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Abstract

The improvement of protein expression levels represents one of the most im-

portant goals in synthetic biology. In order to accomplish it, a promising and

widely-used strategy lies on integrating multiple genes that encode the subject

protein into an organism genome. This important task, however, is affected by

several challenging issues. Firstly, the integration of highly similar sequences

can potentially induce homologous recombination, a negative effect that implies

a reduction in the number of genes effectively integrated. This is the reason why

it is important to design multiple protein-coding sequences (also named CDSs)

that are as different as possible, between both different CDSs and different sub-

sequences within the same CDS. Additionally, codon usage frequencies in these

CDSs should be as highly adapted to the organism as possible. Therefore, this

task involves different and conflicting objectives that must be optimized, thus

being suitable to be tackled as a multi-objective optimization problem. In this

work, we design and implement the algorithm MOABC (Multi-Objective Arti-

ficial Bee Colony) to solve the problem of designing multiple CDSs that encode

the same protein, considering three objectives to be optimized. The experimen-
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tal evaluation herein performed suggests that MOABC is able to obtain relevant

results, showing statistically significant improvements over the ones found in the

literature.

Keywords: Multi-Objective Artificial Bee Colony, Design of Multiple Genes,

Encoding of the Same Protein, Protein-Coding Sequence (CDS).

1. Introduction

The idea of maximizing the expression levels of proteins is becoming an increas-

ingly relevant research goal in the field of synthetic biology. In this context,

the integration of multiple genes encoding a certain protein into an organism

genome represents a promising approach to achieve such a goal. Integrating n5

genes encoding the same protein implies, in general terms, that the expression

levels of this protein can also increase n times (see for example [1]). Although

this effect does not happen in absolutely all the cases [2], such strategies have

been attracting increasing interest throughout the years [3, 4, 5].

However, this is a difficult task. The process of integrating multiple genes10

into an organism genome is complex and time-consuming, and also it involves

high cost. In order to reduce all these problems, in the current protocols, the

multiple genes are integrated very near each other within the organism genome

[3, 4, 5]. This is a good solution, but it has a weak point. When repetitive

sequences are very near each other, they can induce homologous recombination,15

and as a consequence, some of these sequences are lost [6]. For example, if a

gene is replicated 4 times (g1, g2, g3, g4) and these copies are concatenated in

tandem and integrated into a genome, a homologous recombination could take

place between g1 and g4, and the copies of gene g2 and g3 would be lost.

For that reason, it is very important that the multiple protein-coding se-20

quences (also named CDSs) are as different as possible, between both different

CDSs and different subsequences within the same CDS. The exact length that

the identical sequences must have in order to induce homologous recombination

is not known, and it could change depending on the organism. For example, [7]
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reported, in Escherichia coli, that the identical sequences should have at least25

23 bp (base pairs). [8] reported, in Bacillus subtilis, homologous recombination

of identical sequences with a length of 70 bp. [9] reported, in Saccharomyces

cerevisiae, a highly increased rate of homologous recombination with identical

sequences of 30 bp. Although the exact length is not known, all the studies

agree that the longer the identical sequences are, the higher the homologous re-30

combination rate is. For this reason, our multi-objective optimization problem

will have two objectives trying to minimize the length of the longest common

subsequence found and trying to maximize the distance (difference) between the

two most similar CDSs, respectively.

The way to obtain different CDSs that encode the same protein is using35

different codons for the corresponding amino acids. Almost all the amino acids

can be encoded by different synonymous codons (a codon is a series of three

nucleotides). Therefore, changing the synonymous codons used for encoding

a particular amino acid we can obtain a different CDS that encodes the same

protein. Synonymous codons occur with different frequencies in an organism,40

and the choice of codons may affect the expression levels of a protein [10].

For this reason, it is important to select the codons with the highest usage

frequencies (the most highly adapted ones). This will be the third objective

in our multi-objective optimization problem, in which we will try to maximize

the minimum value of the Codon Adaptation Index (CAI). As we can observe,45

different and conflicting objectives have to be optimized.

Regarding the related work, codon usage frequency optimization in an indi-

vidual CDS has been analyzed in recent studies [11, 12, 13], and also different

tools have been proposed, such as COOL [14], D-Tailor [15] or OPTIMIZER [16].

In this regard, [17] demonstrated that the codon usage of highly expressed genes50

was selected in evolution to maintain the efficiency of global protein translation,

and [18] shed insight into the factors that influenced the codon usage frequency

in genes associated with the central nervous system. However, our approach

is different from all these previous related works, because we also optimize se-

quences to increase the nucleotide differences among multiple CDSs that encode55
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the same protein. In that sense, after a literature review, to our best knowledge,

the only previous proposal that addresses the same multi-objective optimization

problem has been recently published [19]. In that last paper, the problem was

solved by using the NSGA-II algorithm. Therefore, we compare our results with

this previous related work in order to show the advantages of our approach.60

In particular, our approach is based on the Multi-Objective Artificial Bee

Colony (MOABC) algorithm. This algorithm is a multi-objective adaptation of

the Artificial Bee Colony (ABC) algorithm [20], which has been selected due to

its good results in other applications [21]. In this work, we have adapted the

ABC algorithm to the multi-objective context and we have designed and imple-65

mented the MOABC algorithm for designing a set of CDSs that encode a protein

avoiding inducing homologous recombination and using the synonymous codons

with the best CAIs. Apart from the MOABC algorithm designed and imple-

mented here, currently, there are a number of MOABC algorithms available in

the literature. In this sense, [22] developed a MOABC that used a grid-based ap-70

proach to adaptively assess the Pareto front maintained in an external archive.

The external archive was used to control the flying behaviors of the individuals

and structuring the bee colony. [23] proposed a MOABC where an elite-guided

solution generation strategy was designed to exploit the neighborhood of the

existing solutions based on the guidance of the elite. Furthermore, a novel fit-75

ness calculation method was presented to calculate the selecting probability for

onlooker bees. [24] designed a MOABC with dynamic population, which syner-

gized the idea of extended life-cycle evolving model to balance the exploration

and exploitation trade-off. In this approach, the bee was able to reproduce and

die dynamically throughout the foraging process and population size varied as80

the algorithm ran. [25] developed a MOABC that integrated genetic operators.

In this way, this approach used the traditional crossover and mutation offspring

process.

To our best knowledge, this is the first time that a swarm intelligence al-

gorithm is used to solve our multi-objective problem. As we will see, after a85

comparative study and the corresponding statistical evaluation, we can conclude
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that our approach obtains very good results. In fact, as a final contribution of

our work, we can highlight that our approach obtains better results than the

ones previously published in the literature.

The rest of this paper is organized as follows. Section 2 explains and gives90

a formal definition of the multi-objective optimization problem to solve. After

that, section 3 details and describes our approach (MOABC) to address this

optimization problem. Section 4 includes the experiments performed, the results

obtained, and the comparisons with the results found in the literature. Finally,

section 5 explains the conclusions of this work and indicates possible future95

lines.

2. Problem Definition

Given a protein to encode, a solution to our multi-objective optimization prob-

lem is a set of sequences (CDSs) encoding this protein. The number of CDSs

per protein is determined by the user. Every CDS is a sequence of nucleotides,100

and therefore, we represent a solution to our problem as a set of sequences of

characters. Given a protein, all its CDSs will have the same length. An example

of solution is shown in Table 1.

The evaluation of each solution is based on three objective functions. The

first function concerns the encoding of each codon (preferring the codons with105

the highest usage frequencies) and the other two functions are related to the

avoidance of repetitions between CDSs and between subsequences within the

same CDS. The following subsections explain in detail these three objective

functions.

2.1. Codon Adaptation Index (CAI)110

The first objective function is related with the occurrence frequency of each

codon, because some codons have higher frequency than others, and therefore,

it is better to select these better adapted codons. The focus in this function
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is the minimum value of Codon Adaptation Index (mCAI). Equation 1 shows

how this calculation is made.115

mCAI = min
1≤i≤I

CAI(CDSi), (1)

where CDSi is each CDS that encodes the protein, I is the number of CDSs,

and CAI value is calculated for each one as indicated by Equation 2.

CAI(CDSi) = N

√√√√
N∏

n=1

W (codoni,n), (2)

where N is the number of codons that CDSi has and W is the weight

assigned to the codoni,n. This weight is calculated as the usage frequency of

codoni,n relative to (divided into) the usage frequency of the most frequent120

codon among the synonymous codons of codoni,n [26]. The usage frequencies

have been obtained from the research carried out by [19].

The objective is to optimize the minimum CAI value among all the CDSs

(mCAI). The use of the average CAI value would not be sufficiently appropriate

because it is possible that there could be an i-th CDS with a very low CAI within125

a good average CAI. In conclusion, the objective is to maximize the minimum

CAI value (mCAI) to achieve that all the CDSs have high codon adaptation

index.

2.2. Hamming Distance between CDSs (HD)

The second objective function is focused on selecting CDSs that are very differ-130

ent between them. This function is based on a normalized Hamming distance

value between two CDSs from a solution. The objective is calculated as the

minimum value among all these pairs of CDSs (see Equation 3).

mHD = min
1≤i<j≤I

HD(CDSi, CDSj)

L
. (3)
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For a pair of CDSs, CDSi and CDSj , both with length L nucleotides, the

Hamming Distance (HD) is calculated as shown in Equation 4.135

HD(CDSi, CDSj) =
∑

1≤k≤L
σ(CDSi,k, CDSj,k), (4)

where the i-th and j-th CDSs are compared and, in both CDSs, the k-th

nucleotide is evaluated. If CDSi,k and CDSj,k are equal then σ will be 0.

However, if they are different nucleotides, σ is set to 1.

The objective is to maximize mHD. Again, we use the minimum value, as

in the first objective function, because if we use the average value, we could140

have a very low HD within a good average.

2.3. Length of Repeated or Common Substrings (LRCS)

The third objective function is focused on the idea of selecting different sub-

sequences between different CDSs and also within the same CDS. In conclu-

sion, this objective tries to reduce the length of repeated or common substrings145

(LRCS).

We say that we find a common substring Si,p,l in the i-th CDS, at the p-

th position and with a length of l characters (nucleotides), when the same or

another CDS (j-th CDS) has the same substring Sj,q,l at the same (in this

case, i 6= j) or different q-th position. For example, in Table 1, GUGUUA is150

the longest common substring between all pairs of CDSs, although there are

other repeated substrings, e.g. in CDS3, UGCU, but they have a lower length.

The objective is to minimize the maximum length of the repeated or common

substring (MLRCS) found among CDSs (see Equation 5).
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CDS1 AGA GUA UUG UGU UAC

CDS2 AGG GUG UUA UGC UAC

CDS3 CGC GUG CUU UGC UAU

Amino acids of the protein R V L C Y

Table 1: A possible solution with 3 CDSs. Example for the computation of the length of

repeated or common substrings. GUGUUA is the longest common substring between all pairs

of CDSs, although there are other repeated substrings, e.g. in CDS3, UGCU, but they have

a lower length.

MLRCS = max
1≤i≤j≤I

LRCS(CDSi, CDSj)

L
, (5)

where L is the length in nucleotides of the CDSs. For every pair of CDSs,155

CDSi and CDSj (observe that i = j is allowed), LRCS is calculated as in

Equation 6.

LRCS(CDSi, CDSj) = length(Si,p,l)
1≤p,q,l≤L

when (Si,p,l = Sj,q,l), (6)

where L, as said, is the length of the CDSs, and if p = q then i 6= j.

3. Multi-Objective Artificial Bee Colony (MOABC) Algorithm

Artificial Bee Colony (ABC) is an algorithm introduced by Dervis Karaboga in160

2007 [20], motivated by the intelligent behavior of honey bees and used as an

optimization tool.

ABC defines a set of operations in order to find pseudo-optimal solutions in

a similar way to how bees find their best food sources. Individuals are members

of a colony where each type of bee has a task and there are three types of bees:165

• Employed bees are associated to a specific food source (solution).
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• Onlooker bees watch the dances of employed bees and choose the most

profitable food sources depending on the dances.

• Scout bees carry out random searches for discovering new food sources.

In our approach, a Multi-Objective (MO) adaptation of ABC algorithm170

(MOABC) has been designed and implemented to achieve good solutions for our

problem. In particular, as we address a multi-objective optimization problem,

there is not one only best solution, but the result will be a set of trade-off

solutions that optimize in different ways the considered objectives.

An important concept used in MO optimization problems is the Pareto dom-175

inance between two solutions. A solution x dominates another solution y (repre-

sented as x � y) when the values obtained by x in all the objective functions are

always better than or equal to the corresponding values obtained by y, and at

the same time, x obtains a better value in at least one of the objective functions.

In the same way, we say that a solution is non-dominated or Pareto optimal if180

there is no other solution that dominates it. The graphical representation of

the non-dominated solution set (or Pareto set) is known as Pareto front. The

Pareto set represents the subset of best solutions found for the multi-objective

optimization problem.

Remember that we represent a solution as a set of equal-length sequences of185

characters (see Table 1 for an example). Algorithm 1 shows the pseudo-code of

the MOABC proposed. The first step is to establish a empty file to store non-

dominated solutions. Then we initialize the colony with a total of colony size

solutions (line 2). Each individual in the colony is created randomly, except one,

that is created by selecting each codon with the highest weight, and therefore,190

its mCAI value will be 1. This particular solution is a non-dominated solution

and could help future generations to achieve high CAI values.
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Algorithm 1 MOABC pseudo-code.

Input: colony size (number of individuals/solutions), max cycles (maximum

number of cycles/generations), limit (abandonment criterion), and Pm (mu-

tation probability)

Output: nondominated file (file with the non-dominated solutions)

1: nondominated file← ∅
2: init colony(colony size)

3: for cycle← 1,max cycles do

4: send employed bees(colony size, Pm)

5: rank and crowding(colony size)

6: calculate probabilities(colony size)

7: send onlooker bees(colony size, Pm)

8: send scout bees(limit, cycle)

9: rank and crowding(2 ∗ colony size)
10: update nondominated solutions(nondominated file)

11: end for

Next, a for loop starts, which includes operations that make the bee colony

evolve for max cycles cycles or generations. Each search cycle involves the

management of employed bees, onlooker bees, and scout bees.195

Employed bees are the first ones to perform (line 4). Every employed bee

has an associated solution and a random mutation (among the different types of

mutation) is applied to each individual for improving the quality. The mutation

operator changes a specific part of a solution with the goal of optimizing some

of the objective functions. The mutated solution will only be selected if it200

dominates the original solution. In this study, we use four types of mutation (as

said, every time a solution is mutated, one of these mutations will be randomly

selected and applied):

1. For each CDS, each codon is randomly replaced by another encoding (syn-

onymous codon), with a probability of Pm. We can observe an example205

of this mutation in Figure 1.
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2. For the CDS with the minimum CAI value, each codon is replaced by

other encoding with greater weight (if several synonymous codons have

higher weight, one of them is randomly selected), with a probability of

Pm. If the codon has the encoding with the highest weight, then there is210

not replacement. An example of this mutation is shown in Figure 2.

3. For the pair of CDSs with the minimum HD, each codon is randomly

replaced by another encoding, with a probability of Pm. Figure 3 presents

an example for this mutation.

4. Codons that are within the longest length common substring are ran-215

domly replaced by another encoding, with a probability of Pm. Figure 4

illustrates an example of this mutation.

(a)

CDS1 AUU AGG UCU ACC

CDS2 AUU CGA UCG ACA

CDS3 AUC CGA AGU ACC

Amino acids I R S T

(b)

CDS1 AUA AGG UCU ACC

CDS2 AUU CGA UCA ACA

CDS3 AUC CGU AGU ACC

Amino acids I R S T

Figure 1: Example of random mutation in a solution with 3 CDSs, where (a) represents

the original solution and (b) represents the mutated solution. After the mutation, the first

codon in CDS1, the third codon in CDS2, and the second codon in CDS3 are replaced by

synonymous codons (in blue) randomly selected.
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(a)

CDSi UCU AAU GGU UGG

Amino acids S N G W

(b)

CDSi UCU AAC GGU UGG

Amino acids S N G W

Figure 2: Example of mutation in CDSi, which is the CDS with the lowest CAI value in

a solution with n CDSs. In the original solution (a), the CAI value is 0.966. Applying the

mutation (b), the second codon is replaced by another synonymous codon (in blue) with

greater weight and, after that, CDSi has a CAI value equal to 1.

(a)

CDSi CUA CGU ACU UGG

CDSj CUC CGA ACU UGG

Amino acids L R T W

(b)

CDSi CUA CGG ACU UGG

CDSj CUC AGA ACU UGG

Amino acids L R T W

Figure 3: Example of mutation in CDSi and CDSj , which are the pair of CDSs with the

minimum HD in a solution with n CDSs. In the original CDSs, shown in (a), only two

nucleotides are different (in bold) between them, so the HD is 0.167. After the mutation

(b), the second codon in each CDS has been replaced by another synonymous codon selected

at random. Consequently, three nucleotides are different (in bold) and the HD has been

incremented (0.250) between these CDSs.
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(a)

CDSi GUG UUA UGC UAC

CDSj GUA UUG UGU UAC

Amino acids V L C Y

(b)

CDSi GUG CUU UGC UAC

CDSj GUA UUG UGU UAC

Amino acids V L C Y

Figure 4: Example of mutation in a solution with n CDSs, where CDSi and CDSj are the

pair of CDSs that contain the longest repeated or common substring. In the original CDSs

shown in (a), the longest common substring is GUGUUA (in bold). After the mutation (b),

the second codon of CDSi has been replaced by another synonymous codon (in blue) selected

at random. Therefore, the previous common substring has been broken and the new longest

common substring is UGCU (in bold) in CDSi, which is a shorter one.

In the onlooker bees phase (line 7) the colony size is duplicated. Every

onlooker bee chooses an employed bee as its initial solution. This selection is

based on the probability value associated (line 6) with each employed bee. Em-220

ployed bees that represent better solutions will have higher probability values.

To check which employed bees are better, they are evaluated and sorted by two

metrics: rank and crowding (line 5). After a non-dominated sorting, the rank

value indicates in which layer of the generated Pareto fronts a solution is. This

non-dominated sorting is calculated taking into account the dominance rela-225

tions of all the solutions. The second metric computes the solutions’ crowding

distance. The greater the crowding distance among the solutions, the greater

the solutions diversity. A more detailed explanation of these two metrics can be

found in [27].

Every onlooker bee will try to improve the selected employed bee (its initial230

solution) by using the same random mutation procedure explained above. In

this case, the mutated solution is selected if it is non-dominated by the original

one, otherwise the original solution is kept.

When the scout bees are processed (line 8), they check how many times a

solution has been mutated without success (that is, without improving it). If235

this number of times exceeds an established limit it means that the solution
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will not be able to be improved, it has been exhausted, so it is abandoned and

replaced with a new random solution. Furthermore, this new random solution

is mutated n times, proportional to the current cycle, so that it can compete in

the next cycle with the other solutions in the colony.240

Before next cycle, the colony is reduced by half (its original size). For se-

lecting the best solutions, these are ordered by rank and crowding again, with

a difference: this process is applied to the whole colony, with double size of

the original one (line 9). Finally, the non-dominated solutions in this cycle are

stored in the nondominated file (line 10) and then the next cycle can begin.245

After explaining the MOABC pseudo-code, we can highlight its strengths

and advantages. It is a multi-objective evolutionary algorithm based on the in-

telligent behavior of a swarm of bees and their task social cooperation. From a

theoretical perspective, swarm intelligence approaches are built upon the defini-

tion of autonomous agents with specific roles that cooperate together to achieve250

a common goal. These agents belong to different classes with different tasks

and local rules, whose interactions lead to the attainment of global, collective

intelligence through the sharing of information among all the components of the

swarm.

In MOABC, the division of labor is implemented through the identification255

of different bee classes, each one with a well-defined role. While employed bees

check the neighborhood of solutions previously identified by the swarm, onlooker

bees exploit the most promising solutions found by the employed bees. On the

other hand, scout bees have the responsibility of addressing local optima issues,

identifying stagnant solutions and performing exploration tasks to find new260

promising candidates in unexplored search space regions. The sharing of infor-

mation involves the communication of high-quality solutions from the employed

bees to the onlooker ones, the identification of exhausted employed/onlooker

solutions that must be replaced by the scout bees, and the definition of the next

generation employed solutions from all the agents in the swarm. In this way, the265

population is processed by the local rules of each bee class, whose interactions

allow the global spread of information among all the members thus leading to
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the global improvement of the population.

Please observe that, by considering different bee categories, the implemented

mutation operator can be applied in different ways in accordance with the role270

(exploitation/exploration) of the current bee under processing. More specifi-

cally, while checking the neighborhood (employed) and exploiting high-quality

solutions (onlooker), new solutions are generated by applying once the muta-

tion operator. On the other hand, the exploration tasks (scout) involve multiple

applications of the operator over randomly generated solutions.275

In comparison to other evolutionary methods, MOABC undertakes the opti-

mization process following the task division, interactions, and self-organization

of the components of the bee swarm. The definition of employed, onlooker,

and scout bees allows the integration of multiple search strategies (including

exploitation and exploration-oriented procedures), which are applied in accor-280

dance with the current status of the population. In this sense, the inclusion of

the limit control parameter allows the algorithm to quickly identify the presence

of local optima, applying a specific technique (scout searches) to deal with them.

The sharing of information between bees also represents a distinctive feature

over traditional evolutionary designs, as it allows the search engine to address285

the problem by considering all the information gathered by the entire swarm.

All these elements give rise to a robust search engine that can boost the solution

of complex optimization problems like the design of CDSs. In fact, the litera-

ture gives account of the relevance of ABC in comparison to other approaches

(such as genetic algorithms and differential evolution) in multiple sets of numer-290

ical test functions [28], multi-variable [20], and multi-dimensional [29] scenarios.

Improved results have also been reported for the case of real-world problems

[21], including hard-to-solve problems from the biological domain [30, 31].

In this study, this pseudo-code has been implemented in C/C++. The next

section shows the data sets used in our experiments, the parameter settings for295

MOABC, the results obtained, the comparison with the results found in the

literature, and the statistical analysis of the results.
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4. Experiments and Results

As we have compared with the results from Terai et al. [19], in our experiments,

we used nine proteins as a representative sample based on two attributes: length300

of the protein (in AA, Amino Acids) and the number of CDSs for that protein.

Since both attributes influence the complexity of the instance, we balanced

these two attributes. In particular, Table 2 shows that these nine proteins have

different trade-offs between length and number of CDSs, so for a larger number

of CDSs, we chose a protein with a smaller length and vice versa. Observe that305

this table includes instances with very different number of CDSs and lengths,

and also, with different complexities, being a representative set of instances. We

have used the Universal Protein Resource (UniProt 1) to get the FASTA format

for every protein.

Code Name CDSs Length (AA) CDSs*Length

Q5VZP5 DUS27 HUMAN 2 1158 2316

A4Y1B6 FADB SHEPC 3 716 2148

B3LS90 OCA5 YEAS1 4 679 2716

B4TWR7 CAIT SALSV 5 505 2525

Q91X51 GORS1 MOUSE 6 446 2676

Q89BP2 DAPE BRADU 7 388 2716

A6L9J9 TRPF PARD8 8 221 1768

Q88X33 Y1415 LACPL 9 114 1026

B7KHU9 PETG CYAP7 10 38 380

Table 2: List of proteins used in the experiments.

For each instance in Table 2, we applied the algorithm explained in the310

previous section and we compared with the results obtained in the method

implemented by Terai et al. [19] (based on NSGA-II algorithm). For getting

1http://www.uniprot.org/uniprot/
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these results, we used the web-based application2 provided by these authors,

using their default parameters set.

In order to provide a fair comparison, the value of the parameters for the315

colony size and the number of generations were set to the same value as in the

NSGA-II algorithm, that is, the colony size is 100 individuals (solutions) and the

number of generations (max cycles) is equal to 100. In MOABC algorithm, we

adjusted other two parameters: the maximum number of attempts (or limit)

to improve an employed or onlooker bee (10 attempts in our case) and the320

probability of mutation (Pm) that is equal to 0.05 (5%). We experimented

with different values for these two parameters to find the best configuration.

Specifically, Table 3 shows the values tested and the best adjustments are given

by the highlighted values.

Furthermore, to ensure reliable statistics we repeated every experiment 31325

times due to the stochastic nature of MOABC algorithm.

Checked values

Pm 1.25% 2.5% 5% 10% 20% 30% 40%

limit 2 5 10 15

Table 3: All tested values to find the best configuration. The best value is highlighted in bold.

To evaluate the quality of the results, we made use of two indicators widely

used in multi-objective optimization: hypervolume [32] and set coverage [33].

We also realized a statistical analysis to find the statistical significance and to

be sure that the results are not likely to occur randomly.330

4.1. Hypervolume indicator

The hypervolume indicator (HV), also known as Lebesgue measure [34], is a

unary indicator of the quality of a set of non-dominated solutions. In the case

of 3 objective functions, this measure computes the volume (in percentage) of

2http://tandem.trahed.jp/tandem/
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the objective space covered by a Pareto front A with points (a1, a2, . . . , a|A|),335

taking into account a reference point r. Equation 7 indicates how to calculate

the value of HV.

HV (A, r) = Leb

( |A|⋃

i=1

h(ai, r)

)
, (7)

where Leb refers to the Lebesgue measure, |A| is the size (cardinality) of set

A, and h(ai, r) is the volume of the cube defined by each point in A (taking

also into account the reference point).340

Table 4 indicates the nadir and ideal values used in the hypervolume com-

putations for all the proteins. These values were obtained by considering the

results in all our experiments. Taking into account these values, the hypervol-

ume calculations have been performed over objective scores normalized in the

scale [0,1] to avoid the influence of different ranges in the objective values.345

Objective Nadir value Ideal value

mCAI 0 1

mHD 0 0.35

MLRCS 1 0

Table 4: Nadir and ideal values used in the hypervolume computations and normalizations

for all the proteins.

The HV indicator has been calculated by the same way for both algorithms.

Table 5 shows median HV results and their quartile deviations calculated after

assessing each protein individually. In almost all the proteins, the HV values

obtained by the MOABC algorithm are better than those from the method pro-

posed by Terai et al. [19], with the exception of the protein Q5V ZP5 (as we350

will see, in this case, the differences between both algorithms are not statisti-

cally significant). Finally, the last row shows the average value among the nine

proteins. Again, we can conclude that the MOABC algorithm is better than

the NSGA-II algorithm [19]. This means that MOABC is able to obtain better
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Pareto fronts, which include better non-dominated solutions that cover a higher355

volume of the objective space.

Protein MOABC NSGA-II [19]

Q5VZP5 68.43%±0.62% 68.48%±0.0020%

A4Y1B6 60.35%±0.26% 60.03%±0.0007%

B3LS90 63.73%±0.14% 62.43%±0.0018%

B4TWR7 57.06%±0.15% 55.89%±0.0024%

Q91X51 59.71%±0.19% 57.68%±0.0026%

Q89BP2 57.42%±0.15% 55.55%±0.0025%

A6L9J9 53.77%±0.16% 52.07%±0.0015%

Q88X33 48.71%±0.29% 46.93%±0.0010%

B7KHU9 47.71%±0.54% 43.72%±0.0014%

Average 57.43% 55.91%

Table 5: Results for hypervolume indicator, in the format: median±quartile deviation. In bold

we highlight the better results.

In addition, Figure 5 shows a visual representation for one of the proteins,

B7KHU9. The objective values are already normalized in the scale [0,1] tak-

ing into account Table 4. As can be seen from that graph, the points in the

projection (MLRCS, mHD) are near for both algorithms. By contrast, for the360

projections (mCAI, mHD) and (mCAI, MLRCS), in most of the points, the

solutions from MOABC are better than the solutions from NSGA-II. Moreover,

MOABC covers more regions of the objective space than NSGA-II. These im-

provements explain the clear advantage of MOABC with respect to NSGA-II.

For the rest of the analyzed proteins, the behavior is similar.365
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Figure 5: 3D scatter plot of the median Pareto fronts for the B7KHU9 protein. The points

in the different 2D projections appear in red (MOABC) or green (NSGA-II), using the corre-

sponding symbol.

4.2. Set Coverage indicator

Set coverage (SC) is the second quality indicator used. In this case, it is a

binary-type indicator. This measure is based on how many solutions/points

belonging to a Pareto front B are covered by solutions/points from another

Pareto front A. As Equation 8 shows, a solution bj is said to be covered if there370

is a solution ai that dominates to bj or is equal to this one.

SC(A,B) =
|{bj ∈ B;∃ ai ∈ A : ai � bj}|

|B| , (8)
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where |B| is the size (cardinality) of set B.

If each solution in B is covered at least by a solution in A then SC(A,B) is

equal to 1. Otherwise, if none of the solutions belonging to B is covered by the so-

lutions inA, SC(A,B) will be 0. This weak-dominance operator is not symmetric375

and it can happen that SC(B,A) 6= 1−SC(A,B). For this reason, we calculated

the measure SC in both directions for each protein, SC(MOABC,NSGA-II) and

SC(NSGA-II,MOABC).

In particular, Table 6 shows the results obtained and we can say that in

almost all the cases, the MOABC algorithm attains improved set coverage scores380

than NSGA-II, except in the protein B4TWR7, where they have close values.

This means that, for each instance, there are many more points of the Pareto

front from MOABC algorithm that dominate points of the Pareto front from

NSGA-II algorithm than vice versa. Again, in average, the solutions of MOABC

algorithm are clearly better, covering an important percentage of the solutions385

obtained by the method proposed by Terai et al. [19].

Protein
SC(MOABC,

NSGA-II [19])

SC(NSGA-II

[19], MOABC)

Q5VZP5 28.00% 14.87%

A4Y1B6 54.00% 4.26%

B3LS90 34.00% 14.62%

B4TWR7 23.00% 24.86%

Q91X51 28.00% 6.63%

Q89BP2 53.00% 0.64%

A6L9J9 36.00% 5.43%

Q88X33 54.00% 0.62%

B7KHU9 62.00% 7.75%

Average 41.33% 8.85%

Table 6: Results for Set Coverage indicator. In bold we highlight the better results.
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4.3. Statistical significance

In order to detect if there is a statistical significance in the results obtained, we

performed a statistical analysis using a significance level (p-value) of 0.05 (5%)

or confidence level of 95%. A detailed explanation of all the statistical tests used390

can be found in [35]. We try to apply a parametric analysis such as ANalysis

Of VAriance (ANOVA) but before we should ensure that the samples follow a

normal distribution and they have homogeneous variances. For this statistical

study we use the results from the hypervolume indicator.

Firstly, the null hypothesis to be tested by the Kolmogorov-Smirnov test395

(KS-test) is that the sample has a normal distribution. As we can see in Table

7, none of the cases rejects this null hypothesis, therefore, we can say that all

samples have a normal distribution with a confidence level of 95%.

Protein
KS-test

Pass?
MOABC NSGAII [19]

Q5VZP5 0.122 0.200 Yes

A4Y1B6 0.200 0.200 Yes

B3LS90 0.053 0.147 Yes

B4TWR7 0.200 0.200 Yes

Q91X51 0.200 0.200 Yes

Q89BP2 0.200 0.200 Yes

A6L9J9 0.200 0.200 Yes

Q88X33 0.187 0.200 Yes

B7KHU9 0.180 0.200 Yes

Table 7: Normality analysis using Kolmogorov-Smirnov test.

The following test is Levene test to check if the two samples (from both

algorithms) have homogeneous variances (null hypothesis). The results of this400

test for the 9 proteins are shown in Table 8. Three cases rejected this null

hypothesis so this means that these ones cannot be tested by ANOVA and are
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analyzed by a nonparametric test such as the Mann-Whitney U test. All other

cases are tested by ANOVA.

Protein
Levene

test
ANOVA

Mann-

Whitney

U test

Statistical

significance

Q5VZP5 0.149 0.907 – No

A4Y1B6 0.020 – 0.111 No

B3LS90 0.457 0.000 – Yes

B4TWR7 0.313 0.000 – Yes

Q91X51 0.147 0.000 – Yes

Q89BP2 0.019 – 0.000 Yes

A6L9J9 0.400 0.000 – Yes

Q88X33 0.068 0.000 – Yes

B7KHU9 0.015 – 0.000 Yes

Table 8: Results of the Levene test to check the homogeneous variances and results of the

ANOVA or the Mann-Whitney U test depending on the previous tests to find statistical

significance.

Thus, the null hypothesis to be tested by ANOVA and the Mann-Whitney405

U test is that both samples of the same experiment are similar and there are

no statistically significant differences between them. As Table 8 shows, seven

of nine experiments reject this null hypothesis, therefore, we can say that these

seven experiments have a statistical significance with a confidence interval of

95%. By contrast two of the experiments, Q5V ZP5 and A4Y 1B6, accept the410

null hypothesis and this implies that there are no statistically significant differ-

ences between the tested samples.

All in all, these results match the hypervolume values shown in Table 5. In

overall terms, our method accomplishes a more satisfying behavior than NSGA-

II, attaining statistically significant improvements in most of the evaluation sce-415
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narios. Particularly, the MOABC algorithm achieves Pareto fronts (solutions)

different and better than the NSGA-II algorithm [19] in 7 out of 9 instances.

5. Conclusion and Future Work

In this work, we have proposed a novel method for the multi-objective design of

CDSs encoding the same protein, which is an important task in bioinformatics420

(and more specifically, in synthetic biology). The tackled multiobjective prob-

lem involves three fundamental objective functions (CAI, HD, LRCS). In our

proposal, we have adapted the ABC algorithm to the multi-objective context

and we have designed and implemented the MOABC (Multi-Objective Artificial

Bee Colony) algorithm for doing this task. In conclusion, we propose to use the425

MOABC algorithm for achieving a range of solutions that best encode a protein

with several CDSs, taking into account that the nucleotide sequences should be

as different as possible (between both different CDSs and different subsequences

within the same CDS, thus avoiding the homologous recombination) and at the

same time the codon adaptation indexes should be as high as possible. To get430

solutions that allow us to make fair comparisons with other techniques from

the literature (NSGA-II), we used the same codon usage frequencies, and both

methods used the same colony/population size and number of generations. The

experiments have been done over 9 real protein instances. These instances com-

bine different lengths and number of CDSs, therefore, being a representative set435

of instances. The results show that MOABC achieves better Pareto fronts (so-

lutions) than the results previously published in the literature in almost all the

instances, being not statistically significant the differences in the only instance

where MOABC obtained little bit worse results.

As future work, we have planned to use other alternative multi-objective440

algorithms to compare them with MOABC, allowing us to further evaluate the

good quality of the MOABC results or even improving these results. Moreover,

the number of existing MOABC algorithms is high (e.g. [22, 23, 24, 25]), there-

fore, the comparison of several of them in the problem under study is of interest
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for a next research work. This will imply their design for this specific problem,445

their implementation, their execution, and finally, their comparison. On the

other hand, due to the good results obtained by MOABC, we intend to apply

this multi-objective algorithm to other bioinformatics multi-objective problems,

assessing if MOABC also obtains good results in these other problems.
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Highlights

- The design of multiple genes encoding the same protein is an important task

- This task can be tackled as a multi-objective optimization problem with 3
objectives

- We have designed and implemented a solution procedure based on the
MOABC algorithm

- The experiments have been done over 9 real protein instances

- MOABC obtains better results than the ones found in the literature
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