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A B S T R A C T

The number of investigations attempting to align protein–protein interaction (PPI) networks has increased with
the growth of studies focused on collecting PPI data. These works aim to identify conserved areas between
species that are difficult to differentiate due to speciation. However, there is no standard approach to align
PPI networks, and global aligners encounter difficulties in constructing alignments with high biological and
structural quality. To address this issue, we propose an innovative ensemble technique that combines the
strengths of aligners in the PPI network alignment field while avoiding their weaknesses. This approach reduces
the spread of dispersion in so different individual global aligners and contributes to achieving a global standard
that produces alignments of higher quality. This is possible thanks to the two branches composing our ensemble
that aim to improve alignments in terms of biological or structural quality. In addition to a new heuristic
replacing the second-level aligner in the biological quality-focused branch. Our approach achieves alignments
of higher quality, as demonstrated through experiments with 10 different scenarios involving real data from 5
species. Our solutions outperform other individual aligners and ensemble techniques, like bagging, in terms of
biological and structural quality. Moreover, the time required to perform the ensemble is minimal compared
to that of individual aligners.
1. Introduction

There is currently a large amount of work focused on obtain-
ing protein–protein interaction (PPI) data of different species through
methods such as co-immunoprecipitation (Lin & Lai, 2017), yeast two-
hybrid (Bacon et al., 2021), and others (Sharma et al., 2018). Thanks
to these studies, it has been found that PPI networks govern most of
the biological processes in species. For this reason, the alignment of
PPI networks plays an important role in gaining a deeper understand-
ing of inter-species biological transfer which has many applications
in areas like drug discovery (Athanasios, Charalampos, Vasileios, &
Ashraf, 2017), the study of diseases (Apostolakou, Sula, Nastou, Nasi,
& Iconomidou, 2021), or phylogenetic tree reconstruction (Kuchaiev &
Pržulj, 2011).

The main focus of PPI network alignment is the identification of
shared information between the two networks. For this purpose, PPI
network alignments have to be made in such a way as to ensure
that they are meaningful. In general, the alignment of PPI networks,
commonly with different sizes, involves the following steps: node map-
ping, edge mapping, and scoring. While node mapping aims to identify
corresponding proteins between the two PPI networks, edge mapping
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focuses on identifying corresponding links between proteins in the two
PPI networks. Once that node and edge mappings are identified, a
scoring system is utilized to determine the extent of information shared
between the aligned networks. Specifically, there exist two different
approaches when aligning PPI networks (Gong, Peng, Ma, & Huang,
2016): local and global network alignment. On the one hand, Local
Network Alignment (LNA) is focused on the identification of highly
conserved and, more likely, small structures between the networks (Ma
& Liao, 2020). For this purpose, it can produce many-to-many protein
mappings between the networks. Therefore, a protein from one network
can be aligned to more than one protein from the other network. On
the other hand, Global Network Alignment (GNA) is committed to find
large conserved regions between the two networks aligned (Guzzi &
Milenković, 2018). To do so, it constructs one-to-one mappings between
the proteins of both PPI networks, seeking to align the biggest number
of proteins from the smaller network to the proteins from the bigger
one. In this article, we will focus on global network alignment

Over time, many GNA studies (Ibragimov, Malek, Guo, & Baumbach,
2013; Memišević & Pržulj, 2012; Patro & Kingsford, 2012) have only
focused on the biological or structural quality for the construction of
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the alignments. This, in turn, has led to aligners experiencing problems
such as not agreeing on most of the protein–protein mappings for
the same alignment scenario or producing alignments in small regions
of the solution space (Clark & Kalita, 2015). To tackle this, previous
work in the field recommends focusing not only on the structural or
biological quality of the alignment but on both of them (Elmsallati,
Msalati, & Kalita, 2018; Ma et al., 2021; Mamano & Hayes, 2017).

However, despite the expectation that proteins’ biological functions
are closely associated with their set of partners involved (interaction
structure), the reality is that, among species, biologically similar pro-
teins differ significantly in their interaction structures. As some works
highlight (Meng et al., 2022; Wang, Atkinson, & Hayes, 2022), this
could be mainly due to the insufficient, noisy, and biased PPI data
gathered so far. For this purpose, performing PPI network alignment
while simultaneously maximizing biological and structural qualities is
a challenging task since both qualities conflict more than expected. As
a result, an increase in the biological quality leads to a decrease in the
structural quality, and vice versa. To solve this problem, in the last
few years, it has been observed an increase in the number of aligners
proposing highly differentiated techniques and, therefore, obtaining
alignments of very different biological and structural quality.

In this sense, an interesting line of research would be to develop an
ensemble with some of the existing aligners in the area. The main idea
is to combine their strengths and avoid their weaknesses in order to pro-
duce alignments of higher biological and structural quality. In general,
ensembles are capable of decreasing the spread of dispersion among
individuals that vary significantly. If well calibrated, ensembles manage
to combine individuals in such a way that they cooperate with each
other to achieve an improved solution (Asur, Ucar, & Parthasarathy,
2007). Therefore, in the PPI network alignment field, the use of an
ensemble technique of existing PPI network aligners will surely aid in
attaining a global standard that generates alignments with improved
quality. Although this is a good idea, to our best knowledge, it has only
been explored once in the scientific literature. More specifically, Man-
ners, Elmsallati, Guzzi, Roy, and Kalita (2017) used a bagging-based
ensemble which is one of the most known ensemble techniques (Wen
& Hughes, 2020). From the PPI network alignment point of view,
bagging is based on the idea of combining alignments from different
aligners through different systems (mostly voting systems). In addition
to bagging, one of the most popular ensemble techniques is boost-
ing (Wen & Hughes, 2020). However, it has not been used in the area of
PPI network alignment. For this reason, we propose a novel boosting-
based ensemble approach of global network aligners that has not been
previously used in the area in order to obtain alignments of higher
biological and structural quality. Conversely to bagging, boosting first
obtains an alignment from an aligner and then tries to improve its
quality using another aligner. The main difference between bagging
and boosting is that in the bagging case all the aligners are at the same
level and their alignments are combined to produce one final solution.
On the other side, in our boosting proposal, an aligner at top-level
produces first an alignment and a second aligner (second-level) takes
the previous alignment as input and improves it.

Apart from that, attempts have been made using the unification
technique (Malod-Dognin, Ban, & Pržulj, 2017; Manners et al., 2017).
However, it is not formally correct since there are relationships, which
are not one-to-one, between proteins involved in the global alignment,
which also means that the existing standard quality metrics in the field
cannot be used to determine the quality of the final alignment (Chen
et al., 2021).

Specifically, the main contributions and novelties of this work can
be summarized as:

• Use and detailed explanation, for the first time in the field, of
a boosting-based ensemble technique for current PPI network
aligners showcasing its ability to achieve higher quality solutions.
2

• Comprehensive study of all the proposed aligners found in the
scientific literature, assessing their availability, if they can be
executed, the quality of their results in comparison with other
aligners, and their execution times.

• First time in the area of a comparison between a boosting-based
ensemble, individual aligners and different bagging-based ensem-
ble methods, including the only one found in the area (Man-
ners et al., 2017), showing that their results are not sufficiently
competitive in contrast to our boosting-based ensemble results.

• Validation of the results, performing experiments with 10 differ-
ent alignment scenarios using real data from PPI networks of 5
species.

• Runtime evaluation verifying that the time required to perform
the proposed ensemble is minimal when compared to that re-
quired by current individual aligners.

The sections into which this article is divided are: Section 2 details
the comprehensive study performed about the PPI network aligners
in the scientific literature, in order to select those that will compose
the proposed ensemble. Later, Section 3 describes how to measure the
quality of resulting alignments, different techniques of bagging-based
ensemble with voting, and our boosting-based ensemble approach. In
Section 4, we show the datasets of PPI networks used in the exper-
iments, the configurations of the individual aligners composing our
ensemble, and the evaluation of the results in terms of runtime, and
biological and structural quality comparing them with other tools and
ensemble techniques (such as bagging) in the area. Finally, Section 5 re-
veals the conclusions obtained from this work and some future research
lines are proposed.

2. Related work

Although the PPI network alignment research line is considered
young and far from being solved (Clark & Kalita, 2015), there is already
a large number of publications in the field. Thus, it is not surprising that
several surveys are summarizing the progress in this area (Elmsallati,
Clark, & Kalita, 2016; Guzzi & Milenković, 2018).

Among all the existing publications we can highlight the following
works proposing global network aligners: BEAMS (Alkan & Erten,
2014), a global many-to-many aligner which relies on the use of a
heuristic method based on a backbone extraction and a merge strategy.
The GRAAL family of aligners: GRAAL (Kuchaiev, Milenković, Memiše-
vić, Hayes, & Pržulj, 2010) and C-GRAAL (Memišević & Pržulj, 2012)
that use only topological information to construct the alignments, L-
GRAAL (Malod-Dognin & Pržulj, 2015), adopting a heuristic search
based on integer programming and Lagrangian relaxation, and MI-
GRAAL (Kuchaiev & Pržulj, 2011), the only aligner in the GRAAL
family introducing biological information to obtain the alignments.
The GEDEVO group of aligners: GEDEVO (Ibragimov, Malek, et al.,
2013) that applies the Graph Edit Distance (GED) approach to model
one PPI network into another, CytoGEDEVO (Malek, Ibragimov, Al-
brecht, & Baumbach, 2016), a Cytoscape app to extend the previous
GEDEVO aligner with graphical and functional features, and GEDEVO-
M (Ibragimov, Malek, Baumbach, & Guo, 2014) which allows the
topological multiple one-to-one alignment of PPI networks through
the GED method too. DualAligner (Seah, Bhowmick, & Dewey, 2014)
that proposes a new PPI network alignment technique that matches
proteins with high data confidence based on biological and struc-
tural data. FastAlign (Kollias, Sathe, Mohammadi, & Grama, 2013) is
committed to making protein pairings of involved PPI networks by a
matrix-based greedy approach and an auction-based matching algo-
rithm. Fuse (Gligorijević, Malod-Dognin, & Pržulj, 2016), a two-step
network alignment algorithm that computes similarity scores by the
Non-negative Matrix Tri-Factorization method and identifies clusters of
proteins through its maximum weight k-partite matching approxima-

tion algorithm. GHOST (Patro & Kingsford, 2012) which combines a
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seed-and-extend global alignment phase with a local-search procedure.
GREAT (Crawford & Milenković, 2015) that first aligns optimally edges
to improve the node cost function used to then align the rest of nodes of
both PPI networks. HubAlign (Hashemifar & Xu, 2014) that employs a
minimum-degree heuristic algorithm using the biological and structural
data of proteins. IBNAL (Elmsallati et al., 2018) that makes use of a
clique-based index to hasten the alignment process. IsoRankN (Liao, Lu,
Baym, Singh, & Berger, 2009), a multiple PPI network aligner based on
the spectral clustering of proteins.

The MAGNA family of aligners with: MAGNA (Saraph & Milenković,
2014) based on a genetic algorithm that uses a novel function for
crossover, its subsequent updating MAGNA++ (Vijayan, Saraph, &
Milenković, 2015) that improves MAGNA by simultaneously maximiz-
ing measures of edge conservation, speeding up the algorithm and
providing a user-friendly interface, and the multiple PPI network align-
ment version MultiMAGNA++ (Vijayan & Milenković, 2018). Mod-
uleAlign (Hashemifar, Ma, Naveed, Canzar, & Xu, 2016) that first
computes a homology score between proteins with sequence and both
local and global information to then align proteins with the highest
score. MONACO (Woo & Yoon, 2021), a highly adaptable aligner
that constructs alignments via the optimal matching of neighbouring
proteins near to a focal one. NABEECO (Ibragimov, Martens, Guo, &
Baumbach, 2013), the first bee colony optimization algorithm for PPI
network alignment. Natalie 2.0 (El-Kebir, Heringa, & Klau, 2015) where
its authors state that they improved a Lagrangian relaxation approach
by applying an integer linear programming formulation. The first server
for PPI network alignment proposed in the area, NETAL (Neyshabur,
Khadem, Hashemifar, & Arab, 2013) which was, in part, because of
the great results obtained by the application of its greedy algorithm.
NetCoffee (Hu, Kehr, & Reinert, 2014), a multiple PPI network aligner
which makes use of a triplet approach to construct a set of weighted
bipartite graphs to, afterwards, maximize a target function through
simulated annealing. NSD (Kollias, Mohammadi, & Grama, 2012) which
creates PPI network alignments by preprocessing each input network
individually and searching link patterns in pairwise similarity scores.
The only multi-objective approach in the field, OptNetAlign (Clark
& Kalita, 2015) where its authors improved the well-known multi-
objective genetic algorithm NSGA-II (Deb, Pratap, Agarwal, & Me-
yarivan, 2002) by adding crossover and mutation operators alongside
a local-search operator based on hill climbing. PINALOG (Phan &
Sternberg, 2012) that identifies communities in the input PPI networks
to find seed protein pairs and uses a novel neighbourhood similarity
score to construct the alignments. The local optimization based tool
PISwap (Chindelevitch, Ma, Liao, & Berger, 2013) where alignments are
first modelled taking only biological data into account, but afterwards,
it includes structural information by compensating conserved interac-
tions for mapping proteins whose biological sequences are not similar
at all. SAlign (Ayub, Haider, & Naveed, 2020) which incorporates struc-
ture and sequence information to calculate biological scores instead of
only sequence information. SAlign also uses the topological information
of the network. The stochastic algorithm SANA (Mamano & Hayes,
2017) that implements a metaheuristic search based on simulated
annealing. SMAL (Dohrmann & Singh, 2016), an innovative web server
for the exploratory analysis of multiple alignments relative to a specific
one. SMETANA (Sahraeian & Yoon, 2013) that first uses a semi-Markov
random walk model to compute the probabilistic similarity between
nodes in the PPI network to be aligned, and then, it enhances the
previous probabilities by adding local and cross-species information
through two types of probabilistic consistency transformations. Finally,
it aligns both PPI networks by using a greedy approach based on the
precomputed probabilities. SPINAL (Aladağ & Erten, 2013), a heuristic
algorithm divided into two phases: it first creates similarity scores
based on local neighbourhood matchings and then it iteratively grows a
locally improved solution subset. TAME (Mohammadi, Gleich, Kolda, &
Grama, 2017) that proposes a triangular alignment method to maximize
3

the node correctness of the alignments. And, finally, WAVE (Sun,
Crawford, Tang, & Milenković, 2015) where its authors introduce a
novel measure for edge conservation that, at the same time, favours
node correctness.

Table 1 shows a summary of all the aligners considered to form
part of the ensemble. A total of 36 aligners were studied. In this
table, the aligners are listed in alphabetical order, including their
corresponding reference in the scientific literature. Furthermore, the
table also specifies the link from which they can be downloaded and the
reason why they have been discarded to be part of the ensemble (if this
is the case). Aligners with a blank discard reason (highlighted in grey
shading) indicate those finally selected to be part of the ensemble. All
the aligners have been executed on a PC with 8 GB of RAM. Therefore,
aligners requiring more than 8 GB of RAM were discarded. It is clearly
preferable that all the aligners in the ensemble can be executed in
the same operating system. Hence, since most of the aligners were
available for Linux-based systems we discarded aligners whose au-
thors only provided Windows executables. Moreover, we only retained
aligners producing complete pairwise global alignments, referring as
complete pairwise global alignments to those pairing all the nodes of
the smaller PPI network to nodes of the bigger PPI network. But, in
addition to having all nodes of the smaller PPI network paired, we also
need these pairings between nodes to occur on an one-to-one basis.
Therefore, aligners giving one-to-many mappings between nodes were
also discarded. Apart from that, aligners producing alignments limited
to specific species were discarded since our ensemble is focused on the
construction of global alignments of any kind of species. On the other
side, a set of quality metrics were established to determine whether
the alignments of certain aligners were of sufficient quality to be part
of the ensemble. In this sense, aligners with runtime 30 times longer
than the fastest aligner or whose alignments did not exceed 10% of
the maximum (best) values of structural or biological quality were
discarded. Also, aligners of the same family were reduced to the one
(in that family) obtaining the best results.

To our best knowledge, there is only one approach (Manners et al.,
2017) which uses a bagging-based ensemble technique of PPI network
aligners. In particular, it is focused on finding majority node map-
pings among alignments produced from individual PPI network aligners
(voting-based strategy) to later combine these most common protein
alignments into one final PPI network alignment. In addition, attempts
have been made using different ensemble techniques with great results
in related topics to PPI network alignment. More concretely, Wang,
Ma, and Wang (2022) proposed an ensemble learning framework for
detecting protein complexes in PPI networks that outperformed related
works in the field. It was achieved through the integration of a voting
regression model and structural modularity together with the devel-
opment of a novel graph heuristic search. Liu et al. (2021) presented
an innovative ensemble method that combined three deep learning
methods (FoldNet, SSAfold, and DeepFR) focused on the optimization
of protein fold recognition. As they stated, this combination helped to
improve the results since the ensemble had the ability to combine them
in ways that complemented each other. And Asur et al. (2007) devel-
oped an ensemble of various clustering techniques such as Principal
Component Analysis-based and soft consensus clustering. As a result,
biologically significant functional clusterings and multiple functional
associations for proteins were discovered.

3. Methodology

Since the origin of the PPI network alignment research line, multiple
approaches, such as single-objective heuristic optimization (Hashemifar
& Xu, 2014; Neyshabur et al., 2013), multi-objective heuristic optimiza-
tion (Clark & Kalita, 2015) or numerical optimization (El-Kebir et al.,
2015), have been proposed to solve this problem of conflicting objec-
tives (biological and structural quality). However, no global consensus
has yet been established on which approach (aligner) is preferred since

their resulting alignments present a great diversity of trade-offs in



Expert Systems With Applications 230 (2023) 120671M. Menor-Flores and M.A. Vega-Rodríguez
Table 1
Comprehensive study of current aligners in the PPI network alignment field. A total of 36 aligners were studied. For every aligner, the table indicates its
name and reference, the link from which it can be downloaded, and the reason why it has been discarded (if it is the case). Aligners highlighted in grey
shading indicate those finally selected to be part of the ensemble.
Aligner Link Discard reason

BEAMS (Alkan & Erten, 2014) http://webprs.khas.edu.tr/~cesim/BEAMS.tar.gz High runtime
C-GRAAL (Memišević & Pržulj, 2012) http://www0.cs.ucl.ac.uk/staff/natasa/C-GRAAL/index.html
CytoGEDEVO (Malek et al., 2016) http://cytogedevo.compbio.sdu.dk Executable not working
DualAligner (Seah et al., 2014) https://github.com/trove2017/DualAligner/releases Limited to specific species
FastAlign (Kollias et al., 2013) https://github.com/shmohammadi86/fastAlign High runtime
Fuse (Gligorijević et al., 2016) http://www0.cs.ucl.ac.uk/staff/natasa/FUSE/ Only Windows executable
GEDEVO (Ibragimov, Malek, et al., 2013) http://gedevo.mpi-inf.mpg.de/ High runtime
GEDEVO-M (Ibragimov et al., 2014) http://gedevo.mpi-inf.mpg.de/multiple-network-alignment/ High runtime
GHOST (Patro & Kingsford, 2012) https://github.com/Kingsford-Group/ghost2 High runtime
GRAAL (Kuchaiev et al., 2010) http://www0.cs.ucl.ac.uk/staff/natasa/GRAAL/index.html Worse quality results than C-GRAAL
GREAT (Crawford & Milenković, 2015) https://www3.nd.edu/~cone/GREAT/ More than 8 GB of RAM needed
HubAlign (Hashemifar & Xu, 2014) http://ttic.uchicago.edu/~hashemifar/software/HubAlign.zip
IBNAL (Elmsallati et al., 2018) http://www.cs.uccs.edu/~linclab/IBNAL/Documentation.html No complete pairwise global alignments
IsoRankN (Liao et al., 2009) http://cb.csail.mit.edu/cb/mna/ No one-to-one mappings between nodes
L-GRAAL (Malod-Dognin & Pržulj, 2015) http://www0.cs.ucl.ac.uk/staff/natasa/L-GRAAL/index.html Only Windows executable
MAGNA (Saraph & Milenković, 2014) http://www3.nd.edu/~cone/NA/MAGNA.zip Poor quality results
MAGNA++ (Vijayan et al., 2015) http://nd.edu/~cone/MAGNA++/ Poor quality results
MI-GRAAL (Kuchaiev & Pržulj, 2011) http://www0.cs.ucl.ac.uk/staff/natasa/MI-GRAAL/index.html High runtime
ModuleAlign (Hashemifar et al., 2016) http://ttic.uchicago.edu/~hashemifar/ModuleAlign.html
MONACO (Woo & Yoon, 2021) https://github.com/bjyoontamu/MONACO No complete pairwise global alignments
MultiMAGNA++ (Vijayan & Milenković, 2018) http://nd.edu/~cone/multiMAGNA++/ High runtime
NABEECO (Ibragimov, Martens, et al., 2013) http://nabeeco.mpi-inf.mpg.de/ High runtime
Natalie 2.0 (El-Kebir et al., 2015) https://github.com/ls-cwi/natalie No complete pairwise global alignments
NETAL (Neyshabur et al., 2013) http://bioinf.modares.ac.ir/software/netal/
NetCoffee (Hu et al., 2014) http://code.google.com/p/netcoffee/ High runtime
NSD (Kollias et al., 2012) https://github.com/shmohammadi86/NSD No complete pairwise global alignments
OptNetAlign (Clark & Kalita, 2015) http://github.com/crclark/optnetaligncpp/
PINALOG (Phan & Sternberg, 2012) http://www.sbg.bio.ic.ac.uk/~pinalog/ No complete pairwise global alignments
PISwap (Chindelevitch et al., 2013) http://groups.csail.mit.edu/cb/piswap/webserver/ No complete pairwise global alignments
SAlign (Ayub et al., 2020) https://github.com/cbrl-nuces/SAlign
SANA (Mamano & Hayes, 2017) https://github.com/waynebhayes/SANA Poor quality results
SMAL (Dohrmann & Singh, 2016) http://haddock6.sfsu.edu/smal/ Web server not working
SMETANA (Sahraeian & Yoon, 2013) https://github.com/bjyoontamu/SMETANA More than 8 GB of RAM needed
SPINAL (Aladağ & Erten, 2013) http://code.google.com/p/spinal/ Only Windows executable
TAME (Mohammadi et al., 2017) https://github.com/shmohammadi86/TAME Poor quality results
WAVE (Sun et al., 2015) http://nd.edu/~cone/WAVE/WAVE.zip
r
𝑥
t

terms of biological and structural quality. To this end, an interesting
proposal is the ensemble of current aligners with the aim of combining
their strengths while avoiding their weaknesses. In this way, the use
of the ensemble technique could improve the performance over any
of the individual aligners composing the ensemble (Wu, Mallipeddi, &
Suganthan, 2019). Even so, the ensemble of current aligners has very
scarcely been used in the PPI network alignment field. With only one
work in the scientific literature (Manners et al., 2017), implementing a
bagging-based ensemble which, in fact, uses one of the most common
systems to combine solutions (in bagging-based ensemble), the majority
voting system (van Erp, Vuurpijl, & Schomaker, 2002).

In this article, we contrast the only ensemble proposal made in the
literature (Manners et al., 2017) with our new ensemble proposal based
on boosting. Unlike bagging, our boosting approach does not combine
the complete pairwise global alignments of the aligners (all aligners
at the same level) through any voting system, but rather obtains a
complete pairwise global alignment with one aligner (top-level aligner)
and improves it with a different aligner (second-level aligner).

3.1. Measuring the quality of an alignment

To contrast both ensemble techniques, we used the biological and
structural quality of the resulting alignments. Structural quality refers
to the number of overlapped (conserved) edges in the PPI networks
involved in the alignment. On the other side, the biological quality
alludes to the number of orthologous proteins matched in the align-
ment. The biological and structural qualities have been measured with
the 𝐺𝑂𝐶 (Gene Ontology Consistency) and 𝑆3 (Symmetric Substructure
4

Score) metrics, respectively.
3.1.1. Gene Ontology Consistency (GOC)
The Gene Ontology (GO) Consortium is a non-profit organism com-

mitted to the collection of functions of genes of different species. In
fact, it is the world’s largest source of information about the biological
functions of proteins, containing data in terms of cellular components,
molecular functions, and biological processes (Peng, Lu, Xue, Wang, &
Shang, 2019). More specifically, the biological functions of any protein
of a PPI network are differentiated by unique identifiers known as
GO terms. Thus, given an alignment 𝑓 of two given graphs, 𝐺1 =
(𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) representing the two PPI networks where
𝑉𝑥 refers to the proteins (vertices or nodes) of the network 𝑥 and 𝐸𝑥
efers to the edges (relationships) between proteins in the network
: we can easily measure the biological quality of the alignment of
wo proteins 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2 (as long as 𝑢 and 𝑣 are paired,

that is, 𝑓 (𝑢) = 𝑣) by using these GO terms. Bearing in mind that the
cardinality (number of proteins) |𝑉1| and |𝑉2| of two PPI networks can
be different, we always refer to 𝐺1 as the PPI network with fewer
proteins (|𝑉1| ≤ |𝑉2|). Moreover, this difference in the cardinality of two
PPI networks can cause loss of information about those proteins of 𝐺2
that could not be aligned which is crucial to further improve the quality
of the alignments. Particularly in contexts such as this one in which
an ensemble of individual aligners is being performed to improve the
quality of their alignments. For this reason, we introduce the concept
of ‘dummy’ nodes which consists of a set of fictitious nodes added to
the smaller PPI network (𝐺1) to equalize the network sizes (|𝑉1| =
|𝑉2|). In this way, proteins of 𝐺2 not aligned to proteins of 𝐺1 will be
aligned to these ‘dummy’ nodes. Of course, these last alignments will
not be considered when measuring any of the qualities of the alignment
(biological or structural) since they are not real alignments. Regarding

the measurement of the biological quality, we used the Jaccard index
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metric known as the Gene Ontology Consistency (𝐺𝑂𝐶). It is based on
the idea of measuring the set of GO terms shared between two matched
proteins (𝐺𝑂(𝑢)∩𝐺𝑂(𝑣)) with respect to the union of all their GO terms
𝐺𝑂(𝑢) ∪ 𝐺𝑂(𝑣)). Eq. (1) guides the computation for the 𝐺𝑂𝐶 metric,
here | ⋅ | is the cardinality (number of elements) of the set.

𝑂𝐶 =
∑

𝑢∈𝑉1;∃𝑣∈𝑉2∶𝑓 (𝑢)=𝑣

|𝐺𝑂(𝑢) ∩ 𝐺𝑂(𝑣)|
|𝐺𝑂(𝑢) ∪ 𝐺𝑂(𝑣)|

. (1)

Hence, higher 𝐺𝑂𝐶 values indicate that a greater number of biologi-
cal functions are conserved among the proteins matched, and therefore,
a higher biological quality of alignment.

In addition to the 𝐺𝑂𝐶 metric, there are other methods for calculat-
ing the biological quality of PPI network alignments. In particular, we
can highlight GOGO (Zhao & Wang, 2018) and G-SESAME (Wang, Du,
Payattakool, Yu, & Chen, 2007), two graph-based evaluation methods
using the Gene Ontology graph to determine the biological quality of
the alignments.

3.1.2. Symmetric Substructure Score (𝑆3)
The Symmetric Substructure Score (𝑆3) is a commonly used metric

to measure the structural quality of PPI network alignments (Clark &
Kalita, 2015; Hashemifar et al., 2016; Hashemifar & Xu, 2014; Sun
et al., 2015). Part of its recognition is due to the improvement process
effectuated to obtain the 𝑆3 metric. Starting from the Edge Correctness
(𝐸𝐶) metric, this improvement process involved its refinement into a
better metric, the Induced Conserved Structure (𝐼𝐶𝑆). And again, a
posterior improvement of the 𝐼𝐶𝑆 metric gave rise to the 𝑆3 metric.
An important aspect to highlight is that the formulas for the above 3
metrics (𝐸𝐶, 𝐼𝐶𝑆, and 𝑆3) share the same numerator, which represents
the number of overlapped (conserved) edges between the alignment
𝑓 (𝐸1) and the second network (𝐸2), as indicated in Eq. (2).

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑(𝑓 ) = |𝑓 (𝐸1) ∩ 𝐸2|. (2)

In this sense, the improvement of these metrics was made by
introducing changes in their respective denominators. Starting from
𝐸𝐶, it simply divides the numerator by the number of edges of the
first network, that is, by |𝐸1|. However, Patro and Kingsford (2012)
found that the previous 𝐸𝐶 metric was not able to penalize alignments
from sparse regions of the first network to dense ones of the second
network and created the 𝐼𝐶𝑆 metric to solve this problem. In this case,
𝐼𝐶𝑆 divides the numerator (Eq. (2)) by |𝐸𝐺2[𝑓 (𝑉1)]|, where |𝐸𝐺2[𝑓 (𝑉1)]|
refers to those edges in the 𝐺2 network whose nodes are aligned to 𝐺1
nodes. But, although 𝐼𝐶𝑆 penalizes sparse-to-dense alignments it was
not able to identify dense-to-sparse alignments to penalize them too.
To this end, a stronger metric is 𝑆3, which was introduced to find an
appropriate solution to the dense-to-sparse and sparse-to-dense align-
ment problem. With this purpose, 𝑆3 divides the numerator (Eq. (2)) by
|𝐸1|+|𝐸𝐺2[𝑓 (𝑉1)]|−|𝑓 (𝐸1) ∩ 𝐸2| which simply implicates subtracting the
number of conserved edges in the alignment (|𝑓 (𝐸1) ∩ 𝐸2|) to the sum
of the previous 𝐸𝐶 and 𝐼𝐶𝑆 denominators. Therefore, the 𝑆3 metric is
calculated through Eq. (3).

𝑆3 =
|𝑓 (𝐸1) ∩ 𝐸2|

|𝐸1| + |𝐸𝐺2[𝑓 (𝑉1)]| − |𝑓 (𝐸1) ∩ 𝐸2|
. (3)

As expected, values after computing the 𝑆3 score of an alignment
are in the [0,1] range, with a 0 value indicating that 0% of the edges
are conserved and a 1 value indicating that 100% of the edges are
conserved. Consequently, higher 𝑆3 values denote higher structural
quality of the alignments.

3.1.3. Combining both metrics: confidence
In this article, we introduce the confidence metric to combine the

biological and structural quality of the alignments. For comparison
purposes, the confidence metric allows us to easily determine which
PPI network alignment is better than others. Since both biological and
structural qualities are equally important (Clark & Kalita, 2015), we
5

ombined both by giving equal weight to them (0.5). In this way, we
an state that alignments with greater confidence values are preferred

over others. As said, structural quality is measured by using 𝑆3 and
biological quality is assessed by using 𝐺𝑂𝐶. Also, as explained before,
𝑆3 values are in the [0,1] range while 𝐺𝑂𝐶 values are not. Therefore,
if we do not normalize both values of 𝐺𝑂𝐶 and 𝑆3, the biological
quality would interfere in the structural one when determining which
alignment is better than the other. For this reason and prior to the
combination of both quality metrics, we performed a min–max nor-
malization approach. In this sense, for a particular alignment scenario,
each of the qualities of an alignment was subtracted by the minimum
value and divided by the maximum value minus the minimum. Eq. (4)
shows how to compute the confidence metric of an alignment 𝑓 given
its normalized structural and biological qualities (𝑆3

𝑛𝑜𝑟𝑚 and 𝐺𝑂𝐶𝑛𝑜𝑟𝑚
respectively).

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑓 ) = 0.5 ∗ 𝑆3
𝑛𝑜𝑟𝑚 + 0.5 ∗ 𝐺𝑂𝐶𝑛𝑜𝑟𝑚. (4)

3.2. Ensemble based on bagging with voting

As explained before, the only ensemble technique proposed so far
in the PPI network alignment field is a bagging-based ensemble with a
majority voting system (Manners et al., 2017). However, apart from this
majority voting system, other voting systems can be used in conjunction
with the bagging-based ensemble technique. In particular, van Erp
et al. (2002) contains a compendium of the most common voting
systems. On account of this work, we have made a review of all of
them using those that can be applied to the ensemble of PPI network
aligners. All of these voting techniques are detailed in the following
subsections. It is important to highlight that, in all these ensembles
based on bagging with voting, every aligner in the ensemble generates
a complete pairwise global alignment, whose confidence metric can be
computed.

3.2.1. Plurality
The plurality voting system is based on the idea of giving one vote

to each protein from 𝐺2 (second PPI network) aligned with a specific
protein from 𝐺1 (first PPI network). Each vote is indicated by one of the
aligners composing the ensemble. In this way, each alignment (aligner)
gives its vote as to which protein from 𝐺2 has to be aligned with each
protein from 𝐺1. The complete pairwise global alignment resulting from
the ensemble is constructed by matching all the 𝐺1 proteins to the 𝐺2
proteins with the highest number of votes per 𝐺1 protein. However,
there may be situations where once the votes are counted there are two
or more proteins in 𝐺2 with the same maximum number of votes. And
it is, in this case, when different variants of the plurality voting system
arise for selecting one of the tied proteins of 𝐺2. On the one hand,
we explored the random plurality voting system (Plurality-Random)
which states that when there is a tie in proteins with the highest
number of votes, one of these proteins of 𝐺2 is chosen at random.
On the other hand, the confidence plurality voting system (Plurality-
Confidence) chooses the protein of 𝐺2 whose sum of the confidence
values of the alignments that voted for it is higher.

3.2.2. Majority
The majority voting system is the only proposal found in the sci-

entific literature (Manners et al., 2017) and it is commonly confused
with the previous plurality method. In the majority voting system,
again, each aligner has one vote per 𝐺2 protein and they all indicate
their votes in the same way as in the plurality method. However, the
decision on which proteins of 𝐺2 are aligned to proteins in 𝐺1 is slightly
different. In this case, it is necessary, for a candidate (any 𝐺2 protein),
to have obtained a majority of the votes to be selected (more than half
of the votes). If no candidate fulfils the previous assumption, the final
selected candidate (protein) is the one that comes from the alignment

whose confidence is the highest.
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3.2.3. Sum rule
In the sum rule case, all global aligners composing the ensemble

indicate which is their preferred protein in 𝐺2 to be aligned to a
given protein of 𝐺1 using their alignments likewise. But, instead of
giving one vote to each 𝐺2 candidate that they consider to be the best
matching per 𝐺1 protein, each global aligner assigns a confidence value
to its candidate. As expected, the confidence value that each global
aligner provides is the one of its constructed alignment. In this way, all
confidence values given to a 𝐺2 protein are added up and that protein
with the highest total confidence value is the one chosen. In case of a
tie in the maximum total confidence value among two or more proteins,
one of them is randomly selected.

3.2.4. Product rule
In the same sense as the sum rule, all global aligners give a con-

fidence value to a protein in 𝐺2 through their alignments. And af-
terwards, the candidate with the highest final confidence value is
selected. However, in the product rule case, confidence values are
not added up but multiplied. This can result in aligners with a very
high confidence value being severely affected by aligners with small
confidence values. Again, in case of a tie in the confidence values given
to several candidate proteins, the final protein is randomly selected
among the tied candidates.

3.3. Our proposal: Ensemble based on boosting

In this subsection, we detail our ensemble proposal which is based
on boosting. In contrast to the previously explained bagging techniques,
boosting does not combine alignments making use of voting or other
types of systems considering all the alignments at the same level. In-
stead, the boosting technique uses the output (alignment) of an aligner
at top-level as input to another aligner at second-level to improve that
alignment. For our particular case, we used a two-level boosting-based
ensemble approach with two different branches. These two branches
arise since we measure the quality of resulting alignments through two
different metrics, 𝐺𝑂𝐶 and 𝑆3. Therefore, we can improve any given
alignment in two different ways, through its biological or structural
quality. For a specific alignment scenario, that is, any alignment involv-
ing two PPI networks, the starting point of our boosting-based ensemble
consists of obtaining the alignments of these two PPI networks by
passing them through each of the 7 individual aligners finally selected
in Section 2. When these alignments have been obtained, the 𝐺𝑂𝐶 and
𝑆3 values for each of them are computed and normalized through the
min–max normalization approach to later calculate their corresponding
confidence. At this point, alignments are ordered by their confidence
and the one with the highest confidence is selected to be the seed
of the two boosting branches. The first branch tries to improve the
seed alignment by selecting the proteins whose pairings do not reach
a certain 𝐺𝑂𝐶 threshold and passes them through a second aligner
focused on improving 𝑆3. In this way, those pairings contributing less
to 𝐺𝑂𝐶 will be changed to contribute more to 𝑆3. The second branch
performs the inverse operation, that is, it takes proteins of the seed
alignment whose pairings do not reach a certain 𝑆3 threshold and
passes them through a second aligner focused on improving 𝐺𝑂𝐶.
Therefore, those pairings contributing less to 𝑆3 will be changed to
contribute more to 𝐺𝑂𝐶. More exactly, in this second branch, we did
not use a second aligner but implemented our own heuristic focused on
improving 𝐺𝑂𝐶. Thus, once the alignment with the highest confidence
has been improved through these two different branches we obtain two
different alignments. Between these two alignments, the one with the
highest confidence is selected as the final result of the boosting-based
ensemble. Both branches of the proposed boosting-based ensemble
6

technique are detailed in the following subsections.
3.3.1. Boosting 𝑆3 in alignments with high GOC
Through this branch of our boosting-based ensemble, the seed align-

ment is improved in terms of 𝑆3 by minimizing the loss in 𝐺𝑂𝐶. In
order to improve the structural quality of an alignment while retaining
high 𝐺𝑂𝐶 values, proteins of both PPI networks whose alignment is
not a major improvement in terms of 𝐺𝑂𝐶 need to be identified. To
then pass these proteins, as an input, to an aligner focused on obtaining
high structural alignments. In this way, by combining the resulting
alignment of this last aligner with the seed alignment we can obtain the
desired results. Besides, determining a good aligner in a specific quality
metric (𝑆3 or 𝐺𝑂𝐶) is direct since we record the maximum values
from both 𝐺𝑂𝐶 and 𝑆3 metrics to perform the previously explained
min–max normalization approach. Therefore, the aligner constructing
the alignment whose value for a specified quality metric is maximum
will be selected as the second-level aligner of our proposed ensemble.
For the case of this branch of the ensemble, the second-level aligner
selected is the one constructing the alignment with the maximum 𝑆3

value for each particular alignment scenario. Algorithm 1 shows the
main steps performed to apply this improvement to the seed alignment.
In addition, the corresponding flowchart of the boosting_s3 method can
be found in Fig. 1.

To identify proteins involved in a poor biological alignment (low
𝐺𝑂𝐶) we have to first establish a criterion. In this sense, we use, as
𝐺𝑂𝐶 threshold, the average 𝐺𝑂𝐶 value that each alignment between
two proteins implies (line 2). This is calculated by dividing the whole
biological quality of the alignment by the number of proteins of the
smallest network. It can serve as a threshold to identify low 𝐺𝑂𝐶
alignments since alignments of proteins not reaching this value will be
considered biologically poor (their biological quality is below average).
Once the threshold has been established, it checks all the pairings
between two proteins composing the whole alignment one by one to
see if the previous threshold is not reached and stores those proteins
in prot_net1_low_goc and prot_net2_low_goc, which are initialized in lines
3 and 4. For that reason, it iterates over all the proteins of the biggest
network (line 5).

Algorithm 1 Pseudo-code of boosting type 1 - boosting_s3.
Input: 𝑆: alignment with the highest confidence, 𝑠𝑖𝑧𝑒_𝑛𝑒𝑡1: number
of proteins of the smallest PPI network of the alignment, 𝑠𝑖𝑧𝑒_𝑛𝑒𝑡2:
number of proteins of the biggest PPI network of the alignment, 𝛼:
threshold multiplication factor, ℎ𝑖𝑔ℎ_𝑠3_𝑎𝑙𝑖𝑔𝑛𝑒𝑟: aligner constructing
high 𝑆3 alignments.
Output: 𝑆𝑒: output solution of the branch.
1: 𝑆𝑒 ← 𝑆
2: 𝑔𝑜𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑔𝑒𝑡_𝑔𝑜𝑐(𝑆𝑒)∕𝑠𝑖𝑧𝑒_𝑛𝑒𝑡1
3: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡1_𝑙𝑜𝑤_𝑔𝑜𝑐 ← ∅
4: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑔𝑜𝑐 ← ∅
5: for 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2 ← 0 to 𝑠𝑖𝑧𝑒_𝑛𝑒𝑡2 − 1 do
6: if 𝑎𝑙𝑖𝑔𝑛𝑒𝑑_𝑡𝑜_𝑑𝑢𝑚𝑚𝑦_𝑛𝑜𝑑𝑒(𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2) then
7: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑔𝑜𝑐 ← 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑔𝑜𝑐 ∪ {𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2}
8: else
9: 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡1 ← 𝑔𝑒𝑡_𝑎𝑙𝑖𝑔𝑛𝑒𝑑_𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑡𝑜(𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2)

10: 𝑔𝑜𝑐_𝑣𝑎𝑙𝑢𝑒 ← 𝑔𝑒𝑡_𝑔𝑜𝑐_𝑝𝑎𝑖𝑟(𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡1, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2)
11: if 𝑔𝑜𝑐_𝑣𝑎𝑙𝑢𝑒 < 𝛼 ∗ 𝑔𝑜𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
12: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡1_𝑙𝑜𝑤_𝑔𝑜𝑐 ← 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡1_𝑙𝑜𝑤_𝑔𝑜𝑐 ∪ {𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡1}
13: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑔𝑜𝑐 ← 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑔𝑜𝑐 ∪ {𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2}
14: end if
15: end if
16: end for
17: 𝑆𝑝 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(ℎ𝑖𝑔ℎ_𝑠3_𝑎𝑙𝑖𝑔𝑛𝑒𝑟, 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡1_𝑙𝑜𝑤_𝑔𝑜𝑐, 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑔𝑜𝑐)
18: 𝑆𝑒 ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑒_𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠(𝑆𝑒, 𝑆𝑝)

As previously stated, we introduced some fictitious nodes (‘dummy’
nodes) to be aligned with proteins of the biggest network that could
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Fig. 1. Flowchart of boosting_s3 method.
not be matched with a protein of the smallest network. So, these false
alignments, since they are fictitious, do not involve any improvement
in the biological quality of the alignment. Therefore, if a given protein
of 𝐺2 network is aligned to a ‘dummy’ node (line 6) it will be stored
in the prot_net2_low_goc set of proteins (line 7). In case this protein is
not aligned to a ‘dummy’ node, it obtains the protein of 𝐺1 network
aligned with this one (line 9) to later evaluate the 𝐺𝑂𝐶 value resulting
from this alignment (line 10). Having this 𝐺𝑂𝐶 value, by means of
a simple comparison it can be determined whether the precalculated
threshold is reached or not (line 11). Note that this threshold can be
modified both upwards (𝛼 > 1) and downwards (𝛼 < 1). In essence,
those proteins whose alignments do not reach the threshold will be
stored at prot_net1_low_goc and prot_net2_low_goc sets of proteins (lines
7

12 and 13). In this way, after iterating over all the proteins, those two
sets will contain all proteins involved in low biological alignments and
they will be passed to the second-level aligner (line 17), that is, the
one that constructs high structural alignments. After that, these high
structural alignments are combined with the high biological pairings
of the seed alignment to produce the final improved alignment (line
18).

3.3.2. Boosting GOC in alignments with high 𝑆3

Conversely, the other branch of the proposed boosting-based en-
semble is committed to improving the biological quality (𝐺𝑂𝐶) of the
seed alignment without destroying the conserved edges which means
preserving the 𝑆3 value. In this case, alignments between proteins
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that do not have their edges conserved will be the ones passed to
the second-level aligner. However, now the second-level aligner is a
heuristic developed by us. This heuristic along with the rest of steps of
this other branch of the proposed boosting-based ensemble are detailed
in Algorithm 2. Furthermore, Fig. 2 presents the flowchart of the
boosting_goc method.

Algorithm 2 Pseudo-code of boosting type 2 - boosting_goc.
Input: 𝑆: alignment with the highest confidence, 𝑠𝑖𝑧𝑒_𝑛𝑒𝑡1: number of
proteins of the smallest PPI network of the alignment, 𝑠𝑖𝑧𝑒_𝑛𝑒𝑡2: number
of proteins of the biggest PPI network of the alignment, 𝛼: threshold
multiplication factor.
Output: 𝑆𝑒: output solution of the branch.
1: 𝑆𝑒 ← 𝑆
2: 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑_𝑒𝑑𝑔𝑒𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑔𝑒𝑡_𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑_𝑒𝑑𝑔𝑒𝑠(𝑆𝑒)∕𝑠𝑖𝑧𝑒_𝑛𝑒𝑡1
3: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡1_𝑙𝑜𝑤_𝑠3 ← ∅
4: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑠3 ← ∅
5: for 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2 ← 0 to 𝑠𝑖𝑧𝑒_𝑛𝑒𝑡2 − 1 do
6: if 𝑎𝑙𝑖𝑔𝑛𝑒𝑑_𝑡𝑜_𝑑𝑢𝑚𝑚𝑦_𝑛𝑜𝑑𝑒(𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2) then
7: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑠3 ← 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑠3 ∪ {𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2}
8: else
9: 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡1 ← 𝑔𝑒𝑡_𝑎𝑙𝑖𝑔𝑛𝑒𝑑_𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑡𝑜(𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2)

10: 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑_𝑒𝑑𝑔𝑒𝑠 ← 𝑔𝑒𝑡_𝑐_𝑒𝑑𝑔𝑒𝑠_𝑝𝑎𝑖𝑟(𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡1, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2)
11: if 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑_𝑒𝑑𝑔𝑒𝑠 < 𝛼 ∗ 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑_𝑒𝑑𝑔𝑒𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
12: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡1_𝑙𝑜𝑤_𝑠3 ← 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡1_𝑙𝑜𝑤_𝑠3 ∪ {𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡1}
13: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑠3 ← 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑠3 ∪ {𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2}
14: end if
15: end if
16: end for
17: for each 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡1 ∈ 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡1_𝑙𝑜𝑤_𝑠3 do
18: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝑠𝑜𝑟𝑡_𝑏𝑦_ℎ𝑖𝑔ℎ_𝑔𝑜𝑐(𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑠3, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡1)
19: 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2 ← 𝑔𝑒𝑡_ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑔𝑜𝑐_𝑝𝑟𝑜𝑡(𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑠𝑜𝑟𝑡𝑒𝑑)
20: 𝑆𝑒 ← 𝑎𝑙𝑖𝑔𝑛(𝑆𝑒, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡1, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2)
21: 𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑠3 ← 𝑒𝑟𝑎𝑠𝑒_𝑝𝑟𝑜𝑡𝑒𝑖𝑛(𝑝𝑟𝑜𝑡_𝑛𝑒𝑡2_𝑙𝑜𝑤_𝑠3, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑛𝑒𝑡2)
22: end for

Again, some criterion has to be specified to select proteins of
oth networks involved in a low structural alignment. As explained in
ection 3.1.2, in order to maximize the structural quality of a given
lignment f, we need to increase the number of conserved edges which

is, in fact, the numerator of the 𝑆3 equation (Eq. (2)). Therefore, a
good threshold for determining whether the alignment of two proteins
is high in terms of structural quality is the average number of conserved
edges of the whole alignment (line 2). For its calculation, it divides the
total number of conserved edges of the seed alignment by the proteins
of the smallest network. Those proteins not reaching this threshold
will be considered structurally poor (their structural quality is below
average), and they will be stored at prot_net1_low_s3 and prot_net2_low_s3
ets of proteins, which are initialized in lines 3 and 4. For that reason,
t iterates over all 𝐺2 proteins (line 5) checking if each protein is
ligned to a ‘dummy’ node (line 6) in which case it will be stored
t prot_net2_low_s3 (line 7) since such an alignment with a fictitious
ode does not involve any conserved edge. On the contrary, if it is not
ligned to a ‘dummy’ node, it obtains the 𝐺1 protein aligned with this
ne (line 9) together with the number of conserved edges resulting from
hat alignment (line 10).

By checking if the number of conserved edges is lower than the
stablished threshold (line 11), it can be determined whether these
roteins have to be stored at prot_net1_low_s3 and prot_net2_low_s3 (lines
2 and 13). Here, the threshold value can be modified through the
ultiplication factor 𝛼, both upwards (𝛼 > 1) and downwards (𝛼 < 1).

n this way, after iterating over all 𝐺2 proteins following these steps
ll proteins involved in a low structural alignment will be collected at
8

rot_net1_low_s3 and prot_net2_low_s3 sets of proteins.
Table 2
Information of the PPI networks in the IsoBase database.

Species Abbreviation Number of
proteins

Number of
edges

M. musculus (mouse) mm 623 679
C. elegans (worm) ce 2995 6325
D. melanogaster (fly) dm 7396 36017
S. cerevisiae (yeast) sc 5524 100664
H. sapiens (human) hs 10403 68228

At this point, it is where our proposed heuristic begins to leverage
the previously gathered information to generate an enhanced align-
ment. The idea behind this is to align each 𝐺1 protein stored at
prot_net1_low_s3 with the 𝐺2 protein in prot_net2_low_s3 that yields the
highest possible biological quality alignment (line 20). To achieve this,
the algorithm iterates over all 𝐺1 proteins at prot_net1_low_s3 (line 17)
and uses each of them to sort the 𝐺2 proteins from prot_net2_low_s3.
Specifically, this sorting is based on ranking the 𝐺2 proteins that
generate a better alignment with the selected 𝐺1 protein in terms
of biological quality (line 18). Once sorted, the next step consists of
selecting the 𝐺2 protein producing the highest 𝐺𝑂𝐶 possible, that is to
say, the first 𝐺2 protein in the previous rank (line 19) to finally align it
with the selected 𝐺1 protein (line 20). In the end (line 21), the previous
𝐺2 protein is erased from prot_net2_low_s3 to prevent its selection in the
next iterations. In this way, it is ensured that future 𝐺2 candidates to
be aligned to other 𝐺1 proteins have not been already aligned, thus
avoiding duplicates in the resulting alignment.

4. Results

Before presenting the results obtained by our boosting-based en-
semble, we detail the datasets used in the experiments, as well as the
configuration of the individual aligners composing the ensemble. In
order to further clarify the advantages gained by using the proposed
boosting-based ensemble, the results will be shown in comparison to
the results of other tools such as the individual aligners, the only
bagging-based ensemble proposed in the area (Manners et al., 2017),
and other bagging-based ensembles with voting implemented. In addi-
tion to this, we also show how little extra runtime it takes to add the
ensemble to the individual aligners compared to the runtime that these
individual aligners already require.

4.1. Datasets

In this subsection, we detail the datasets used in the experiments.
In particular, we employed PPI networks of 5 species (Saccharomyces
cerevisiae (sc), Drosophila melanogaster (dm), Caenorhabditis elegans
(ce), Mus musculus (mm), and Homo sapiens (hs)), giving us a total
of 10 different alignment scenarios (ce-dm, ce-hs, ce-sc, dm-hs, mm-ce,
mm-dm, mm-hs, mm-sc, sc-dm, sc-hs). All this information has been
extracted from the IsoBase database (Park, Singh, Baym, Liao, & Berger,
2011), which is very well-known and used in the field, containing
real data (no synthetic one) of PPI networks. Such a collection of
data that IsoBase contains has been obtained by the combination of
information from 3 different databases: the Database of Interacting
Proteins (DIP) (Salwinski et al., 2004), the Database of Protein, Genetic
and Chemical Interactions (BioGRID) (Oughtred et al., 2019), and the
Human Protein Reference Database (HPRD) (Keshava Prasad et al.,
2009). In more detail, Table 2 shows some information of the PPI
networks in the IsoBase database: the species of each PPI network, its
colloquial name (in brackets), its abbreviation, the number of proteins
composing that PPI network, and the number of edges in that PPI
network.
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Fig. 2. Flowchart of boosting_goc method.
4.2. Experimental settings

As explained in Section 2, from the wide range of studied aligners,
we have selected 7 of them to form the ensemble. For this pur-
pose, they have all been run with the default parameters proposed by
their authors. In particular, Table 3 shows the user-specified execution
parameters for each of them.

In the case of OptNetAlign (Clark & Kalita, 2015), the timelimit
parameter has been set to the average runtime (in minutes) of all other
6 aligners for each one of the alignment scenarios. In this way, indepen-
dently of the values of the other parameters (popsize, generations, and
hillclimbiters), OptNetAlign will finish when the timelimit is reached.
9

Regarding the proposed ensemble, we only had to configure the 𝛼
parameter, which is the threshold multiplication factor explained in
Sections 3.3.1 and 3.3.2. In order to configure the 𝛼 value, a para-
metric study was conducted in which 𝛼 values in the range [0, 3.5] in
steps of 0.25 were tested. We considered the mm-ce (low complexity),
ce-sc (medium complexity), and dm-hs (high complexity) alignment
scenarios for the parametric study of the 𝛼 parameter. After this, we
obtained the best results when the 𝛼 parameter was equal to 1.25. For
this reason, all the experiments were performed by setting the 𝛼 value
to 1.25.

Finally, all the experiments have been executed on a PC with an
Intel Core i7-5500 CPU at 2.4 GHz and 8 GB of RAM under the Ubuntu
20.04 operating system.
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Table 3
User-specified parameters for the execution of the 7 global aligners composing the ensemble.
Aligner Parameter Value

C-GRAAL (Memišević & Pržulj, 2012) No user-specified parameters

HubAlign (Hashemifar & Xu, 2014) l (edge and node weights) 0.1
a (sequence and topological similarities) 0.7

ModuleAlign (Hashemifar et al., 2016) a (topological and homological similarities) 0.5

NETAL (Neyshabur et al., 2013)

a (edge and node weights) 0.0001
b (similarity and interaction scores) 0
c (contribution of neighbours) 1
i (number of iterations) 2

OptNetAlign (Clark & Kalita, 2015)

popsize 200
generations 1000000000
hillclimbiters 10000
timelimit avg_runtime

SAlign (Ayub et al., 2020)

l (node score weight) 0.1
a (topological and biological scores) 0.1
d (degree threshold) 10
t (sequence and structure weights) 0.7
n (alignment number) 1

WAVE (Sun et al., 2015) No user-specified parameters
Table 4
Ce-dm scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and the
individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.626288 0.381901 261.768000

Bagging-based ensemble with voting

Plurality-Random 0.178040 0.051458 179.577000
Plurality-Confidence 0.501188 0.236415 290.808000
Majority (Manners et al., 2017) 0.537736 0.274709 286.432000
SumRule 0.534767 0.263186 294.997000
ProductRule 0.514943 0.266631 273.739000

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.181790 0.167400 69.817300
HubAlign (Hashemifar & Xu, 2014) 0.263705 0.266996 46.574800
ModuleAlign (Hashemifar et al., 2016) 0.174302 0.184414 46.454300
NETAL (Neyshabur et al., 2013) 0.500000 0.513999 18.849600
OptNetAlign (Clark & Kalita, 2015) 0.537736 0.274709 286.432000
SAlign (Ayub et al., 2020) 0.384889 0.374370 51.191500
WAVE (Sun et al., 2015) 0.553191 0.100664 470.230000
4.3. Evaluation of our proposal: Ensemble based on boosting

This subsection evaluates the quality of the alignments produced by
the proposed boosting-based ensemble technique. To this end, we com-
pare these alignments with those obtained by the individual aligners
composing the ensemble as well as with those generated by the only
ensemble proposal in the area (Manners et al., 2017) (bagging-based
ensemble with voting). Apart from that, we have implemented other
well-known bagging-based ensemble with voting techniques extracted
from van Erp et al. (2002) for comparison purposes. To make all these
comparisons, we have used the previously explained confidence metric
(Section 3.1.3) in which the structural and biological qualities of the
alignments are fairly combined into one metric. In this way, alignments
with the highest confidence values are preferred as they have the best
structural and biological quality as a whole. In this sense, Tables 4–
13 detail the confidence, 𝑆3, and 𝐺𝑂𝐶 values obtained by all the
aligners (individual ones and based on ensemble) for each of the 10
different alignment scenarios. In every scenario (table), the best aligner
is highlighted in grey shading.

After analysing these 10 tables, it can be seen how our boosting-
based ensemble technique obtains the best results in most of the
alignment scenarios (7 out of 10): wining in 4 alignment scenarios
by a comfortable margin (ce-dm, mm-dm, sc-dm, and sc-hs) and also
winning, albeit more narrowly, in other 3 more scenarios (ce-hs, dm-hs,
10

and mm-ce). Taking into account the previous results, we can consider
that the boosting-based ensemble improves the results of the individual
aligners. In addition to this, one important aspect to highlight is the
confidence results obtained by the bagging-based ensemble with ma-
jority voting, the only ensemble proposed in the field (Manners et al.,
2017). It cannot obtain the best result in any of the alignment scenarios,
only producing the second best result in the ce-hs and ce-sc scenarios.
Moreover, when the results of the other bagging-based ensembles are
analysed, it can be concluded that the bagging-based ensembles are not
able to improve the result of the best individual aligner, showing the
superiority of the boosting-based ensemble.

Apart from this, it is evident that although the ensemble treats all
aligners equally, some aligners have generally been more competitive
and have achieved closer results to our ensemble’s best performance.
In particular, the individual aligners that have performed the best,
in order, are: OptNetAlign (Clark & Kalita, 2015), WAVE (Sun et al.,
2015), and NETAL (Neyshabur et al., 2013). In any case, on average,
incorporating a second-level aligner into our ensemble has resulted
in an improvement of 8.27%, 15.30%, and 16.78% with respect to
OptNetAlign, WAVE, and NETAL individual aligners, respectively.

4.4. Runtime evaluation

After verifying that the proposed boosting-based ensemble obtains
the best results (alignments), the following question may arise: What

is the extra time needed when using this ensemble approach? To this
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Table 5
Ce-hs scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and the
individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.754861 0.183382 402.705000

Bagging-based ensemble with voting

Plurality-Random 0.130733 0.036036 103.514000
Plurality-Confidence 0.704751 0.242339 303.046000
Majority (Manners et al., 2017) 0.752953 0.263635 315.557000
SumRule 0.741584 0.257244 314.068000
ProductRule 0.747455 0.262683 312.552000

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.216794 0.107965 89.621900
HubAlign (Hashemifar & Xu, 2014) 0.243737 0.159535 54.231000
ModuleAlign (Hashemifar et al., 2016) 0.212987 0.124177 69.513400
NETAL (Neyshabur et al., 2013) 0.500776 0.351233 37.457000
OptNetAlign (Clark & Kalita, 2015) 0.752845 0.263635 315.478000
SAlign (Ayub et al., 2020) 0.398944 0.266058 53.964100
WAVE (Sun et al., 2015) 0.000000 0.008874 36.888900
Table 6
Ce-sc scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and the
individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.784581 0.200748 294.527000

Bagging-based ensemble with voting

Plurality-Random 0.203050 0.018319 183.402000
Plurality-Confidence 0.595379 0.133970 270.408000
Majority (Manners et al., 2017) 0.793749 0.232959 248.724000
SumRule 0.787539 0.228859 251.026000
ProductRule 0.767405 0.224131 244.604000

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.111045 0.046965 72.594200
HubAlign (Hashemifar & Xu, 2014) 0.171963 0.068548 80.226700
ModuleAlign (Hashemifar et al., 2016) 0.193750 0.055712 116.279000
NETAL (Neyshabur et al., 2013) 0.254714 0.128249 41.341000
OptNetAlign (Clark & Kalita, 2015) 0.794788 0.234110 247.585000
SAlign (Ayub et al., 2020) 0.204125 0.070184 100.076000
WAVE (Sun et al., 2015) 0.544768 0.037640 391.159000
Table 7
Dm-hs scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and the
individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.747214 0.144663 786.224000

Bagging-based ensemble with voting

Plurality-Random 0.219209 0.025016 473.865000
Plurality-Confidence 0.665840 0.092801 921.467000
Majority (Manners et al., 2017) 0.743616 0.114578 944.694000
SumRule 0.675190 0.094317 930.306000
ProductRule 0.640172 0.106507 799.167000

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.317450 0.111020 182.236000
HubAlign (Hashemifar & Xu, 2014) 0.446638 0.158082 161.062000
ModuleAlign (Hashemifar et al., 2016) 0.401582 0.143203 160.028000
NETAL (Neyshabur et al., 2013) 0.500000 0.192226 71.634700
OptNetAlign (Clark & Kalita, 2015) 0.743849 0.114787 943.974000
SAlign (Ayub et al., 2020) 0.405024 0.140739 179.863000
WAVE (Sun et al., 2015) 0.640619 0.072042 989.094000
11
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Table 8
Mm-ce scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and the
individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.629158 0.461704 76.869100

Bagging-based ensemble with voting

Plurality-Random 0.206467 0.123636 47.164600
Plurality-Confidence 0.560055 0.267915 90.528500
Majority (Manners et al., 2017) 0.621555 0.285932 99.016900
SumRule 0.599807 0.294454 94.024500
ProductRule 0.519998 0.263279 84.050900

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.206764 0.161447 42.163100
HubAlign (Hashemifar & Xu, 2014) 0.303868 0.408558 26.337600
ModuleAlign (Hashemifar et al., 2016) 0.115988 0.225806 17.476700
NETAL (Neyshabur et al., 2013) 0.500000 0.786408 10.582500
OptNetAlign (Clark & Kalita, 2015) 0.580447 0.578352 52.646500
SAlign (Ayub et al., 2020) 0.453178 0.676611 16.962800
WAVE (Sun et al., 2015) 0.623420 0.287234 99.173200
Table 9
Mm-dm scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and
the individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.552460 0.541943 61.514200

Bagging-based ensemble with voting

Plurality-Random 0.161431 0.120051 34.995000
Plurality-Confidence 0.414847 0.222555 71.229800
Majority (Manners et al., 2017) 0.482881 0.256852 80.202300
SumRule 0.457023 0.259506 75.043500
ProductRule 0.431014 0.248941 71.329600

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.198413 0.189278 34.234700
HubAlign (Hashemifar & Xu, 2014) 0.284650 0.454902 20.848800
ModuleAlign (Hashemifar et al., 2016) 0.093393 0.197256 13.594800
NETAL (Neyshabur et al., 2013) 0.500000 0.963768 4.635280
OptNetAlign (Clark & Kalita, 2015) 0.483720 0.638158 37.863100
SAlign (Ayub et al., 2020) 0.333714 0.575441 16.642000
WAVE (Sun et al., 2015) 0.483922 0.257509 80.325000
Table 10
Mm-hs scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and the
individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.545308 0.520468 95.665500

Bagging-based ensemble with voting

Plurality-Random 0.465949 0.131504 227.184000
Plurality-Confidence 0.517926 0.178915 231.339000
Majority (Manners et al., 2017) 0.544557 0.503193 102.830000
SumRule 0.526511 0.194579 228.614000
ProductRule 0.571846 0.632492 59.543900

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.427923 0.139212 205.683000
HubAlign (Hashemifar & Xu, 2014) 0.419788 0.204619 173.318000
ModuleAlign (Hashemifar et al., 2016) 0.091315 0.104878 60.019400
NETAL (Neyshabur et al., 2013) 0.490820 0.642674 16.447600
OptNetAlign (Clark & Kalita, 2015) 0.614231 0.652733 70.954000
SAlign (Ayub et al., 2020) 0.432162 0.414404 87.865400
WAVE (Sun et al., 2015) 0.547833 0.157289 255.027000
end, Tables 14 and 15 detail the runtime in seconds of each of the
parts composing the ensemble: the individual aligners at top-level,
12
the aligner or our heuristic at second-level, and the set of ensemble
steps. This information is given for the 10 alignment scenarios. The
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Table 11
Mm-sc scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and the
individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.593721 0.453106 65.775600

Bagging-based ensemble with voting

Plurality-Random 0.231103 0.030672 58.231500
Plurality-Confidence 0.366860 0.178571 62.471200
Majority (Manners et al., 2017) 0.670102 0.647235 52.848300
SumRule 0.597720 0.541613 54.283100
ProductRule 0.678034 0.674961 50.461300

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.168703 0.031443 46.791300
HubAlign (Hashemifar & Xu, 2014) 0.205220 0.108832 42.739900
ModuleAlign (Hashemifar et al., 2016) 0.082262 0.064738 26.494200
NETAL (Neyshabur et al., 2013) 0.231950 0.335837 16.255700
OptNetAlign (Clark & Kalita, 2015) 0.691241 0.688498 50.991300
SAlign (Ayub et al., 2020) 0.188839 0.112722 39.227700
WAVE (Sun et al., 2015) 0.546582 0.091958 107.072000
Table 12
Sc-dm scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and the
individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.725832 0.102185 664.033000

Bagging-based ensemble with voting

Plurality-Random 0.226223 0.015995 419.146000
Plurality-Confidence 0.575780 0.041243 804.343000
Majority (Manners et al., 2017) 0.700083 0.063617 859.603000
SumRule 0.659077 0.055674 844.804000
ProductRule 0.644420 0.059469 799.039000

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.282664 0.077820 129.043000
HubAlign (Hashemifar & Xu, 2014) 0.192754 0.010698 399.833000
ModuleAlign (Hashemifar et al., 2016) 0.390269 0.085792 246.402000
NETAL (Neyshabur et al., 2013) 0.500000 0.137128 102.492000
OptNetAlign (Clark & Kalita, 2015) 0.465150 0.074569 430.382000
SAlign (Ayub et al., 2020) 0.272782 0.057134 240.002000
WAVE (Sun et al., 2015) 0.700881 0.063756 859.983000
Table 13
Sc-hs scenario: confidence, 𝑆3, and 𝐺𝑂𝐶 values of our boosting-based ensemble, different bagging-based ensembles, and the
individual aligners. The best aligner is highlighted in grey shading.
Aligner Confidence 𝑆3 GOC

Our proposal

Boosting-based ensemble 0.639735 0.059522 1045.310000

Bagging-based ensemble with voting

Plurality-Random 0.221993 0.029681 504.440000
Plurality-Confidence 0.492392 0.055779 801.756000
Majority (Manners et al., 2017) 0.598823 0.080559 805.888000
SumRule 0.562658 0.072241 803.689000
ProductRule 0.536525 0.072980 749.572000

Individual aligners

C-GRAAL (Memišević & Pržulj, 2012) 0.196542 0.067862 160.205000
HubAlign (Hashemifar & Xu, 2014) 0.172410 0.026292 439.051000
ModuleAlign (Hashemifar et al., 2016) 0.338392 0.085353 286.610000
NETAL (Neyshabur et al., 2013) 0.500000 0.145197 119.977000
OptNetAlign (Clark & Kalita, 2015) 0.532594 0.079828 689.007000
SAlign (Ayub et al., 2020) 0.232250 0.057604 306.117000
WAVE (Sun et al., 2015) 0.602494 0.081320 806.759000
13
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Table 14
Runtime evaluation (Part 1). Runtime in seconds of the ensemble components: the individual aligners at top-level, the aligner or our heuristic
at second-level, and the set of ensemble steps (Ensemble).
Component of the ensemble ce-dm ce-hs ce-sc dm-hs mm-ce

Top-level aligners

C-GRAAL (Memišević & Pržulj, 2012) 674.597 1296.563 327.394 5534.927 11.483
HubAlign (Hashemifar & Xu, 2014) 73.856 110.160 95.509 707.249 2.245
ModuleAlign (Hashemifar et al., 2016) 1461.010 2797.830 3572.980 21779.900 28.726
NETAL (Neyshabur et al., 2013) 24.978 52.597 64.115 228.397 1.006
OptNetAlign (Clark & Kalita, 2015) 569.428 1029.805 1076.219 6445.734 74.515
SAlign (Ayub et al., 2020) 171.087 187.581 109.958 864.039 5.847
WAVE (Sun et al., 2015) 273.194 280.857 204.706 2483.094 6.514

Ensemble

Ensemble of boosting_s3 0.109 0.181 0.274 0.401 0.020
Ensemble of boosting_goc 0.107 0.180 0.273 0.400 0.020

Second-level aligners

2nd-level aligner in boosting_s3 20.872 43.083 942.611 174.389 1.197
2nd-level heuristic in boosting_goc 4.447 6.503 2.396 12.527 0.282
Table 15
Runtime evaluation (Part 2). Runtime in seconds of the ensemble components: the individual aligners at top-level, the aligner or our heuristic
at second-level, and the set of ensemble steps (Ensemble).
Component of the ensemble mm-dm mm-hs mm-sc sc-dm sc-hs

Top-level aligners

C-GRAAL (Memišević & Pržulj, 2012) 64.556 194.576 31.548 2353.036 5495.754
HubAlign (Hashemifar & Xu, 2014) 5.782 9.280 6.067 541.237 727.645
ModuleAlign (Hashemifar et al., 2016) 493.894 1741.920 2810.940 17093.600 19140.300
NETAL (Neyshabur et al., 2013) 3.398 6.368 7.133 370.295 724.089
OptNetAlign (Clark & Kalita, 2015) 136.874 478.990 691.434 4619.119 6146.218
SAlign (Ayub et al., 2020) 14.603 23.044 11.154 512.798 650.190
WAVE (Sun et al., 2015) 14.515 22.022 12.137 988.862 1272.757

Ensemble

Ensemble of boosting_s3 0.055 0.105 0.137 0.535 0.686
Ensemble of boosting_goc 0.056 0.105 0.136 0.533 0.701

Second-level aligners

2nd-level aligner in boosting_s3 11.385 515.496 651.078 203.331 393.701
2nd-level heuristic in boosting_goc 1.853 0.700 0.282 3.913 11.814
decomposition of the runtime in parts shows that the global runtime is
actually governed by the runtime of the individual aligners and not by
the ensemble itself.

More specifically, it is important to note that the ensemble runtime
of the two different branches (Ensemble of boosting_s3 and Ensemble of
boosting_goc) is very small in comparison to the runtime of the individ-
ual aligners. In fact, the individual aligners are the part governing the
runtime of all the necessary steps to execute the ensemble. Therefore,
it can be concluded that the addition of the ensemble runtime to the
individual aligner runtime entails a minimal increase. Also, it can be
seen that the runtime values of the aligners at second-level are smaller
than the ones of many top-level individual aligners. The reason behind
this is that the input PPI networks of the second-level aligners are
made up of a subset of proteins from the PPI networks aligned by
the top-level aligners that did not reach a specified threshold. Hence,
the alignment of smaller PPI networks is faster. Moreover, another
significant observation is the comparison of the runtime values of our
heuristic at second-level in boosting_goc with regard to the runtime
values of the second-level aligner in boosting_s3, being our heuristic on
verage 356 times faster.

. Conclusions and future work

In the last years, there has been a great deal of work trying to
lign PPI networks with the aim of identifying complexes evolution-
rily conserved between species. From all this work, no standard has
merged to state what is the best way to align two PPI networks since
heir alignments result in a series of very different alignments in terms
f biological and structural quality. For this reason, in this paper, we
14
propose and detail a boosting-based ensemble of existing global aligners
intending to combine their virtues while avoiding their disadvantages.
Specifically, the ensemble technique has been very scarcely used in the
area, with only one paper using a bagging-based ensemble of global
aligners together with a majority voting system (Manners et al., 2017).
Within our innovative boosting-based ensemble strategy, we imple-
mented two different branches for the improvement of the alignments
obtained by the individual aligners. Being each of them focused on
either biological or structural quality improvement of the resulting
alignments. For one of these improvement branches, in particular, for
the one that improves the biological quality of the alignments, we
have implemented and explained our own heuristic to replace the
second-level aligner of the boosting-based ensemble.

Previous to the implementation of the boosting-based ensemble,
the starting point was to select the current best global PPI network
aligners. To this end, we conducted a comprehensive study of all the
individual aligners found in the area (a total of 36 different aligners)
evaluating their availability, requirements, runtime, and the quality
of their obtained alignments among other aspects. In addition to this,
apart from the only bagging-based ensemble proposal made in the PPI
network alignment field, we performed an exhaustive study of other dif-
ferent bagging-based ensemble with voting techniques for comparison
purposes.

The experimentation has been carried out with real data of 5 species
which resulted in 10 different alignment scenarios of very varied PPI
networks with very different number of proteins and edges (inter-
actions) among them. The main conclusions of the experimentation
were:
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• We proved the higher quality of the alignments from the proposed
boosting-based ensemble technique since it obtained better results
in 7 out of 10 alignment scenarios.

• The experimental evaluation was exhaustive, because we com-
pared the results of our boosting-based ensemble with the ones
obtained by the individual aligners composing the ensemble,
the only ensemble proposed in the related work, and different
bagging-based ensembles with voting.

• Furthermore, we corroborated that the extra time needed when
executing this new boosting-based ensemble was not influenced
by the ensemble itself, but by the individual aligners composing
it.

As future work, we will study the performance of the individual
ligners composing the ensemble from a multi-objective viewpoint.
e will evaluate how the solution space is covered by the different

rade-offs between 𝑆3 and 𝐺𝑂𝐶 metrics that the different aligners can
rovide. In this sense, the variability of the aligners’ results when their
onfigurations are changed will be also analysed. Furthermore, we will
onduct a study on the noise robustness of the different aligners, and
ow an ensemble technique could improve this robustness regarding
he ones of the individual aligners.
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