
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Multiobjective Frog-Leaping Optimization for the

Study of Ancestral Relationships in Protein Data
Sergio Santander-Jiménez, Miguel A. Vega-Rodrı́guez, and Leonel Sousa

Abstract—Among the different scientific domains where meta-
heuristics find applicability, bioinformatics represents a partic-
ularly challenging field due to the multiple complexity factors
involved in the processing of biological data. In this context, the
exploration of protein sequence data is remarkably increasing the
temporal demands of such biological problems, thus motivating
the interest in investigating new approaches that effectively
combine bioinspired metaheuristics and parallelism. This work
addresses the reconstruction of ancestral relationships from
amino acid sequences by using a multiobjective approach based
on the shuffled frog-leaping optimization technique. Due to the
inherent parallel nature of this approach, we define different
parallel schemes aimed at exploiting the computing capabilities
of modern cluster platforms. The experiments performed in five
real datasets give account of the relevance of using parallelism-
aware metaheuristic designs, as well as the need to consider both
parallel performance and solution quality when tackling such
difficult optimization scenarios.

Index Terms—Bioinspired computing, parallelism, multiobjec-
tive optimization, bioinformatics.

I. INTRODUCTION

THROUGHOUT the years, the design of bioinspired meta-

heuristics has been attracting major research interest as

an alternative to traditional optimization techniques to deal

with NP-hard problems. These problems are characterized by

the need to explore a decision space S, seeking for those

solutions that optimize an objective function f : S → R

(or multiple ones in the case of multiobjective optimization

problems). When tackling such problems, the optimization

process becomes a challenging issue due to the presence of

exponentially growing decision spaces and time-consuming

objective functions. In this sense, the advances in metaheuris-

tic search engines, along with the possibility of integrating

parallel computing techniques into them, have given rise to

robust algorithmic approaches which have been successfully

applied in a wide range of scientific domains [1].

However, the introduction of more realistic assumptions

and the publication of computationally demanding datasets

have significantly increased the complexity associated to op-

timization problems in real-world contexts. Computational

biology is a representative example of a research field in which

the problems to be tackled stand out due to their hardness.

Although the processing of large volumes of biological data

Sergio Santander-Jiménez and Leonel Sousa are with the INESC-ID,
Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1000-029, Portugal
(e-mail: sergio.jimenez@tecnico.ulisboa.pt, leonel.sousa@ist.utl.pt).

Miguel A. Vega-Rodrı́guez is with the Department of Computer and Com-
munications Technologies, University of Extremadura, Escuela Politécnica,
Campus Universitario s/n, Caceres 10003, Spain (e-mail: mavega@unex.es)

represents a grand computational challenge by itself, nowadays

there is special emphasis on the study of problems based on

protein sequence data [2]. This represents a further step in

terms of complexity with regard to traditional DNA-based

analyses, since the number of possible character states grows

from 4 nucleotides to 20 amino acids thus having a noticeable

impact e.g., in the objective function calculations.

This work is focused on tackling a well-known bioinformat-

ics problem, the reconstruction of evolutionary relationships

among organisms considering protein-based scenarios [3]. In

this type of biological analyses, the processing of protein

sequence data is said to provide useful knowledge e.g., for

the gene annotation and discovery tasks, the prediction of gene

function, and the construction of gene families [4]. As such

complex data is increasingly playing a major role in current

phylogenetic studies [5], new computational approaches com-

bining stochastic procedures and parallelism are required to

provide high-quality solutions in reasonable time.

In order to address this problem, we undertake the study

of a multiobjective bioinspired approach based on the meta-

heuristic Shuffled Frog-Leaping Algorithm (SFLA) [6], [7].

The proposed design takes the basic features of this algorithm

(swarm techniques and parallel searches) and adapts them to a

multiobjective formulation of the problem. In addition, given

the intrinsically parallel nature of its metaheuristic design,

we define different parallel schemes to allow the exploitation

of high-performance computing systems using the MPI and

OpenMP standards [8]. By performing experimentation over

real-world amino acid datasets, we will carry out the evaluation

of the designed approach from the perspectives of parallel

performance and solution quality, assessing our results by

means of comparisons with other multiobjective approaches

and biological methods from the state of the art.

This paper is organized as follows. The next section sum-

marizes representative works related to the study of protein

data for the targeted problem, whose formulation is explained

in Section III. Section IV describes the main features of the

proposed approach and its parallelization under MPI+OpenMP

approaches. Section V reports experiments and evaluates

results by adopting different performance metrics. Finally,

conclusions and future work lines are included in Section VI.

II. RELATED WORK

The reconstruction of evolutionary relationships has been

tackled in the literature from different perspectives, with a

significant amount of works based on bioinspired computing

approaches. Comprehensive surveys on this subject (with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

special focus on DNA approaches) can be found in [9], [10],

[11]. This section will highlight the most relevant proposals

to address this problem in the protein domain.

Early works on this topic pointed out the need to combine

different techniques to deal with the computational challenge

that this problem represents even on small-sized datasets.

Matsuda et al. [12] provided insight into the additional com-

plexity associated to the analysis of protein sequence data

and the need to apply parallelism and stochastic methods

to reduce execution time. That study led to the proposal

of the first genetic algorithm for maximum likelihood phy-

logenetic reconstruction [13], analyzing 17 EF-1α protein

sequences for experimental purposes. Later on, Reijmers et

al. reported in [14] a genetic algorithm with distance-based

solution encoding to analyze amino acid sequences of 37

G protein-coupled receptors (GPCRs). The combination of

high-performance computing and evolutionary computation to

address the problem was undertaken by Katoh et al. [15],

who proposed a parallel genetic algorithm for processing

amino acid datasets enclosing up to 24 taxa. Pond and Frost

addressed the evolutionary model selection issue at the protein

level by means of an MPI-based parallel genetic algorithm

[16]. In addition, Hill et al. proposed a genetic algorithm

to perform phylogenetic analyses on amino acid sequences

under the maximum parsimony criterion [17], conducting the

validation of the proposal over datasets of human membrane-

bound GPCRs. Other related problems, such as the inference

of protein-protein functional interactions from phylogenetic

profiles, have also been tackled by using these techniques [18].

Due to the publication of increasing volumes of biological

data, more recent works have been aimed at solving the

deficiencies shown by previous approaches in terms of both

processing time and biological quality. As an illustration, the

GARLI software proposed by Zwickl [19] addresses these

issues by hybridizing a genetic algorithm with efficient lo-

cal search operators. This approach has been extended by

integrating parallelism to conduct high-performance and high-

throughput analyses at the nucleotide and amino acid levels

[20]. On the other hand, MetaPIGA [21] comprises different

metaheuristics (including simulated annealing, a traditional

genetic algorithm, and a metapopulation genetic algorithm)

supported on the Java Multi-Threading technology to take

advantage of shared-memory hardware setups. A simulated

annealing search algorithm with support for protein models

was reported by Stamatakis in [22] for the RAxML tool,

one of the current reference methods to perform large-scale

phylogenetic analyses adopting the likelihood criterion [23].

Furthermore, other state-of-the-art approaches, such as TNT

[24] (maximum parsimony), IQ-TREE [25] (maximum likeli-

hood), and MrBayes [26] (Bayesian inference), also allow the

high-performance parallel processing of protein data.

Regarding multiobjective approaches, different proposals

have been reported to carry out the inference of ancestral

relationships over conflicting datasets [27] and divergent op-

timality criteria [28]. We can highlight in this context two

relevant proposals due to Coelho et al. [29], who reported an

immune-inspired approach combining different distance-based

metrics, and Cancino and Delbem [30], who proposed the

NSGA-II-based tool PhyloMOEA to conduct inferences under

parsimony and likelihood. Nevertheless, to the best of our

knowledge all of these multiobjective approaches are focused

on the analysis of nucleotide datasets without considering their

evaluation on protein-based scenarios. The only study close to

the protein domain was reported by Jayaswal et al. [31], who

processed protein-coding mitochondrial DNA sequences by

taking into account divergence on evolution patterns at the first

and second codon sites. In the work herein presented, we aim

to go a step further and address the protein-based reconstruc-

tion challenge by designing a novel multiobjective approach

based on swarm techniques and parallelism awareness. Hence,

the main contributions of this work can be summarized as:

• Proposal of a multiobjective approach based on the

parallelism-aware metaheuristic SFLA, adapting it to the

inference of evolutionary relationships as a case study;

• Identification of parallel opportunities and challenges in

the algorithmic design to define different parallel schemes

(including a novel proposal based on the use of trial

counters to improve load balancing);

• Evaluation of the proposal over five real-world amino acid

datasets, undertaking 1) a thorough analysis of parallel

scalability to determine the efficiency of the proposed

schemes, and 2) the parametric study of the proposal

considering both multiobjective and parallel performance;

• Solution quality assessment through comparisons with up

to 8 reference methods (Non-Dominated Sorting Genetic

Algorithm II NSGA-II, the Indicator-Based Evolutionary

Algorithm IBEA, and 6 state-of-the-art biological tools).

III. PROBLEM FORMULATION

The phylogeny reconstruction problem is aimed at describ-

ing evolutionary hypotheses by inferring ancestral relation-

ships from biological data [3]. Let N be the number of species

to be studied and M the length of their aligned sequences,

defined under the amino acid character state alphabet Λ in

protein analyses. The observed divergence and similarities

allows the description of evolutionary relationships through

phylogenies. In a phylogeny T = (V,E), the node set V

contains the species characterized in the input data (terminal

nodes) and hypothetical ancestors (internal nodes), while the

branch set E defines ancestral linkages between nodes.

This optimization problem involves the exploration of the

phylogeny search space to find the solution which maximizes

or minimizes a biological criterion. Taking into account the

benefits that imply the simultaneous use of different criteria

to address incongruence issues [28], [29], [30], we consider a

multiobjective formulation based on two of the most widely-

used phylogenetic objective functions: parsimony P (T) and

likelihood L(T). The key idea consists of finding a satisfying

approximation to the set of solutions which are not dominated1

by any other one in the solution space, that is, the Pareto-

optimal set containing the best tradeoffs among the objectives.

1Given two solutions x, y ∈ S to a multiobjective optimization problem
with k objectives, we say that x dominates y (x ≻ y) iff ∀ i ∈ [1, 2, ..., k],
fi(x) is not worse than fi(y) and ∃ i ∈ [1, 2, ..., k] such that fi(x) is better
than fi(y). If the second condition is not verified but x is still not worse than
y in all the objectives, x is said to weakly dominate y (x � y).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

Fig. 1. Example of calculation of parsimony P(T) and likelihood L(T) for a single character. In the likelihood case, we assume for the sake of simplicity that
any amino acid different from ’T’ (Threonine) and ’S’ (Serine) is represented by the ’Other’ state

A case study on the Plethodontid salamanders phylogeny

[32] reported in [33] gives account of the relevance of apply-

ing multiobjective approaches to recover accurate solutions

in conflicting phylogenetic scenarios, providing compromise

answers jointly supported by the different objectives under

consideration. Beyond that, multiobjective approaches are also

able to provide insight into the relationship between the

characteristics of the input data and the observed phylogenetic

conflicts, giving researchers more decision-making opportuni-

ties due to the multiple Pareto solutions that are inferred while

also maintaining significant solution quality attending to each

objective separately [29], [33]. Formally, the multiobjective

formulation of the problem can be expressed as:

optimize ~f(T) = {f1(T), f2(T)},

where f1(T) = minimize P (T) ∈ Z,

f2(T) = maximize L(T) ∈ R.

(1)

On the one hand, the parsimony objective aims to minimize

the amount of evolutionary change observed between related

nodes in the phylogenetic topology:

P (T) =

M
∑

i=1

∑

(u,v)∈E

C(ui, vi), (2)

where (u, v) ∈ E is the branch which associates two nodes

u, v ∈ V , ui, vi ∈ Λ the character states at the ith site

of the sequences for u and v, and C(ui, vi) measures if a

substitution event has taken place (C(ui, vi) = 1) or not

(C(ui, vi) = 0) between ui and vi, that is, if a change has been

observed between u and v states at the ith site. While the input

sequences define the character states for the terminal nodes,

the character states for the internal nodes can be computed

through the application of Fitch’s algorithm [3]. In a first step,

the phylogenetic tree to be evaluated is processed in a bottom-

up fashion, assigning to each internal node a set of possible

ancestral states Ai at the ith site. Given an internal node u

with children v, w, Ai(u) is calculated as:

Ai(u) =

{

Ai(v) ∩Ai(w) if Ai(v) ∩Ai(w) 6= 0,
Ai(v) ∪Ai(w) if Ai(v) ∩Ai(w) = 0.

(3)

Once defined the Ai sets, we compute the final character

states by processing the phylogenetic tree in a top-down

fashion. Starting from the root r, a randomly chosen state

in Ai(r) is selected as its final character state ri. For any

remaining internal node u with ancestor h, ui takes the value

hi iff hi is one of the states included in Ai(u). Otherwise, a

random state among the ones in Ai(u) is chosen as ui.

On the other hand, the likelihood objective seeks to max-

imize the conditional probability of observing the character

states in the input sequences given a phylogenetic tree topol-

ogy and a probabilistic model of sequence evolution:

L(T) =

M
∏

i=1

∑

x∈Λ

πxLp (ri = x), (4)

where πx is the stationary probability of the character state

x ∈ Λ and Lp(ri = x) the partial likelihood of observing x in

the root node r ∈ V at the ith site. The computation of partial

likelihoods can be computed through a recursive approach

defined in Felsenstein’s algorithm [3]. Given an internal node

u with children v, w, we calculate Lp(ui = x) as follows:

Lp(ui = x) =





∑

y∈Λ

Pxy (tuv)Lp (vi = y)





×





∑

y∈Λ

Pxy (tuw)Lp (wi = y)



 ,

(5)

where tuv , tuw are the evolutionary times (branch length

values) between u and v, w and Pxy(t) the probability of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

observing a substitution event from x to y within a time

t, which is provided by the model of sequence evolution

considered in the likelihood calculations. For a terminal node l,

Lp(li = x) will be 1 iff li = x and 0 otherwise. Once defined

the partial likelihoods for each state x, Equation 4 provides

the likelihood score of the topology, which is usually reported

in terms of log-likelihood values. Figure 1 provides a simple

example of parsimony and likelihood calculations.

The analysis of protein sequence data in this context is

stated to provide some benefits, e.g., when dealing with large

evolutionary distances, since the functional properties defined

by the 20 possible amino acids allow a higher resolution than

other types of data [3]. However, the consideration of a wider

range of character states can affect the time complexity of the

problem. More specifically, the temporal costs contributed by

the evaluation procedures are generally influenced not only by

the length M of the input sequences but also by the number

of possible character states in Λ. In addition, this optimization

problem requires the processing of huge search spaces which

grow exponentially with the number of input sequences N

according to the double factorial (2N−5)!! [3], [4]. As a result,

it has been demonstrated that phylogeny reconstructions under

both parsimony and likelihood represent NP-hard problems

[34], [35]. These complexity factors justify the need to explore

novel approaches to address this challenging problem.

IV. MULTIOBJECTIVE FROG-LEAPING OPTIMIZATION

In order to tackle phylogeny reconstructions from protein

data, we propose a multiobjective approach based on the

metaheuristic SFLA. This section details the main features of

this method, its adaptation to the problem, and the integration

of high-performance computing techniques to take advantage

of the intrinsic parallel nature of the algorithmic design.

A. Algorithmic Design

SFLA [6] is a population-based metaheuristic built upon

the idea of combining search strategies from Particle Swarm

Optimization with the mixing of information from parallel

local searches described in the Shuffled Complex Evolution

technique. Modelled after the intra and inter-group interac-

tions between frog communities in a swamp, this algorithm

addresses optimization problems by processing different par-

titions of solutions in parallel, which are eventually combined

to allow a global exchange of information among individuals.

At each generation, the population in SFLA is partitioned

into subsets of individuals, named memeplexes, which learn

separately for a certain number of learning steps with the aim

of exploring different directions of the search space. New

solutions are generated through the sharing of information

at the memeplex level by taking as reference the best local

solution in the corresponding partition. This mechanism can be

complemented by considering also the best global individual

identified in the population, in accordance with the status

of the optimization process. Once each memeplex has been

processed, the algorithm carries out a shuffling step to update

the memeplexes in such a way that the best individuals are

equally distributed among the partitions to boost the evolution

Algorithm 1 Multiobjective Shuffled Frog-Leaping Algorithm

Input: maxEval (maximum number of evaluations), popSize (number of individuals

in the population), m (number of memeplexes), n (number of individuals per

memeplex = popSize/m), nl (number of learning steps per memeplex).

Output: PF (non-dominated solutions found by the algorithm).

1: P ← Initialize Population (P , popSize)

2: PF ← 0

3: while ! stop criterion is reached (maxEval) do
4: P ← Fast Non-Dominated Sort and Crowding Computation (P , popSize)

5: {Mem1 ... Memm} ← Shuffle and Distribute into Memeplexes (P , popSize)

6: Bestglobal ← Identify Best Global ({Mem1 ... Memm})
7: for i = 1 to m do
8: Bestlocal ← Identify Best Local (Memi)

9: for j = 1 to nl do
10: P ′

new ← Learn from Best Local (Bestlocal, Memi(n−j))

11: if ! P ′

new ≻ Memi(n−j) then

12: P ′

new ← Learn from Best Global (Bestglobal, Memi(n−j))

13: if ! P ′

new ≻ Memi(n−j) then

14: P ′

new ← Apply Local Search (Memi(n−j))

15: end if
16: end if
17: Memi(n−j) ← P ′

new

18: end for
19: end for
20: P ← Merge Memeplexes (P , {Mem1 ... Memm})
21: PF ← Update Pareto Front (P)

22: end while
23: return PF

of the overall population. Different examples of successful

applications (such as water distribution and power flow opti-

mization, multi-user detection, production planning, etc.) point

out the relevance of SFLA to address challenging problems

[7]. In fact, SFLA has led to significant results in hard-to-solve

bioinformatics problems, including RNA secondary structure

prediction [36] and biomedical data feature selection [37].

In this work, we study a multiobjective approach based

on SFLA named as Multiobjective Shuffled Frog-Leaping

Algorithm (MO-SFLA), which takes advantage of the mul-

tiobjective quality mechanisms from NSGA-II [38] in order

to adapt the SFLA features to the multiobjective context.

Algorithm 1 details the pseudocode of the proposed method.

Its application to the problem addressed in this study involves

an individual representation based on an indirect encoding of

phylogenetic topologies using distance matrices [3]. In this

representation, a solution is codified by a N ×N symmetric

matrix δ (N being the number of input sequences), with each

entry δ[x, y] representing the evolutionary divergence between

two terminal nodes x and y by a floating point number. The

use of distance matrices to encode solutions has been reported

to lead to significant solution quality in previous works, from

both single [39] and multiobjective [28] perspectives. When

using this kind of representation, a tree-building method must

be applied to allow the mapping of the solution from the

distance matrix space to the phylogeny space. Herein, we use

a neighbour-joining algorithm known as BIONJ [3] to recover

phylogenetic topologies from the processed distance matrices.

When initializing the population (line 1 in Algorithm 1),

starter topologies are randomly selected from a repository of

1000 phylogenies generated from bootstrap samples of the

input alignment, computing afterwards the associated distance

matrices. Given a starter solution T = (V,E), its distance ma-

trix δ is calculated by applying the following expression over

each entry δ[x, y]: δ[x, y] =
∑

u,v∈PTx,y

tuv , where PTx,y ⊂ V

refers to the set of nodes included in the path between x

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

Fig. 2. Coarse-grained representation of the parallel processing of memeplexes in MO-SFLA

and y, while tuv represents the length value of the branch

which connects the nodes u, v ∈ PTx,y. Once generated

the initial population, we initialize the Pareto front structure

PF which will be used to store the non-dominated solutions

found throughout the execution of the metaheuristic (line 2).

Afterwards, MO-SFLA proceeds with its main loop until a stop

criterion (e.g., a maximum number of evaluations) is satisfied.

A generation begins by computing Pareto ranks and density

information values for each individual in the population,

applying to this end a fast non-dominated sort and crowding

distance ordering [38] (line 4). These values will be used to

identify solution quality, giving preference to solutions with

lower rank and higher crowding distance within the same rank.

Afterwards, the shuffling procedure (line 5) divides the popu-

lation into m memeplexes, each one composed of n individuals

in such a way that m×n=popSize. During the shuffling, the first

best individual P1 according to its multiobjective quality (rank

and crowding) is assigned to the first memeplex Mem1, the

second best individual P2 goes to the second memeplex Mem2,

the mth best individual goes to the mth memeplex Memm, the

m+1th best individual goes to Mem1, and so on.

The next section in MO-SFLA involves parallel searches

over each memeplex (lines 7-19). Given a memeplex Memi,

its processing is carried out as follows. Firstly, a new distance

matrix P ′new.δ is generated from an individual Memij (line

10) by using the information provided by a reference solution

Ref.δ, given by the best local individual in Memi (identified

in line 8 as the solution belonging to Memi which shows the

best ranking and crowding distance value in that memeplex):

Dxy = rand() · (Ref.δ[x, y]−Memij .δ[x, y]), (6)

P ′new.δ[x, y] = Memij .δ[x, y] +Dxy, (7)

where rand() is a random number from a uniform distribution

in the range [0,1]. Equations 6 and 7 are applied over each

entry P ′new.δ[x, y] such that y < x, ensuring the symmetry

of the resulting distance matrix by assigning P ′new.δ[y, x] =
P ′new.δ[x, y]. Then, the associated phylogeny P ′new.T is in-

ferred and its objective functions scores are calculated. The

resulting individual P ′new is then compared with Memij under

Pareto dominance. In case P ′new does not dominate Memij , a

new solution is generated (line 12) by repeating the previous

steps using as reference the best global individual in the

overall population (identified in line 6 by randomly choosing

an individual among the Nbest ones with better ranking and

crowding distance values in order to provide more variability

to the multiobjective search, being Nbest experimentally set to

3) instead of the best local one. If P ′new does not dominate

after that, this solution is dismissed and replaced by the results

of applying over Memij a phylogeny optimization procedure

(local search, line 14) involving the application of subtree

pruning-regrafting (SPR) and nearest neighbour interchange

(NNI) topological rearrangements. NNI takes a branch of

the tree and performs a swap between the subtrees at the

sides of that branch, while SPR removes a subtree from the

phylogenetic topology and regrafts it in a different place.

These operators are applied following the Progressive Tree

Neighborhood methodology [40], using gradient descent [3]

to optimize the branch lengths of the resulting phylogeny.

The individual obtained by this last procedure is accepted

regardless of the dominance checking in order to improve the

diversity of solutions managed by the search engine.

After nl iterations over Memi, the algorithm goes on with

the next memeplex Memi+1 until all the memeplexes have

been processed. Then, the memeplexes are merged to update

the state of the population and the Pareto front (lines 20-21),

proceeding with a new generation of the metaheuristic.

B. Integrating Parallelism

One of the most relevant features in MO-SFLA lies on

the way the population is partitioned into memeplexes whose

processing is carried out in an independent way at each gener-

ation of the metaheuristic. Its algorithmic design makes MO-

SFLA a parallelism-aware metaheuristic which undertakes the

solution of complex, time-consuming problems by conducting

a parallel processing of the search space while also showing

inherent parallel computing opportunities to accelerate execu-

tion time. More specifically, MO-SFLA shows two main levels

of parallelism: 1) independent processing of different meme-

plexes (inter-memeplex parallelism), and 2) generation of new

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

solutions within each memeplex (intra-memeplex parallelism).

This two-level parallel design matches one of the current

hardware trends: the two-level distributed+shared memory

computing clusters, thus being suitable to be implemented

by combining message-passing techniques with MPI (at the

inter-memeplex level) and multithreading with OpenMP (at

the intra-memeplex level). Figure 2 provides an overview of

the parallel design of MO-SFLA, in which m MPI processes

are spawned in accordance with the number of memeplexes

following a master-worker scheme.

One of these processes assumes initially the role of master,

carrying out the management of the data structures involved

in the evolutionary process. At each generation, the master

computes Pareto ranks and crowding distance values over the

unsorted population Pu to sort it (via fast non-dominated sort

and crowding ordering). The sorted population P s is then

partitioned into m memeplexes using the shuffling procedure,

undertaking afterwards the assignment of memeplexes to the

worker processes. Memi is assigned and copied into the

memory of the ith worker by using MPI_Send (master side)

and MPI_Recv (worker side). Once the assignment of meme-

plexes is complete, each worker conducts in parallel searches

over its corresponding memeplex (in our implementation,

the master assumes a worker role during this step to avoid

idle resources). Upon termination of the worker tasks, their

results are retrieved by the master, integrating them into the

population and updating the Pareto front.

A first approach to parallelize the computations performed

inside each memeplex is given in Algorithm 2. After the

reception of the memeplex (lines 4-7 in Algorithm 2), the

OpenMP work-sharing directive #pragma omp for is used

to parallelize the processing of the memeplex using the

available execution threads (lines 8-18). Each iteration of this

parallel loop involves the different search strategies defined in

MO-SFLA to generate new candidate solutions. Therefore, the

time required by an iteration Tit can be modelled as follows:

Tit=







Tlc if(P’lc ≻ Memij),
Tlc+Tgb if(!P’lc ≻ Memij&&P’gb ≻ Memij),
Tlc+Tgb+Tls otherwise.

(8)

In Equation 8, Tlc, Tgb, and Tls refer to the time required by

the generation and evaluation of a new solution from the best

local individual, from the best global one, and from the local

search, respectively, while P ′lc, P ′gb represent the candidates

generated from the best local and best global individual.

Therefore, Equation 8 denotes a variability in the execution

time required by each iteration of the worker loop: while some

iterations finish after generating P ′lc, others might stop after

generating P ′gb, and others after the local search. This implies

the presence of load imbalance in the parallel processing of

a memeplex. This issue can have a noticeable impact in the

speedup achievable at the parallel loop under static scheduling,

since some threads may finish their assigned iterations (e.g.,

the ones which successfully generate an improved candidate

solution from the best local individual in all their attempts)

while others are still performing their computations. As the

most time-consuming operations (objective functions) are in-

Algorithm 2 Worker tasks in the initial parallel version of

MO-SFLA
1: MPI_Init /* initializing MPI Process #i */

2: #pragma omp parallel num_threads (num_threads)

3: while ! stop criterion is reached (maxEval) do
4: #pragma omp single

5: MPI_Recv (Memi, n, master id)

6: MPI_Recv (Bestglobal, 1, master id)

7: Bestlocal ← Identify Best Local (Memi)

8: #pragma omp for schedule (scheduleType)

9: for j = 1 to nl do
10: P ′

new ← Learn from Best Local (Bestlocal, Memi(n−j))

11: if ! P ′

new ≻ Memi(n−j) then

12: P ′

new ← Learn from Best Global (Bestglobal, Memi(n−j))

13: if ! P ′

new ≻ Memi(n−j) then

14: P ′

new ← Apply Local Search (Memi(n−j))

15: end if
16: end if
17: Memi(n−j) ← P ′

new

18: end for
19: #pragma omp single

20: MPI_Send (Memi, n, master id)

21: end while

Algorithm 3 Worker tasks in the counters-based parallel

version of MO-SFLA
1: MPI_Init /* initializing MPI Process #i */

2: #pragma omp parallel num_threads (num_threads)

3: while ! stop criterion is reached (maxEval) do
4: #pragma omp single

5: MPI_Recv (Memi, n, master id)

6: MPI_Recv (Bestglobal, 1, master id)

7: Bestlocal ← Identify Best Local (Memi)

8: #pragma omp for schedule (scheduleType)

9: for j = 1 to nl do
10: switch (Memi(n−j).counter)

11: case 0: P ′

j ← Learn from Best Local (Bestlocal, Memi(n−j))

12: case 1: P ′

j ← Learn from Best Global (Bestglobal, Memi(n−j))

13: case 2: P ′

j ← Apply Local Search (Memi(n−j))

14: if P ′

j ≻ Memi(n−j) || Memi(n−j).counter == 2 then

15: Memi(n−j) ← P ′

j , Memi(n−j).counter ← 0

16: else
17: Memi(n−j).counter ← Memi(n−j).counter + 1

18: end if
19: end for
20: #pragma omp single

21: MPI_Send (Memi, n, master id)

22: end while

volved in these computations, the resulting idle times can lead

to a significant worsening in parallel performance.

Several strategies can be used to address the load imbalance

problem. Initially, we can keep the original parallel scheme in

Algorithm 2 and rely on the use of the OpenMP dynamic

scheduling policies by setting the scheduleType in line 8 to

’dynamic’. Beyond that, the parallel design of MO-SFLA can

be modified, e.g., to force each iteration of the memeplex pro-

cessing loop to involve only one search regardless of the qual-

ity of the generated candidate solution. This idea is described

in Algorithm 3, where a modified parallel scheme for MO-

SFLA is proposed. The key idea behind this implementation

lies on the use of counters to measure the number of trials an

individual in the population has not been improved. The value

in this counter decides the search strategy to be applied over

the individual during the intra-memeplex processing (lines 10-

13 in Algorithm 3). Given an individual Memij , a value = 0 in

Memij .counter will imply the generation of the new solution

by taking as reference the best local individual in Memi, while

a value = 1 will imply the learning from the best global

individual, and a value = 2 a local search. In case of Memij

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

being improved or local search, the counter is initialized to 0

and the solution stored in Memij (lines 14-15). Otherwise, the

new candidate is discarded and Memij .counter is increased

(line 17) in such a way that, in a new generation of the

metaheuristic (after merging and shuffling at the master), the

worker will make a new attempt over Memij with a different

search strategy. Using this approach, Tit here is defined as:

Tit=







Tlc if(Memij .counter == 0),

Tgb if(Memij .counter == 1),

Tls if(Memij .counter == 2).
(9)

V. EXPERIMENTAL RESULTS AND EVALUATION

This section is focused on the experimental assessment

of MO-SFLA. We will firstly detail experimental conditions

and the metrics used to evaluate the proposal. Afterwards,

we will conduct comparisons among the proposed parallel

schemes and discuss the effect of each design over the

observed speedups. In addition, we will analyze the results

obtained by using different configurations of the algorithm in

order to identify the most satisfying one attending to both

parallel and multiobjective performance. Finally, the quality

of the generated Pareto solutions will be assessed by making

comparisons with other multiobjective and biological methods.

We have conducted experimentation by considering five

real-world amino acid datasets2, representing different prob-

lem sizes in terms of number of sequences and sequence

length: 1) M67x11333: 67 sequences (11333 amino acids

per sequence) of bacterial ancestry euBac proteins [43]; 2)

M88x3329: 88 sequences (3329 amino acids per sequence)

of MCM7 and RPB1/RPB2 from Thermophilic fungi [44]; 3)

M187x814: 187 sequences (814 amino acids per sequence) of

ABC-B transporters from Mycorrhiza-forming fungi [45]; 4)

M260x1781: 260 sequences (1781 amino acids per sequence)

of proto-oncogene MYB from Beta vulgaris [46]; and 5)

M355x1263: 355 sequences (1263 amino acids per sequence)

of DHA2, ARN, and GEX from hemiascomycete yeasts [47].

Our experiments were run on a hybrid distributed+shared-

memory setup composed of four computing nodes intercon-

nected by a Gigabit Ethernet network. Each node contains two

AMD Opteron 6174 ’Magny-Cours’ twelve-core processors at

2.2 GHz with 12MB of L3 cache and 32GB of DDR3 RAM,

running Ubuntu 14.04 LTS. The tested software was compiled

by using GCC 5.2.1 with the -O3 optimization flag.

A. Performance Metrics and Statistical Methodology

Different performance metrics have been used to evaluate

the results achieved by MO-SFLA. In order to measure par-

allel performance, we are using two well-known parallelism

metrics: speedup and efficiency [48]. Let T1 be the execution

time on a single processing unit reported by an application

and Tp the execution time on p processing units. The speedup

SU measures the effective reduction in time achieved by the

2We used ProtTest [3] to choose the most fitting probabilistic model of
sequence evolution to be considered in each dataset. According to its outputs,
we used the LG+Γ model [41] on M67x11333, M88x3329, M187x814, and
M355x1263, while M260x1781 was analyzed under the JTT+Γ model [42].

TABLE I
SERIAL EXECUTION TIME (IN SECONDS) FOR EACH DATASET

M67x11333 M88x3329 M187x814
T1 195059.48 57111.63 44171.92

M260x1781 M355x1263
T1 66748.33 96219.62

TABLE II
NORMALIZATION POINTS FOR HYPERVOLUME CALCULATIONS

Ideal Nadir
Dataset P (T) L(T) P (T) L(T)

M67x11333 171196 -472077.06 199523 -497911.23
M88x3329 33406 -148722.11 34122 -151460.57
M187x814 29772 -133537.22 30620 -136763.70
M260x1781 43420 -163485.56 45119 -167893.13
M355x1263 54685 -230833.34 56040 -237019.23

parallel version of the application (T1

Tp
), while the efficiency Eff

calculates the average utilization of processing units (
SU(p)

p
).

The calculation of these parallel metrics has been conducted

by taking as T1 the execution time reported, for each dataset,

by the serial version of MO-SFLA (Table I).

For multiobjective performance, two metrics have been

adopted [49]: hypervolume and set coverage. Given a Pareto

approximation set X , the hypervolume IH measures the k-

dimensional volume of the objective space R
k (with regard

to a point Zref) which is weakly-dominated by at least one

s ∈ X , that is, the volume of the orthogonal polytope
∏k

:

∏k

=
{

p ∈ R
k : p � s for some s ∈ X

}

. (10)

To avoid the influence of different objective scales, we

normalize the scores of the solutions in X in the scale [0,1]

by using the ideal and nadir points from Table II. These

points correspond to the best (ideal) and the worst (nadir)

objective scores observed (adding or subtracting a 0.25% of

their values to allow room for future comparisons). After

normalization, hypervolume values are calculated with regard

to Zref = (1, 1), taking both objectives to be minimized by

considering positive likelihood values. Regarding the second

multiobjective metric, the set coverage SC compares two

Pareto approximation sets X and Y by calculating the fraction

of solutions in Y which are weakly-dominated by X:

SC(X,Y) =
|{y ∈ Y, ∃x ∈ X : x � y}|

|Y |
. (11)

Since we are studying stochastic methods, the obtained

results samples have been examined under the following

statistical tests (with a confidence level of 95%) to provide

statistical reliability to the comparisons [50]. In a first step,

the Kolmogorov-Smirnov normality test was used in order

to check if the evaluated samples followed a Gaussian distri-

bution. If so, we performed the analysis of homoscedasticity

by using the Levene test, applying accordingly the ANOVA

test in case of detecting homogeneity in variances. In case of

dealing with non-Gaussian distributions or no homogeneity in

variances, the analysis of statistically significant differences

was conducted by using the Wilcoxon-Mann-Whitney test.

The configuration of input parameters in MO-SFLA was

undertaken in the following way. Since the population size

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

TABLE III
EVALUATION OF PARALLEL PERFORMANCE (SPEEDUPS AND

EFFICIENCIES) FOR EACH PARALLEL IMPLEMENTATION OF MO-SFLA

16 cores 32 cores 64 cores
M67x11333

Design SU Eff (%) SU Eff (%) SU Eff (%)
Static 10.39 64.94 16.92 52.88 26.80 41.88

Dynamic 11.66 72.88 20.13 62.91 30.02 46.91
Counters 14.42 90.13 26.25 82.03 45.91 71.73

M88x3329
Static 11.58 72.38 19.10 59.69 31.50 49.22

Dynamic 12.67 79.19 21.34 66.69 32.24 50.38
Counters 14.94 93.38 28.18 88.06 53.76 84.00

M187x814
Static 10.70 66.88 18.58 58.06 30.41 47.52

Dynamic 11.35 70.94 20.41 63.78 33.22 51.91
Counters 14.75 92.19 27.71 86.59 53.54 83.66

M260x1781
Static 12.75 79.69 20.45 63.91 31.57 49.33

Dynamic 13.45 84.06 21.97 68.66 32.40 50.63
Counters 15.65 97.81 29.20 91.25 54.17 84.64

M355x1263
Static 11.92 74.50 21.96 68.63 38.49 60.14

Dynamic 12.86 80.38 23.03 71.97 42.64 66.63
Counters 15.68 98.00 29.87 93.34 54.24 84.75

popSize shows influence over the remaining parameters, we

firstly examined the hypervolume of the outputs generated

when using a range of uniformly distributed values for pop-

Size. According to the reported results, we set popSize to 128.

The configuration of the remaining parameters (the number of

memeplexes m and the number of learning steps per memeplex

nl) requires a more thorough analysis, since these parameters

have an impact not only in multiobjective quality but also in

parallel performance. This issue is addressed in the following

subsections. As stop criterion, we considered a maximum

number of 10000 evaluations in our experiments.

B. Comparison of Parallel Designs

In order to conduct the evaluation of MO-SFLA according

to its best parallel implementation, we introduce firstly a

comparison of parallel performance between the static version

of the metaheuristic and the dynamic and counters-based

implementations described in Section IV.B. For this purpose,

we have measured the speedup and efficiency reported by each

implementation considering growing system sizes (16, 32, and

64 cores), setting initially the values of m and nl to 4 and 32

with the aim of fitting in the organization of our cluster setup.

Table III shows the median speedups and efficiencies observed

from 11 independent runs per experiment.

According to these results, we can verify that the static

implementation attains satisfying speedups when considering

low system sizes (in the range 10.4 - 12.8 for 16 cores).

However, when moving to 32 cores the efficiency barely

reaches the threshold of 60%. This issue is partially solved by

the dynamic version, which leads to efficiencies up to 72.0%

for 32 cores. In spite of this, both static and dynamic versions

failed to achieve an accurate exploitation of parallel resources

when considering 64 cores, showing efficiencies below 47% in

the most time-consuming dataset (M67x11333). On the other

hand, the counters-based approach gives rise to significant

parallel performance in all the scenarios under evaluation. The

attained efficiencies of 90.1% - 98.0% (16 cores), 82.0% -

93.3% (32 cores), and 71.7% - 84.8% (64 cores) suggest that

this strategy is able to satisfactorily address the issues which

affect the other parallel designs under study.

The time analysis of the median-speedup executions pro-

vides insight into the performance penalty introduced by the

different sources of overhead in MO-SFLA: Tcritic (non-

parallelizable time, including serial sections of the algorithm

and the time spent on MPI/OpenMP initializations and termi-

nations), Tcomm (communication time due to message passing

at the memeplex assignment and results delivery sections),

Tsync(intra) (synchronization times among OpenMP threads

at the intra-memeplex level, including waiting times at the

implicit barrier of #pragma omp for), and Tsync(inter)

(synchronization times among MPI processes at the inter-

memeplex level, referred to the times spent until a communica-

tion request is attended). The calculation of overhead time was

conducted by using the OpenMP function omp get wtime(),

which provides accurate time measurement in multi-threaded

contexts. Table IV shows that the factor with the most impact

in execution time is given by the two variations of Tsync.

In the case of the dynamic implementation, the evolution of

Tsync(intra) explains the worsening in efficiency shown when

using high numbers of cores. In fact, the impact of Tsync(intra)

over this implementation and the static one is very similar in

the 64-core scenarios. This is due to the fact that the load

balancing capabilities of the dynamic scheduling are related

to the number of solutions to be generated by each execution

thread inside their memeplex. By increasing the number of

cores, the number of individuals (iterations) per thread is

reduced, giving a narrower window to balance the memeplex

processing. Under these circumstances, the dynamic approach

does not fully solve the load imbalance issue in Equation 8.

On the contrary, the counters-based design leads to a sus-

tainable reduction in the effect of Tsync both at the intra and

inter-memeplex levels. In this approach, the time divergence

during the memeplex processing is only governed by the

differences between Tlc, Tgl, and Tls (Equation 9) instead

of depending on if-conditions that can introduce dramatic

variations in Tit (Equation 8). It is possible then to reduce

significantly the load imbalance inside each memeplex and,

thereby, the inter-memeplex differences as the MPI processes

can finish their tasks in a more equalized way. In fact, mean

improvements of 78.8% and 72.9% are observed in Tsync

with regard to the static and dynamic schemes through the

use of the counters. Even though a rise in Tcritic and Tcomm

is observed, these times do not have a significant effect over

the overall execution time. Therefore, this analysis points out

the counters-based implementation as an effective strategy to

parallelize MO-SFLA, reporting accelerations up to 54x in the

analysis of computationally demanding protein instances.

C. Multiobjective and Parallel Configuration

After determining the most satisfactory parallel implemen-

tation of MO-SFLA, we address the question of finding an

optimal configuration of memeplexes (parameters m and nl)

for the metaheuristic attending to both multiobjective and par-

allel performance. For this purpose, we consider configurations

involving m=2 and nl=64 (named as 2x64), m=4 and nl=32

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

TABLE IV
ANALYSIS OF OVERHEAD IMPACT (IN SECONDS) FOR EACH PARALLEL DESIGN OF MO-SFLA

16 cores 32 cores 64 cores
M67x11333

Design Tcritic Tcomm Tsync(intra) Tsync(inter) Tcritic Tcomm Tsync(intra) Tsync(inter) Tcritic Tcomm Tsync(intra) Tsync(inter)
Static 1.01 5.10 2069.39 4200.04 0.90 5.04 2402.07 2562.71 0.96 5.25 2178.45 1509.46

Dynamic 0.98 4.83 1132.74 3470.67 0.94 4.87 1643.81 1681.14 0.93 4.88 1948.79 1073.56
Counters 1.04 6.01 786.34 806.53 1.24 6.63 774.71 499.09 1.26 6.12 733.61 350.42

M88x3329
Static 1.14 4.75 646.69 423.93 1.07 4.49 659.58 300.80 1.23 5.23 652.43 173.83

Dynamic 0.98 4.87 400.61 295.80 1.09 4.65 537.70 172.99 1.23 4.95 640.65 126.17
Counters 1.23 5.82 144.48 107.58 1.24 6.08 108.50 61.77 1.25 6.07 77.35 39.53

M187x814
Static 1.80 20.39 464.14 863.89 1.79 20.92 483.61 445.40 1.84 20.34 465.38 206.06

Dynamic 1.75 19.46 276.92 649.13 1.61 18.90 345.61 295.31 1.59 19.68 411.11 145.94
Counters 2.68 28.24 101.74 74.33 2.19 27.61 86.97 45.55 2.03 27.91 65.44 23.73

M260x1781
Static 3.55 42.17 535.91 484.03 2.93 40.43 683.94 374.89 2.89 41.71 587.56 328.41

Dynamic 3.26 42.28 420.82 426.56 3.17 42.22 555.73 298.99 2.71 41.25 577.75 246.49
Counters 3.72 47.20 131.31 119.13 3.26 47.70 128.00 75.40 3.81 47.67 106.53 56.52

M355x1263
Static 3.71 43.70 958.12 1213.95 3.34 45.10 829.02 712.46 3.63 45.26 794.27 216.41

Dynamic 3.74 43.08 404.77 1014.84 3.20 42.78 488.50 653.87 3.52 41.87 497.76 177.77
Counters 5.33 82.95 270.09 224.81 5.22 83.08 265.01 115.55 5.20 83.12 255.21 59.20

(a) M67x11333 (b) M88x3329 (c) M187x814

(d) M260x1781 (e) M355x1263

Fig. 3. Comparison of hypervolume scores and execution time for different configurations of m x nl

TABLE V
PARALLEL AND MULTIOBJECTIVE RESULTS FOR DIFFERENT CONFIGURATIONS OF m × nl

Multiobjective Metrics
M67x11333 M88x3329 M187x814 M260x1781 M355x1263

Configuration IH (%) SCall (%) IH (%) SCall (%) IH (%) SCall (%) IH (%) SCall (%) IH (%) SCall (%)
2x64 81.49±0.20 17.45 75.21±0.12 13.33 76.47±0.20 14.58 79.20±0.18 10.43 80.63±0.20 15.18
4x32 82.46±0.59 19.28 75.23±0.04 21.64 77.16±0.35 30.91 80.05±0.19 22.36 81.16±0.20 15.84
8x16 83.58±0.58 51.86 75.41±0.04 72.03 77.47±0.46 32.49 80.48±0.14 41.15 81.81±0.11 51.54
16x8 83.84±0.44 58.75 75.42±0.07 77.31 77.66±0.38 69.00 80.69±0.23 71.94 81.98±0.18 72.50
32x4 83.85±0.33 60.45 75.39±0.04 75.00 77.58±0.58 67.51 80.71±0.23 75.38 81.99±0.19 75.67
64x2 83.66±0.33 51.99 75.36±0.07 46.79 77.29±0.58 41.95 80.45±0.11 45.67 81.79±0.21 56.79

Parallel Metrics
SU Eff (%) SU Eff (%) SU Eff (%) SU Eff (%) SU Eff (%)

2x64 43.64±0.89 68.19 49.54±1.33 77.41 52.45±0.33 81.95 53.50±0.40 83.59 50.17±0.81 78.39
4x32 45.91±1.17 71.73 53.76±1.39 84.00 53.54±0.45 83.66 54.17±0.38 84.64 54.24±1.14 84.75
8x16 46.93±1.55 73.33 55.20±1.49 86.25 54.57±0.53 85.27 54.68±0.24 85.44 56.69±0.78 88.58
16x8 47.23±0.95 73.80 56.00±1.19 87.50 55.20±0.39 86.25 54.89±0.35 85.77 58.04±1.25 90.69
32x4 46.93±1.17 73.33 54.44±1.49 85.06 54.13±0.35 84.58 54.33±0.23 84.89 53.85±1.30 84.14
64x2 46.05±1.26 71.95 51.75±1.56 80.86 53.00±0.28 82.81 53.09±0.35 82.95 48.75±1.40 76.17

(4x32), m=8 and nl=16 (8x16), m=16 and nl=8 (16x8), m=32

and nl=4 (32x4), and m=64 and nl=2 (64x2). Considering the

results from 11 independent runs per configuration and dataset,

we report in the upper side of Table V median hypervolume

scores, as well as the results of calculating the set coverage of

each configuration over the remaining ones in their median-

hypervolume executions. The bottom side of Table V shows

the median speedup values and the corresponding efficiencies

attained by each configuration. We provide also in Figure 3 a

graphical representation of the behaviour of each configuration

in terms of hypervolume and execution time.

The analysis of multiobjective results points out the sig-

nificant solution quality reported by the configurations 16x8

and 32x4, which obtain relevant hypervolume scores (in the

interval 75.4% - 83.9%) in all the protein-based datasets under

analysis. Additionally, the set coverage gives account of how

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

these two configurations are able to dominate percentages up

to 77% of the solutions generated by the remaining ones.

Although our results give preference to the use of config-

urations with m≥8, the fact of increasing the number of

memeplexes repeatedly does not guarantee the attainment of

better results (as shown by the worsening introduced in the

configuration 64x2). Particularly, a very high increase in the

number of memeplexes will lead to a reduction in the number

of individuals per memeplex, thus limiting the interactions at

the intra-memeplex level defined by nl. Therefore, from these

results it can be observed the need to involve in the execution

of the metaheuristic an accurate number of memeplexes to

boost the parallel processing of the search space, considering

a proper number of individuals inside each memeplex.

Although the multiobjective metrics point out the relevance

of the configurations 16x8 and 32x4, the characteristics of

MO-SFLA’s design make mandatory the consideration of

parallel performance in order to decide which configuration

provides a better compromise between multiobjective quality

and execution time. The evolution of execution times in Figure

3 and the parallel results reported in Table V show that the

configurations 8x16 and 16x8 are the ones which best take

advantage of parallelism. This is due to the fact that these

configurations allow a better balance between the overhead

introduced by OpenMP (which shows more influence over the

configurations 2x64 and 4x32) and the overhead introduced

by MPI (which has more impact over 32x4 and 64x2).

Therefore, the two sides of this analysis agree on highlight-

ing the satisfactory behaviour achieved by the configuration

16x8 of the metaheuristic. This configuration is not only able

to achieve relevant performance from a parallel perspective,

but also from a multiobjective one. In fact, the statistical

assessment of hypervolume samples (from 31 independent

runs) for the configurations 16x8 and 32x4 reveals that

the improvement observed when using 32x4 in M67x11333,

M260x1781, and M355x1263 is not statistically significant.

D. Results Assessment

We undertake next the assessment of solution quality in

MO-SFLA by introducing comparisons with other multiobjec-

tive and biological methods. For this purpose, we consider the

results generated from 31 independent runs per experiment.

The first issue to be addressed is the comparison between the

parallel and serial versions of the application. Since the parallel

counters-based implementation introduces changes into the

original algorithmic design of MO-SFLA, we need to check

for a possible degradation of the solution quality. Table VI

sheds light on this question, reporting the median hypervolume

scores achieved in each dataset. The output of the statistical

testing of hypervolume samples reports that no statistically

significant differences were found between both versions,

despite the slight improvement observed in the median scores

of the parallel version. Hence, we can state that the counters-

based approach allows MO-SFLA to maintain the solution

quality of its original serial design in noticeably reduced time

(from 54 hours to 69 minutes in the case of M67x11333).

We now introduce comparisons of multiobjective quality

with other multiobjective evolutionary algorithms: the widely-

TABLE VI
HYPERVOLUME IH (%) COMPARISONS WITH THE SERIAL VERSION OF

MO-SFLA (× = STAT. NON-SIGNIFICANT DIFFERENCES, X =
SIGNIFICANT DIFFERENCES)

Dataset Serial Parallel Diff.?
M67x11333 83.83±0.29 83.84±0.44 ×
M88x3329 75.38±0.06 75.42±0.07 ×
M187x814 77.40±0.49 77.66±0.38 ×
M260x1781 80.62±0.20 80.69±0.23 ×
M355x1263 81.92±0.13 81.98±0.18 ×

used NSGA-II and IBEA [51], [52], the latter being a meta-

heuristic that has previously shown significant performance

in DNA contexts [53]. Both NSGA-II and IBEA3 were

parallelized using a hybrid MPI+OpenMP implementation

based on the master-worker scheme, in which the most time-

consuming computations identified in the time profiling of

these algorithms were distributed among the worker processes

and accelerated by using #pragma omp for. More specif-

ically, the master carries out the management of popula-

tions, the identification of multiobjective quality (fast non-

dominated sort and crowding in NSGA-II, indicator-based

fitness assignment and environmental selection in IBEA), and

the application of evolutionary operators to generate offspring

distance matrices. Then, these matrices are distributed via MPI

among the workers, who conduct the inference, topological

optimization, and evaluation of the corresponding phylogenetic

trees with OpenMP. These results are then transferred to the

master, updating the Pareto front structure and beginning a

new generation. Since we are using parallel versions of these

metaheuristics, we also checked if the results reported by these

implementations differed from the serial ones. According to

the statistical analysis of hypervolume samples for NSGA-

II and IBEA, non-significant differences were verified with

regard to their original serial implementations.

Table VII provides median hypervolume values, set cover-

age scores and execution time for each metaheuristic (using

64 cores). A comparison of hypervolume box plots and Pareto

fronts is given in Figure 4. Both hypervolume and set coverage

highlight the quality of the solutions from MO-SFLA in

comparison to NSGA-II and IBEA. On the one hand, the

higher hypervolume values suggest that the Pareto fronts from

MO-SFLA cover a wider area of the objective space, being the

improvement over NSGA-II and IBEA statistically significant

in all the datasets. By examining the Pareto fronts in Figure 4,

we observe how MO-SFLA achieves better multiobjective per-

formance (especially attending to the convergence property),

resulting in mean set coverages over 90% (NSGA-II) and 79%

3The implementations of NSGA-II and IBEA include the same individual
representation as in MO-SFLA with binary tournament selection, uniform
crossover interchanging complete rows of the parent matrices [39], gamma-
distributed mutation of matrix entries [53], and NNI/SPR/gradient optimiza-
tion [40]. Fitness computations in IBEA use the hypervolume-based IHD

indicator [51]. In order to configure these algorithms, we examined the outputs
generated from different configurations using hypervolume, checking for each
input parameter different values uniformly distributed in the parameter range.
For NSGA-II, the best parameter values were found to be: population size
= 96, crossover probability = 70%, and mutation probability = 5%. For
IBEA, we used a population size = 96, crossover probability = 70%, mutation
probability = 5%, fitness scaling factor = 0.05, and IHD reference point =
(2,2). 10000 evaluations were set as stop criterion in both NSGA-II and IBEA.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

(a) M67x11333 (b) M88x3329 (c) M187x814

(d) M260x1781 (e) M355x1263

Fig. 4. Hypervolume box plots and Pareto fronts representation (from the median-hypervolume executions) for MO-SFLA, NSGA-II, and IBEA

(a) M67x11333 (b) M88x3329 (c) M187x814

(d) M260x1781 (e) M355x1263

Fig. 5. Convergence analysis of MO-SFLA, NSGA-II, and IBEA for the median-hypervolume executions

TABLE VII
MULTIOBJECTIVE COMPARISONS WITH NSGA-II AND IBEA (× = STAT. NON-SIGNIFICANT DIFFERENCES. X = SIGNIFICANT DIFFERENCES)

M67x11333 M88x3329 M187x814 M260x1781 M355x1263

Metric Score Score Score Score Score

IH (MO-SFLA) (%) 83.84±0.44 75.42±0.07 77.66±0.38 80.69±0.23 81.98±0.18
IH (NSGA-II) (%) 81.62±0.46 X 74.95±0.12 X 76.20±0.58 X 77.46±0.91 X 80.52±0.22 X

IH (IBEA) (%) 79.80±0.61 X 75.10±0.15 X 76.71±0.64 X 79.27±0.39 X 80.82±0.41 X

SC(MO-SFLA,NSGA-II) (%) 96.23 100.00 90.16 88.61 80.77
SC(NSGA-II,MO-SFLA) (%) 0.00 0.00 8.82 8.13 11.54

SC(MO-SFLA,IBEA) (%) 95.54 92.86 54.55 93.41 61.54
SC(IBEA,MO-SFLA) (%) 1.00 6.67 10.29 2.44 23.08

Texec(MO-SFLA) (s) 4129.91 1019.79 800.26 1216.09 1661.60
Texec(NSGA-II) (s) 5022.84 1259.14 1011.90 1475.17 2004.24
Texec(IBEA) (s) 5271.91 1328.40 1061.20 1498.41 2091.34

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

TABLE VIII
BIOLOGICAL COMPARISONS WITH OTHER PHYLOGENETIC METHODS WITH SUPPORT FOR PROTEIN SEQUENCE DATA

M67x11333 M88x3329 M187x814 M260x1781 M355x1263
Method P (T) T-value P (T) T-value P (T) T-value P (T) T-value P (T) T-value

MO-SFLA 171623 Best 33490 Best 29847 Best 43529 Best 54823 Best
TNT 171623 0.00 33490 0.00 29847 0.00 43529 0.00 54823 0.00

ProtPars 173765 15.07 33944 9.28 29955 3.01 44495 14.88 55328 9.27
Method L(T) AU value L(T) AU value L(T) AU value L(T) AU value L(T) AU value

MO-SFLA -473260.21 0.52 -149094.84 0.71 -133871.90 0.57 -163895.81 0.65 -231186.40 0.74
RAxML -473260.21 0.49 -149094.84 0.64 -133879.69 0.37 -163918.74 0.26 -231201.40 0.43
IQ-TREE -473260.21 0.73 -149094.84 0.32 -133871.96 0.55 -163899.10 0.57 -231301.11 0.12
GARLI -473264.65 0.25 -149111.00 0.23 -133876.72 0.43 -163982.64 0.03 -231859.24 0.00

MrBayes -474968.29 0.00 -149876.82 0.00 -134184.98 0.00 -166016.04 0.00 -233225.50 0.00

(IBEA). These results show the robustness of a metaheuristic

engine involving multiple parallel searches via memeplexes,

swarm-inspired strategies to generate solutions, and shuffling

techniques to spread information among memeplexes.

The convergence analysis shown in Figure 5 sheds light on

how multiobjective quality evolves throughout the execution

of these three algorithms. It can be observed that MO-SFLA,

NSGA-II, and IBEA are able to converge with the defined

stop criterion in all the datasets under analysis. For the case

of M67x11333, M187x814, M260x1781, and M355x1263,

the interval of 8000-10000 evaluations represents the point

where stable hypervolume scores are attained. In M88x3329,

although convergence is achieved in earlier stages, improve-

ments in the objective scores of the solutions in the front are

still observed for the remaining evaluations.

Focusing on phylogenetic quality, Table VIII reports com-

parisons with biological tools from the literature. We have

considered two maximum parsimony methods: the heuristic

tool TNT [24] and ProtPars from the PHYLIP package [54].

The likelihood assessment has been conducted by using four

methods with support for protein data: the reference tool

for high-performance likelihood analyses RAxML [23], the

stochastic hill-climbing method IQ-TREE [25], the genetic

algorithm GARLI [20], and the Bayesian method MrBayes

[26]. Despite also being an evolutionary algorithm, MetaPIGA

[21] has not been included in the comparison since this tool

does not currently include support for the LG+Γ model.

Due to the single-objective nature of these tools, we com-

pare the extreme points of the median-hypervolume Pareto

fronts from MO-SFLA with the median results obtained by

each method from 31 independent runs per dataset. We used

the parallel versions of these methods (when available) with

input parameter configurations that matched the execution time

of MO-SFLA. The comparison has been carried out by using

two biological testing procedures [3]: the Kishino-Hasegawa

(KH) test for parsimony and the CONSEL approximately

unbiased (AU) test for likelihood. The KH test verifies if there

are significant differences between solutions by calculating a

T-value that represents the difference in the minimum number

of substitutions on the phylogenies under comparison. CON-

SEL classifies the examined solutions by assigning a higher

AU value to the phylogeny with higher statistical chance of

representing the best likelihood hypothesis for the input data.

The upper side of Table VIII shows the comparison of

parsimony results. We can observe that MO-SFLA is able

to reach the parsimony quality of TNT in all the consid-

ered datasets, showing non-statistically significant differences

attending to the output of the KH test (T-value = 0). As

for ProtPars, KH reports a statistically significant worsening

with regard to MO-SFLA and TNT. Regarding likelihood

comparisons, the bottom side of Table VIII gives account

of the significant performance of MO-SFLA, which obtains

the highest AU value from CONSEL in four instances. In

terms of likelihood scores, we can observe how the differences

become more noticeable in datasets with a higher number of

protein sequences (M260x1781 and M355x1263). Since the

number of sequences defines the number of possible candidate

solutions, such scores point out the improved processing of the

phylogenetic search space attained by the algorithmic design

of MO-SFLA. It is also worth mentioning that MO-SFLA

is able to report in a single run an increased number of

alternative maximum likelihood hypotheses in comparison to

the remaining methods (e.g., 12 and 8 for M260x1781 and

M355x1263, while the others infer 4 - RAxML - at most).

The attained solution quality gives account of the relevance

of the search mechanisms in MO-SFLA, which tackles hard

optimization scenarios according to three main strategies.

Firstly, the algorithm deals with the problem of exploring

multiple directions of huge search spaces by using the concept

of memeplex to structure the population into partitions that

evolve through the sharing of information between individuals.

Secondly, at each memeplex, the generation of new candidate

solutions takes into account the current status of the opti-

mization process, accordingly using information from the best

local or global individuals or from local search procedures.

Thirdly, the incorporation of memeplex merging and shuffling

strategies is aimed at enhancing the search capabilities of the

algorithm, sharing the knowledge attained during the parallel

searches through a uniform distribution of individuals among

memeplexes at each generation of the algorithm.

In conclusion, this comparative evaluation suggests that

MO-SFLA represents a step further in the solution of complex

phylogenetic reconstructions in the protein domain. On the

one hand, the additional computational complexity introduced

by this kind of biological data has been addressed by means

of an efficient parallel design which successfully exploits

the computing capabilities of hybrid hardware setups. On

the other hand, the definition of a search engine integrating

different evolutionary strategies allows the proposal to conduct

an effective processing of the search space, achieving signifi-

cant solution quality on hard optimization scenarios involving

increasing numbers of sequences in the input alignment.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

VI. CONCLUSIONS

The adoption of more realistic assumptions in the modelling

of optimization problems, along with the increased complexity

observed in real-world data, have led to the need to design

new approaches which effectively combine the advantages of

bioinspired computing and parallelism. We have studied in

this work the application of shuffled frog-leaping optimization

to address the reconstruction of ancestral relationships in

the protein domain. Our approach takes inspiration from the

original SFLA design and integrates multiobjective optimiza-

tion techniques to support a search engine based on the

combination of swarm-based strategies, parallelism awareness

in the shape of memeplexes, and shuffling techniques. Due to

the time-consuming nature of the problem, we have studied the

inclusion of parallelism by defining different parallel schemes

aimed at the exploitation of multicore cluster platforms.

The proposed method, MO-SFLA, has been experimentally

assessed over five real-world amino acid datasets by using

a variety of parallel and multiobjective performance metrics.

The comparison of the proposed parallel schemes has shown

the advantages of associating trial counters to individuals

to overcome load imbalance issues, minimizing idle time at

the intra and inter-memeplex levels. In addition, we have

undertaken the configuration of MO-SFLA taking into account

both parallel and multiobjective perspectives, showing the

impact of each configuration in solution quality and speedups

to identify the one that provides the most satisfying overall

behaviour. On the basis of these results, we have examined

the quality of the solutions generated by MO-SFLA through

comparisons with up to eight multiobjective and biological

methods. While the hypervolume and set coverage highlight

the improved convergence observed in the Pareto fronts, the

biological testing points out the significant solution quality re-

ported by the proposal, especially when complex datasets with

high numbers of protein sequences are involved. The website

http://arco.unex.es/sesaji/protein/ provides different resources

related to the implementation and assessment of MO-SFLA.

Our future work lines are mainly aimed at exploiting addi-

tional parallelism opportunities in the proposal to accelerate

the solution of very time-consuming datasets. More specifi-

cally, we will address the inclusion of new layers of parallelism

e.g., at the objective function loop level, which can be effi-

ciently accelerated by using GPUs and other co-processors on

heterogeneous computing setups. In addition, we will propose

alternative parallel designs of MO-SFLA for the exploitation

of commodity platforms. Regarding its metaheuristic design,

we will study the introduction of additional search strategies

in the memeplexes with the aim of boosting solution quality.

ACKNOWLEDGMENT

This work was partially funded by the AEI (State Re-

search Agency, Spain) and the ERDF (European Regional

Development Fund, EU), under the contract TIN2016-76259-

P (PROTEIN project), as well as Portuguese national funds

through Fundação para a Ciência e a Tecnologia (FCT) with

reference UID/CEC/50021/2013. Sergio Santander-Jiménez is

supported by the Post-Doctoral Fellowship from FCT under

Grant SFRH/BPD/119220/2016.

REFERENCES

[1] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics: recent
advances and new trends,” International Transactions in Operational

Research, vol. 20, no. 1, pp. 1–48, 2013.

[2] J. Pevsner, Bioinformatics and Functional Genomics, 3rd Edition. New
Jersey: Wiley-Blackwell, 2015.

[3] P. Lemey, M. Salemi, and A.-M. Vandamme, The Phylogenetic Hand-

book: a Practical Approach to Phylogenetic Analysis and Hypothesis

Testing. Cambridge: Cambridge Univ. Press, 2009.

[4] A. Rokas, “Phylogenetic Analysis of Protein Sequence Data Using
the Randomized Axelerated Maximum Likelihood (RAxML) Program,”
Current Protocols in Molecular Biology, vol. 96 (19.11), 2011.

[5] J. T. Cannon et al., “Xenacoelomorpha is the sister group to Nephrozoa,”
Nature, vol. 530, pp. 89–93, 2016.

[6] M. M. Eusuff and K. E. Lansey, “Optimization of Water Distribution
Network Design Using the Shuffled Frog Leaping Algorithm,” J. Water

Res. Pl. ASCE, vol. 129, no. 3, pp. 210–225, 2003.

[7] A. Sarkheyli, A. M. Zain, and S. Sharif, “The role of basic, modified
and hybrid shuffled frog leaping algorithm on optimization problems: a
review,” Soft Computing, vol. 19, no. 7, pp. 2011–2038, 2015.

[8] T. G. Mattson, B. Massingill, and B. Sander, Parallel Programming

Patterns: Working with Concurrency in OpenMP, MPI, Java, and

OpenCL. Addison Wesley Professional, 2017.

[9] G. B. Fogel, “Evolutionary Computation for the Inference of Natural
Evolutionary Histories,” IEEE Connect., vol. 3, no. 1, pp. 11–14, 2005.

[10] C. B. Congdon, “Phylogenetic Inference Using Evolutionary Algo-
rithms,” in Computational Intelligence in Bioinformatics. Wiley-IEEE
Press, 2008, pp. 237–262.

[11] M. Sardaraz, M. Tahir, A. A. Ikram, and H. Bajwa, “Applications and
Algorithms for Inference of Huge Phylogenetic Trees: a Review,” Am.

J. Bioinformatics Res., vol. 2, no. 1, pp. 21–16, 2012.

[12] H. Matsuda, H. Yamashita, and Y. Kaneda, “Molecular Phylogenetic
Analysis using both DNA and Amino Acid Sequence Data and Its
Parallelization,” Genome Informatics, vol. 5, pp. 120–129, 1994.

[13] H. Matsuda, “Protein phylogenetic inference using maximum likelihood
with a genetic algorithm,” in Proc. of the Pacific Symposium on

Biocomputing 96. World Scientific, 1996, pp. 512–523.

[14] T. H. Reijmers, R. Wehrens, F. D. Daeyaert, P. J. Lewi, and L. M. C.
Buydens, “Using genetic algorithms for the construction of phylogenetic
trees: application to G-protein coupled receptor sequences,” Biosystems,
vol. 49, no. 1, pp. 31–43, 1999.

[15] K. Katoh, K. Kuma, and T. Miyata, “Genetic algorithm-based maximum-
likelihood analysis for molecular phylogeny,” Journal of Molecular

Evolution, vol. 53, no. 4-5, pp. 477–484, 2001.

[16] S. L. K. Pond and S. D. W. Frost, “A Genetic Algorithm Approach to
Detecting Lineage-Specific Variation in Selection Pressure,” Mol. Biol.

Evol., vol. 22, no. 3, pp. 478–485, 2005.

[17] T. Hill, A. Lundgren, R. Fredriksson, and H. B. Schiöth, “Genetic
algorithm for large-scale maximum parsimony phylogenetic analysis of
proteins,” Biochim. Biophys. Acta., vol. 1725, no. 1, pp. 19–29, 2005.

[18] J. J. Tapia and E. E. Vallejo, “A clustering genetic algorithm for inferring
protein-protein functional interactions from phylogenetic profiles,” in
Proc. of IEEE CEC 2008. IEEE, 2008, pp. 2757–2763.

[19] D. J. Zwickl, Genetic Algorithm Approaches for the Phylogenetic

Analysis of Large Biological Sequence Datasets Under the Maximum

Likelihood Criterion. Ph.D. Thesis. USA: Univ. Texas at Austin, 2006.

[20] A. L. Bazinet, D. J. Zwickl, and M. P. Cummings, “A Gateway for
Phylogenetic Analysis Powered by Grid Computing Featuring GARLI
2.0,” Systematic Biology, vol. 63, no. 5, pp. 812–818, 2014.

[21] R. Helaers and M. Milinkovitch, “MetaPIGA v2.0: maximum likelihood
large phylogeny estimation using the metapopulation genetic algorithm
and other stochastic heuristics,” BMC Bioinformatics, vol. 11, no. 1, pp.
379–389, 2010.

[22] A. Stamatakis, “An Efficient Program for Phylogenetic Inference Using
Simulated Annealing,” in Proc. of the 19th IEEE International Parallel

and Distributed Processing Symposium. IEEE, 2005, pp. 1–8.

[23] A. Stamatakis, “RAxML Version 8: A Tool for Phylogenetic Analysis
and Post-Analysis of Large Phylogenies,” Bioinformatics, vol. 30, no. 9,
pp. 1312–1313, 2014.

[24] P. A. Goloboff and S. A. Catalano, “TNT version 1.5, including a
full implementation of phylogenetic morphometrics,” Cladistics, vol. 32,
no. 3, pp. 221–238, 2016.

[25] L. Nguyen, H. Schmidt, A. Haeseler, and B. Minh, “IQ-TREE: A fast
and effective stochastic algorithm for estimating maximum likelihood
phylogenies,” Mol. Biol. Evol., vol. 32, no. 1, pp. 268–274, 2015.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

[26] F. Ronquist et al., “MrBayes 3.2: Efficient Bayesian Phylogenetic
Inference and Model Choice Across a Large Model Space,” Systematic

Biology, vol. 61, no. 3, pp. 539–542, 2012.
[27] L. Poladian and L. Jermiin, “Multi–Objective Evolutionary Algorithms

and Phylogenetic Inference with Multiple Data Sets,” Soft Computing,
vol. 10, no. 4, pp. 359–368, 2006.

[28] S. Santander-Jiménez and M. A. Vega-Rodrı́guez, “Performance Eval-
uation of Dominance-Based and Indicator-Based Multiobjective Ap-
proaches for Phylogenetic Inference,” Information Sciences, vol. 330,
pp. 293–314, 2016.

[29] G. P. Coelho, A. E. A. Silva, and F. J. V. Zuben, “An Immune-Inspired
Multi–Objective Approach to the Reconstruction of Phylogenetic Trees,”
Neural Comput. Appl., vol. 19, no. 8, pp. 1103–1132, 2010.

[30] W. Cancino and A. C. B. Delbem, “A Multi–Criterion Evolutionary Ap-
proach Applied to Phylogenetic Reconstruction,” in New Achievements

in Evol. Comp. InTech, 2010, pp. 135–156.
[31] V. Jayaswal, L. Poladian, and L. S. Jermiin, “Single- and multi-objective

phylogenetic analysis of primate evolution using a genetic algorithm,”
in Proc. of IEEE CEC 2007. IEEE, 2007, pp. 4146–4153.

[32] J. R. Macey, “Plethodontid salamander mitochondrial genomics: A
parsimony evaluation of character conflict and implications for historical
biogeography,” Cladistics, vol. 21, no. 2, pp. 194–202, 2005.

[33] S. Santander-Jiménez and M. A. Vega-Rodrı́guez, “Applying a Multi-
objective Metaheuristic Inspired by Honey Bees to Phylogenetic Infer-
ence,” BioSystems, vol. 114, no. 1, pp. 39–55, 2013.

[34] W. H. E. Day, D. S. Johnson, and D. Sankoff, “The Computational Com-
plexity of Inferring Rooted Phylogenies by Parsimony,” Mathematical

Biosciences, vol. 81, no. 1, pp. 33–42, 1986.
[35] B. Chor and T. Tuller, “Maximum likelihood of evolutionary trees:

hardness and approximation,” Bioinformatics, vol. 21, pp. 97–106, 2005.
[36] J. Lin, Y. Zhong, and J. Zhang, “A modified discrete shuffled flog

leaping algorithm for RNA secondary structure prediction,” in Advances

in control and communication. Springer, 2012, pp. 591–599.
[37] B. Hu et al., “Feature Selection for Optimized High-dimensional

Biomedical Data using an Improved Shuffled Frog Leaping Algo-
rithm,” IEEE/ACM Trans. Comput. Biol. Bioinform., pp. 1–10, DOI:
10.1109/TCBB.2016.2602263, 2016.

[38] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Eli-
tist Multi–Objective Genetic Algorithm: NSGA-II,” IEEE Trans. Evol.

Comput., vol. 6, no. 2, pp. 182–197, 2002.
[39] L. Poladian, “A GA for maximum likelihood phylogenetic inference

using neighbour-joining as a genotype to phenotype mapping,” in
Genetic and Evolutionary Computation Conference, 2005, pp. 415–422.

[40] A. Goëffon, J. M. Richer, and J. K. Hao, “Progressive Tree Neighbor-
hood Applied to the Maximum Parsimony Problem,” IEEE/ACM Trans.

Comput. Biol. Bioinform., vol. 5, no. 1, pp. 136–145, 2008.
[41] S. Q. Lee and O. Gascuel, “An improved general amino acid replacement

matrix,” Mol. Biol. Evol., vol. 25, no. 7, pp. 1307–1320, 2008.
[42] D. T. Jones, W. R. Taylor, and J. M. Thornton, “The rapid generation of

mutation data matrices from protein sequences,” Bioinformatics, vol. 8,
no. 3, pp. 275–282, 1992.

[43] D. He, O. Fiz-Palacios, C. Fu, J. Fehling, C. Tsai, and S. L. Baldauf,
“An Alternative Root for the Eukaryote Tree of Life,” Current Biology,
vol. 24, no. 4, pp. 465–470, 2014.

[44] I. Morgenstern et al., “A molecular phylogeny of thermophilic fungi,”
Fungal Biology, vol. 116, no. 4, pp. 489–502, 2012.

[45] A. Kovalchuk, A. Kohler, F. Martin, and F. O. Asiegbu, “Diversity
and evolution of ABC proteins in mycorrhiza-forming fungi,” BMC

Evolutionary Biology, vol. 15, no. 249, pp. 1–19, 2015.
[46] R. Stracke et al., “Genome-wide identification and characterisation of

R2R3-MYB genes in sugar beet (Beta vulgaris),” BMC Plant Biology,
vol. 14, no. 249, pp. 1–17, 2014.

[47] P. J. Dias and I. Sá-Correia, “The drug:H+ antiporters of family 2
(DHA2), siderophore transporters (ARN) and glutathione:h+antiporters
(GEX) have a common evolutionary origin in hemiascomycete yeasts,”
BMC Genomics, vol. 14, no. 901, pp. 1–22, 2013.

[48] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach, 5th Edition. Morgan Kaufmann Publishers Inc., 2011.
[49] C. Coello, C. Dhaenens, and L. Jourdan, Advances in Multi-Objective

Nature Inspired Computing. Berlin / Heidelberg: Springer Verlag, 2010.
[50] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical

Procedures. 5th edition. NY, USA: Chapman & Hall/CRC, 2011.
[51] E. Zitzler and D. Brockhoff, “Indicator-Based Evolutionary Algorithm,”

http://www.tik.ee.ethz.ch/sop/pisa/selectors/ibea/?page=ibea.php, 2014.
[52] E. Zitzler and S. Künzli, “Indicator-Based Selection in Multiobjective

Search,” in Parallel Problem Solving From Nature VIII, ser. LNCS, vol.
3242. Springer Verlag, 2004, pp. 832–842.

[53] S. Santander-Jiménez and M. A. Vega-Rodrı́guez, “Inferring Multiob-
jective Phylogenetic Hypotheses by Using a Parallel Indicator-Based
Evolutionary Algorithm,” in Theory and Practice of Natural Computing,
ser. LNCS, vol. 8890. Springer Verlag, 2014, pp. 205–217.

[54] J. Felsenstein, “PHYLIP (phylogeny inference package),” http://
evolution.genetics.washington.edu/phylip.html, 2000.

Sergio Santander-Jiménez received the Ph.D. de-
gree in Computer Engineering from the University of
Extremadura, Spain, in 2016. He is currently a post-
doctoral fellow at the R&D Instituto de Engenharia
de Sistemas e Computadores (INESC-ID), Instituto
Superior Técnico (IST), Universidade de Lisboa
(UL), Portugal. He has co-organized several interna-
tional workshops on high-performance computing,
computational intelligence, computational biology
and bioinformatics, reviewing articles on these topics
for different international JCR-indexed journals. His

main research interests include evolutionary and bioinspired computing,
multi-objective optimization, parallel and distributed computing, and their
applications to real-world biological problems.

Miguel A. Vega-Rodrı́guez received the Ph.D. de-
gree in Computer Engineering from the University
of Extremadura, Spain, in 2003. He is currently an
Associate Professor (accredited as Full Professor) of
computer architecture in the Department of Com-
puter and Communications Technologies, University
of Extremadura. He has authored or co-authored
more than 610 publications including journal papers
(more than 110 JCR-indexed journal papers), book
chapters, and peer-reviewed conference proceedings,
for which he got several awards - such as Best

Paper Awards in ISDA’11, IBERGRID’11, ICEC’09, and IEA-AIE’08. He
has contributed to the organization of several international conferences and
workshops, namely as general chair or co-chair. He has edited 10 special
issues of international JCR-indexed journals. In addition, he is an editor and
a reviewer of diverse international JCR-indexed journals. His main research
interests include parallel and distributed computing, evolutionary computation,
bioinformatics, and reconfigurable and embedded computing.

Leonel Sousa received the Ph.D. degree in Elec-
trical and Computer Engineering from the Instituto
Superior Técnico (IST), Universidade de Lisboa
(UL), Lisbon, Portugal, in 1996. He is currently
a Full Professor with UL and a Senior Researcher
with the R&D Instituto de Engenharia de Sistemas
e Computadores (INESC-ID). He has authored or
coauthored more than 200 papers in journals and
international conferences, and has edited four special
issues of international journals. His research interests
include VLSI architectures, computer architectures

and arithmetic, parallel computing, and signal processing systems. Prof. Sousa
is a Fellow of the IET and a Distinguished Scientist of the ACM. He has
contributed to the organization of several international conferences as Program
Chair and as General and Topic Chair. He is Associate Editor of the IEEE
TMM, IEEE TCSVT, IEEE Access, IET Electronics Letters, Springer JRTIP,
and Editor-in-Chief of the Eurasip JES. He was the recipient of several awards,
including the DASIP’13 Best Paper Award, the SAMOS’11 ’Stamatis Vassil-
iadis’ Best Paper Award, the DASIP’10 Best Poster Award, and Honorable
Mention Awards from the Universidade Técnica de Lisboa/Santander Totta
(2007, 2009) and the Universidade de Lisboa/Santander (2016).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2017.2774599

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

