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Abstract

Complex optimization problem solving is a constant issue in a wide range
of scientific domains. Robust bioinspired procedures with accurate search
capabilities are therefore required to address the challenge that such opti-
mization problems represent. This work explores different design alterna-
tives for the metaheuristic Multiobjective Shuffled Frog-Leaping Algorithm,
a novel method that combines parallel searches and swarm-based operators
to undertake the processing of complex search spaces. Three variants of the
metaheuristic are adopted: a dominance-based approach, an indicator-based
alternative, and an adaptive proposal that incorporates both multiobjective
strategies (dynamically assigning during the execution more resources to the
most successful strategy). The performance of the proposed designs is exam-
ined when tackling, as a case study, the inference of ancestral relationships
from protein data, using different multiobjective metrics and bio-statistical
testing procedures. Experimental results show the additional robustness that
the adaptive technique provides to the metaheuristic, allowing its search en-
gine to exploit the most fitting multiobjective approach according to the
status of the optimization process.
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1. Introduction

Bioinspired computing represents one of the most promising research di-
rections to deal with NP-hard optimization problems. In the current con-
text, there is special emphasis on solving this kind of problems in accor-
dance with formulations of multiobjective nature, which combine informa-
tion from different criteria or datasets. A multiobjective optimization prob-
lem (MOP) is aimed at finding those solutions s = [s1, s2, ..., sk], charac-
terized by k decision variables, that optimize η ≥ 2 objective functions
~f(s) = [f1(s), f2(s), ..., fη(s)]. The set of all possible solutions to the prob-
lem is denoted as the decision space S and the image of these solutions
under the objective functions gives rise to the objective space Z = Rη. The
optimization process in a MOP consists in exploring S for those solutions
that represent the best trade-offs in Z, commonly designated as Pareto-
optimal solutions. In spite of the current interest in solving MOPs, these
problems involve important complexity factors [8] from the perspective of
problem hardness (e.g. exponentially growing decision spaces) as well as
from the time perspective (time-consuming objective functions and compu-
tationally demanding operations). Such factors play a key role when real-
world MOPs are involved, therefore demanding robust, accurate strategies
to address them.

Different algorithmic trends can be found in the design of multiobjec-
tive optimization procedures. Among them, the dominance-based [10] and
indicator-based [45] approaches represent two of the most commonly adopted
strategies for solving MOPs. The first class is based on the concept of Pareto
dominance, which stipulates conditions to compare solutions under a multi-
objective framework. Given two solutions s1 and s2, the Pareto dominance
specifies that s1 dominates s2 (s1 � s2) iff 1) ∀ i ∈ [1, 2, ..., η], fi(s1) is not
worse than fi(s2) and 2) ∃ i ∈ [1, 2, ..., η] such that fi(s1) is better than fi(s2).
Dominance-based algorithms employ this relationship to classify the solutions
handled during the optimization process, while also adopting measurements
of solution density information as a complementary criterion. Regarding
indicator-based designs, the quality of the solutions managed in these ap-
proaches is examined by integrating multiobjective quality metrics into the
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search engine. Such metrics, known as quality indicators, allow the mapping
of one or several sets of solutions S ′ ⊆ S to a real number I(S ′) ∈ R that
measures multiobjective quality properties of the solutions under evaluation.
The application of these two multiobjective strategies in different optimiza-
tion scenarios presents divergent performance in the case of both benchmark
[43, 48] and real-world problems [28, 44]. An open question is therefore how
to accurately use the information provided by these different multiobjective
mechanisms to improve search capabilities, along with their progressive, dy-
namic adaptation to the status of the optimization process when difficult
MOPs are considered.

This work is focused on the study of multiobjective strategies to improve
the Multiobjective Shuffled Frog-Leaping Algorithm (MO-SFLA). MO-SFLA
is a novel algorithmic approach proposed in [35] that combines swarm tech-
niques and parallel searches for solutions. A comparative study between
dominance-based and indicator-based versions of the proposal is undertaken,
with the aim of identifying how the multiobjective behaviour of the algo-
rithm changes according to the design variant under consideration. Further-
more, an additional alternative based on the concept of adaptation is pro-
posed, in order to carry out parallel searches dynamically in accordance with
the strategy (dominance or indicator) that generates better solution quality
throughout the execution of the algorithm. These MO-SFLA variants will
be examined on one of the most challenging problems in the bioinformatics
research field: the inference of ancestral relationships from protein sequences
[47]. The performance of each variant will be assessed through experimenta-
tion over real-world amino acid datasets, carrying out the evaluation of the
obtained solutions attending to different multiobjective and bio-statistical
quality metrics.

The main novelty and contributions of this paper are as follows. Using as
a baseline the dominance-based version from [35], an alternative indicator-
based design for MO-SFLA is first introduced, replacing the previous domi-
nance-based mechanisms by fitness assessment procedures based on multi-
objective quality indicator information. On the basis of these initial design
alternatives, the question on how to take advantage of both strategies simul-
taneously (dominance-based and indicator-based techniques) is addressed.
To this end, a new design variant for MO-SFLA is proposed, where both
dominance-based and indicator-based strategies are included and dynami-
cally used under a novel adaptive approach. In this sense, the adaptive MO-
SFLA design goes beyond a simple combination of previous techniques and is
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not limited to just statically mixing information from different mechanisms
as in traditional hybrid schemes. The significance of the adaptive design lies
in the dynamic exploitation of the knowledge provided by different multiob-
jective strategies, putting more effort on the most satisfying strategy in each
stage of the optimization process. Particularly, feedback on the success of the
parallel searches conducted under each multiobjective strategy is retrieved at
each generation in order to adapt the behaviour of MO-SFLA search engine,
assigning at each step more resources (in terms of partitions of individu-
als) to the most successful strategy. In order to justify this approach, an
in-depth analysis on the potential divergence in the Pareto fronts from the
baseline dominance-based and indicator-based versions is conducted. The
evaluation of the adaptive MO-SFLA is then undertaken in accordance with
the insights of this previous analysis, verifying the relevance of the dynamic,
adaptive approach attending to the quality of the generated Pareto fronts.

Summarizing, the key contributions can be classified in the following way:

• Introduction of an indicator-based multiobjective design for the meta-
heuristic MO-SFLA;

• Proposal of a novel adaptive design for MO-SFLA that incorporates
different multiobjective strategies (dominance and indicator) to manage
parallel searches, dynamically adapting them in accordance with the
performance attained during the execution of the algorithm;

• Comparative evaluation of the three design alternatives of MO-SFLA in
hard-to-solve real-world scenarios, tackling as a case study the inference
of phylogenetic relationships from challenging protein data;

• Analysis of multiobjective behaviour patterns for each design variant,
verifying the effect of each strategy over the attained Pareto fronts and
examining the relevance of the adaptive design to maximize multiob-
jective quality;

• Evaluation of the quality of the attained solutions by undertaking mul-
tiobjective and bio-statistical analyses with two reference multiobjec-
tive algorithms and six state-of-the-art biological tools.

This paper is organized as follows. The next section summarizes relevant
works on the topics of this research. The formulation of the tackled problem
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is detailed in Section 3, while Section 4 describes the proposed MO-SFLA
approaches. Section 5 explains the experimental methodology followed in
this study, along with reporting and discussing the obtained results. Finally,
Section 6 draws conclusions and future lines of research.

2. Related Work

The proposal of adaptive bioinspired methods is becoming an increasingly
adopted approach to solve difficult problems in different research fields. This
section reviews relevant works on the two main topics that represent the
scope of this paper: the use of adaptive approaches (that is, methods that
dynamically change their behaviour during the execution) in multiobjective
optimization and bioinspired techniques to infer ancestral relationships.

In the multiobjective context, adaptive methods have mostly been used
for the inner control and selection of parameter values and/or evolutionary
operators, in accordance with the performance feedback gathered through-
out the execution of the algorithm. Tan et al. proposed an adaptive control
method for crossover and mutation coordination, defining an operator that
synergized these two operations according to the status of the optimization
process [42]. For an application of architectural design, Bittermann and
Sariyildiz studied adaptive relaxation of the Pareto dominance to classify so-
lutions during the search process [4]. Charlet et al. proposed a hybrid genetic
algorithm including up to three different fitness definitions and adaptive con-
trol of the selection and mutation rate values [6]. In addition, Hadka and
Reed introduced a framework for multiobjective evolutionary computation
that incorporates adaptive techniques to select the most accurate recombi-
nation operations while also controlling population and tournament sizes [16].
Later on, Zavoianu et al. included adaptive allocation of fitness evaluations
among populations in the co-evolutionary proposal DECMO2 [49]. Adaptive
fitness schemes for multiobjective approaches, based on the weighted sum of
objective functions, were studied by Wang et al. [46], while Jiang et al. ad-
dressed the adaptive control of the kappa parameter in the IBEA algorithm
by using the simplex method [19]. More recently, Azzouz et al. proposed
an adaptive algorithm based on three population management strategies to
handle dynamic MOPs [2]. In 2018, Lin et al. integrated mechanisms for
the adaptive selection of differential evolution operators into a multiobjective
immune-inspired proposal [21].
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Regarding the reconstruction of evolutionary relationships, initial studies
already pointed out the additional hardness associated to the consideration
of protein sequence data in this problem [25]. Matsuda proposed the use of
bioinspired computing to address this issue, designing a genetic algorithm
for carrying out phylogenetic analyses of 17 EF-1α protein sequences under
the maximum likelihood criterion [24]. Reijmers et al. investigated phy-
logenetic relationships for sequences of 37 G protein-coupled receptors by
means of a genetic algorithm with distance-based individual representation
[31]. Hill et al. also examined the performance of genetic algorithms for
the analysis of protein sequences under the maximum parsimony criterion
[18]. More recent research was aimed at proposing robust approaches with
improved search capabilities to tackle complex phylogenetic analyses on cur-
rent protein-based datasets. In this sense, Stamatakis integrated simulated
annealing optimization and models of protein evolution into the biological
software RAxML [39, 40], which represents one of the most commonly used
tools in phylogenetics along with other approaches such as TNT [14], IQ-
TREE [29] and MrBayes [33]. Combinations of search strategies were also
adopted in GARLI, a genetic algorithm hybridized with a variety of local
search operators [3]. Focusing on adaptive techniques, the most well-known
approach was due to Skourikhine, who reported a self-adaptive genetic al-
gorithm for the analysis of DNA data [38]. Guo et al. proposed the use of
adaptive ant colony optimization for the protein case, showing better effi-
ciency than classic neighbour-joining techniques [15].

In the last years, research efforts have put emphasis on tackling multi-
objective formulations of the problem to solve the conflicts that arise from
different optimality criteria [34] and datasets with divergent phylogenetic ev-
idence [30]. Proposals like PhyloMOEA [5] and omni-aiNet [7] represent two
well-known evolutionary approaches to deal with multiobjective phylogenetic
analyses, yet only in nucleotide scenarios. An initial, dominance-based design
of MO-SFLA was proposed in [35] to address multiobjective reconstructions
from protein sequence data, according to the likelihood and parsimony crite-
ria. This paper aims to go a step further in this research direction, proposing
first an alternative indicator-based design and detailing a novel MO-SFLA
approach where both dominance and indicator-based strategies are dynami-
cally used under adaptive techniques.
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3. Problem Formulation

Phylogenetic analyses establish evolutionary relationships among natural
organisms by processing data about genetic and molecular characteristics
[47]. Through the study of divergence and similarities in such characteristics,
ancestral relationships can be inferred and illustrated by using a tree-shaped
data structure T = (V,E), known as phylogenetic tree. The node set V
in T locates in the leaf nodes those organisms whose molecular features are
available at the input of the procedure, while internal nodes are used to
represent hypothetical ancestors. The phylogenetic topology is organized in
accordance with the branch set E, which defines ancestor-descendant linkages
between related organisms. The biological data to be processed during the
inference process is given by a multiple sequence alignment of size N ×M ,
where N refers to the number of sequences and M is the sequence length.
Each position in the sequences is usually denoted as ‘character’, while the
value contained in that position is known as ‘state’. The possible states that a
character can take are given by an alphabet Λ that corresponds to the amino
acid state alphabet in the case of protein-based phylogenetic reconstructions.

The inference of ancestral relationships can be addressed as an optimiza-
tion problem, which implies the exploration of the phylogenetic tree space to
obtain those evolutionary hypotheses that optimize one or several optimality
criteria. This work tackles a multiobjective formulation of the problem based
on the simultaneous consideration of multiple criteria, an approach that has
shown significant benefits in conflicting biological scenarios [34, 5, 7]. More
specifically, the problem is formulated as a bi-objective MOP based on the
parsimony P (T ) and likelihood L(T ) criteria:

optimize ~f(T ) = {f1(T ), f2(T )},
where f1(T ) = minimize P (T ),

f2(T ) = maximize L(T ).

(1)

The parsimony criterion aims to minimize the number of state changes in
the sequences that belong to related nodes. This objective function returns
an integer value quantifying the amount of changes or mutations observed in
the phylogenetic topology. Formally, the parsimony score P (T ) (also known
as parsimony length) for a phylogenetic tree T = (V,E) that models the
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evolution of the organisms characterized in the alignment is expressed as:

P (T ) =
M∑

i=1

∑

(u,v)∈E
C(ui, vi), (2)

where (u, v) ∈ E refers to the branch between two nodes u, v ∈ V , ui, vi ∈ Λ
are the states at the ith character of the sequences for u and v, and C(ui, vi)
quantifies if a mutation event between ui and vi has taken place (C(ui, vi) =
1) or not (C(ui, vi) = 0). In order to carry out parsimony calculations, it is
first required the assignment of character states for each node in V . For a
leaf node l ∈ V , these states are given by the sequence in the alignment that
corresponds to the organism l. For an internal node u ∈ V with children
v, w, a set of potential character states Ai(u) is computed, for each character
i = 1 to M , such that:

Ai(u) =

{
Ai(v) ∩ Ai(w) if Ai(v) ∩ Ai(w) 6= ∅,
Ai(v) ∪ Ai(w) if Ai(v) ∩ Ai(w) = ∅. (3)

Final character states are defined from these sets, starting from the root
node r by choosing a random state among the ones contained in Ai(r) as the
final state value ri. For the remaining internal nodes e.g. v ∈ V with ancestor
u, the final state vi is given by ui iff ui is included in Ai(v). Otherwise, vi
will be given by a randomly chosen state from Ai(v).

Regarding the second objective, the likelihood criterion aims to maximize
the probability of observing the evolutionary results expressed in the sequence
alignment, given an evolutionary hypothesis described by a phylogenetic tree
and a model of sequence evolution. The output of this objective function is
a floating-point value that measures how likely the phylogenetic hypothesis
under evaluation gave rise to the biological evidence observed in the input
data. The likelihood score L(T ) for a phylogenetic tree T = (V,E) is given
by the following expression:

L(T ) =
M∏

i=1

∑

x∈Λ

πxLp (ri = x), (4)

where πx is the stationary probability of state x in the alphabet Λ and
Lp(ri = x) the partial likelihood of observing x at the ith character of the
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root r ∈ V . Lp(ui = x) for an internal node u with children v, w is given by:

Lp(ui = x) =

(∑

y∈Λ

Pxy (tuv)Lp (vi = y)

)
×
(∑

y∈Λ

Pxy (tuw)Lp (wi = y)

)
,

(5)
where tuv, tuw refer to the evolutionary times between u and its children v, w,
given by the length values of the branches (u, v), (u,w) ∈ E, and Pxy(t) the
probability of observing a mutation event from the state x to y within a time
t. For a leaf node l, its partial likelihood Lp(li = x) will be 1 if li = x or 0
otherwise. These partial likelihood calculations are carried out for each state
x ∈ Λ prior to the application of Equation 4, being the obtained likelihood
score usually reported in logarithmic scale (log-likelihood).

The reconstruction of evolutionary relationships is considered a grand
computational challenge due to the exponential growth of the number of
possible solutions with the number of sequences N . More specifically, the
size of the phylogeny space is governed by the double factorial (2N − 5)!!
[47], showing for N > 50 a number of alternative solutions higher than the
Eddington number. Furthermore, the study of this problem in protein align-
ments intensifies its time-consuming nature due to the consideration of a
state alphabet involving 20 possible amino acids [32]. This issue has an im-
pact in the calculations and data types involved in the evaluation procedures,
whose temporal costs are also generally influenced by the sequence length.
Nevertheless, phylogenetic analyses over protein sequence data are gaining
increasing attention in the current research context. The higher resolution
provided by protein data is useful when large evolutionary distances are in-
volved in the analysis, also playing a key role in the tasks of gene family re-
construction, gene discovery, and function prediction [47, 32]. Consequently,
the increasing demands of biological processing justify the proposal of novel
robust, efficient methods to address the problem.

4. MO-SFLA Approaches

This work studies different MO-SFLA design alternatives to tackle the
reconstruction of evolutionary relationships from protein data. The general
features of the metaheuristic and the proposed variants are described in this
section, also detailing the introduction of adaptive strategies into MO-SFLA.
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4.1. General Features

MO-SFLA is a bioinspired metaheuristic proposed in [35] that adapts the
Shuffled Frog-Leaping Algorithm (SFLA) [36] to the multiobjective context.
The proposal combines properties from Particle Swarm Optimization and
Shuffled Complex Evolution, in such a way that swarm-based learning tech-
niques are integrated into multiple parallel searches for solutions. The main
idea consists in exploring multiple directions of the solution space simultane-
ously through the parallel searches, which are implemented by partitioning
the population into subsets of individuals, known as memeplexes. The defini-
tion of memeplexes is based on shuffling techniques that lead to an equitable
distribution of promising individuals among the population partitions. At
each generation, the processing of each memeplex involves a certain number
of learning steps to generate new candidate solutions, which are obtained by
sharing information within the memeplex via swarm strategies. Once the
memeplexes have been processed, they are merged to spread the knowledge
attained during the parallel searches, thus boosting the population evolution.

The individual representation introduced in MO-SFLA to tackle phyloge-
netic reconstructions is based on the concept of distance matrix. The search
engine of the algorithm will operate over solutions codified by symmetric,
matrix-shaped data structures δ of size N ×N , where each entry δ[x, y] con-
tains a floating-point value representing the evolutionary distance between
two organisms x and y. When initializing the population, starter distance
matrices are generated from randomly selected topologies that are contained
in a repository of 1,000 phylogenetic trees (generated from bootstrap sam-
ples of the input sequences). Each entry in the initial matrices is calculated

as δ[x, y] =
∑

u,v∈PTx,y
tuv, where PTx,y are the nodes contained in the path

between x and y inside the topology, and tuv is the length of the branch
connecting the nodes u, v ∈ PTx,y. As an indirect encoding strategy is em-
ployed, the matrix-shaped solutions processed throughout the execution of
the algorithm must be mapped to the phylogenetic tree space. With this
purpose in mind, the tree-building method BIONJ [47] is used to obtain the
corresponding phylogenies.

It is worth remarking that, although some of the descriptions given in Sec-
tion 3 employ rooted trees to make easier the comprehension of the tackled
problem, the considered distance-based representation is independent from
the rooted / unrooted tree form question. The search engine of the meta-
heuristic operates over an auxiliary distance matrix space, so the form of
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the resulting trees depends on the tree-building method used for the matrix-
phylogeny mapping. In the case of BIONJ, the reported trees are unrooted,
which is the usual form employed in parsimony and likelihood optimization
and, in general terms, when no molecular clock is assumed.

4.2. Dominance-based and Indicator-based Designs

The general scheme for the dominance-based and indicator-based designs
of MO-SFLA is shown in Algorithm 1. This metaheuristic examines at each
generation the multiobjective quality of the popSize individuals contained in
the population (line 3 of Algorithm 1). This operation represents the step
in which the fundamental differences between the two considered design al-
ternatives are introduced. On the one hand, multiobjective quality in the
dominance-based version is quantified by using two well-known procedures
from the NSGA-II algorithm [11]: fast non-dominated sort and crowding-
based density estimation. Such procedures lead to the computation of Pareto
rank and crowding distance values that allow the algorithm to distinguish the
multiobjective quality of the solutions handled during the optimization pro-
cess. On the other hand, the indicator-based version follows the guidelines
established in the IBEA algorithm [50], which defines multiobjective fitness
values based on the performance of each solution attending to a given mul-
tiobjective quality indicator. Particularly, the fitness for an individual Pi is
given by the following expression:

∑

Pj∈P\{Pi}
−e−IHD({Pj},{Pi})/c·κ, (6)

where Pj refers to any other individual in the population, IHD the binary
hypervolume indicator [50], c the maximum absolute indicator value, and κ
a scaling factor = 0.05.

After assessing multiobjective quality, the population is partitioned into
m memeplexes (each one including n individuals, where n=popSize/m). In
this step (line 4), the shuffling and distribution of solutions among meme-
plexes is carried out as follows: the first best individual P1 is sent to the first
memeplex Mem1, the second best individual P2 is assigned to Mem2, Pm
goes to Memm, Pm+1 to Mem1, and so on. For the case of the dominance-
based design, the best individuals are given by those solutions showing lower
rank values and higher crowding distance within the same rank, while the
indicator-based design gives priority to those individuals with higher indica-
tor-based fitness values.
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Algorithm 1 General MO-SFLA Scheme
Input parameters: popSize (population size), m (number of memeplexes), n (popSize/m, individuals

per memeplex), nl (learning steps within a memeplex), maxEval (stop criterion, maximum number
of evaluations).

Output: PF (set of non-dominated solutions generated throughout the search).
1: P ← Set Initial Individuals (popSize), PF ← 0
2: while ! stop criterion is reached (maxEval) do
3: Multiobjective Fitness Assignment (P , popSize) /* Rank and Crowding for Dominance,

Hypervolume-based Fitness for Indicator */
4: {Mem1 ... Memm} ← Shuffling and Memeplex Distribution (P , popSize)
5: for each memeplex Memi ∈ {Mem1 ... Memm} do
6: for j = 1 to nl do
7: switch (Memi(n−j).counter)

8: case 0: P ′new ← Learn from Best Local (Local, Memi(n−j))

9: case 1: P ′new ← Learn from Best Global (Global, Memi(n−j))

10: case 2: P ′new ← Local Search (Memi(n−j))

11: if P ′new improves Memi(n−j) || Memi(n−j).counter == 2 then

12: Memi(n−j) ← P ′new

13: Memi(n−j).counter ← 0

14: else
15: Memi(n−j).counter ← Memi(n−j).counter + 1

16: end if
17: end for
18: end for
19: Memeplex Merging (P , {Mem1 ... Memm})
20: Pareto Front Update (PF, P )
21: end while
22: return PF

MO-SFLA conducts next the parallel searches implemented through the
independent processing of memeplexes (lines 5-18). Within each memeplex
Memi, different learning strategies are applied to generate new candidate
solutions P ′new. The first one involves the generation of P ′new from an indi-
vidual Memij by using the information provided by the best local solution
in the currently processed memeplex (line 8):

Dxy = rand() ∗ (Local.δ[x, y]−Memij.δ[x, y]), (7)

P ′new.δ[x, y] = Memij.δ[x, y] +Dxy, (8)

where Local refers to the best local individual in Memi, δ[x, y] the entries
of the distance matrices associated to the involved individuals, and rand() a
uniformly-distributed random number in the range [0,1]. In the dominance
version, the best local individual is given by the solution in Memi with
the best ranking and crowding distance values. For the indicator design,
the solution in Memi with the highest indicator-based fitness is selected as
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the best local individual. Since distance matrices are symmetric structures
(with the main diagonal entries δ[x, x] = 0), Equations 7 and 8 are applied
over δ[x, y] | y < x, using the computed result to update both δ[x, y] and
δ[y, x]. In addition, Equations 7 and 8 operate over positive distance values
δ[x, y], thus guaranteeing that the final calculated distance P ′new.δ[x, y] is also
positive. In this way, the generation of the corresponding phylogenetic tree
via BIONJ leads to a feasible solution, whose quality is then evaluated by
using the considered objective functions.

The second learning strategy involves the application of Equations 7 and
8 using the best global individual in the population (denoted as Global in line
9) instead of the best local one. In both versions, the identification of the best
global individual follows the same principles as in the case of the best local
one, defining the scope of the selection over the whole population instead of
over the currently processed memeplex. The third and last strategy is based
on a local search procedure that applies topological rearrangements (subtree
pruning-regrafting and nearest neighbour interchange) and gradient-based
branch length optimization [47] over the phylogenetic tree associated to the
currently processed individual (line 10).

The choice of the search strategy to be applied is governed by means of
trial counters. Each individual Memij is associated to a counter variable
that stores the number of attempts in which the corresponding solution has
not been improved. A search strategy is then selected according to the value
of this counter: learning from the best local (counter = 0), learning from the
best global (counter = 1), or local search (counter = 2). When the new candi-
date solution P ′new improves the one in Memij, Memij.counter is reinitialized
and the new solution accepted (lines 11-13). Otherwise, Memij.counter is
increased in order to make a new attempt with a different search strategy
in the next generation (line 15). Whenever the local search is carried out,
the new solution is accepted and the counter set to 0 in order to promote
solution diversity.

The search for new candidate solutions in Memi is repeated for nl learn-
ing steps, proceeding upon termination with the next memeplex Memi+1.
Once all the memeplexes have been processed, they are merged to compose
the population for the next generation (line 19). Finally, the Pareto front
structure containing the non-dominated solutions found throughout the op-
timization process is updated (line 20).
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4.3. Adaptive Design
As an additional design alternative, the adoption of adaptive techniques

in MO-SFLA is herein proposed. The algorithmic design of MO-SFLA is
naturally oriented towards the integration of adaptive procedures, as the
memeplexes defined by the metaheuristic can be dynamically managed un-
der different multiobjective assessment approaches. The key idea consists in
incorporating information from the two multiobjective strategies under study
(dominance and indicator) to conduct the parallel searches, adjusting them
adaptively attending to the performance achieved by each strategy during
the optimization process. Starting from an equal distribution of memeplexes
(m/2 managed by a dominance-based procedure and the remaining m/2 by
an indicator-based one), the algorithm retrieves feedback data about the
success of each approach during the searches. By using this data, the meme-
plexes will be re-distributed in an adaptive way, assigning more (and thereby
a higher number of candidate solutions) to the most successful strategy.

The adaptive design proposed for MO-SFLA is presented in Algorithm 2.
Once the population has been initialized, it is split into two sub-populations,
each one comprising popSize/2 randomly selected individuals (line 2 of Al-
gorithm 2). The first sub-population is assessed and managed according to
dominance-based techniques (fast non-dominated sort and crowding estima-
tion), while the second one follows indicator-based principles (with indicator-
based fitness calculations) (lines 5 and 6). In this version, the shuffling and
distribution of individuals to memeplexes is carried out separately for each
sub-population (lines 7 and 8, where MemD denotes the mD memeplexes
obtained from the dominance sub-population and MemI refers to the mI

memeplexes associated to the indicator sub-population).
The parallel searches implemented through the processing of memeplexes

are conducted in the next step (lines 9-12, 13-16). New candidate solutions
are generated according to the learning techniques and operators described
in Section 4.2. The selection of the best individuals for the learning proce-
dures depends on the multiobjective strategy used to manage each memeplex.
Memeplexes from the dominance-based sub-population apply dominance-
based mechanisms for this purpose. On the other hand, memeplexes from
the indicator-based sub-population employ indicator-based fitness values.
The identification of the best global individuals is carried out over the sub-
population where each memeplex belongs (dominance-based sub-population
for dominance-based memeplexes, indicator-based sub-population for indica-
tor-based memeplexes).

14
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Algorithm 2 Adaptive MO-SFLA
Input parameters: popSize, m , n , nl, maxEval, ac (adaptive adjustment control).
Output: PF.

1: P ← Set Initial Individuals (popSize), PF ← 0
2: PD, P I ← Split Population (P , popSize/2)
3: mD,mI ← m/2
4: while ! stop criterion is reached (maxEval) do
5: Pareto Rank and Crowding Assignment (PD, mD ∗ n)
6: Indicator-based Fitness Assignment (P I , mI ∗ n)
7: {MemD

1 ... MemD
mD } ← Shuffling and Distribution (PD, mD, n)

8: {MemI
1 ... MemI

mI } ← Shuffling and Distribution (P I , mI , n)

9: for each memeplex MemD
i ∈ {MemD

1 ... MemD
mD } do

10: Memeplex Processing and Solution Generation (MemD
i , nl)

11: PerfDi ← Memeplex Performance Assessment (MemD
i )

12: end for
13: for each memeplex MemI

i ∈ {MemI
1 ... MemI

mI } do
14: Memeplex Processing and Solution Generation (MemI

i , nl)

15: PerfI i ← Memeplex Performance Assessment (MemI
i )

16: end for
17: if Current Generation % ac == 0 then
18: PerfDmean, PerfImean ← Mean Performance Computation (PerfD, PerfI, ac)
19: mD, mI ← Adaptive Memeplex Assignment (PerfDmean, PerfImean)
20: end if
21: Memeplex Merging (PD, {MemD

1 ... MemD
mD })

22: Memeplex Merging (P I , {MemI
1 ... MemI

mI })
23: Pareto Front Update (PF, P )
24: end while
25: return PF

The key difference in this design lies in the fact that the loop for processing
memeplexes also involves the calculation of performance indicators PerfDi

/ PerfIi, in order to measure the success of the searches undertaken within
each memeplex MemD

i / MemI
i . Whenever a new candidate solution P ′new

improves the one currently under processing MemD
ij / MemI

ij, the normalized
distance between P ′new and MemD

ij / MemI
ij is calculated for each objective.

In this way, it is possible to quantify how much the new solution has improved
the previous one, using this information as a measurement of the success of
the searches managed by each multiobjective strategy.

The adaptive adjustment of memeplexes (lines 17-20) is carried out by
taking into account the performance feedback gathered in the previous step.
The number of memeplexes mD, mI assigned to each multiobjective strategy
is updated by using the following expressions:

m′D = Round

( ∑mD

i=1 PerfDi∑mD

i=1 PerfDi +
∑mI

i=1 PerfIi
∗m
)
, (9)
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m′I = Round

( ∑mI

i=1 PerfIi∑mD

i=1 PerfDi +
∑mI

i=1 PerfIi
∗m
)
. (10)

The idea behind Equations 9 and 10 is to assign a higher number of
memeplexes to the strategy that reported better performance when generat-
ing new candidate solutions. The memeplexes moved from one strategy to
another are those that obtained the lowest Perfi scores, since lower scores
imply a higher degree of stagnation that can be tackled by using the alter-
native multiobjective strategy. Nevertheless, the proposed implementation
guarantees that at least one memeplex will be managed by the least suc-
cessful multiobjective strategy, in order to give it additional opportunities in
later stages of the optimization process. The adaptive step is carried out in
accordance with a control parameter ac, which defines the number of gen-
erations in which performance feedback is registered prior to the adaptive
re-distribution of memeplexes. The introduction of this control parameter
allows the algorithm to conduct the adaptive adjustment with certain sta-
tistical reliability, using as a reference the average performance obtained by
each strategy throughout ac generations.

Finally, the memeplexes assigned to each strategy are merged into the
corresponding sub-populations (lines 21 and 22), in order to repeat the evolu-
tionary process following the guidance of the adaptive procedure. A graphical
representation of the evolution of data structures in the adaptive version of
MO-SFLA can be found in Figure 1. It is worth remarking that the adaptive
MO-SFLA works with two separate sub-population structures during the en-
tire execution. The expressions ’partitioning’ and ’shuffling and distribution’
are used for the memeplexes definition to highlight that these memeplexes
belong to a particular sub-population and therefore to a particular multiob-
jective strategy. The adaptive approach is in charge of updating dynamically
the assignment of memeplexes per sub-population according to the success
of each multiobjective approach during the optimization process.

5. Experimental Evaluation

This section undertakes the comparative evaluation of the dominance-
based, indicator-based, and adaptive versions of MO-SFLA. The experimen-
tal methodology, performance metrics, and statistical tests used in this study
are first described. Afterwards, the quality of the outcomes reported by the
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dominance and indicator-based alternatives will be examined, putting em-
phasis on the potential divergence observed in the attained Pareto fronts.
Then, the evaluation of results from the adaptive approach will be performed,
making additional comparisons of solution quality with state-of-the-art meth-
ods for phylogenetic reconstruction.

The hardware platform used in the experimentation is supported on AMD
Opteron 6174 twelve-core processors running at 2.2 GHz, with 12MB of L3
cache and 32GB of DDR3 RAM. This setup includes Ubuntu 14.04 LTS
as operating system and the compiler GCC 5.2.1 was used to compile the
software tested in this research (with the -O3 optimization flag enabled). The
proposed implementations of MO-SFLA are based on OpenMP+MPI parallel
schemes described in [35]. The experimentation has involved five problem
instances containing real-world protein data with divergent characteristics
attending to the number of sequences and sequence length:

1. M67x11333 [17], 67 sequences of bacterial ancestry euBac proteins
(11,333 characters per sequence);

2. M88x3329 [27], 88 sequences of MCM7 and RPB1/RPB2 proteins from
Thermophilic fungi (3,329 characters per sequence);

3. M187x814 [20], 187 sequences of ABC-B transporters from Mycorrhiza
fungi (814 characters per sequence);

4. M260x1781 [41], 260 sequences of proto-oncogene proteins from Beta
vulgaris (1,781 characters per sequence);

5. M355x1263 [12], 355 sequences of DHA2, ARN, and GEX proteins from
hemiascomycete yeasts (1,263 characters per sequence).

These datasets exhibit different features attending to the two main di-
mensions of the problem -sequences and lengths-, thus representing evalu-
ation scenarios with decision and objective spaces of different complexity.
Consequently, they provide a suitable range of problem sizes for evaluation
purposes. As the likelihood objective function specifically requires the use
of phylogenetic evolutionary models to compute substitution probabilities
along phylogeny branches, each dataset was analyzed with ProtTest [9] to
determine the most fitting models. According to the output of this tool, like-
lihood scores for M67x11333, M88x3329, M187x814, and M355x1263 have
been computed by using the LG+Γ model of protein evolution, while JTT+Γ
was employed for M260x1781. Details on these models can be found in [1].
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5.1. Performance Assessment Methodology

This experimental study is oriented towards examining the performance
of the three reported designs of MO-SFLA. With this purpose in mind, the
Pareto sets generated by each design alternative will be evaluated by us-
ing two multiobjective quality metrics. The first one is the set coverage SC
(also known as ‘coverage relation’), which allows pairwise comparisons of the
outcomes from the approaches under evaluation. Given two Pareto approxi-
mation sets X and Y , the SC metric calculates the fraction of solutions from
Y that are covered (weakly-dominated) by the solutions from X:

SC(X, Y ) =
|{y ∈ Y, ∃x ∈ X : x � y}|

|Y | . (11)

Under this metric, priority must be given to the alternative that max-
imizes the achieved SC (that is, the one that covers a higher fraction of
solutions). The second metric herein adopted is the widely-used hypervol-
ume indicator IH . Hypervolume is used to measure the η-dimensional volume
(area in the case of bi-objective optimization problems) of the objective space
Z = Rη that is covered by at least one solution x from the Pareto approxi-
mation set X under evaluation. This value corresponds to the volume of the
orthogonal polytope

∏η:

∏η
= {p ∈ Rη : p � x for some x ∈ X}. (12)

Higher hypervolume scores imply better multiobjective quality, thus be-
ing preferred those alternatives that maximize this metric. In order to avoid
the influence of divergent scales in the objective functions, the ideal and nadir
points from Table 1 are used to normalize objective scores in the scale [0,1]
prior to the calculation of hypervolume. Using these normalized scores, hy-
pervolume is calculated with regard to the reference point Zref = (1, 1). The
ideal and nadir points herein used were updated with regard to the previous
work in [35] to improve the accuracy of the metric. Particularly, they were
set by adding / subtracting a 0.05% to the best and worst objective scores
observed in the experiments, instead of the former 0.25% used previously.

The configuration of input parameters of MO-SFLA was carried out via
parametric studies, which were conducted taking into account the relation-
ships between parameters analyzed in [35]. Particularly, sets of uniformly-
distributed candidate values were checked for each input parameter, exam-
ining the multiobjective quality obtained by each configuration through the
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Table 1: Hypervolume indicator: ideal and nadir points. These points (expressed in terms
of P (T ) and L(T ) values) allow the normalization of objective scores to avoid bias in
hypervolume due to different objective scales

Ideal Point Nadir Point
Dataset P (T ) L(T ) P (T ) L(T )

M67x11333 171,540 -473,023.58 196,869 -491,215.09
M88x3329 33,456 -149,020.30 33,668 -149,450.07
M187x814 29,832 -133,804.97 30,213 -134,944.68
M260x1781 43,507 -163,813.35 44,519 -165,660.07
M355x1263 54,795 -231,064.52 55,294 -233,866.76

Table 2: MO-SFLA input parameter values. These values represent the most satisfying
configuration of the metaheuristic found in the conducted parametric studies

Parameter Value
Population size (popSize) 128

Number of memeplexes (m) 32
Individuals per memeplex (n) 4
Number of learning steps (nl) 4

Adaptive adjustment (ac, adaptive version only) 5

previously described multiobjective metrics. Table 2 shows input param-
eter values for the configuration that led to the best overall multiobjective
behaviour. The stop criterion was established to 12,000 evaluations. For test-
ing purposes, the dataset M67x11333 was employed as the reference instance
in the parameterization.

The comparative study of the proposed design alternatives of MO-SFLA
involved, for each experiment, 31 independent runs per dataset. The gener-
ated result samples were analyzed with the following statistical methodology
[37] (considering a confidence level of 95%). Kolmogorov-Smirnov normal-
ity tests were first used to check for Gaussian distributions in the samples
under comparison. If so, Levene tests were performed to analyze potential
homoscedasticity. In case of detecting homogeneity in variances, the verifi-
cation of statistically significant differences among samples was conducted
via ANOVA. On the other hand, in case of not detecting Gaussian distribu-
tions or homogeneity in variances, such verifications were carried out through
Wilcoxon-Mann-Whitney tests. This hybrid methodology was employed in-
stead of a pure non-parametric one to avoid losing information about the
characteristics of the examined result samples [26]. In fact, this kind of
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methodology represents one of the most widely-used approaches to ensure
accurate statistical reliability in evolutionary computation studies [23].

5.2. Evaluation of Dominance and Indicator-based Designs

The first step in this comparative analysis consists in verifying the poten-
tial divergence in multiobjective performance when different multiobjective
strategies (dominance or indicator, separately) are adopted in the algorith-
mic design of MO-SFLA. To this end, differences in the sets of solutions
generated by the dominance-based and indicator-based designs from Section
4.2 are examined. Figure 2 presents the Pareto fronts reported by the two
alternatives under evaluation in their median-hypervolume executions.

The analysis of these Pareto fronts shows that the design alternatives
under comparison exhibit differences from a multiobjective perspective. In
overall terms, it can be observed that the indicator-based design of MO-
SFLA shows a stronger focus on attaining high-quality results in the left side
of the front, that is, in the region containing the best solutions attending to
the parsimony objective. On the other hand, the dominance-based approach
succeeds in achieving more effectiveness in the right side of the front, which
comprises the best solutions attending to the likelihood objective.

In order to provide quantitative measurements of such multiobjective di-
vergence, the set coverage scores obtained by the considered MO-SFLA al-
ternatives have been calculated for each region of the Pareto front. The
parsimony region is defined as the one containing those solutions included
in the first half of the front, while the likelihood region comprises the points
belonging to the second half of the front. The criterion used to determine
the boundary (or ‘middle point’) was the middle parsimony score, as this
function depends exclusively on the topology thus allowing the distinction
between parsimony-oriented topologies (parsimony region) and likelihood-
oriented ones (likelihood region). Table 3 shows the results reported by the
set coverage metric when applied over each one of these regions separately,
where SC(Domin, Indic) refers to the fraction of solutions from the indicator-
based design that are covered by the ones from the dominance-based one and
SC(Indic, Domin) represents the solutions from the dominance-based version
that are improved by the indicator-based counterpart.

Focusing on the parsimony region of the front, it can be observed that
the indicator-based design manages to obtain set coverage scores of 59.3%
(M187x814) – 95.0% (M355x1263), thus covering average percentages over
77% of the solutions reported by the dominance-based strategy. In this
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(a) M67x11333 (b) M88x3329

(c) M187x814 (d) M260x1781

(e) M355x1263

Figure 2: Comparison of Pareto fronts from the dominance-based and indicator-based
designs of MO-SFLA. It can be observed the divergent performance of the considered
strategies in the two halves of the fronts, being the parsimony region better exploited by
the indicator-based design (mean set coverage of 77.4%) and the likelihood region by the
dominance-based one (set coverage of 66.8%)

region, the dominance-based design underperforms in comparison to the
indicator-based technique, obtaining in the best-case scenario a set cover-
age value of 17.7% (M187x814). The dominance-based approach plays a
more significant role in the case of the likelihood region, according to the set
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Table 3: Dominance vs. Indicator: set coverage for each front region. SC(X,Y ) denotes
the percentage of solutions from Y that are covered (weakly-dominated) by the solutions
generated by X. In order to better understand the behaviour of each approach, two regions
of the front (parsimony and likelihood regions) are distinguished, reporting set coverages
for each of them. The best values in the comparison are highlighted in bold

Parsimony region Likelihood region
SC(Domin, SC(Indic, SC(Domin, SC(Indic,

Dataset Indic) Domin) Indic) Domin)
M67x11333 11.25% 77.46% 51.22% 37.50%
M88x3329 16.67% 71.43% 83.33% 14.29%
M187x814 17.65% 59.26% 51.61% 31.03%
M260x1781 10.26% 83.65% 79.66% 14.63%
M355x1263 11.11% 95.00% 68.18% 12.96%

coverage values of 51.2% – 83.3% attained over the indicator-based alterna-
tive. An average coverage fraction of 66.8% is reported in the likelihood side
in comparison to the 22.1% achieved with the indicator strategy. Since each
design alternative reports good performance in different regions of the front,
these results support the idea of considering an adaptive dynamic approach
to promote the attainment of improved solution quality in MO-SFLA.

5.3. Evaluation of the Adaptive Design

Next, insight is provided into the performance of the adaptive MO-SFLA
in comparison with the dominance-based and indicator-based alternatives.
Taking into account the previous observations, multiobjective behaviour will
first be examined through the generated Pareto fronts. Figure 3 compares
the Pareto fronts obtained by each alternative in their median-hypervolume
executions. For the case of the dataset M67x11333, a more detailed represen-
tation of the distribution of solutions in the parsimony and likelihood regions
is provided in Figure 4. In addition, Table 4 reports the results of evaluating
the considered versions of MO-SFLA under the set coverage metric.

The upper side of Table 4 shows set coverage scores for each region of
the front, where SC(Adapt, Y) refers to the percentage of solutions from the
approach Y that are covered by the ones from the adaptive proposal. Ac-
cording to the obtained results, the adaptive version of MO-SFLA achieves
significant solutions in both parsimony and likelihood regions of the Pareto
front. In fact, the comparison suggests that the consideration of multiobjec-
tive strategies under adaptive techniques represents a promising idea from

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) M67x11333 (b) M88x3329

(c) M187x814 (d) M260x1781

(e) M355x1263

Figure 3: Representation of Pareto fronts from the adaptive MO-SFLA and comparisons
with the dominance-based and indicator-based counterparts. The solutions generated by
the adaptive MO-SFLA show significant quality throughout the whole front, going a step
further with regard the dominance-based and indicator-based versions in both regions of
the front. More specifically, set coverages up to 100% (over dominance) and 83.3% (over
indicator) are achieved in the parsimony region of the front, while coverages up to 85.7%
(over dominance) and 100% (over indicator) are observed in the likelihood one

this perspective, since the adaptive version is not limited to just matching
the convergence reported by the best isolated approach at each region. More
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(a) Parsimony region

(b) Likelihood region

Figure 4: Visualization of Pareto front regions for M67x11333. It can be distinguished the
distribution of solutions from the different versions of MO-SFLA and how the adaptive
approach accomplishes relevant results in both parsimony and likelihood regions

specifically, the adaptive design in the parsimony region achieves set coverage
scores in the intervals 74.1% – 100.0% (over dominance) and 53.3% – 83.3%
(over indicator), while also attaining significant coverage values in the like-
lihood region: 51.9% – 85.7% (over dominance) and 75.6% – 100.0% (over
indicator). The bottom side of Table 4 shows the results of applying the cov-

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Adaptive version: set coverage evaluation. The upper side of the table reports the
coverage values achieved, for each front region, by the adaptive version over the dominance-
based and indicator-based counterparts. Additionally, the overall set coverage results
observed in the whole front are provided in the bottom side. The best values in the
comparison for the whole front are highlighted in bold

Parsimony region Likelihood region
SC(Adapt, SC(Adapt, SC(Adapt, SC(Adapt,

Dataset Domin) Indic) Domin) Indic)
M67x11333 87.32% 57.50% 59.38% 75.61%
M88x3329 100.00% 83.33% 85.71% 100.00%
M187x814 74.07% 64.71% 75.86% 80.65%
M260x1781 95.19% 65.81% 56.10% 93.22%
M355x1263 92.50% 53.33% 51.85% 86.36%

Whole-front coverage
SC(Adapt, SC(Domin, SC(Adapt, SC(Indic,

Dataset Domin) Adapt) Indic) Adapt)
M67x11333 78.64% 9.47% 63.64% 21.05%
M88x3329 92.86% 7.69% 91.67% 7.69%
M187x814 75.00% 11.48% 75.00% 14.75%
M260x1781 84.14% 10.64% 76.14% 17.73%
M355x1263 69.15% 15.28% 69.66% 20.83%

erage relation when both regions of the front are considered. In this scenario,
coverage percentages of 69.2% – 92.9% and 63.6% – 91.7% are observed with
regard to the dominance-based and indicator-based versions, respectively.

The assessment of the three proposed designs of MO-SFLA under hy-
pervolume is given by Table 5. This table reports the median hypervolume
scores and quartile deviations observed for each problem instance. In all
these evaluation scenarios, the adaptive proposal shows more satisfactory be-
haviour than the dominance-based and indicator-based alternatives, achiev-
ing improved hypervolume scores in the range 60.4% (M88x3329) – 84.4%
(M67x1133). Furthermore, the hypervolume samples from the adaptive ver-
sion verify less variability in overall terms, in accordance with the observed
quartile deviations. In order to find out if the improvement obtained by the
adaptive version of MO-SFLA is statistically significant, statistical tests were
conducted over the resulting hypervolume samples. The output of the statis-
tical analysis is shown in Table 6, which details the P-values reported when
comparing the adaptive version with the dominance-based and indicator-
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Table 5: Comparison of hypervolume performance between the adaptive and the
dominance-based / indicator-based versions of MO-SFLA. Hypervolumes are reported
in the format IH±qd, where IH is the observed median hypervolume score and qd the
quartile deviation. The best values in the comparison are highlighted in bold

Adaptive Dominance Indicator
Dataset IH Score IH Score IH Score

M67x11333 84.38%±0.15 82.42%±0.27 82.65%±0.22
M88x3329 60.40%±0.14 59.97%±0.17 59.43%±0.20
M187x814 66.89%±1.09 65.09%±1.34 65.18%±1.17
M260x1781 77.93%±0.37 76.68%±0.31 76.64%±0.32
M355x1263 75.30%±0.55 74.41%±0.68 74.78%±0.77

Table 6: Statistical assessment of hypervolume samples from the adaptive version of MO-
SFLA. Considering a confidence level of 95%, P-values and the corresponding test output
(× = non-significant differences, X = significant differences) are reported

Vs. Dominance Vs. Indicator
Dataset P-value Stat. Sign.? P-value Stat. Sign.?

M67x11333 1.33E-11 X (<0.05) 1.33E-11 X (<0.05)
M88x3329 3.15E-06 X (<0.05) 7.29E-10 X (<0.05)
M187x814 4.33E-08 X (<0.05) 5.38E-07 X (<0.05)
M260x1781 5.10E-10 X (<0.05) 3.25E-10 X (<0.05)
M355x1263 1.18E-04 X (<0.05) 0.001 X (<0.05)

based counterparts. The obtained P-values (below 0.05) show the relevance
of the adaptive design, as this method leads to a statistically significant im-
provement in multiobjective quality over the remaining approaches in all the
protein datasets under study.

Therefore, both the set coverage and hypervolume confirm the significant
results attained by the adaptive version of MO-SFLA in terms of multiobjec-
tive quality. In this sense, it is important to emphasize that the inclusion of
adaptive techniques in MO-SFLA does not have a noticeable impact in the
execution time of the metaheuristic. To illustrate this point, Table 7 pro-
vides the median execution times reported by each version of MO-SFLA. In
average terms, the adaptive method only implies additional time percentages
of 1.96% and 1.51% with regard to the other design alternatives considered.

Figure 5 graphically shows how the adaptive adjustment of memeplexes
evolves throughout the execution of MO-SFLA in each dataset. It can be
observed that the proposal is able to adapt itself to different search scenarios

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 7: Comparison of execution times (in seconds, using 32 cores). Texec refers to the
median execution time reported by each MO-SFLA design, while4(Domin),4(Indic) rep-
resent the difference between the adaptive version and the dominance-based and indicator-
based counterparts, respectively

Dataset Texec(Domin) Texec(Indic) Texec(Adapt) 4(Domin) 4(Indic)
M67x11333 9135.04 9187.75 9239.93 1.15% 0.57%
M88x3329 1549.27 1562.86 1595.82 3.00% 2.11%
M187x814 1201.49 1202.12 1234.52 2.75% 2.70%
M260x1781 1960.13 1965.07 1990.57 1.55% 1.30%
M355x1263 3572.26 3589.38 3620.24 1.34% 0.86%

represented by the considered problem instances. The assignment of meme-
plexes also suggests the relevance of the two adopted multiobjective strategies
(dominance and indicator), as they are able to manage significant numbers
of memeplexes (at least 10 in the worst case scenario) without none of them
being totally neglected throughout the entire optimization process.

5.4. Comparisons with Other Algorithms and Tools

Once examined the adaptive MO-SFLA over other design alternatives,
this section undertakes next comparisons of solution quality with other mul-
tiobjective methods and state-of-the-art tools for the tackled problem.

Focusing on multiobjective performance, two standard multiobjective
evolutionary algorithms have been considered in the comparisons: NSGA-II
[11] and IBEA [50]. These algorithms represent two of the most commonly
employed reference metaheuristics for dominance-based and indicator-based
multiobjective optimization, respectively. NSGA-II and IBEA have been
adapted to phylogenetic reconstruction by using a matrix-shaped individual
representation. As evolutionary operators, they include binary tournament
selection (according to rank and crowding values in NSGA-II and IHD-based
fitness scores in IBEA), uniform crossover, and gamma-distributed mutation
of evolutionary distances.

Comparisons of set coverage and hypervolume scores from the adaptive
MO-SFLA, NSGA-II, and IBEA are introduced in Tables 8 and 9 (median
results from 31 independent runs). In addition, Table 10 includes the sta-
tistical evaluation of hypervolume samples from the adaptive MO-SFLA,
reporting if statistically significant differences were observed over NSGA-II
and IBEA. Attending to the set coverage metric, the solutions reported by
the proposed adaptive approach are able to dominate significant percentages
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(a) M67x11333 (b) M88x3329

(c) M187x814 (d) M260x1781

(e) M355x1263

Figure 5: Evolution of the adjustment of memeplexes in the adaptive version of MO-SFLA
(mean values observed in the experimentation). It can be observed the roles assigned
to each multiobjective strategy throughout the optimization process in the considered
evaluation scenarios. All to all, both strategies are able to actively collaborate during the
whole execution of the metaheuristic, without none of them being totally stagnated

of the fronts generated by the two other multiobjective algorithms under
comparison. More specifically, set coverage values in the intervals 84.6% –
100% and 69.2% – 98.2% are respectively achieved over NSGA-II and IBEA.
The attained hypervolume scores also highlight the remarkable multiobjec-
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Table 8: Adaptive MO-SFLA: set coverage comparisons with NSGA-II and IBEA.
SC(MO-SFLA,NSGA-II) and SC(MO-SFLA,IBEA) denote the percentage of solutions
from NSGA-II and IBEA that are covered (weakly-dominated) by the solutions from MO-
SFLA, while SC(NSGA-II,MO-SFLA) and SC(IBEA,MO-SFLA) refer to the solutions
from MO-SFLA that are covered by NSGA-II and IBEA, respectively. The best values in
the comparisons are highlighted in bold

SC(MO-SFLA, SC(NSGA-II, SC(MO-SFLA, SC(IBEA,
Dataset NSGA-II) MO-SFLA) IBEA) MO-SFLA)

M67x11333 97.17% 2.11% 98.21% 1.05%
M88x3329 100.00% 0.00% 85.71% 15.39%
M187x814 100.00% 0.00% 72.73% 4.92%
M260x1781 87.34% 11.35% 89.01% 2.13%
M355x1263 84.62% 8.33% 69.23% 8.33%

Table 9: Adaptive MO-SFLA: hypervolume comparisons with NSGA-II and IBEA. Hy-
pervolumes are reported in the format IH±qd, where IH is the median hypervolume score
observed for each algorithm and qd the quartile deviation. The best values in the com-
parisons are highlighted in bold

MO-SFLA NSGA-II IBEA
Dataset IH Score IH Score IH Score

M67x11333 84.38%±0.15 78.79%±0.33 75.85%±0.39
M88x3329 60.40%±0.14 55.98%±0.54 57.42%±0.56
M187x814 66.89%±1.09 58.09%±1.82 59.38%±2.21
M260x1781 77.93%±0.37 65.15%±1.32 71.32%±0.78
M355x1263 75.30%±0.55 71.77%±0.76 72.45%±0.74

Table 10: Adaptive MO-SFLA: statistical comparison of hypervolume samples with
NSGA-II and IBEA. Under a confidence level of 95%, P-values and the corresponding
test output (× = non-significant differences, X = significant differences) are reported

Vs. NSGA-II Vs. IBEA
Dataset P-value Stat. Sign.? P-value Stat. Sign.?

M67x11333 1.29E-11 X (<0.05) 1.33E-11 X (<0.05)
M88x3329 1.33E-11 X (<0.05) 1.33E-11 X (<0.05)
M187x814 1.33E-11 X (<0.05) 1.33E-11 X (<0.05)
M260x1781 1.33E-11 X (<0.05) 1.33E-11 X (<0.05)
M355x1263 1.31E-11 X (<0.05) 4.59E-06 X (<0.05)

tive performance reported by the adaptive MO-SFLA (60.4% – 84.4%), going
a step forward with regard to NSGA-II (55.9% – 78.8%) and IBEA (57.4%
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– 75.9%) in all the problem instances under study.
In fact, the statistical testing of these results in Table 10 confirms that the

adaptive MO-SFLA leads to a statistically significant improvement over these
two reference methods for dominance-based and indicator-based multiobjec-
tive optimization. In this sense, the significance of the proposed adaptive
MO-SFLA lies in the boosted search capabilities provided by the different
components of the algorithm, namely: 1) parallel searches to process differ-
ent directions of the search space simultaneously; 2) memeplexes merging
and shuffling techniques for information sharing; 3) definition of multiple
search operators based on swarm techniques; and more importantly 4) adap-
tive mechanisms to exploit the most effective multiobjective strategy at each
stage of the execution of the algorithm. The integration of all these compo-
nents gives as a result improved multiobjective behaviour for this hard-to-
tackle problem in comparison to the two standard multiobjective methods
herein considered.

With regard to the evaluation of phylogenetic quality, the proposed adap-
tive approach is compared with up to six methods for protein-based phylo-
genetic reconstruction, each one with different characteristics:

1. Two methods for parsimony-based analysis: TNT [14] and ProtPars
[13]. TNT is a reference tool that integrates multiple heuristics and
operators, such as sectorial searches and tree fusing. On the other hand,
ProtPars is the standard method provided in the PHYLIP phylogenetic
package to carry out parsimony analysis from protein data.

2. Four methods for likelihood-based analysis: RAxML [40], IQ-TREE
[29], GARLI [3], and MrBayes [33]. RAxML is a high-performance
tool that combines different low-level optimizations and search tech-
niques, such as rapid hill climbing and lazy subtree rearrangements.
IQ-TREE provides a hill climbing-based stochastic approach to under-
take efficient tree reconstructions. On the other hand, GARLI is a
hybrid evolutionary algorithm that integrates local searches into a ge-
netic algorithm scheme. Finally, MrBayes uses Markov Chain Monte
Carlo techniques and stepping-stone algorithms to define a Bayesian
framework for inferring phylogenies.

The quality of the extreme points in the median-hypervolume execution of
MO-SFLA has been compared with the median solutions generated by each
method (from 31 independent runs, using parametric configurations that
matched the execution time of MO-SFLA). In order to provide statistical
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robustness to these comparisons, two bio-statistical testing procedures have
been applied [47]. For the parsimony comparisons, the Kishino-Hasegawa
(KH) test is employed. This test examines divergence in the substitutions
or mutations detected in the compared phylogenetic topologies to report a
T-value that denotes if statistically significant differences were found among
them. For the likelihood case, the CONSEL approximately unbiased test
(AU) is applied to classify solutions attending to their statistical chance of
representing the most fitting likelihood hypothesis for the input data (where
a higher AU-value denotes higher statistical chance).

Tables 11 and 12 report parsimony / likelihood scores for each method,
along with the output of the corresponding bio-statistical tests. According
to these results, accurate parsimony solutions are generated by the adaptive
proposal as it is able to match the scores found by the state-of-the-art tool
TNT. In addition, both MO-SFLA and TNT succeeded in achieving a statis-
tically significant improvement over ProtPars in all the datasets, as pointed
out by the T-values reported by the KH test. As for likelihood, the adaptive
proposal reaches the scores reported by RAxML and IQ-TREE in M67x11333
and M88x3329, while improving all the methods under comparison for the
remaining datasets. In this sense, the CONSEL test sheds light on the signif-
icant quality of the likelihood results generated by the adaptive MO-SFLA,
attaining the highest AU-values in all the problem instances under study.
Furthermore, the differences observed in the likelihood scores are more no-
ticeable in problem instances with increased complexity. In M260x1781 and
M355x1263, the adaptive proposal is able to report significant likelihood val-
ues not only with regard to the reference methods but also when comparing
with the previous dominance-based version of MO-SFLA [35] (which origi-
nally attained values of -163,895.81 and -231,186.40).

In order to provide further insight into the benefits of the adaptive MO-
SFLA over the previous version, the biological quality of representative solu-
tions from the median Pareto fronts for the two mentioned harder instances,
M260x1781 and M355x1263, has been compared. The L2 metric was em-
ployed in this context to select the solutions that minimize the Euclidean
distance to the ideal point in Table 1. The phylogenies from the adaptive
MO-SFLA showed scores of P (T )=43,717, L(T )=-164,414.86 in M260x1781
and P (T )=54,870, L(T )=-231,924.79 in M355x1263. On the other hand, the
original MO-SFLA achieved solutions with scores of P (T )=43,739, L(T )=-
164,425.51 in M260x1781 and P (T )=54,886, L(T )=-231,932.95 in M355x1263.
Hence, the solutions reported by the adaptive proposal dominate the ones
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Table 11: Adaptive MO-SFLA: comparisons of solution quality (parsimony) with reference
biological tools (TNT and ProtPars). Parsimony scores (P (T )) and the results of the
Kishino-Hasegawa test (T-value) are provided for each dataset. The best values in the
comparison are highlighted in bold

M67x11333 M88x3329
Method P (T ) T-value P (T ) T-value

MO-SFLA 171,623 Best 33,490 Best
TNT 171,623 0.00 33,490 0.00

ProtPars 173,768 15.07 33,944 9.28
M187x814 M260x1781

Method P (T ) T-value P (T ) T-value
MO-SFLA 29,847 Best 43,529 Best

TNT 29,847 0.00 43,529 0.00
ProtPars 29,955 3.01 44,479 14.81

M355x1263
Method P (T ) T-value

MO-SFLA 54,823 Best
TNT 54,823 0.00

ProtPars 55,328 9.27

from the original version, since an improvement is observed in both parsi-
mony and likelihood objectives. This comparison suggests that the proposed
adaptive approach is able to go a step further in the biological quality of
the solution, boosting the accuracy of MO-SFLA when complex problem
instances are considered.

As in the assessment of multiobjective performance, the improvement
observed over the biological methods under comparison shows the relevant
optimization capabilities of the adaptive MO-SFLA. This algorithmic design
addresses the processing of highly complex search spaces in parallel through
the memeplex concept. These memeplexes evolve independently for a cer-
tain number of learning steps, sharing afterwards the attained knowledge by
means of the merging and shuffling techniques. Moreover, the accuracy of
the method is improved by adaptively using different strategies to assess so-
lutions and search operators, in such a way that the algorithm is able to put
more effort on the processing of promising solutions without dismissing the
exploration of alternative candidates.

In conclusion, the obtained results suggest the relevance of the proposed
adaptive design of MO-SFLA. Considering different multiobjective strategies
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Table 12: Adaptive MO-SFLA: comparisons of solution quality (likelihood) with reference
biological tools (RAxML, IQ-TREE, GARLI, and MrBayes). Likelihood scores (L(T ))
and the results of the CONSEL approximately unbiased test (AU-value) are provided for
each dataset. The best values in the comparison are highlighted in bold

M67x11333 M88x3329
Method L(T ) AU-value L(T ) AU-value

MO-SFLA -473,260.21 0.68 -149,094.84 0.68
RAxML -473,260.21 0.48 -149,094.84 0.64

IQ-TREE -473,260.21 0.63 -149,094.84 0.35
GARLI -473,264.64 0.26 -149,110.96 0.24

MrBayes -473,404.42 0.00 -149,809.72 0.00
M187x814 M260x1781

Method L(T ) AU-value L(T ) AU-value
MO-SFLA -133,871.90 0.61 -163,895.63 0.62
RAxML -133,877.80 0.33 -163,911.41 0.28

IQ-TREE -133,871.96 0.60 -163,899.10 0.52
GARLI -133,875.58 0.44 -163,975.20 0.00

MrBayes -134,008.88 0.01 -165,929.91 0.00
M355x1263

Method L(T ) AU-value
MO-SFLA -231,185.96 0.79
RAxML -231,199.54 0.36

IQ-TREE -231,299.10 0.12
GARLI -231,660.77 0.00

MrBayes -233,060.07 0.00

managed with adaptive procedures, this metaheuristic is able to tackle MOPs
by dynamically adjusting memeplex-based searches according to the most
successful strategy in each stage of the optimization process. The adoption of
such techniques gives as a result a robust metaheuristic engine, with improved
search capabilities that lead to relevant results when reconstructing ancestral
relationships in challenging protein scenarios.

6. Conclusions

This work focused on the study of different design alternatives for the
multiobjective metaheuristic MO-SFLA, a novel optimization method that
combines swarm-based search operators and parallel searches to address hard-
to-tackle MOPs. Using as a case study the inference of evolutionary rela-
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tionships from protein data, two alternative implementations for MO-SFLA
based on different multiobjective mechanisms were examined – dominance-
based and indicator-based variants. Moreover, an additional adaptive design
that dynamically makes use of both multiobjective strategies was introduced
to improve the optimization capabilities of the metaheuristic. The adaptive
version of MO-SFLA is based on the idea of gathering feedback from the
parallel searches managed by each multiobjective strategy, in order to ad-
just them in accordance with the technique that exhibited more satisfying
performance at each stage of the optimization process.

The proposed design alternatives have been assessed with a thorough ex-
perimental study that involved the evaluation of multiobjective performance
in five problem instances comprising real-world protein data. The comparison
of the Pareto fronts generated by the dominance-based and indicator-based
approaches has shown divergences in the performance of each design alter-
native at different regions of the front. On the other hand, the proposed
adaptive approach has successfully allowed MO-SFLA to take advantage of
the capabilities of both multiobjective strategies, achieving significant re-
sults throughout the entire Pareto front. The hypervolume metric has also
confirmed the relevance of the adaptive MO-SFLA, which reports statisti-
cally significant improvements over the dominance-based and indicator-based
counterparts along with less variability in the generated results samples. Such
improvements are also observed over two representative algorithms in mul-
tiobjective optimization, NSGA-II and IBEA. Finally, the evaluation of so-
lution quality under bio-statistical tests (comparing with six state-of-the-art
biological tools) has shown that the adaptive MO-SFLA successfully ad-
dresses challenging optimization scenarios, leading to significant results in
increasingly difficult problem instances.

Future research involves the exploration of other techniques to provide
additional robustness to MO-SFLA. Within the adaptive framework, the in-
tegration of additional multiobjective mechanisms specifically aimed at im-
proving certain multiobjective properties will be pursued, as well as other
search operators to boost the generation of new solutions during the meme-
plex processing. Multiobjective behaviour in complex optimization scenarios
will be further analyzed, using problem instances comprising both protein
and genome data. Finally, the implementation and analysis of heterogeneous
parallel schemes to run the metaheuristic in CPU+co-processor hardware
setups will be undertaken. Such parallel designs are of particular interest
when tackling many-objective optimization problems, due to the additional
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challenges that could imply the consideration of a high number of objectives,
e.g. over the indicator-based side of the application. In this sense, it is neces-
sary an in-depth evaluation of multiple factors (number of objectives, quality
indicator complexity, problem-specific operations, etc.) to identify potential
implications in execution time. On the basis of this evaluation, parallel im-
plementations [22] of the indicator-based strategy can be included to boost
the efficiency of the method in hard-to-tackle many-objective scenarios.

Acknowledgments

This work was partially funded by the AEI (State Research Agency,
Spain) and the ERDF (European Regional Development Fund, EU), under
the contract TIN2016-76259-P (PROTEIN project), as well as Portuguese na-
tional funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal)
projects UID/CEC/50021/2019 and LISBOA-01-0145-FEDER-031901 (PT-
DC/CCI-COM/31901/2017, HiPErBio). Sergio Santander-Jiménez is sup-
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