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Highlights

• The design of multiple genes encoding the same protein is an important

task

• We have re-defined this multi-objective problem from three to two objec-

tives

• We have designed and implemented a solution procedure based on the

MOSFLA algorithm

• The experiments have been done over 9 real protein instances

• MOSFLA-2CH obtains better results than the ones found in the literature
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Abstract

An important goal in synthetic biology is to maximize the expression levels of

proteins. For this purpose, multiple genes encoding the same protein can be

integrated into the host genome. However, this approach is affected by two

key issues. Firstly, codons with better adaptation indexes should be used, since

some synonymous codons are better adapted than others. Secondly, the multiple

protein-coding sequences should be as different as possible to avoid the loss of

gene copies due to homologous recombination. Therefore, this task shows strict

biological requirements that make it difficult to tackle. In this work, we design

and implement a computational intelligence approach to address this problem,

the Multi-Objective Shuffled Frog Leaping Algorithm (MOSFLA). This method

combines the optimization capabilities provided by parallel searches, multiple

operators, and memetic strategies to tackle problems with difficult solution qual-

ity requirements. Several alternatives have been comparatively analyzed, in-

cluding MOSFLA variants with three objectives as in other approaches from

the literature and also variants with only two objectives. Experiments on nine

real-world protein datasets give account of the improved, statistically significant
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performance achieved over the related work, attending to different quality met-

rics, confirming that our proposal satisfactorily deals with the complex nature

of the problem.

Keywords: Multi-objective Memetic Meta-heuristic Algorithm, Design of

Multiple Genes, Encoding of the Same Protein, Multi-objective Optimization,

Protein-Coding Sequence (CDS).

1. Introduction

To maximize the expression levels of a protein is a major goal in synthetic biol-

ogy. An encouraging and widely-used strategy to attain this is the integration

of multiple genes that encode the same protein. In essence, with this strategy,

it is expected that the expression levels increase proportionally to the number5

of copies of the gene (e.g. see Vassileva et al. (2001)), but this does not happen

in each and every case (Hohenblum et al. (2004)). Even so, it is a commonly

used strategy in the last years to optimize the expression levels of a protein, for

instance, in Gu et al. (2015); Tyo et al. (2009); Scorer et al. (1994).

However, this is not a simple task and the integration of multiple gene copies10

implies a time-consuming process with complex biological requirements. Some

related works (Gu et al. (2015); Tyo et al. (2009); Scorer et al. (1994)) propose

to simplify it by integrating the copies very near each other within the organism

genome. But this approach entails an important inconvenient, the homologous

recombination. For example, if there are six copies of a gene (g1, g2, g3, g4, g5,15

g6) sequentially concatenated and a homologous recombination occurs between

g2 and g5, the genes g3 and g4 are lost as a result. This means that, when

identical sequences are very close, they can induce homologous recombination

and consequently some sequences could be lost (Aw & Polizzi (2013)).

Following that argument, and taking into account those issues, the need to20

make each protein-coding sequence (named CDS) as different as possible arises.

In particular, a CDS must be different with regard to other CDSs and with the

subsequences that represent the CDS itself. The minimum length of a sequence
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that induces homologous recombination is not fixed and it depends on the host

organism like some authors reported. For example, Shen & Huang (1986) set25

in 23 bp (base pairs) the minimum length of subsequence to induce homologous

recombination in Escherichia coli. In Bacillus subtilis, Khasanov et al. (1992)

report that homologous recombination is caused by identical sequences with

70 bp as length. Other example, Manivasakam et al. (1995) describe that, in

Saccharomyces cerevisiae, identical sequences greater than 30 bp increase highly30

the likelihood of homologous recombination. In general, the minimum length

that induces homologous recombination is not known, but all studies agree that

it is important to minimize the length of identical sequences in order to reduce

the homologous recombination rate.

In order to make the CDSs of the same protein different among them, each35

amino acid can be encoded with different synonymous codons, so we can get dif-

ferent CDSs for the same protein. Although the synonymous codons represent

the same amino acid, some synonymous codons are more frequent in some or-

ganisms and selecting a synonymous codon or another can affect the expression

levels of a protein (Athey et al. (2017)). As a consequence, it is relevant which40

synonymous codon is selected, being the best option the synonymous codons

with the highest usage frequencies, that is, the most highly adapted ones.

Hence, protein encoding represents a difficult task in which potential solu-

tions must meet multiple, strict biological properties. Three main objectives can

be identified: 1) to minimize the length of the longest repeated sequence within45

the same CDS; 2) to maximize the differences between two CDSs; and 3) to

maximize the adaptation to the host organism, given by the Codon Adaptation

Index (CAI). The hard-to-tackle nature of this multi-objective problem requires

the proposal of robust approaches based on computational intelligence princi-

ples to handle such solution quality requirements. Accordingly, this paper is50

aimed at addressing protein encoding by designing and implementing a multi-

objective approach, named Multi-Objective Shuffled Frog Leaping Algorithm

(MOSFLA), which combines different algorithmic learning strategies, memetic

searches, and knowledge sharing to tackle complex optimization problems.
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MOSFLA contributes with an advanced algorithmic design that incorporates55

multiple strategies for improved optimization accuracy. It is based on the idea

of evolving separately different partitions of solutions, known as memeplexes.

Each memeplex is subject to processing under both standard operators and ex-

pert, problem-oriented mutations, with the aim of generating new candidate

solutions that meet the quality stipulations of the tackled problem. In addition,60

the algorithm dynamically exploits the best local / global solutions according to

the multi-objective status of the optimization process, including re-initialization

mechanisms to deal with potential stagnation issues. Finally, a shuffling proce-

dure is used to distribute solutions among memeplexes at each generation, thus

allowing a global exchange of knowledge from the conducted local searches.65

The relevance and utility of the proposal then lies in the advanced optimiza-

tion capabilities provided by the combined search mechanisms within MOSFLA

design, including dynamic exploitations/explorations through if-else rules, con-

current search space processing, and solutions shuffling for knowledge spreading.

Through experimentation on nine real-world problem instances, we show how70

the solution of complex problems governed by specific quality requirements (as

in the case of multi-objective protein encoding) can benefit from the joint action

of the implemented intelligent algorithmic strategies.

Therefore, an important contribution of this work is the proposal of an ex-

pert and intelligent approach, MOSFLA, to solve this complex optimization75

problem from the synthetic biology field. Different works can be found in the

current literature explaining how to improve, from a biological point of view, the

expression levels of proteins in different organisms, but neither of them proposes

a computational approach as MOSFLA, based on the joint action of different

intelligent algorithmic strategies. More specifically, Song et al. (2017) focused80

on Arachis duranensis and Arachis ipaënsis (gene sources for research in plant

biology of peanut). They showed that highly expressed coding sequences had

higher codon adaptation. Chen et al. (2017) applied their study to the yeast Sac-

charomyces cerevisiae. They stated that codon adaptation is stronger in more

highly expressed genes, a phenomenon commonly explained by stronger natural85
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selection on translational accuracy and/or efficiency among these genes. Their

study revealed the pleiotropic effects of synonymous codon usage and provided

an additional explanation for the correlation between codon adaptation and gene

expression level. Vasanthi & Dass (2018) analyzed different bacterial species

(Pseudomonas fuscovaginae, Pseudomonas syringae, Xanthomonas oryzae, and90

Pseudomonas avenae) infecting rice. They concluded that certain genes with

high CAI have been correlated for better gene expression. Zhang et al. (2018)

focused on 12 Solanum species, which is one of the largest genera, including two

important crops - potato (Solanum tuberosum) and tomato (Solanum lycoper-

sicum). They compared the chloroplast codon usage bias among the 12 species,95

between photosynthesis-related genes (Photo-genes) and genetic system-related

genes (Genet-genes). Among their findings, they obtained that Photo-genes

had higher codon adaptation indexes than Genet-genes, indicative of a higher

gene expression level and a stronger adaptation of Photo-genes. Sahoo et al.

(2019) applied their study to Arabidopsis thaliana (a weed found in roadsides100

and disturbed lands). They found a systematic strong correlation between CAI

and gene expression measures. Finally, Wang et al. (2019) studied the Newcas-

tle disease virus (NDV, a contagious viral bird disease affecting many domestic

and wild avian species, which is transmissible to humans). They used a codon

modification strategy to attenuate the three major virulence factors: the fusion105

(F) protein, hemagglutinin neuraminidase (HN), and phosphoprotein (P). Re-

coding the F and HN genes with rare codons (codons with low CAI) greatly

reduced expression of both F and HN proteins and resulted in their low incor-

poration into virions. Moreover, full attenuation was achieved when the P gene

was recoded.110

Continuing with the related work, several recent studies (Webster et al.

(2017); Yu et al. (2015); Tran et al. (2015)) analyzed the codon usage frequency

optimization in the host organism and other studies offer tools, for example

COOL (Chin et al. (2014)), D-Tailor (Guimaraes et al. (2014)) or OPTIMIZER

(Puigbò et al. (2007)) for the same purpose. However, our approach differs from115

these previous studies in that we also optimize the differentiation between the
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CDSs that encode the same protein, in order to avoid the homologous recom-

bination (a very negative effect). Following with the literature review, a recent

work (Terai et al. (2017)) has been published with the same purpose as this

paper. Therefore, we perform comparisons with the results from this previous120

work. Our approach uses a different algorithm, Multi-Objective Shuffled Frog

Leaping Algorithm (MOSFLA), and as we will see, we have introduced improve-

ments in the definition of the problem. On the one hand, our multi-objective

proposal for protein encoding is inspired by the baseline skeleton of the Shuffled

Frog Leaping Algorithm (SFLA, Elbeltagi et al. (2007)), an approach based125

on the natural behavior of frogs. We have focused on SFLA because different

examples of successful applications (such as water distribution and power flow

optimization, production planning, project management, multi-user detection,

etc.) point out the relevance of SFLA to address complex problems (Sarkheyli

et al. (2015)). In fact, SFLA has led to good results in other difficult bioin-130

formatics problems, including RNA secondary structure prediction (Lin et al.

(2012)) and biomedical data feature selection (Hu et al. (2018)).

On the other hand, after the first experiments, we deduced that two of the

three objectives are correlated. That is, the improvement in one of these two

objectives also produces the improvement in the other objective. So, we have135

improved and simplified the problem definition by using only two objectives

(instead of three objectives). As we will see, after a comparative study with

three different quality metrics and the corresponding statistical analyses, we

can conclude that our approach obtains very good results in comparison with

the related work, with statistically significant improvements.140

Hence, the main contributions of this work can be summarized as:

• Proposal of a multi-objective approach based on the memetic meta-

heuristic SFLA, adapting it (several mutation operators, greedy initializa-

tion for one of the solutions, etc.) to the design of multiple genes encoding

the same protein.145

• Identification of possible correlated objectives in the optimization prob-
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lem, comparing the results when three and different combinations of two

objective functions are used. This study leads to the conclusion that the

tri-objective optimization problem could be turned into a bi-objective op-

timization problem.150

• Evaluation of the proposal over nine real-world protein datasets, under-

taking a thorough statistical analysis based on the results from three im-

portant quality indicators.

• Comparison with the state-of-the-art multi-objective approach (Terai’s

method, proposed in 2017, Terai et al. (2017)) for solving this multi-155

objective optimization problem, surpassing the best results found in the

literature, with improvements that are statistically significant.

Furthermore, if we focus on other previous expert and intelligent systems

based on SFLA, such as Niknam et al. (2011), Luo & Chen (2014), Luo et al.

(2014), Zhu & Zhang (2014), and Lei & Guo (2015), the following theoretical160

contributions can be added to the previous ones:

• We have incorporated a multi-objective algorithmic design to SFLA, in-

cluding multi-objective, quality-oriented population partitioning to per-

form multiple, parallel searches over different sets of solutions.

• This multi-objective algorithmic design implies the comparison of solu-165

tions based on the dominance operator, the use of non-dominated sortings,

and the application of the crowding multi-objective metric (a diversity

metric).

• MOSFLA includes both standard operators and expert, problem-aware

mutations (a total of four operators have been added into its algorithmic170

design) to effectively deal with the different problem objectives.

The rest of this paper is organized as follows. Section 2 explains and gives

a formal definition of the multi-objective optimization problem to solve. After

that, Section 3 details and describes our approach (MOSFLA) to tackle this
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optimization problem. Section 4 includes the experimental settings, the exper-175

iments performed, the re-definition of the problem, the results obtained, the

comparisons with the results found in the literature, and the corresponding sta-

tistical analyses. Finally, Section 5 explains the conclusions of this work and

indicates possible future lines.

2. Problem Definition180

In this multi-objective optimization problem, a solution represents an encoded

protein. Each solution is composed of a set of sequences (CDSs) of equal length.

Also, the user sets the number of CDSs for an encoded protein. Each CDS

encodes the sequence of amino acids that defines the protein using the set of the

synonymous codons. The final representation of a CDS is a string of characters.185

An example of encoded protein is shown in Figure 1.

In order to optimize the solutions, each one is assessed by three objective

functions. The first objective is related to the encoding of each amino acid

using synonymous codons (the preferred option is the codon with a higher usage

frequency). The second and third objective functions are based on avoiding190

identical subsequences between two CDSs and reducing repeated subsequences

in a CDS itself, respectively. These three objective functions are detailed in

each one of the following subsections.

2.1. Codon Adaptation Index (CAI)

The aim of the first objective is to maximize the minimum Codon Adaptation195

Index (mCAI) value of a solution. Each sequence (CDS) from a solution has

a CAI value which is dependent on the synonymous codons used to encode the

protein. Some codons are better adapted than others so they have higher usage

frequency value than others. For this objective, the best selection would be to

use the codons with the highest frequency value. Equation 1 calculates this200

objective function.

mCAI = min
1≤i≤I

CAI(CDSi), (1)
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where CDSi is each CDS that encodes the protein, I is the number of CDSs,

and CAI value is calculated for each one as indicated by Equation 2.

CAI(CDSi) = N

√√√√
N∏

n=1

W (codoni,n), (2)

where N is the number of codons that CDSi has and W is the weight assigned

to the codoni,n. This weight is calculated as the usage frequency of codoni,n205

relative to (divided by) the usage frequency of the most frequent codon among

the synonymous codons of codoni,n (Sharp & Li (1987)). The usage frequencies

have been obtained from the research carried out by Terai et al. (2017).

This objective is focused on optimizing the minimum CAI value, since the

average of I CDSs is not representative. For example, it could happen that the210

i-th CDS has a very low CAI value within a good CAI average. For this reason,

we have not used the average. Therefore, this objective function maximizes the

minimum CAI (mCAI) value, trying that all the CDSs have so high CAI values

as possible.

2.2. Hamming Distance between CDSs (HD)215

The second objective function seeks the pair of CDSs which contains more iden-

tical subsequences (same subsequences in the same positions). The objective

function calculates a measure based on the normalized Hamming Distance (HD)

between two CDSs. In particular, the objective is to compute the Hamming dis-

tance value between all possible pairs combinations and focuses on maximizing220

the minimum Hamming Distance (mHD) value as shown in Equation 3.

mHD = min
1≤i<j≤I

HD(CDSi, CDSj)

L
. (3)

For a pair of CDSs, CDSi and CDSj , both with length L nucleotides, the

Hamming distance is calculated as indicated by Equation 4.

HD(CDSi, CDSj) =
∑

1≤k≤L
σ(CDSi,k, CDSj,k), (4)

10
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where the i-th and j-th CDSs are compared and, in both CDSs, the k-th nu-

cleotide is evaluated. If CDSi,k and CDSj,k are equal then σ is 0. However, if225

they are different nucleotides, σ is set to 1.

As in the case of the first objective function, a very low HD value could be

unnoticed within a good average. Thus, the objective function is to maximize

the minimum value instead of the average value.

2.3. Length of Repeated or Common Substrings (LRCS)230

The third objective function is based on breaking repeated subsequences oc-

curring between a pair of CDSs or within the same CDS. The objective is to

decrease the longest length of repeated or common substring (LRCS).

We say that we find a common substring Si,p,l in the i-th CDS, at the p-th

position with a length of l characters (nucleotides), when the same or another235

CDS (j-th CDS) has the same substring Sj,q,l at the same (in this particular

case, i 6= j) or different q-th position.

For example, in Figure 1, AGCGUUU is the longest common substring

between all pairs of CDSs, although there are other repeated substrings, e.g. in

CDS1, GAGA, that have a shorter length. The objective is to minimize the240

maximum length of the repeated or common substrings (MLRCS) found as

defined in Equation 5.
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CDS1 AAG AGA UUU GAG AGG CAC

CDS2 AAA CGA UUC GAG CGU UUG

CDS3 AAG CGU UUC GAA AGG UUA

Amino acids sequence K R F E R L

Figure 1: A possible solution with 3 CDSs and 18 nucleotides per CDS that shows an example

for the computation of the repeated or common substrings. AGCGUUU is the longest common

substring, although there are other repeated substrings, e.g. in the same CDS (CDS1), GAGA,

but this one has a shorter length.

MLRCS = max
1≤i≤j≤I

LRCS(CDSi, CDSj)

L
, (5)

where L is the length in nucleotides of the CDSs and LRCS is calculated for

every couple of CDSs, CDSi and CDSj , enabling i = j in order to seek into

the same CDS, as shown in Equation 6.245

LRCS(CDSi, CDSj) = length(Si,p,l)
1≤p,q,l≤L

when (Si,p,l = Sj,q,l), (6)

where, again, L is the length of the CDSs, and if p = q then i 6= j.

3. Multi-Objective Shuffled Frog Leaping Algorithm (MOSFLA)

The Shuffled Frog Leaping Algorithm (SFLA, Elbeltagi et al. (2007)) is a

memetic meta-heuristic based on the behavior of frogs and the evolution of

groups (memeplexes). SFLA is designed to solve optimization problems by250

performing local searches and global information exchange.

SFLA starts by creating an initial frog population (set of solutions) and then

defines its main operations, which are executed iteratively to improve and mix

12
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the population, so as to change the relative positions inside of a memeplex or

to exchange individuals (solutions) among memeplexes.255

After the initialization, the individuals are sorted by their individual fitness

values, which have been calculated previously, and the algorithm continues with

the shuffle of the population. The individual with the best fitness is located in

the first memeplex, the second best individual is located in the second memeplex

and so on, until all memeplexes have an individual. Then, the algorithm as-260

signs the next individual to the first memeplex, the following one to the second

memeplex and so on, until there are no more individuals to distribute.

Once the population has been divided into memeplexes, each memeplex tries

to improve its individuals locally during several attempts. Finally, all meme-

plexes are joined and all individuals are re-sorted by using their new fitness265

values. This sorting, dividing, improving, and joining population process is

repeated multiple times until the stop criterion is met.

In our approach, we focus on a multi-objective (MO) optimization problem,

so we have adapted SFLA to the multi-objective context and to the particu-

lar problem under study (therefore, designing and implementing the algorithm270

MOSFLA). In the multi-objective context, we do not have a unique best solu-

tion, but a set of trade-off solutions that optimize at least one of the objectives.

Therefore, we use the dominance concept to compare solutions. We say that a

solution x dominates another solution y (x � y), or that y is dominated by x,

when x gets a better or equal value than y for each objective function and at275

least one of them is better. On the other hand, a solution x is non-dominated or

Pareto optimal if there is not any solution that dominates it. Finally, the set of

non-dominated solutions is known as Pareto set and its graphical representation

as Pareto front. This Pareto set is the output of a multi-objective optimization

algorithm, and it is used for applying quality metrics and comparing results.280

Algorithm 1 shows the pseudo-code of the proposed MOSFLA. At the be-

ginning, a file for storing the non-dominated solutions is created. Also, the

population is initialized with population size individuals or solutions (line 2).

Each individual is randomly generated, except one which is generated by se-

13
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lecting the codon with the best CAI for each amino acid so the value of mCAI285

objective function is 1 for this greedy solution. This specific solution is always

non-dominated and it is created as possible aid to achieve high values of mCAI

in the next generations.

Before the cycle loop starts, the population is evaluated and sorted by using

two multi-objective metrics: rank and crowding (line 3). The first one indicates290

in which layer of the generated Pareto fronts a solution belongs to and it is

based on the dominance relationships among all the solutions. The second one

estimates the density of the solutions, preferring solutions with higher crowding

distances, that is, more diverse solutions. More details about these two multi-

objective metrics ca be found in Deb et al. (2002). In conclusion, the population295

is sorted by quality in order to be shuffled in the different memeplexes.

Algorithm 1 MOSFLA pseudo-code.

Input: population size (number of solutions), m (number of memeplexes),

max cycles (maximum number of generations), Pm (mutation probability)

Output: nondominated file (set of non-dominated solutions saved in a file)

1: nondominated file← ∅;
2: population← init population(population size);

3: population← order by R&C(population, population size);

4: for cycle← 1,max cycles do

5: memeplexes← divide population(population, population size,m);

6: memeplexes← improve memeplexes(memeplexes,m, Pm);

7: population← merge order by R&C(memeplexes, 2 ∗ population size);
8: nondominated file← save nondominated solutions(population);

9: end for

Next, the for loop starts. It includes operations that make the frog pop-

ulation evolve for max cycles cycles or generations. Each cycle involves the

management of the population and the memeplexes.

In the first step (line 5), the sorted population is divided into m memeplexes,300

and shuffled as explained before. Therefore, the population size must be mul-
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tiple of the number of memeplexes (m) and every memeplex has to have equal

number of individuals.

The following step (line 6) tries to improve, in a local way, each memeplex.

It is shown in detail in Algorithm 2. In this algorithm, the global best solution305

(in the whole population) is identified by XB (Algorithm 2, line 1), while the

local best and worst solutions within each memeplex are identified by Xb and

Xw, respectively. Here, the memeplexes are iteratively processed to improve

the worst local solution by applying a mutation operator (Algorithm 2, lines

2-3). This operator executes one of four possible types of mutation in a random310

way. That is, one of them is selected and the four have the same probability

to be selected. Furthermore, once selected the mutation type, all of them use a

probability of Pm. Every kind of mutation consists in changing a specific part

of a solution:

1. Changing each codon of each CDS by another random synonymous codon315

with a probability of Pm.

2. Changing each codon of the CDS with the lowest CAI value by another

synonymous codon with a probability of Pm. The new codon must have

higher weight (usage frequency) than the replaced codon, otherwise, the

codon is not changed.320

3. Changing each codon of the pair of CDSs with the lowest Hamming dis-

tance by another random synonymous codon with a probability of Pm.

4. Changing each codon belonging to the longest common substring, in the

same CDS or in different CDSs, by a random synonymous codon with a

probability of Pm.325

Related to the Xw improvement, firstly, a new solution (Xn) is created from

a mutated Xb (Algorithm 2, line 6), that is, considering the local best solution.

If Xn does not improve (dominates Xw) then Xn is created from a mutated

XB (Algorithm 2, line 10), that is, considering the global best solution. Lastly,

if Xn does not improve (dominates Xw) then Xn is created as a new random330

solution (Algorithm 2, line 14).
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Algorithm 2 improve memeplexes(memeplexes,m, Pm) pseudo-code.

Input: memeplexes (all the memeplexes), m (number of memeplexes), Pm

(mutation probability), max improv (number of improvements per memeplex)

Output: memeplexes (Set of solutions of size 2 ∗ population size)

1: XB ← Select global best solution(memeplexes);

2: for i← 1,m do

3: for improv ← 1,max improv do

4: Xb, Xw ← Select local best and worst solution(memeplexes, i);

5: save worst(memeplexes,Xw);

6: Xn ← mutation(Xb, Pm);

7: if Xn � Xw then

8: save solution(memeplexes,Xn, position Xw);

9: else

10: Xn ← mutation(XB , Pm);

11: if Xn � Xw then

12: save solution(memeplexes,Xn, position Xw);

13: else

14: Xn ← init random solution();

15: save solution(memeplexes,Xn, position Xw);

16: end if

17: end if

18: order by R&C(memeplexes, i);

19: end for

20: end for

This improvement process generates a child population along with the par-

ent population. In particular, when Xn is selected, it is stored in the position

previously occupied by Xw (Algorithm 2, lines 8, 12, and 15). For this reason,

the replaced solution Xw is previously saved in the backup population (Algo-335

rithm 2, line 5). As we have two populations, we can also say that, at the end of

the improvement process, the population has a size equal to 2∗population size.
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Finally, each memeplex i reorders its individuals by rank and crowding in order

to precisely select its next Xb and Xw solutions (Algorithm 2, line 18).

After finishing the improvements in all the memeplexes, Algorithm 1 contin-340

ues. The full population with 2 ∗ population size individuals is sorted by rank

and crowding (Algorithm 1, line 7) in order to reduce the population to the half,

that is, its original size, for the next cycle. Furthermore, the non-dominated so-

lutions are stored in the nondominate file (Algorithm 1, line 8).

After explaining the MOSFLA pseudo-code, we can highlight some of its345

advantages. It is a multi-objective memetic meta-heuristic algorithm based on

a cooperative population of frogs (swarm intelligence). Thus, it merges local

searches, and global exchange and shuffle periodically. Also, it provides the

chance to include new individuals generated randomly when a solution is not

improved.350

In this study, this algorithm has been implemented in C/C++. The next

section includes the experimental settings (the data sets used in the experiments,

the parameter configuration for MOSFLA, etc.), the experiments performed,

the re-definition of the problem, the results obtained, the comparisons with the

results found in the literature, and the corresponding statistical analyses.355

4. Experiments and Results

4.1. Experimental settings

As mentioned in previous sections, we compare MOSFLA’s results with the

results from Terai et al. (2017), a previous work with the same purpose as this

paper, that is, addressing the same problem. To make a fair comparison between360

algorithms, we have selected nine real proteins as a representative sample based

on two attributes: length or number of amino acids (AA) and number of CDSs.

These two attributes have a direct impact in the complexity of the instance,

so the selected proteins cover a wide range of different situations. As we can

observe in Table 1, we have chosen nine very different proteins in terms of length365
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and number of CDSs. We have used the Universal Protein Resource (UniProt1)

to get the FASTA format for every protein.

Code Name CDSs Length (AA) CDSs*Length

Q5VZP5 DUS27 HUMAN 2 1158 2316

A4Y1B6 FADB SHEPC 3 716 2148

B3LS90 OCA5 YEAS1 4 679 2716

B4TWR7 CAIT SALSV 5 505 2525

Q91X51 GORS1 MOUSE 6 446 2676

Q89BP2 DAPE BRADU 7 388 2716

A6L9J9 TRPF PARD8 8 221 1768

Q88X33 Y1415 LACPL 9 114 1026

B7KHU9 PETG CYAP7 10 38 380

Table 1: List of proteins used in the experiments.

To get the results from the multi-objective method implemented by Terai

et al. (2017), we have used their web-based application2 with its default settings

(those proposed by its authors) for the nine instances. In next subsections,370

these results are compared, instance by instance, with the results obtained by

our approach.

In our method, the parameter configuration is established so that we can

make a fair comparison between both methods. In particular, the population size

is equal to 100 individuals (or solutions) and the number of generations (max cycles)375

is set to 100. Both parameters are established with the same values for the two

methods. Furthermore, both methods have used the same population initializa-

tion procedure. In addition, we tune the other parameters of MOSFLA: number

of memeplexes (m) and mutation probability (Pm). As shown in Table 2, for

these two parameters, different values have been tested in order to find the best380

1http://www.uniprot.org/uniprot/
2http://tandem.trahed.jp/tandem/
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configuration (highlighted in bold). Also, as we can observe in Algorithm 2, the

number of improvements per memeplex (max improv) needs to be established,

but in this case, in order to make fair comparisons, this number is equal to the

number of solutions per memeplex, that is, population size/m; thus performing

only one improvement per individual.385

Moreover, in all the following sections, we have executed every experiment

31 times (independent runs) in order to ensure reliable statistics due to the

stochastic nature of MOSFLA.

Checked values

Pm 0.3125% 0.625% 1.25% 2.5% 5% 10% 20%

m 2 5 10 20

Table 2: All tested values to find the best configuration. The best value is highlighted in bold.

After analyzing all the results from the experiments, we have set the nadir

and ideal values for each objective as indicated in Table 3. These values are390

used in all the next sections. Taking into account these values for all the prob-

lem instances, all the objective functions are normalized in the range [0,1], so

the graphical representations and the computation of the quality metrics are

performed over normalized values.

Objective Nadir value Ideal value

mCAI 0 1

mHD 0 0.40

MLRCS 1 0

Table 3: Nadir and ideal values used in the computation of the quality metrics and normal-

izations for all the proteins.

4.2. First results with MOSFLA and 3 objective functions395

We have observed in the first results that the objectives mHD and MLRCS

are not in conflict with each other, that is, optimizing one objective does not
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negatively affect the other objective. As an example, Figure 2 shows the median

Pareto front obtained for one of the proteins, Q88X33, and we can confirm that

solutions with good score for the mHD objective also have a good value for400

the MLRCS objective, and vice versa. That is, these two objectives have some

correlation. By contrast, the first objective (mCAI) is essential and it is clearly

in conflict with the other two objectives (mHD and MLRCS). In fact, if the

mCAI objective improves then the mHD and MLRCS objectives are worse, and

vice versa.405
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Figure 2: 3D scatter plot of the median Pareto front obtained by MOSFLA for the Q88X33

protein. The points in the different 2D projections appear in red.

For this reason, and in contrast to Terai et al. (2017), we propose a re-

definition of the problem. We think it is better to use only two objectives

instead of three objectives. More specifically, we propose to optimize the first
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objective (mCAI) and one of the other two objectives. In the next subsection,

we evaluate this proposal, comparing the results obtained by MOSFLA with 3410

and 2 objective functions. In the case of 2 objective functions, both alternatives

are evaluated: optimizing mCAI-mHD and optimizing mCAI-MLRCS.

4.3. Comparing the results when 3 and 2 objective functions are used

To evaluate and compare the quality of the results obtained by MOSFLA when

3 and 2 objective functions are optimized, we have adopted the quality met-415

ric maybe most widely-used in multi-objective optimization: the hypervolume

(Beume et al. (2009)).

The hypervolume (HV) indicator, also known as Lebesgue measure (Bartle

(1995)), is a well-established unitary indicator of a Pareto front’s quality. In the

case of three objectives, it measures the volume (in percentage) of the objective420

space portion dominated by a Pareto front A. It is calculated as Equation 7

indicates.

HV (A, r) = Leb

( |A|⋃

i=1

h(ai, r)

)
, (7)

where Leb refers to the Lebesgue measure, |A| is the size (cardinality) of the

set A, and h(ai, r) is the volume defined by each point (a1, a2, . . . , a|A|) and the

reference point r.425

In order to distinguish the three MOSFLA variants. The variant that opti-

mizes the three objectives is called MOSFLA. The variant that optimizes the

two objectives mCAI-mHD is named MOSFLA-2CH, while the variant that op-

timizes the two objectives mCAI-MLRCS is called MOSFLA-2CL. In any of

these cases, the comparisons are made with three objectives. That is, the vari-430

ants that only optimize two objectives are also compared by using the three

objectives. Our goal is to know if it is possible to obtain better (or similar)

results in the three objective space, even when only two of them are optimized.

In conclusion, the HV indicator has been always calculated in the same way

(taking into account the three objective space).435
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Table 4 shows the median HV results for each protein that were obtained by

the three different variants of MOSFLA. We can observe that the results from

MOSFLA-2CH are slightly better or similar than the results from MOSFLA (3

objectives) in almost all the instances, obtaining a very good average HV. The

same cannot be said for MOSFLA-2CL. That is, if the second objective (mHD)440

is not optimized, we obtain worse Pareto fronts than if the third objective

(MLRCS) is not optimized. In other words, we can say that when we optimize

the mHD objective, we are also optimizing the MLRCS objective; generating

very good results in the three objective space. For this reason, in the following

sections, we use the variant MOSFLA-2CH (optimizing only the two objectives445

mCAI and mHD) as our best approach. This demonstrates that the re-definition

of the problem is possible, using only two objectives (mCAI and mHD).

Protein MOSFLA MOSFLA-2CH MOSFLA-2CL

Q5VZP5 64.48%±0.72% 65.77%±0.36% 40.83%±1.05%

A4Y1B6 53.56%±0.19% 53.81%±0.25% 35.29%±2.62%

B3LS90 56.18%±0.22% 56.61%±0.23% 40.47%±1.16%

B4TWR7 50.13%±0.26% 50.30%±0.14% 36.27%±0.80%

Q91X51 52.37%±0.16% 52.39%±0.16% 40.47%±0.64%

Q89BP2 50.29%±0.13% 50.32%±0.16% 39.41%±0.65%

A6L9J9 46.88%±0.14% 47.06%±0.17% 36.42%±0.67%

Q88X33 42.55%±0.27% 42.48%±0.28% 31.61%±1.65%

B7KHU9 40.61%±0.33% 40.01%±0.57% 31.29%±1.47%

Average 50.78% 50.97% 36.89%

Table 4: Results for the hypervolume indicator, in the format: median±quartile deviation.

Comparison among the three variants of MOSFLA. In bold we highlight the best results.
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4.4. Comparison with the state of the art

As we mentioned at the beginning of this section, we have compared MOSFLA’s

results with the results of the multi-objective method from Terai et al. (2017),450

a previous proposal that is focused on the same multi-objective optimization

problem. To get results for the nine instances (see Table 1) we have used their

web-based application3 with its default settings (those proposed by its authors).

In the case of MOSFLA-2CH, the configuration was previously explained (see

Section 4.1). The only change is the Pm that was slightly modified from 1.25 to455

0.625 taking into account the new configuration experiments performed.

To evaluate the quality of the results and compare the methods, we apply

three quality metrics widely used in multi-objective optimization: the hyper-

volume (Beume et al. (2009)), the set coverage (Zitzler et al. (2003)), and the

maximum spread (Zitzler et al. (2000)). Since the Terai’s method uses the three460

objectives previously defined, all the quality metrics are applied taking into ac-

count the three objectives, although our approach (MOSFLA-2CH) only opti-

mizes two of them (mCAI and mHD, the third one is indirectly optimized, as it

was shown in Section 4.3). In this way, the comparisons between both methods

are fair, because both methods are compared in the same three-objective space.465

Furthermore, we have also performed different statistical analyses to evaluate

and assure that the differences are statistically significant.

4.4.1. Hypervolume indicator

The hypervolume (HV) indicator has been calculated as it was previously ex-

plained. Table 5 shows the median HV results and their quartile deviations470

calculated for each instance. Also, the last row in the table presents the aver-

age HV. We can observe that MOSFLA-2CH obtains better hypervolume than

the multi-objective method proposed by Terai et al., for all the instances. This

means that the Pareto fronts generated by MOSFLA-2CH cover a greater por-

tion of the objective space than the Pareto fronts obtained by Terai’s method.475

3http://tandem.trahed.jp/tandem/
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Protein MOSFLA-2CH Terai et al. (2017)

Q5VZP5 64.49%±0.47% 59.92%±0.18%

A4Y1B6 54.74%±0.27% 52.53%±0.06%

B3LS90 57.22%±0.19% 54.62%±0.16%

B4TWR7 50.54%±0.14% 48.91%±0.21%

Q91X51 52.73%±0.17% 50.47%±0.23%

Q89BP2 50.61%±0.22% 48.61%±0.22%

A6L9J9 47.06%±0.22% 45.56%±0.13%

Q88X33 42.32%±0.25% 41.07%±0.09%

B7KHU9 38.89%±0.45% 38.26%±0.12%

Average 50.96% 48.88%

Table 5: Results for the hypervolume indicator, in the format: median±quartile deviation.

Comparison between MOSFLA-2CH and Terai’s method. In bold we highlight the best results.

This difference in hypervolume is also illustrated graphically when the Pareto

fronts are displayed. As an example, the median Pareto fronts obtained for

the protein B3LS90 are shown in Figure 3. We can observe that, in all the

projections, the points (solutions) from MOSFLA-2CH are better and cover a

greater region of the objective space.480
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Figure 3: 3D scatter plot of the median Pareto fronts for the B3LS90 protein. Comparison

between MOSFLA-2CH and Terai’s method. The points in the different 2D projections appear

in red (MOSFLA-2CH) or green (Terai’s method), using the corresponding symbol.

4.4.2. Statistical significance in the hypervolume values

To ensure that the results relative to the HV indicator present statistically sig-

nificant differences, we perform an statistical analysis with a significance level

(p-value) of 0.05 or, in other words, a confidence level of 95%. In particular, a

parametric test, ANalysis Of VAriance (ANOVA), will be applied, but this re-485

quires that the samples follow a normal distribution and they have homogeneous

variances (homoscedasticity), so these features have to be checked before. In the

case that these features are not fulfilled, we will apply a non-parametric test,
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the Mann-Whitney U test. An exhaustive explanation about all these statistical

tests can be found in Sheskin (2011).490

The first test is the Kolmogorov-Smirnov test (KS test), checking that the

samples follow a normal distribution. As the results in Table 6 show, three of

the cases do not follow a normal distribution, therefore, being not feasible in

theses cases to apply the ANOVA test. The second test is the Levene test. The

samples that follow a normal distribution are checked about the homogeneity of495

their variances. As conclusion, in Table 6, we can see that there are four cases

where the ANOVA test cannot be applied. As said, in these cases, we apply the

Mann-Whitney U test.

Protein
KS test

Levene test Pass?
MOSFLA-2CH Terai et al. (2017)

Q5VZP5 0.000 0.200 – No

A4Y1B6 0.006 0.200 – No

B3LS90 0.200 0.148 0.247 Yes

B4TWR7 0.200 0.200 0.541 Yes

Q91X51 0.200 0.200 0.100 Yes

Q89BP2 0.200 0.200 0.606 Yes

A6L9J9 0.044 0.200 – No

Q88X33 0.200 0.200 0.084 Yes

B7KHU9 0.078 0.200 0.046 No

Table 6: Normality analysis using the Kolmogorov-Smirnov test and homoscedasticity analysis

using the Levene test. Both are about the hypervolume values.

The results from the ANOVA or the Mann-Whitney U tests are shown in Ta-

ble 7. As we can see, all the differences in hypervolume between both methods500

are statistically significant, for all the instances. Therefore, the statistical anal-

yses strengthen the conclusion that MOSFLA-2CH obtains better hypervolume

results.
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Protein
ANOVA

test

Mann-Whitney

U test

Statistical

significance

Q5VZP5 – 0.000 Yes

A4Y1B6 – 0.000 Yes

B3LS90 0.000 – Yes

B4TWR7 0.000 – Yes

Q91X51 0.000 – Yes

Q89BP2 0.000 – Yes

A6L9J9 – 0.000 Yes

Q88X33 0.000 – Yes

B7KHU9 – 0.001 Yes

Table 7: Results of the ANOVA or the Mann-Whitney U tests, depending on the previous

tests, to find statistical significance in the hypervolume values.

4.4.3. Set coverage indicator

Set Coverage (SC) is the second indicator used to measure the quality of the505

results. In contrast to the previous indicator, it is a binary indicator. This mea-

sure is calculated by taking the Pareto front from each algorithm and counting

how many solutions belonging to a Pareto front B are covered by at least one of

the solutions from the other Pareto front A. The calculation of this indicator is

shown in Equation 8.510

SC(A,B) =
|{bj ∈ B;∃ ai ∈ A : ai � bj}|

|B| , (8)

where |B| is the size (cardinality) of the set B.

If for each solution in B there is at least a solution in A that covers it then

SC(A,B) is equal to 1. On the other hand, if none of the solutions in B is

covered by any of the solutions from A then SC(A,B) is 0. This indicator has to

be calculated in both directions, SC(A,B) and SC(B,A), because a solution is515

considered covered when it is dominated or equal (weak dominance), therefore,
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the indicator is not symmetric and it is possible that SC(B,A) 6= 1−SC(A,B).

Table 8 shows the results obtained for the SC indicator. We can see that, in

almost all the cases, the MOSFLA-2CH algorithm has a higher set coverage than

the Terai’s method. This implies that the Pareto fronts from MOSFLA-2CH520

cover a higher percentage of solutions from the Terai’s method than conversely.

Protein
SC(MOSFLA-2CH,

Terai et al. (2017))

SC(Terai et al. (2017),

MOSFLA-2CH)

Q5VZP5 19.00% 8.43%

A4Y1B6 27.00% 4.36%

B3LS90 14.00% 1.02%

B4TWR7 10.00% 6.47%

Q91X51 5.00% 4.83%

Q89BP2 11.00% 5.83%

A6L9J9 5.00% 6.83%

Q88X33 4.00% 7.83%

B7KHU9 32.00% 8.83%

Average 14.11% 6.05%

Table 8: Results for the set coverage indicator. Comparison between MOSFLA-2CH and

Terai’s method. In bold we highlight the best results.

4.4.4. Maximum spread indicator

In this section, we apply a unitary indicator called Maximum Spread (MS),

which measures the distribution extension of the non-dominated solutions set

in the objective space (Pareto front). It is based on the minimum and maximum525

scores from each objective function as shown in Equation 9.

MS =

√√√√
M∑

m=1

(maxNDS
i=1 f im −minNDS

i=1 f im)2, (9)
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where M defines the number of objective functions and NDS indicates the size

of the non-dominated solutions set.

The measure has been calculated for both methods and for the 9 problem

instances. Table 9 collects the median value and quartile deviation of the max-530

imum spread. Also, the last row of the table contains the average value taking

into account all the instances. We can observe that MOSFLA-2CH obtains bet-

ter results in almost all the instances, with the only exception of the protein

B4TWR7 (whose results are very similar). In fact, MOSFLA-2CH also obtains

better average maximum spread. In conclusion, we can say that the Pareto535

fronts generated by MOSFLA-2CH have better spread, with their edges being

farther apart one from the other.

Protein MOSFLA-2CH Terai et al. (2017)

Q5VZP5 1.691±0.004 1.349±0.005

A4Y1B6 1.292±0.003 1.284±0.001

B3LS90 1.285±0.002 1.278±0.002

B4TWR7 1.263±0.003 1.264±0.001

Q91X51 1.314±0.003 1.309±0.001

Q89BP2 1.290±0.002 1.286±0.003

A6L9J9 1.249±0.003 1.242±0.003

Q88X33 1.162±0.004 1.158±0.004

B7KHU9 1.199±0.006 1.184±0.005

Average 1.305 1.262

Table 9: Results for the maximum spread indicator, in the format: median±quartile deviation.

Comparison between MOSFLA-2CH and Terai’s method. In bold we highlight the best results.

4.4.5. Statistical significance in the maximum spread values

To make sure that the maximum spread differences are statistically significant,

we will apply the ANOVA test. The whole statistical analysis has been per-540

formed with a confidence level of 95% (significance level or p-value of 0.05).
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Before applying the ANOVA test, we have to verify that the samples follow a

normal distribution and their variances are homogeneous (homoscedasticity).

In case these properties are not fulfilled, we will apply the Mann-Whitney U

test.545

Table 10 shows the results of the Kolmogorov-Smirnov test (KS test, check-

ing that the samples follow a normal distribution) and the Levene test (checking

the homoscedasticity). As we can see, in two cases the samples do not follow a

normal distribution, and furthermore, in another case the samples do not have

the homoscedasticity property. Therefore, these three cases are analyzed by550

using the Mann-Whitney U test, and the rest by using the ANOVA test.

Protein
KS test

Levene test Pass?
MOSFLA-2CH Terai et al. (2017)

Q5VZP5 0.000 0.200 – No

A4Y1B6 0.200 0.200 0.234 Yes

B3LS90 0.200 0.200 0.843 Yes

B4TWR7 0.200 0.200 0.866 Yes

Q91X51 0.200 0.032 – No

Q89BP2 0.098 0.200 0.025 No

A6L9J9 0.200 0.200 0.747 Yes

Q88X33 0.200 0.200 0.098 Yes

B7KHU9 0.200 0.200 0.730 Yes

Table 10: Normality analysis using the Kolmogorov-Smirnov test and homoscedasticity anal-

ysis using the Levene test. Both are about the maximum spread values.

Finally, Table 11 shows the cases that have a statistically significant differ-

ence between both methods. As a result, we can see that the differences are

statistically significant in almost all the cases, with the exception of proteins

B4TWR7 and Q88X33. Observe that the protein B4TWR7 was the only case555

in which the Terai’s method obtained better maximum spread (see Table 9).
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Therefore, the statistical analyses strengthen the conclusion that MOSFLA-

2CH obtains better maximum spread results.

Protein
ANOVA

test

Mann-Whitney

U test

Statistical

significance

Q5VZP5 – 0.000 Yes

A4Y1B6 0.000 – Yes

B3LS90 0.002 – Yes

B4TWR7 0.430 – No

Q91X51 – 0.019 Yes

Q89BP2 – 0.047 Yes

A6L9J9 0.005 – Yes

Q88X33 0.744 – No

B7KHU9 0.004 – Yes

Table 11: Results of the ANOVA or the Mann-Whitney U tests, depending on the previous

tests, to find statistical significance in the maximum spread values.

5. Conclusions and Future Work

In this work, we have designed and implemented a method for designing CDSs560

encoding the same protein, an important problem in synthetic biology. This

problem is a multi-objective optimization problem that, taking into account the

previous literature, involves three objective functions: mCAI (Codon Adapta-

tion Index), mHD (Hamming Distance between CDSs), and MLRCS (Length of

Repeated or Common Substrings). One of the contributions of this work is that565

this multi-objective problem can be re-defined, using only two objectives: mCAI

and mHD. In fact, our approach only optimizes these two objectives. This is

possible because we have shown that the third objective (MLRCS) is correlated

with mHD, and optimizing mHD also implies the optimization of MLRCS.

In our proposal, we have adapted SFLA, a memetic meta-heuristic algorithm570
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based on swarm intelligence, to the particular needs of this multi-objective op-

timization problem and we have designed MOSFLA-2CH. In order to evaluate

the quality of our approach, we have compared it with the Terai’s method. A

multi-objective method proposed recently (2017), which has the same purpose,

that is, addressing the same problem. The comparisons have been performed575

by using 9 real protein instances. These instances have been selected in or-

der to cover a wide range of situations (with different amino acid lengths and

numbers of CDSs), therefore, being a representative sample. Three typical qual-

ity metrics in multi-objective optimization have been used in the comparisons.

These metrics analyze different important aspects in multi-objective optimiza-580

tion, such as convergence, uniformity, and spread. The comparisons show that

MOSFLA-2CH attains better results than the Terai’s method in almost all the

instances. Furthermore, after a comprehensive statistical analysis this conclu-

sion has been strengthened, finding statistically significant differences between

both methods.585

MOSFLA-2CH’s better results denote its higher ability for processing com-

plex search spaces. More specifically: 1) it conducts multiple, simultaneous

searches over different memeplexes (sets of solutions); 2) it generates new solu-

tions by taking as reference the information provided by the best local solution

within the processed memeplex and the best global solution in the population,590

also addressing stagnation situations by re-initializing solutions; and 3) it uses

shuffling techniques to achieve a global exchange of knowledge among meme-

plexes, allowing a balanced distribution of promising solutions for improved

optimization purposes.

Regarding previous expert and intelligent systems based on SFLA, Niknam595

et al. (2011) proposed a Chaotic Modified Shuffled Frog Leaping Algorithm

(CMSFLA) for solving the economic dispatch problem. CMSFLA changes the

standard local search in each memeplex by a chaotic local search. Luo & Chen

(2014) presented an improved Shuffled Frog Leaping Algorithm (SFLA) to solve

the multi-depot vehicle routing problem. In particular, they improved SFLA600

by using a novel real number encoding method specially adapted to the multi-
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depot vehicle routing problem. Luo et al. (2014) designed a Modified Shuffled

Frog Leaping Algorithm (MSFLA) for solving the dynamic allocation problem

of virtual machines in cloud data centers. MSFLA includes a new parameter w,

the leaping vision weight. This parameter is dynamically adjusted to go from605

a global exploration to a local exploitation as the iteration progresses. Zhu

& Zhang (2014) implemented an improved Shuffled Frog Leaping Algorithm

to solve the component pick-and-place sequencing problem. More specifically,

SFLA was improved with the strategy of letting all frogs taking part in memetic

evolution. Finally, Lei & Guo (2015) proposed a modified Shuffled Frog Leaping610

Algorithm for solving the two-agent hybrid flow shop scheduling problem. Their

modified SFLA includes a tournament selection based method to divide pop-

ulation, that is, not all solutions of population are allocated into memeplexes.

Furthermore, in the search process within each memeplex, all solutions in the

memeplex can be used with the same probability, and not only the worst local so-615

lution in every moment. Our proposal, MOSFLA, is clearly different to all these

previous ones, including new important theoretical contributions. Firstly, as

our problem is a multi-objective optimization problem, we have adapted SFLA

with a multi-objective algorithmic design. More specifically, MOSFLA includes

a multi-objective, quality-aware population partitioning to conduct multiple,620

simultaneous searches over different sets of solutions at each evolutionary step.

Moreover, this multi-objective algorithmic design implies the comparison of so-

lutions based on the dominance concept, the use of non-dominated sortings,

and the application of the crowding multi-objective metric (a diversity metric).

And secondly, MOSFLA includes both standard operators and expert, problem-625

oriented mutations (a total of four operators are integrated into its algorithmic

design) to effectively deal with the different objectives defined in the formulation

of the problem.

As future work, we have planned to study other multi-objective algorithms

to compare them with MOSFLA-2CH, allowing us to further assess the good630

quality of the MOSFLA-2CH results or even improve these results. As a second

research line, due to the good results obtained by MOSFLA, we intend to apply
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this multi-objective algorithm to other bioinformatics multi-objective problems,

assessing if MOSFLA also obtains good results in these other problems.

CRediT author statement635

Belen Gonzalez-Sanchez: Software, Validation, Formal Analysis, Inves-

tigation, Data Curation, Writing - Original Draft, Visualization.

Miguel A. Vega-Rodrguez: Conceptualization, Methodology, Resources,

Writing - Review & Editing, Supervision, Project Administration, Funding Ac-

quisition.640

Sergio Santander-Jimnez: Conceptualization, Writing - Review & Editing,

Funding Acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or645

personal relationships that could have appeared to influence the work reported

in this paper.

Acknowledgments

This work was partially funded by the AEI (State Research Agency, Spain) and

the ERDF (European Regional Development Fund, EU), under the contract650

TIN2016-76259-P (PROTEIN project), as well as funds through FCT (Fundação

para a Ciência e a Tecnologia, Portugal) with reference UID/CEC/50021/2019.

Thanks also to the Junta de Extremadura and the ERDF for the grants GR18090

and IB16002 provided to the research group TIC015. Sergio Santander-Jiménez
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