
signal, b) amplitude envelope and first vowel onset estimation, c) vowel onset tuning
through the ZCR, d) original waveform with final estimated vowel onset.

Once the vowel onset is estimated, the beginning of the initial burst can
be detected by analysing the waveform and the spectrum towards the be-
ginning of the signal. [28] used filtered spectrograms and summation along
frequency axis to obtain an energy envelope and compute the difference. The
approach proposed here includes a finer time-domain tuning step based on
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the variance. Thus, the procedure to perform initial burst detection is ex-
plained next. The spectrogram is calculated from the beginning of the signal
to the estimated vowel onset. A first approximation of the beginning of the
initial burst is chosen by taking the region of the frame where the energy has
a value of at least 1%, with respect to the maximum energy of the interval
between the beginning of the syllable fragment and the vowel onset. Then,
this estimation is tuned by computing the variance for small fragments of
25 samples (0.6 milliseconds) of this interval. Since the plosive segments
(specially /k/) are described by a high variability in time domain, the vari-
ance is useful to know when the signal noise ends and the consonant burst
starts, because it presents an abrupt transition from one region to the other.

After VOT extraction, the occlusion instant is also estimated by taking
the last third of the syllable and checking the point where the energy is at
least 1% of the mean frame energy. For illustration, two /ka/ syllable wave-
forms, corresponding to a parkinsonian and a control voice, are shown in
Fig. 3. The positions of initial burst, vowel onset and occlusion are repre-
sented by vertical lines on the plots.

The accuracy of the VOT estimation algorithm has been evaluated. For
assessment purposes, the VOTs have been manually marked. The perfor-
mance measure used is the percentage of times the estimated VOT is within
certain temporal tolerances of the VOT value calculated from the hand la-
belled locations of the burst and voice onsets [29]. Thus the performance
measure is the percentage of cases in which the absolute temporal deviations
fulfill the following equation: |tv − t̂v| < ϵ, where t̂v represents the VOT
detected using the proposed algorithm, tv denotes the manually determined
VOT and ϵ denotes the tolerance value. Two tolerance values, also common
in the literature, are considered: 10 and 20 ms [30]. Performance results are
shown in Section 3.

2.4. Feature extraction

The analysis performed along each syllable of the same type (/pa/, /ta/
or /ka/, depending on the experiment) extracts a set of features with the
aim of classifying a specific subject as healthy or PD affected. The set of
features are related to measures that explore the voice recordings in time and
frequency domains.

Most of the proposed features have VOT as base, a concept that is di-
rectly related to the voice articulation process and it can be applied to DDK
task in order to obtain suitable descriptors for PD detection. As a result of
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Figure 3: Estimated VOT and occlusion for /ka/ syllable (a) PD (b) HC.

the application of the VOT extraction algorithm described in the previous
subsection, a segment that contains the initial burst of the signal, represent-
ing the plosive consonant, is delimited. Since the occlusion point has been
also estimated, the syllable length is also available.
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Values of the different parameters are calculated for each type of syllable
(/pa/, /ta/ or /ka/) in the DDK utterance. Although the recording time
was initially set to 4 seconds, the waveform length used in the extraction was
approximately 3 seconds (after removal of silences, loud breaths and other
unwanted elements). This gives an average of 15 syllables (of each type) per
utterance.

Six time duration features are considered: VOT, VOT ratio, CVRatio,
Vowel Variability Quotient (VVQ), Consonant Variability Quotient (CVQ)
and articulation rate. In the case of VOT, VOT ratio and CVRatio, the
final features are the mean values of the parameters for the different sylla-
bles. VOT ratio is the relationship between VOT and syllable length (in
percentage) and CVRatio is the relationship between VOT and vowel region
length (in percentage). VVQ is the standard deviation of vowel duration,
CVQ is the standard deviation of consonant duration and articulation rate
is the number of syllables per second in an utterance.

Concerning frequency domain analysis, two groups of features are consid-
ered. The former includes features based on MFCCs. These features are the
mean and standard deviation of the frame-based parameters. 13 MFCC pa-
rameters (0−12th order) are calculated for each frame. The 0th order one sim-
ply represents the average speech energy, and each higher-order MFCC repre-
sents increasingly finer spectral detail. Frames have a length of 1024 samples,
which corresponds to approximately 23.2 ms, and a 50% overlap. A 12 kHz
bandwidth has been considered for the calculation of MFCCs. Energy at
frequencies above 4 or 5 kHz has traditionally often been neglected in speech
research. The main reason is that the low-frequency portion of the speech
spectrum is considered sufficient from the viewpoint of perceptual intelligibil-
ity. However, it is assumed that the role of the higher portion of the spectrum
is emphasized in this specific application. Fig. 4 shows how a spectrogram
from a patient suffering from PD and another one from a HC present rele-
vant differences in energy concentration up to approximately 12 kHz. As it
is shown in the literature, velar stops are often spirantized in the case of PD.
Spirantization represents the passage of air through an oral constriction when
that constriction should be a complete closure that allows no airflow. This
phenomenon causes spectrum alteration, showing energy at higher frequency
bands in comparison to the case of healthy speakers [31].

The second group of spectral features consists of four spectral moments.
In this case, the spectrum is represented by a small number of parameters
that encode basic properties of its shape. The idea is borrowed from statistics.
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Figure 4: Spectrogram for /ka/ syllable (a) PD (b) HC.

The four moments represent the mean, standard deviation, skewness and
kurtosis, which describe the central tendency, dispersion, asymmetry, and
peakedness of the spectrum. In this work, spectral moments are calculated
on smoothed spectra of VOT segments, obtained by Linear Predictive Coding
(LPC). The steps involved in this computation are summarized as follows:
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1. VOT computation.
2. Windowing and pre-emphasis: The complete VOT segment is win-

dowed (hamming) and pre-emphasized.
3. Spectral envelope computation from LPC coefficients: the order of LPC

analysis is equal to the sampling frequency (in KHz) plus 2, rounded
to the nearest natural number.

4. Computation of spectral moments from smoothed LPC spectrum, as
detailed in the next paragraphs.

5. Averaging: For each utterance and syllable type, each feature rep-
resents the average value of each moment calculated across all VOT
segments.

The first spectral moment µ1 is the spectral center of gravity and it is
calculated as:

µ1 =
K∑
k=1

fkpk,

where fk denotes the frequency (in Hz) corresponding to bin k, K rep-
resents the number of frequency bins and pk represents the value of the
normalized LPC spectrum at bin k, that is:

pk =
ak∑K
k=1 ak

,

where ak represents the LPC spectrum at bin k.
The second spectral moment µ2 corresponds to the standard deviation,

calculated as:

µ2 =

√√√√ K∑
k=1

(fk − µ1)2pk.

Skewness (µ3) and kurtosis (µ4) are calculated as:

µm =

∑K
k=1(fk − µ1)

mpk
µm
2

,

for m = 3, 4.

The final feature set is presented in Table 2. It is an array of 36 features,
combining time duration, MFCC-based and moment-based ones.
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Time duration features Description
VOT (ms) Voice Onset Time
VOTratio (%) VOT to syllable length ratio
CVratio (%) VOT to vowel length ratio
VVQ (%) Vowel Variability Quotient
CVQ (%) Consonant Variability Quotient
Articulation rate (%) Syllables per second
MFCC-based features Description
XMFCCi

, i = 0− 12 Means of MFCCi

σMFCCi
, i = 0− 12 Standard deviations of MFCCi

Spectral moments Description
Mean Spectral central tendency
Standard deviation Spectral dispersion
Skewness Spectral asymmetry
Kurtosis Spectral peakedness

Table 2: Features extracted from DDK tests.

2.5. Data analysis

Feature selection allows to reduce dimensionality avoiding the risk of
overfitting and improving the interpretability of the results. A sequential
backward feature selection approach has been used to search for the optimal
feature subset in a Support Vector Machine (SVM) classification framework.
Sequential backward selection starts from a set with all the features and
iteratively deletes the least significant one until a stopping criterion is met.

The classifier engine is based on different kernel functions, namely linear,
quadratic and third degree polynomial. Kernel choice has been empirically
addressed, by running different experiments. No previous characterization
of the dataset has been performed. Grid search has been used to tune the
hyper-parameters in the three cases.

Classifier performance was measured using accuracy rate ((TN+TP )/n),
sensitivity (TP/(TP + FN)) and specificity (TN/(TN + FP )), where TP
is the true positive, TN is the true negative, FP is the false positive, FN is
the false negative and n is the total number of subjects.

Cross-validation is used in order to assess the model generalization perfor-
mance [32]. First, a stratified 10-fold cross-validation scheme is considered.
The stratification is used to allow a balanced distribution in the folds between
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healthy subjects and people with PD. This process is performed 100 times
and mean and standard deviation (mean ± sd) of the measures obtained
in each iteration are computed. In addition, a LOO cross-validation is per-
formed, which is k-fold cross-validation taken to its extreme, with k equal to
the number of samples.

Independent t-tests have also been applied and the differences have been
considered statistically significant when p-values are lower than 0.05.

Data analysis as well as feature extraction has been implemented in MAT-
LAB environment.

3. Results

The performance of the VOT estimation algorithm is presented in Ta-
ble 3. The values are percentages referring to the proportion of syllables
whose automatically and manually detected VOT measures fall below a given
tolerance value (10 or 20 ms).

Syllable /ka/ /pa/ /ta/
Tolerance 10 ms 20 ms 10 ms 20 ms 10 ms 20 ms

All 77.8 94.4 81.5 92.6 77.8 87.0
HC 74.1 88.9 85.2 92.6 77.8 88.9
PD 81.5 100.0 77.8 92.6 77.8 85.0

Table 3: Accuracy of VOT extraction algorithm (%), given tolerance values, for /ka/,
/pa/ and /ta/ syllables. The tolerance values (10 and 20 ms) represent absolute deviations.

The results show high accuracies. Besides, there are no statistically sig-
nificant differences between PD and HC groups for each one of the three
syllables (p-values ≥ 0.2). Thus, the algorithm is robust to be applied both
to HC and PD-affected speakers. In the case of PD patients, the algorithm
is especially accurate when applied to /ka/ syllables, on which the proposed
detection system is based. All the estimations deviate less than 20 ms from
their manually labelled values and 81.5% of them deviate by less than 10 ms.

Classifier performance was estimated by using the previously mentioned
specifications. The results are summarized in Tables 4 and 5. The best
performance has been obtained by using the approach based on /ka/ sylla-
bles. With this approach, the best accuracy rates are 92.2%, by using 10-fold
cross-validations, and 94.4%, with LOO validations. The approach based on
/pa/ syllable demonstrates accuracy rates of 82.4% and 85.2%, whereas the
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third approach, based on /ta/ syllable, shows 79.2% and 87%, respectively.
All of these results have been obtained by using a linear kernel function. The
low standard deviation values achieved in the 10-fold cross-validation for the
three plosives and with all the kernel functions allow to consider the accuracy
rates reliable.

Approach based on /k/
Accuracy(%) Specificity (%) Sensitivity (%)

Linear 92.2±2.7 97.3±3.6 87.3±3.6
Quadratic 84.7±3.9 87.4±5.4 82.1±5.3

Poly3 82.7±3.4 91.9±4.8 73.7±4.4
Approach based on /p/

Accuracy(%) Specificity (%) Sensitivity (%)
Linear 82.4±2.7 82.6±3.5 82.4±3.5

Quadratic 77.4±4.1 76.8±5.3 77.9±5.5
Poly3 77.9±3.9 74.6±5.8 81.6±5.2

Approach based on /t/
Accuracy(%) Specificity (%) Sensitivity (%)

Linear 79.2±3.3 80.6±4.6 77.6±5.0
Quadratic 77.4±4.1 71.2±5.6 83.9±5.1

Poly3 74.5±3.7 68.6±5.8 81.0±4.8

Table 4: Classification performance based on 10-fold cross-validation.

Concerning the best approach, based on /k/ plosive, the subset of features
that are fed to the linear SVM classifier after the automatic feature selection
process is composed of:

• Two temporal features: VVQ and articulation rate. As a standard
deviation of a temporal measure across the different syllables in the
utterance, VVQ feature provides information about stability of timing.
Patients with PD show less stable vowel duration due to impaired mus-
cle control. Articulation rate is affected in dysarthric speakers due to
reduced muscle speed. [6] found statistical significances between PD
and HC groups in the articulation rate.

• One spectral moment: the skewness. This feature has been selected
with the three considered kernel functions and thus plays an important
role in the classification performance. Considering the four spectral
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Approach based on /k/
Accuracy(%) Specificity (%) Sensitivity (%)

Linear 94.4 100 88.9
Quadratic 85.2 85.2 85.2

Poly3 85.2 96.3 74.1
Approach based on /p/

Accuracy(%) Specificity (%) Sensitivity (%)
Linear 85.2 85.2 85.2

Quadratic 77.8 77.8 77.8
Poly3 79.6 74.1 85.2

Approach based on /t/
Accuracy(%) Specificity (%) Sensitivity (%)

Linear 87.0 85.2 88.9
Quadratic 75.9 70.4 81.5

Poly3 75.9 70.4 81.5

Table 5: Classification performance based on LOO cross-validation.

moments, the asymmetry of spectral shape demonstrates to have the
highest discrimination capability.

• Eleven features based on MFCCs: 4 of them are mean values whereas
the other 7 features are standard deviations. Therefore the feature
selection process emphasizes variability of MFCCs among frames over
mean values, keeping only some middle-order MFCC mean values (5th

and 7− 9th orders).

The combination of temporal and spectral features has been shown to
be successful in discriminating PD and HC. Besides the good accuracy rate
obtained, the sensitivity and specificity provide important information. The
specificity is estimated as 97.3% (10-fold) or 100% (LOO). The 95% confi-
dence interval is (96.6%, 98.0%) with 10-fold cross-validation. This means
there is a very high proportion of healthy people that are correctly identi-
fied as not having PD. In the considered application scenario, false positive
cases detected in primary health care would be forwarded to the neurology
unit. A high specificity in this context implies that the additional cost due
to false alerts is very small. The sensitivity is also high: 87.3% (10-fold) and
88.9% (LOO). The 95% confidence interval is (86.6%, 88.0%) with 10-fold
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cross-validation. This means that the system is being accurate to detect PD.
The results support the argument that important information for PD

detection in early stages can be extracted from articulatory tasks such as the
DDK test, specially with /k/ plosive, following the proposed approach.

4. Discussion

Novel biomarkers are proposed for PD detection in early stages based
on articulatory tasks. The proposed method concentrates specifically on the
velar stop. Several medical papers, cited before, support the choice of /k/
segments, since they report impaired velar closure in PD. However, to the
best of the authors’ knowledge, a comparison of the three unvoiced plosives
in the context of automatic classification experiments has not been reported
yet.

There has been little effort specifically targeting early-stage PD. The
relevance of this work is increased by the fact that the results are obtained
on a new database, composed of recordings from subjects at an earlier stage
of the disease (H&Y scale) in comparison to previous investigations based
on articulatory features. The mean stage is 1.85 ± 0.55, in comparison to
the databases in [17] and [18], with mean stages of 2.2 ± 0.5 and 2.3 ± 0.8,
respectively.

In the context of PD detection, due to the difficulty of recruiting patients,
it has become usual to conduct experiments with replicated recordings and
assess the performance of a certain approach by using independence-based
classification methods. The misuse of replicated recordings artificially in-
creases the sample size, leads to a diffuse criterion to decide when a subject
should be classified as suffering from PD, and can produce over-optimistic
results [12, 16]. In [18] the authors used two replications per subject, so inde-
pendence was not satisfied. In this work, as well as in [17], only one measure
per subject is used. Nevertheless, [18] provided a relevant methodological
advance in PD detection based on articulatory features.

Concerning recording conditions, the effects of hostile noisy environments
on the performance of many speech-based applications (such as automatic
speech recognition) have been deeply explored, but these effects are much
less explored for automatic diagnosis of PD. This research line is at an earlier
stage and most of the contributions use data collected in laboratory setups
with little or no background noise [7]. [33] analyzes the effect of acoustic con-
ditions on different algorithms to detect PD from speech. The results show
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that background noise considerably impacts the performance of the different
algorithms. Therefore a certain control of the acoustic environment, in par-
ticular of noise, must be assumed. This does not mean that an acoustically
isolated room is required, but a quiet room with a low ambient noise level.

Feature calculation relies on the use of an accurate and computationally
efficient VOT extraction algorithm. This algorithm provides an accurate
estimation of VOT boundaries from /pa/, /ta/ and /ka/ syllables also in the
case of dysarthric voices.

The introduction of the spectral moments extracted from unvoiced stops
has allowed to identify a promising new feature (skewness extracted from
the velar stop). The weakening of the velar stop /k/ due to spirantization
changes the ratio between low and high-frequency energy, having a direct
impact on the spectral skewness.

Articulatory features are promising to discriminate PD from speech dis-
orders coming from other types of pathologies resulting in dysphonia, for
example, laryngeal diseases. Databases including different types of disorders
affecting speech are not often found. An interesting recent investigation on
different types of pathologies affecting speech is presented in [34]. This paper
evaluates the accuracy of different methods, but only considers recordings of
sustained phonations. The incorporation of articulatory features may repre-
sent a definitive step forward for the implementation of this technology in
the clinical praxis, in a scenario with multiple possible pathologies.

The current classification approach is not cost-sensitive. Medical diagno-
sis can be addressed as a cost-sensitive classification problem, with different
penalties assigned to different misclassification errors. In this concrete ap-
plication this would mean to trade-off between the financial and emotional
cost of a false positive (unnecessary visit to neurologist) versus the clinical
cost of a false negative (no access to early intervention). A deeper inves-
tigation taking these different aspects into account could lead to develop a
cost-sensitive approach. This definitively requires medical and health finan-
cial management viewpoints.

5. Conclusion

A novel system (based on DDK voice recordings) is proposed for auto-
matic detection of early-stage PD. After comparison with the other voice-
less stops (/p/ and /t/), the proposed approach is based specifically on the
velar one (/k/), which demonstrates the highest discrimination capability.
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The method involves temporal and spectral features. High accuracy rates of
92.2% (10-fold cross-validation) or 94.4% (LOO cross-validation) have been
obtained by using the proposed approach. These results have been obtained
on a database with lower disease stages (H&Y scale) in comparison to pre-
vious investigations based on DDK recordings.

A goal for the immediate future is to increase the database by recording
new subjects. The obtained results are achieved on a database, which is
composed of 54 subjects (27 suffering from PD and 27 HC). Acoustic data
collection is a troublesome task in the case of PD due to the difficulty in
recruiting patients. DDK test constitutes a harder speaking task than sus-
tained vowel tasks, so the collection of large databases is, in this case, even
more challenging. A larger database would also allow to take gender issues
into account. Being voice and speech highly conditioned by gender, separa-
tion by gender is expected to further enhance the system performance.

Future direction of research may include also tele-monitoring applications.
These applications require considering robustness under adverse environmen-
tal conditions, thus searching for robust solutions should be addressed before
these systems are implemented on mobile platforms. Besides the benefit
for the patient, tele-monitoring also opens up the possibility of a massive
collection of data. In the last decades, physicists have demonstrated the
power of quantum systems for information processing [35]. The advantages
of quantum computing can be exploited in order to develop more powerful
algorithms in the fields of signal processing and machine learning. Although
still in the very first stages of development, quantum computing and the
massive collection of data may transform the field of medical diagnosis.

In its current state, the proposed approach can be used as a noninvasive,
low-cost tool to help family physicians screen for and identify PD in early
stages and refer the person to the neurology unit. Early detection of PD
allows to improve the patient’s quality of life through effective medical treat-
ment as well as other non-medical therapies, e.g., physiotherapy or speech
and language therapy.
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Bonilla, E. Nöth, Effect of acoustic conditions on algorithms to detect
Parkinson’s disease from speech, in: IEEE International Conference on
Acoustics, Speech and Signal Processing 2017, IEEE, 2017.

[34] J. R. Orozco-Arroyave, E. A. Belalcazar-Bolaños, J. D. Arias-Londoño,
J. F. Vargas-Bonilla, S. Skodda, J. Rusz, K. Daqrouq, F. Hönig, E. Nöth,
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