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Abstract

This paper analyses a system subject to multiple dependent degradation
processes. Degradation processes start at random times following a non ho-
mogeneous Poisson process and next dependently propagate. The growth of
these degradation processes is modeled using gamma increments. We assume
that the arrival of a new process to the system triggers the degradation rate
of the processes present in the system. Under this framework, the analytic
expression of the system reliability is obtained and bounds of the system
reliability are also analyzed. Furthermore, the system is inspected at cer-
tain times. Information on the system health is recorded at these inspection
times and the decision on performing maintenance actions on the system is
taken at these times. We consider in this paper a dynamic inspection policy
since the information that becomes available in an inspection time is taken
into account to schedule the next inspection time. The maintenance cost
for this system is dealt with the use of semi-regenerative process. Numerical
examples are performed to illustrate the analytic expressions.

Keywords: Condition based maintenance, non periodic inspection times,
gamma process, semi-regenerative process.

1. Introduction

Industrial components can be subject to a corrosion process that involves
several competing sources of degradation. A classical example is the pit-
ting corrosion process. Pitting corrosion is defined as localized corrosion of a
metal surface, confined to a point or small area that takes the form of cavities
and it is considered one of the main causes of structural failure in industrial
systems (Bhandari et al. (2015)). Pits usually initiate at random times and
they grow according to the characteristics of the material. Pitting corrosion
comprises two main processes: the initiation and the growth. Due to its
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stochastic nature, some probabilistic models are developed to describe this
corrosion process. Pit initiation can be described using a counting process
such as a Poisson process. Pits growth is modelled using stochastic processes
such as Markovian processes (Huynh et al. (2012)) or gamma processes (Zhu
et al. (2015)). The stochastic modeling of Stress Corrosion Cracking (SCC)
has been also analyzed under this double scheme of initiation and growth
processes. SCC is a corrosion mechanism that forms cracks due to the com-
bined influence of tensile stress and aggressive environment and it can be
found in different components of nuclear power plants (Priya et al. (2005)).

In this paper, a system subject to several sources of degradation (defects)
which appear at random times and next propagate is analyzed. This gen-
eral double scheme appears in many practical cases such as Stress Corrosion
Cracking (SCC) or pitting corrosion phenomenons. Depending on the char-
acteristics of the system, different stochastic processes for the initiation and
for the propagation processes can be chosen. In this paper, defects appear
in the system following a non-homogeneous Poisson process and next prop-
agate or degrade considering gamma increments. We call this probabilistic
model as a NHPP-GP model. Different practical cases validate the NHPP-
GP model. For example, Kuniewski et al. (2009) and Velázquez et al. (2014)
used a NHPP-GP model to analyze the damage in oil industrial systems.
On the other hand, Bordes et al. (2016) fitted a NHPP-GP model for data
from the electricity generator EDF. Applications of the NHPP-GP scheme to
model the Stress Corrosion Cracking can be found in Shafiee et al. (2015) for
a three-bladed rotor system on an offshore wind turbine and in components
of nuclear power plants (Blain et al. (2007) and Huynh et al. (2017) among
others).

These previous papers assume that the defects are identical and they
propagate independent of the rest of the defects. It could be the case for com-
ponents in different production units without interference. However, Crowder
(2001) supported that the existence of common shared factors (same opera-
tional stresses, wear and tear history, materials quality among others) may
indicate the possibility of dependence of the defects. For example, interac-
tion between adjacent defects has a significant influence on the propagation
characteristics of the rest of the defects. Hence it is necessary to develop
models capable of taking into account the interaction phenomena and where
the interaction causes the defects growth changes. An interesting challenging
problem is the study of the dependence for a NHPP-GP model and it is the
main objective of this paper. We call this model a “dependent NHPP-GP”
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model. In the sequel of this work, by defects or degradation processes we
mean the different competing sources of system degradation.

There are some works that deal with the analysis of the dependence be-
tween competing degradation processes. In the earlier work of Straub (2009),
dynamic Bayesian networks are used to represent the dependencies between
defects. In recent years, much attention has been placed on modelling the
dependence between defects using copulas (Zhenyu et al. (2014)). Piecewise-
deterministic Markov processes are also used to describe the dependence
between degradation processes when physics-based models and multi-state
models are used to describe the degradation evolution in certain structures
(Lin et al. (2015)). Other approach to deal with the dependence between
defects is to consider that some randomly occurring events can accelerate
the degradation rate of the processes present in the system. These events
can be, for example, shocks (Rafiee et al. (2014) and Song et al. (2014)) or
even the system workload Che et al. (2017). Following this approach, in this
paper, a reliability model is developed for a system experiencing a dependent
NHPP-GP scheme by considering the changing degradation rate due to the
arrival of different defects to the system. It is motivated by the fact that,
when a system is subject to multiple defects, the magnitude of the interaction
between them is dependent on the number of defects present in the system
(Kamaya (2008)).

For degrading complex systems, different ways of defining the system fail-
ure can be used. For example, Huynh et al. (2017) assumes that the system
can be considered as failed when the sum of the degradation levels of all
the processes exceeds a predetermined value. In this paper, we assume that
the system fails when the degradation level of a process exceeds a failure
threshold (Caballé et al. (2015)). To avoid the system failure, an inspection
strategy is implemented and the decision of maintaining the system is taken
on the basis of the observed condition of the system. Although monitor-
ing can be performed with negligible times between inspections (Zhao et al.
(2018)), in this paper we assume a discrete monitoring. There are many
works in the literature in which the inspections are periodically performed
regardless of the system state. The periodic inspection schemes, compared to
non-periodic ones, are easier to implement (Golmakani and Moakedi (2012))
but it can cause higher costs (Barker and Xiang (2009)). Different models of
non-periodic inspection strategies have been developed based on the residual
useful life (Do et al. (2015)) and on the system degradation (Tai and Chan
(2010) and Grall et al. (2002)). In this paper, inspection times are scheduled
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taking into account the number of degradation processes in the system and
their degradation levels.

In short, the main contributions of this paper are the following:

• Extending the NHPP-GP model assuming dependence between defects.

• Analyzing the system reliability under a dependent NHPP-GP model.

• Proposing a maintenance policy with non-periodic inspection times.

• Building an analytic cost model for the policy using the semi-regenerative
process theory.

The paper is structured as follows. Sectiosn 2 and 3 describe the proba-
bilistic model and analyze the system reliability. Some conditional probabili-
ties are obtained in Section 5. The non-periodic inspection policy is described
in Section 4. Sections 5 and 6 model the system functioning and the main-
tenance strategy using a semi-regenerative process. Numerical examples are
shown in Section 7 and Section 8 concludes.

2. Probabilistic modeling

The assumptions of the model are the following. In the sequel of this work,
we shall use the terms “degradation processes” and “defects” interchangeably.

1. We consider a system subject to different degradation processes or de-
fects. Degradation processes start at random times following a Non
Homogeneous Poisson process with intensity λ(t). Let {N(t), t ≥ 0}
be the process that governs this NHPP with cumulative function given
by

Λ(t) =

∫ t

0

λ(u)du. (1)

Let S1, S2, . . . be the starting points of the NHPP.

2. Each degradation process evolves according to a given rate that can
undergo accelerations under the arrival of more degradation processes
to the system. We assume that the growth of each degradation process
depends on the number of process in the system. So, if Si ≤ s <
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t < Si+1, i ≥ 1, the density of the deterioration increment of the k-th
degradation process in (s, t) is given by

fαci−1(t−s),β(x) =
βαci−1(t−s)

Γ(αci−1(t− s))
xαci−1(t−s)−1e−βx, x ≥ 0,

for k = 1, 2, . . . , i and x ≥ 0 and where Γ denotes the gamma function
defined as

Γ(α) =

∫ ∞

0

uα−1e−udu. (2)

This two stage process (NHPP for the initiation process and Equation
(10) for the growth process) is called a dependent NHPP-GP model
with parameters (λ(t), α, β, c).

3. The system fails when the degradation level of a process exceeds the
failure threshold L. If the system fails, it stops working.

4. The system is inspected to check its status and, depending on its status,
to perform a maintenance task. We assume that the time between
inspections should always exceed a time Tr. Quantity Tr represents the
minimum time necessary to prepare the inspections. This time is used
to arrange the tools and other materials necessary for the inspections

5. Inspections are non-sequentially performed in the following way. Let
T1, T2, . . . , Tn be the inspection times for the system with T1 = T and
T > 0. In an inspection time Ti, the number of degradation processes
present in the system N(Ti) and the degradation levels of each pro-
cess are recorded. Next inspection is planned taking into account this
information. The system degradation at time Ti can be expressed as

W (Ti) =
(
W1(Ti),W2(Ti), . . . ,WN(Ti)(Ti)

)
, (3)

where Wj(Ti) denotes the degradation level at time Ti of the process
that started at time Sj. With this recorded information, next inspec-
tion is scheduled at time

Ti+1 = Ti +m(Ti), (4)

where
m(Ti) = max

(
Tr, T k

N(Ti)(1−max(W (Ti))/M)
)
, (5)

with k < 1, M is a degradation level with M < L, Tr corresponds
to the minimum time between inspections with Tr < T and W (Ti) is
given by Equation (3).
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6. If the system is down in an inspection time, a corrective maintenance
is performed and the system is replaced by a new one (corrective re-
placement).

7. In an inspection time Ti, if the maximum of the degradation levels of
the processes exceeds M but is less than L, a preventive replacement of
the system is performed. A preventive replacement means the system
replacement by a new one.

8. In an inspection time Ti, if the maximum of the degradation levels of
the processes is less than M , the system remains in the state just as
before the inspection time.

9. Inspections are assumed to be instantaneous, perfect and non-destructive.

We recall that S1, S2, . . . , denote the starting points of the degradation
processes.

Let Xi(t) be a gamma distribution with parameters ci−1αt y β for i =

1, 2, . . . and X
(j)
i (t) be the j-th replica of Xi(t). Finally, we denote by

{Wi(t), t ≥ 0} the degradation level of the process that started at time Si

for i = 1, 2, . . ..
The system degradation evolves as follows.

• For 0 ≤ t < S1, no degradation process is present in the system.

• For S1 ≤ t < S2, the system is subject to one degradation process. Let
W1(t) be the degradation level of this process at time t. Then

W1(t) = X
(1)
1 (t− S1), S1 ≤ t ≤ S2,

where X
(1)
1 (t−S1) follows a gamma distribution with parameters α(t−

S1) and β.

• For S2 ≤ t < S3, the system is subject to two degradation processes
(with starting points S1 and S2). Then

W1(t) = X
(1)
1 (S2 − S1) +X

(1)
2 (t− S2),

W2(t) = X
(2)
2 (t− S2).

For fixed (S1, S2) = (s1, s2), X
(1)
1 (s2−s1) follows a gamma distribution

with parameter α(s2 − s1) and β and X
(1)
2 (t− s2)(X

(2)
2 (t− s2)) follows

a gamma distribution with parameter αc(t− s2) and β.
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• For S3 ≤ t < S4, the system is subject to three degradation processes
(with starting points S1, S2 and S3). Then

W1(t) = X
(1)
1 (S2 − S1) +X

(1)
2 (S3 − S2) +X

(1)
3 (t− S3),

W2(t) = X
(2)
2 (S3 − S2) +X

(2)
3 (t− S3),

W3(t) = X
(3)
3 (t− S3).

For fixed (S1, S2, S3) = (s1, s2, s3) we get that X
(1)
1 (s2 − s1) follows

a gamma distribution with parameters α(s2 − s1) and β, X
(1)
2 (s3 −

s2)(X
(2)
2 (s3−s2)) follows a gamma distribution with parameters αc(s3−

s2) and β andX
(i)
3 (t−s3) follows a gamma distribution with parameters

αc2(t − s3) and β for i = 1, 2, 3. Due to the additivity of the gamma
distribution, W1(t) follows a gamma distribution with parameters

α1,3,t = α(s2 − s1) + αc(s3 − s2) + αc2(t− s3),

and β, W2(t) follows a gamma distribution with parameters

α2,3,t = αc(s3 − s2) + αc2(t− s3),

and β and W3(t) follows a gamma distribution with parameters

α3,3,t = αc2(t− s3)

and β.

In a general setting, the overall degradation of the process is given by

W (t) = (W1(t),W2(t), . . . ,WN(t)(t))

where the processes Wj(t) can be expressed as follows

Wj(t) =

N(t)−1∑

i=j

X
(j)
i (Si+1 − Si) +X

(j)
N(t)(t− SN(t)), 1 ≤ j ≤ N(t)− 1

(6)

WN(t)(t) = X
(N(t))
N(t) (t− SN(t)), (7)
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and where Wj(t) follows a gamma distribution with shape parameter

αj,N(t),t =

N(t)−1∑

i=j

αci−1(Si+1 − Si) + αcN(t)−1(t− SN(t)),

and scale parameter β with j = 1, 2, . . . , N(t) and WN(t)(t) follows a gamma
distribution with shape parameter αN(t),N(t),t = αcN(t)−1 and scale parameter
β. For fixed N(t) = n (n > 1) and considering a realization (S1, S2, . . . , Sn) =
(s1, s2, . . . , sn) of the arrival process, then Wj(t) given by Equations (6) and
(7) follows a gamma distribution with parameters αj,n,t and β where

αj,n,t =
n−1∑

z=j

αcz−1(sz+1 − sz) + cn−1α(t− sn), (8)

for 1 ≤ j ≤ n− 1 and
αn,n,t = cn−1α(t− sn). (9)

Notice that, if c = 1, then Wj(t) follows a gamma distribution with parame-
ters

αj,n,t =

n−1∑

z=j

α(sz+1 − sz) + α(t− sn) = α(t− sj)

αn,n,t = α(t− sn),

and β, that is, {Wj(t), t ≥ 0} is a gamma process with parameters α and β.

Example 1. The operating parameters given by Blain et al. (2007) are used.
A two stage NHPP-GP process describes the Stress Corrosion Cracking of
different components of nuclear power plants. Defects arrive at the system
following a NHPP with intensity λ = 0.0002 defects per unit time (hours).
Growth process is modelled using a homogeneous gamma process with param-
eters α = 0.0004 (hours)−1 and β = 1.5 (mm)−1. To show the characteristics
of our model, a dependence parameter is given by c = 1.1. Notice that a pa-
rameter dependence c = 1 reduces our model to the model given by Blain
et al. (2007). Figure 1 shows the length of the cracks versus time

In the sequel of this work, we denote by fαj,n,t,β (Fαj,n,t,β) the density
(distribution) of a gamma distribution with parameters αj,n,t and β

fαj,n,t,β(x) =
βαj,n,t

Γ(αj,n,t)
xαj,n,t−1e−βx, x ≥ 0, (10)
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Figure 1: Simulation of a dependent NHPP-GP

where Γ(·) is given by Equation (2).
FromKuniewski et al. (2009), the joint probability density of (S1, S2, . . . , Sn)

given that {N(t) = n} is equal to

fS1,S2,...,Sn|N(t)(s1, s2, . . . , sn|n) =
n!
∏n

i=1 λ(si)

Λ(t)n
, (11)

where Λ(·) is given by Equation (1). Hence, the joint probability is

f(s1, s2, . . . , sn, n) = P (S1 = s1, S2 = s2, . . . , Sn = sn, N(t) = n)

= exp(−Λ(t))

n∏

i=1

λ(si),

for s1 < s2 < . . . < sn < t.
Expectations of the processes {Wj(t), t ≥ 0} for j = 1, 2, . . . given by

Equations (6) and (7) are given next.

Lemma 1. The expectation of the process {Wj(t), t ≥ 0} given by Equations
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(6) and (7) is equal to

E [Wj(t)] =

∞∑

n=j

αcn−1

β

∫ t

0

Λ(s)n

n!
exp(−Λ(s))ds, t ≥ 0, (12)

for j = 1, 2, . . ..

Proof. The proof is given in the Appendix.
Remark. Notice that (12) is equal to

E [Wj(t)] =

∞∑

n=j

αcn−1

β

∫ t

0

P (N(s) = n)ds.

As we expected, expectation E [Wj(t)] is increasing with respect to c for all
j.

A closed-form expression for Equation (12) is obtained assuming that
λ(u) = λ, that is, when the degradation processes arrive to the system
following a homogeneous Poisson process. Firstly, we prove the following
lemma.

Lemma 2. For n ≥ 1 and t > 0,

∫ t

0

sn exp(−λs)ds =
n!

λn+1

(
1−

n∑

k=0

exp(−λt)
(λt)k

k!

)
. (13)

Proof. The proof is given in the Appendix.
Assuming that λ(t) = λ for all t and using Lemma 2, a closed-form

expression for Equation (12) is obtained. The result is given in the following
lemma.

Lemma 3. If the degradation processes start at random times following a
non homogeneous Poisson process with parameter λ, then the expectation of
the processes {W (t), t ≥ 0} shown in Equations (6) and (7) are given by

E [Wj(t)] =
∞∑

n=j

αcn−1

λβ
P [N(t) > n],

where N(t) denotes the number of degradation processes at time t.
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Figure 2: Average degradation for different processes versus t

Proof. The proof is given in the Appendix.
If the defects arrive to the system following a NHPP with parameter λ,

then applying Lemma 3, the differences between expectations are given by

E [Wj(t)]− E [Wj+1(t)] =
αcj−1

λβ
P (N(t) > j).

Example 2. Figure 2 shows the expected degradation (in mm) for different
degradation processes versus t for a dependent NHPP-GP with parameters
(λ, α, β, c). The values of λ, α and β are given by Blain et al. (2007).
Degradation processes start following a homogeneous Poisson process with
parameter λ = 0.0002 defects per hour. Gamma increments are obtained us-
ing α = 0.0004 (hours)−1 and β = 1.5 (mm)−1 with dependence parameter
c = 1.1.

Next section analyzes the system reliability of a system subject to a depen-
dent NHPP-GP model and gives some bounds of the system reliability.
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3. System reliability

Starting at time t = 0 with a new system W (0) = 0, let σz|0 be the first
hitting time to reach the level z by the stochastic process W (t).

σz|0 = inf {t ≥ 0, max(W (t)) ≥ z} .

Lemma 4 gives the analytic expression of F̄σz |0, the survival function of σz|0.

Lemma 4. The survival function of σz|0(·) is given by

F̄σz |0(t) = P (σz|0 ≥ t) = exp(−Λ(t))
(
1 + H̄z(t)

)
. (14)

where H̄z(t) is given by

H̄z(t) =

∞∑

n=1

∫ t

0

∫ t

s1

. . .

∫ t

sn−1

n∏

i=1

λ(si)Fαi,n,t,β(z)dsi, (15)

for n = 1, 2, . . . and s0 = 0 where Fαi,n,t,β(·) denote the distribution function
of a gamma with parameters αi,n,t and β and where αi,n,t is given by (8).

Proof. The proof of this lemma is given in the Appendix. Equation (14)
allows to compute the system reliability for a dependent NHPP-GP model.
If the system fails when the maximum of the defects exceeds the failure
threshold L, then the system reliability is given by

R(t) = F̄σL|0
(t), t ≥ 0,

where F̄σL|0
(t) is obtained replacing z by L in Equation (14).

Since the function (14) is tricky to use, some bounds of this function are
given in Lemma 4 using a a result relating stochastic orders and gamma
distributions given by Müler and Stoyan (2002). Firstly, the definition of
stochastic order and likelihood ratio order is first recalled.

Definition 1. Let X and Y be two non negative random variables with prob-
ability density function fX and fY with respect to the Lebesgue measure, cu-
mulative distribution functions FX and FY and survival functions F̄X and
F̄Y respectively.

• X is said to be smaller than Y in the usual stochastic order (X ≺sto Y )
if F̄X ≤ F̄Y (or FX ≥ FY respectively).
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• X is said to be smaller than Y in the likelihood ratio order (X ≺lr Y )
if fY /fX is non-decreasing on the union of the supports of X and Y .

The likelihood ratio order implies the usual stochastic order.
The result linking the likelihood ratio order and gamma distribution and

given in Müler and Stoyan (2002) (pag.62) is the following.

Lemma 5. Let X e Y be gamma distributed random variables with param-
eters (a1, b1) and (a2, b2), respectively, where ai, bi > 0 for i = 1, 2. Then, if
a1 ≤ a2 and b1 ≥ b2, then X ≺lr Y .

Since the likelihood ratio implies the usual stochastic order, we get that if
a1 ≤ a2 and b1 ≥ b2, then X ≺sto Y , that is

F̄X(t) ≤ F̄Y (t) or equivalently FX(t) ≥ FY (t), ∀t. (16)

Lemma 5 is used to obtain bounds of the system reliability.

Lemma 6. Bounds of the survival function given by (14) are given by

F̄σz|0
(t) ≤ exp

(
−

∫ t

0

λ(u)F̄α(t−u),β(z)du

)
, t ≥ 0 (17)

for the upper bound and for the lower bound

exp(−Λ(t))


1 +

∞∑

i=1

(∫ t

0
λ(s)F i−1

Yz
(t− s)ds

)i

i!


 ≤ F̄σz|0

(t), t ≥ 0. (18)

Notice that the lower bound corresponds to the same expression obtained
by Caballé et al. (2015) in Lemma 2 for the survival function of a system
subject to an independent NHPP-GP model (c = 1).
Proof. The proof is given in the Appendix.

Example 3. Figure 3 shows the survival function F̄σz |0 for different values
of c and for z = 2 mm. This figure has been obtained using parameters given
by Blain et al. (2007) and used in previous examples (λ = 0.0002 defects per
hour, α = 0.0004 (hours)−1 and β = 1.5(mm)−1). The threshold z = 2 is
chosen since the cracks are detectable when their length reaches the detection
threshold z = 2 mm. Figure 3 corresponds to the probability that no defect
has been detected in the system versus time.

Next section computes the system reliability for a system with an initial
degradation. Lemmas 4 and 7 allow to compute the kernel of the stochastic
process that describes the evolution of the system degradation.
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Figure 3: Survival function of crack detection

3.1. System reliability in a degraded system

Given
W (0) = W0 = (x1, x2, . . . , xn),

let σz|x be the first hitting time to the degradation level z, that is,

σz|x = inf {t ≥ 0, max(W (t)) ≥ z} .

Lemma 7. Given W0 = x, the survival distribution F̄σz |x is given by

F̄σz |x(t) =

= exp(−λ(t))

(
n∏

i=1

Fαcn−1t,β(z − xi)

+
∞∑

p=1

∫ t

0

∫ t

sn+1

. . .

∫ t

sn+p−1

p∏

j=1

λ(sn+j)
n∏

i=1

Fα∗
0,n+p,t,β

(z − xi)

p∏

j=1

Fα∗
n+j,n+p,t,β

(z)

)
,

where α∗
0,n+p,t and α∗

n+j,n+p,t are given by

α∗
0,n+p,t = αcn−1sn+1 + αcn(sn+2 − sn+1) + . . .+ αcn+p−1(t− sn+p) (19)
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and for 1 ≤ j ≤ p− 1

α∗
n+j,n+p,t =

p−1∑

i=j

αcn+i−1(sn+i+1 − sn+i) + αcn+p−1(t− sn+p). (20)

Proof. The proof is given in the Appendix.

4. Non-periodic inspection times

An inspection policy is implemented in this paper. As we detail in Section
2, non-periodic inspection times are considered. Following Barker and Xiang
(2009) and Grall et al. (2002), a scheduling function m is defined and this
function determines the amount of time until the next inspection. In this pa-
per this scheduling function depends on the number of degradation processes
in the system and also depends on the degradation levels of these processes.
Let Ti be the time of the i-th inspection. Then, given Ti and recording the
number of degradation processes at time Ti and their degradation levels, next
inspection is scheduled at time Ti+1 given by

Ti+1 = Ti +m(W (Ti)),

where m is given by (5)

m(W (Ti)) = max
(
Tr, T k

N(Ti)(1−max(W (Ti))/M)
)
,

whenever max(W (Ti)) < M . Quantity Tr (with 0 < Tr ≤ T ) represents the
time required to prepare the maintenance facilities. Function m(·) is strictly
increasing, with a minimum value equals to Tr and maximum value equals
to T . The minimum time between inspections prevents from the possibility
of an infinite number of inspections on a finite time interval.

Hence, in an inspection time, the next inspection time scheduling is given
as follows.

• If, in an inspection time, there is no degradation process in the system
N(Ti) = 0, we get that

max
(
Tr, T k

N(Ti)(1−max(W (Ti))/M)
)
= T,

hence next inspection is scheduled T units of time after (consistent with
the model).
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• If, in an inspection time, there are n degradation processes present in
the system and the maximum of the degradation levels does not exceed
M , the system is left as it is and next inspection time is scheduled at
time

max (Tr, T k
n(1−max(W )/M)) .

• If, in an inspection time, the maximum of the degradation levels of the
processes present in the system exceeds M but it is less than the failure
threshold L, then the system is preventively replaced by a new one and
the inspection times are again scheduled based on this renewal.

• If, in an inspection time, the system is not working, then the system is
correctively replaced by a new one and the inspection times are again
scheduled based on this renewal.

Example 4. Parameters given by Blain et al. (2007) are used. Defects
start following a homogeneous Poisson process with parameter λ = 0.0002
defects per hour. Growth process is modeled using the parameters α =
0.0004(hour)−1, β = 1.5(mm)−1 and c = 5. We assume that M = 5 mm,
first inspection is performed at time T = 3000 hours and the minimum time
to perform an inspection is equal to Tr = 1000 hours. Figure 4 shows the
mean time between inspections (in hours) for different values of k. This plot
has been performed using 30000 realizations in each point.

5. Stationary distribution

Let {W (t), t ≥ 0} be the stochastic process that describes the system
degradation at time t. Then, the process {W (t), t ≥ 0} is a regenerative
process with regeneration times the replacement times.

Furthermore, if the arrival of the degradation processes to the system
follows a homogeneous Poisson process, the process {W (t), t ≥ 0} is a semi-
regenerative process with semi-regeneration times the inspection times. After
each inspection, the system evolution depends on the system state in the in-
spection times. The process describing the system state after each inspection
time

Yi = WTi
, i = 1, 2, . . . ,

is a Markov chain taking values in [0,M)× [0,M)× . . . [0,M) and Y0 = 0. As
the chain {Yn, n = 1, 2, . . .} comes back to 0 almost surely, the existence of a
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stationary measure π for {Yn} is proved (Grall et al. (2002)). This stationary
measure is a solution of the invariance equation

π(·) =

∫ M

0

∫ M

0

. . .

∫ M

0

Qx(·)π(dx), (21)

where Qx(·) stands for the transition kernel of {Yn} with

Qx(dy) = Px(W (T+
1 ) ∈ dy) = P (W (T+

1 ) ∈ dy | W (0+) = x), (22)

where T+
1 denotes the instant of time just after T1.

In the sequel of this section, we assume that the degradation processes
start at random times following a homogeneous Poisson process with param-
eter

λ(t) = λ, t ≥ 0.

Next, an expression for the transition kernel is obtained. To achieve this
goal, given N(0) = n with

w0 = W (0) = (x1, x2, . . . , xn), xi ≤ M
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and m0 = m(w0) we first compute the following probability function

Pw0
(dy1, dy2, . . . , dyn+p) = (23)

P (W (m0)
− ∈ (dy1, dy2, . . . , dyn+p) | W (0) = w0).

The following cases are envisioned taking into account the values of n and p
and (x1, x2, . . . , xn).

• Case 1. (x1, x2, . . . , xn) = 0, it means that the system is new, N(0) = 0.
With this initial condition, first inspection is performed at time T1 = T
and two scenarios are envisioned at the time of the next inspection T1.

a No degradation process in [0, T1], that is N(0) = N(T1) = 0, n = 0
and p = 0.

b p degradation processes start to degrade in [0, T1], that is N(0) =
0, N(T1) = p, n = 0 and p > 0.

• Case 2. (x1, x2, . . . , xn) > 0 n degradation processes at time 0 N(0) =
n. With this initial condition, first inspection is performed at time
T1 = m(w0) and two scenarios are envisioned at the time of the next
inspection (T1)

a N(T1) = N(0) = n, no degradation process starts in [0, T1], hence
p = 0.

b n+p degradation processes in T1, that isN(0) = n, N(T1)) = n+p,
n > 0 and p > 0.

With these four cases in mind, probability (23) is computed.

• Case 1.a) If N(0) = N(T1) = 0, probability (23) is given by

P0(dy) = δ0(dy) exp(−λT ). (24)

• Case 1.b) If N(0) = 0 and N(T1) = p > 0, we get that at time T1 = T ,
the degradation level for the j-th degradation process just before the
inspection time is given by

Wj(T ) =

p−1∑

i=j

X
(j)
i (Si+1 − Si) +X(j)

p (T − Sp)

Wp(T ) = X(p)
p (T − Sp),
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where 1 ≤ j ≤ p−1. VariableWj(T ) follows a gamma distribution with
shape parameter αj,p,T where αj,p,T is given by (8) and scale parameter
β. Hence, probability (23) is given by

P0(dy1, dy2, . . . , dyp) = (25)

exp(−λT )

(
λp

∫ T

0

∫ T

s1

. . .

∫ T

sp−1

p∏

j=1

fαj,p,T ,β(yj)dyjdsj

)
.

• Case 2.a) If N(0) = n and N(T1) = n, it means that in [0, T1] n
degradation processes are developed. The degradation level for the j-
th degradation process just before the inspection time T1 = m0 is given
by

Wj(m0) = xj +X(j)
n (m0), 1 ≤ j ≤ n,

where X
(j)
n (m0) follows a gamma distribution with parameters αcn−1m0

and parameter β. Hence, probability (23) is given by

Px(dy1, dy2, . . . , dyn) = exp(−λm0)
n∏

i=1

fcn−1αm0,β(yi − xi)dyi, (26)

• Case 2.b) If N(0) = n and N(T1) = n + p, then in [0, m0] n + p
degradation processes are degraded. The degradation levels of these
n+ p processes just before T1 are equal to

Wj(m0) = xj +

n+p−1∑

i=n

X
(j)
i (Si+1 − Si) +X

(j)
n+p(m0 − Sn+p),

for 1 ≤ j ≤ n with Sn = 0 and

Wj(m0) =

n+p−1∑

i=j

X
(j)
i (Si+1 − Si) +X

(j)
n+p(m0 − Sn+p)

for n+ 1 ≤ j ≤ n + p and

Wn+p(T1) = X
(n+p)
n+p (m0 − Sn+p).
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And,

Px(dy1, dy2, . . . , dyn+p) = exp(−λm0)λ
p ( (27)

∫ m0

0

∫ m0

s1

. . .

∫ m0

sp−1

g(yi)dyi

p∏

j=1

fα∗
j,n+p,m0

,β(yn+j)dyn+jdsn+j

)
,

where α∗
0,n+p,m0

and α∗
j,n+p,m0

are given by (46) and (47) respectively and

g(yi) =

n∏

i=1

fα∗
0,n+p,m0

,β(yi − xi).

Next, we can compute the kernel Qx(dy) given by (22).

For x = 0, we get that

Q0(dy) = δ0(dy)

(
exp(−λT ) +

∞∑

n=1

∫ ∞

M

∫ ∞

M

. . .

∫ ∞

M

P0(dy1, dy2, . . . , dyn)

)

where P0(dy1, dy2, . . . , dyn) is given by (25)

Q0(dy1, dy2, . . . dyn) = exp(−λT )

(
λn

∫ T

0

∫ T

0

. . .

∫ T

sn−1

n∏

j=1

fαj,n,T ,β(yj)

)
dyj,

for yj < M for j = 1, 2, . . . , n.

For x = (x1, x2, . . . , xn) we get that

Qx(dy) = δ0(dy)

(∫ ∞

M

∫ ∞

M

. . .

∫ ∞

M

Px(dy1, dy2, . . . , dyn)

+

∞∑

p=1

∫ ∞

M

∫ ∞

M

. . .

∫ ∞

M

Px(dy1, dy2, . . . , dyn+p)

)

with Px(dy1, dy2, . . . , dyn) and Px(dy1, dy2, . . . , dyn+p) given by (25) and (24).
Finally,

Qx(dy1, dy2, . . . dyn) = Px(dy1, dy2, . . . , dyn)

Qx(dy1, dy2, . . . dyn, dyn+1, . . . , dyn+p) = Px(dy1, dy2, . . . , dyn+p)
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where Px(dy1, dy2, . . . , dyn) and Px(dy1, dy2, . . . , dyn+p) are given by (26) and
(27).

Following the assumptions of this paper, the probability distribution of
the semi-regenerative process π fulfills Equation (21). The evaluation of π is
really tricky and requires to solve a multi-dimensional integral equation. To
analyze the optimal maintenance strategy, the distribution of π is simulated
in Section 7.

6. Optimal maintenance policy

A maintenance policy is analyzed in this section. The long-run expected
cost per unit time

C∞ = lim
t→∞

C(t)

t
, (28)

where C(t) denotes the cumulative cost incurred in the time interval [0, t]
is chosen as objective cost function. The implementation of this objective
cost function requires the evaluation of the stationary laws of the maintained
system.

Let R1, R2, . . . , be the successive system replacements. The long-run
expected cost per unit time is given by

EC∞ = lim
t→∞

E(C(t))

t
=

E(C(R1))

E(R1)
, (29)

that is, the asymptotic behaviour is focused on the first renewal. How-
ever, when the starting points of the degradation processes follow a homoge-
neous Poisson process, we can take advantage of the properties of the semi-
regenerative process theory since {W (t), t ≥ 0} is a semi-regenerative process
with semi-regeneration times the inspection times. The study of the asymp-
totic behaviour of {W (t), t ≥ 0} can be focused on a single semi-regenerative
cycle (also known as Markov renewal cycle) defined by two successive inspec-
tion times and the long-run maintenance cost rate given by Equation (28)
can be expressed as

C∞ =
Eπ[0, S1]

Eπ[0, S1]
, (30)

where Eπ denotes the s-expectation with respect to the stationary measure
π and S1 denotes the length of the first Markov renewal cycle. Stationary
measure fulfills Equation (21). The use of semi-regenerative processes to
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analyze the optimal maintenance policy is not new in the literature and they
have been used by Bérenguer et al. (2003) and Mercier and Pham (2014)
among others.

Integrating π, some measures related to the system can be calculated. So,
denoting by Eπ[Np(T1)] the number of preventive replacements in a semire-
generation cycle we get that

Eπ[Np(T1)] = π(0)
(
FσM |0(T )− FσL|0(T )

)
(31)

+

∫ M

0

∫ M

0

. . .

∫ M

0

π(dx)
(
FσM |x(m(x))− FσL|x(m(x))

)
, (32)

where F̄σM |x(t) (F̄σL|x(t)) denotes the probability that, starting with W0 = x,
the maximum of the degradation levels does not exceed M (L) at time t

F̄σM |x(t) = Px(max(W (t)) ≤ M).

This function was calculated in Lemma 7 for x 6= 0 and in Lemma 4 for
x = 0.

Denoting by Eπ[Nc(T1)] the number of corrective replacements in a semire-
generation cycle we get that

Eπ[Nc(T1)] = π(0)FσL|0(T ) +

∫ M

0

∫ M

0

. . .

∫ M

0

π(dx)FσL|x(m(x)), (33)

with expected down time in a semiregeneration cycle given by

Eπ[d(T1)] = π(0)

∫ T

0

FσL|0(u)du (34)

+

∫ M

0

∫ M

0

. . .

∫ M

0

π(dx)

∫ m(x)

0

FσL|x(u)du. (35)

Finally, the expected time of a semiregeneration cycle is given by

Eπ[T1] = Tπ(0) +

∫ M

0

∫ M

0

. . .

∫ M

0

π(dx)m(x). (36)

Similar to the reasoning of Grall et al. (2002), using π, the long-run expected
cost per unit time can be expressed as follows

C∞(T,M) =
CiEπ[Ni(T1)]

Eπ[T1]
+

CpEπ[Np(T1)]

Eπ[T1]
+

CcEπ[Nc(T1)]

Eπ[T1]
+

CdEπ[d(T1)]

Eπ[T1]
,

(37)
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where Eπ[Np(T1)], Eπ[Nc(T1)], Eπ[d(T1)] and Eπ[T1] are given by (31:36).
Finally, the number of inspections in a semi-regeneration cycle is given by

Eπ[Ni(T1)] = 1.

The optimization problem is formulated as

C(Topt,Mopt) = inf {C∞(T,M), T ≥ Tr, 0 ≤ M ≤ L}

where C∞(T,M) is given by Equation (37), M denotes the preventive thresh-
old and T denotes the time to the first inspection.

7. Numerical examples

In this section, some numerical examples are developed. To simplify the
calculus, we assume that the system is subject to three degradation processes.
These degradation processes arrive to the system according to a homogeneous
Poisson process with parameter λ = 1 defects per unit time. They grow
with increments given by (10) with parameters α = 1 time units−1, β = 1
(degradation units)−1 and c = 1.01. We assume that the system fails when
the maximum of the degradation levels exceeds L = 8 (degradation units).
Inspections are scheduled according to a function m(·) given by (5) with
k = 0.95 and minimum time between inspections equals to Tr = 1 time
units. Each inspection incurs a cost of Ci = 50 monetary units. We assume
that a preventive replacement is performed when the system is working in an
inspection time but the maximum of the degradation level of the processes
exceeds M with a cost of Cp = 300 monetary units. If the system is failed in
an inspection time, a corrective replacement is performed with an additional
cost of Cc = 400 monetary units. Between inspections, if the system is down,
it incurs in a cost of Cd = 100 monetary units per unit time.

Using the stationary measure π, the long-run expected cost per unit time
given by (37) is calculated. For that, the estimation of π is computed. Notice
that the distribution π is composed of a discrete mass in 0 and of a continuous
part.

To simulate π(0), starting from W0 = 0, 10000 realizations of the Markov
chain Yn = W (Tn) for n = 1, 2, . . . , 10000 are computed and the estimation
of π(0) is computed as the frequency of times that the Markov chain visits
the state 0 in these 10000 realizations.
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Figure 5: Histograms for a sample of π

For example, we estimate the stationary distribution for the following
example. We consider a dependent NHPP-GP model with the following
parameters (λ = 1, α = 1, β = 1, c = 1.01). The preventive threshold is
given by M = 2 degradation units. We assume that T = 3 and Tr = 1 (time
units). Given W0 = 0, 10000 realizations of the Markov chain are computed.
From these realizations, 6939 times the Markov chain visits state 0, hence

π̂0 =
6939

10000
= 0.6939.

In these 10000 realizations, in 762 times, there is just one degradation pro-
cess just after the inspection time. In 928 times, there are two degradation
processes just after the inspection time and, in 1371 times, there are three
degradation processes. Figure 5a shows the histogram for the degradation
level just after the inspection time in these 762 times. Figure 5b shows the
bivariate histogram for the degradation level just after the inspection time
in these 928 times.

Figure 6 shows the objective cost function given by Equation (37) versus
M and T for this model. To compute the values of (37), 10000 replications
of the Markov chain have been computed. With this distribution, stationary
distribution π is estimated. Using this estimation of π, the s-expectations Eπ

are computed using Monte-Carlo simulation. For T , 6 values from 1 to 15
have been considered and for M , 5 values from 0.5 to 8 have been considered.
For the calculus of Eπ, 10000 values have been simulated for each combination
of points and for each value of the estimation of π.
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Figure 6: Objective cost function

Considering this dataset, the optimal maintenance policy

C(Topt,Mopt) = min {C(T,M), Tr ≤ T, 0 ≤ M ≤ L} ,

is obtained for Topt = 6.6 units of time and Mopt = 6.1250 degradation units
with a value of C(Topt,Mopt) = 62.2509 monetary units per unit time.

For the previous example, the parameter k is fixed. However, we can
analyze the optimal maintenance policy considering three parameters to op-
timize: T , M and k. Hence, the objective cost function is equal to

C(Topt,Mopt, kopt) = min {C(T,M, k), Tr ≤ T, 0 ≤ M ≤ L, k ≤ 1} .

As example of the three-dimensional optimization problem, a dependent
NHPP-GP model with parameters λ = 0.75, α = 1, β = 1, c = 1.1 is consid-
ered. The system fails when a degradation process exceeds L = 8 degradation
units. The minimum time between inspections is equal to Tr = 1 time units.
The sequence of costs is the following: the cost for a preventive replacement
is equal to 300 monetary units, the cost for a corrective replacement is equal
to 400 monetary units, the cost for an inspection is equal to 40 monetary
units and the downtime cost is equal to Cd = 80 monetary units per unit
time. Figure 8 shows the minimum expected cost rate versus k.

As we can see, the optimal value is obtained for kopt = 0.80. For fixed
k = 80, Figure 8 shows C∞ versus T and M . This figure has been computed
considering 6 values for T from 1 to 10 and 5 values for M from 0.5 to 8.
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The minimum values for the cost obtained for Topt=6.4 and Mopt = 4.25 with
an expected cost equals to C(Topt,Mopt, kopt) = 63.4729 monetary units per
unit time.

8. Conclusions and further works

This paper analyzes the system reliability for a system subject to many
defects modelled using a NHPP-GP model. NHPP-GP model has been used
in the literature to model, for example, the Stress Corrosion Cracking in
an offshore wind turbine and for components of nuclear power plants. The
novelty of this work is given by the assumption of dependence between the
defects in a NHPP-GP model. We assume that the arrival of a new defect
to the system triggers the degradation rate of the defects present in the
system. With a system subject to different defects and modelled using a
dependent NHPP-GP model, non periodic inspection times are scheduled.
These inspections times are chosen according to the number of degradation
processes present in the system and according to their degradation levels.
An optimal maintenance policy is also analyzed considering techniques of
semi-regenerative processes.

In this work, different defects start at random times and next propagate
dependently according to a degradation law. It could be the case where the
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Figure 8: Expected cost rate for k = 0.80

defects are not adjacent (Bordes et al. (2016)). However, when the defects are
adjacent, they can coalesce to form a single critical defect with catastrophic
consequences. It is well known that the coalescence of cracks plays a critical
role in the growth process. Hence, an extension of this paper would be to
consider a dependent NHPP-GP with coalescence between defects.

In this work, we have considered the same degradation intrinsic process
for all the degradation processes, that is, gamma increments. However, the
property of equal growth process for all the defects may be violated in real
world. For example, there are different degradation processes (cracking, de-
formation) that can develop on the pavement and whose degradation mech-
anism is different. An extension of this work would be to consider different
degradation mechanisms between the processes and the implementation of a
dependence structure between them.
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Appendix

Proof of Lemma 1

Taking expectations in each summation in (6), we get that

E

[
αcn−1(Sn+1 − Sn)

β
1{Sn+1≤t}

]
=

αcn−1

β

∫
· · ·

∫

En+1

g(sn, sn+1)
n+1∏

i=1

λ(si)dsi

(38)

where

En+1 = {(s1, s2, . . . , sn, sn+1), 0 < s1 < s2 < . . . < sn < sn+1 < t}

and
g(sn, sn+1) = (sn+1 − sn) exp {−Λ(sn+1)} .

Integrating (38), we obtain

E
[
(Sn+1 − Sn)1{Sn+1≤t}

]
=

∫ t

0

∫ sn+1

0

g(sn, sn+1)
Λ(sn)

n

n!

n+1∏

i=n

λ(si)dsi

=

∫ t

0

Λ(s)n+1

(n + 1)!
(exp(−Λ(s))− exp(−Λ(t)) ds. (39)

On the other hand,

E
[
(t− Sn)1{Sn≤t≤Sn+1}

]
=

∫
· · ·

∫

En

(t− sn) exp {−Λ(t)}

n∏

i=1

λ(si)dsi

= exp {−Λ(t)}

∫ t

0

(t− s)
Λ(s)n

n!
ds

= exp {−Λ(t)}

∫ t

0

Λ(s)n+1

(n+ 1)!
ds (40)

hence summing (39) and (40), (12) is fulfilled.

Proof of Lemma 2

Induction is used to prove this lemma. For n = 1, (13) is fulfilled.
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We suppose that (13) is true for n and we have to prove that (13) is true
for n+ 1. So, we get that

∫ t

0

sn+1 exp(−λs)ds =
−tn+1

λ
exp(−λt) +

(n+ 1)

λ

∫ t

0

sn exp(−λs)ds.

Using that (13) is true for n, we get that

∫ t

0

sn+1 exp(−λs)ds =
−tn+1

λ
exp(−λt) +

(n + 1)!

λn+1

(
1−

n∑

k=0

exp(−λt)
(λt)k

k!

)

=
(n + 1)!

λn+2

(
1−

n+1∑

k=0

exp(−λt)
(λt)k

k!

)
,

and the result holds.

Proof of Lemma 4

To compute the survival function, the number of defects present in the
system at time t is considered.

F̄σz |0(t) = P (σz ≥ t | W0 = 0)

= P (max(W (t)) ≤ z | W0 = 0)

=

∞∑

n=0

P (max(W (t)) ≤ z, N(t) = n | W0 = 0) .

It is trivial that

P (σz ≥ t, N(t) = 0 | W0 = 0) = exp(−Λ(t)).

For N(t) = 1, we get that

P (σz ≥ t, N(t) = 1 | W0 = 0) = P (S1 ≤ t < S2, X
(1)
1 (t− S1) ≤ z | W0 = 0)

= exp (−Λ(t))

∫ t

0

λ(s)Fα(t−s),β(z)ds, (41)

where Fα(t−s),β denotes the distribution function of a gamma variable with
parameters α(t− s) and β.
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In a general setting,

P (σz ≥ t | W0 = 0) =
∞∑

n=0

P (σz ≥ t, N(t) = n | W0 = 0)

= P (S1 > t) +
∞∑

n=1

P (Sn ≤ t < Sn+1, max(W (t)) < z)

= exp (−Λ(t))

(
1 +

∞∑

n=1

∫ t

0

∫ t

s1

. . .

∫ t

sn−1

n∏

i=1

λ(si)Fαi,n,t,β(z)dsi

)
(42)

with s0 = 0 and where Fαi,n,t,β denotes the distribution function of a gamma
variable with parameters αi,n,t given by (8)and β.

Proof of Lemma 6

Next, Lemma 5 is used to obtain bounds for the distribution function. For
that, we consider the term Fαi,n,t

given in (44). Function Fαi,n,t
corresponds

to the distribution function of a gamma with parameters αi,n,t and β where

αi,n,t =

n−1∑

z=i

αcz−1(sz+1 − sz) + cn−1α(t− sn).

We get that the parameters αi,n,t fulfill

α(t− si) ≤ αi,n,t ≤ cn−1α(t− si), t ≥ si. (43)

Applying Lemma 5 and inequality (43), due to likelihood ratio order implies
the usual stochastic order, we get that

Fαcn−1(t−si),β(z) ≤ Fαi,n,t,β(z) ≤ Fα(t−si),β(z). (44)

Replacing (44) in (15) , we get that

F̄σz |0(t) ≤ exp(−Λ(t))
∞∑

n=0

(∫ t

0

λ(u)Fα(t−u),β(z)du

)n

n!

= exp

(
−

∫ t

0

λ(u)F̄α(t−u),β(z)du

)
, (45)
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or, equivalently,

F̄σz |0(t) ≤ exp

(
−

∫ t

0

λ(u)FYz
(t− u)du

)
,

where FYz
denotes the distribution function of the first hitting time to the

level z for a homogeneous gamma process with parameters α and β

FYz
(t− u) =

∫ ∞

zβ

xα(t−u)−1e−βxdx

∫ ∞

0

xα(t−u)−1e−βxdx

.

On the other hand, considering the lower bound of (44), we get that

F̄Yz
(t) ≥ exp(−Λ(t))


1 +

∞∑

i=1

(∫ t

0
λ(u)Fci−1α(t−u),β(z)du

)i

i!


 ,

or equivalently,

F̄σz |0(t) ≥ exp(−Λ(t))


1 +

∞∑

i=1

(∫ t

0
λ(s)F i−1

Yz
(t− s)ds

)i

i!


 ,

where F̄
(i−1)
Yz

denotes the survival function for the first hitting time to the
level z for a homogeneous gamma process with parameters ci−1α and β, that
is,

F
(i−1)
Yz

(t− s) =

∫ ∞

zβ

uci−1α(t−s)−1e−udu

∫ ∞

0

uci−1α(t−s)−1e−udu

.

Proof of Lemma 7

Given W0 = x, we get that

F̄σz |x(t) = P (σz ≥ t | W0 = x)

= P (max(W (t)) ≤ z | W0 = x)

=

∞∑

p=0

P (max(W (t)) ≤ z, N(t) = n+ p | W0 = x) .
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If N(t) = 0, n degradation processes degrade in [0, t] following a gamma
process with parameters cn−1α and β. Hence,

P (σz ≥ t, N(t) = n | W0 = x) = exp(−λ(t))

n∏

i=1

Fαcn−1t,β(z − xi).

It N(t) = n + p, let Sn+1, Sn+2, . . . , Sn+p be the starting points of the p
additional processes in [0, t]. The degradation levels of the n+p degradation
processes at time t is given by

Wi(t) = xi +X(i)
n (Sn+1) +X

(i)
n+1(Sn+2 − Sn+1) + . . .+X

(i)
n+p(t− Sn+p),

for 1 ≤ i ≤ n,

Wn+j(t) =

p−1∑

i=j

X
(n+j)
n+i (Sn+i+1 − Sn+i) +X

(n+j)
n+p (t− Sn+p),

for n+ 1 ≤ j ≤ n+ p− 1 and

Wn+p(t) = X
(n+p)
n+p (t− Sn+p).

So, for a realization (Sn+1, Sn+2, Sn+p) = (sn+1, sn+2, sn+p), we get that Wi(t)
follows a gamma distribution with parameters

α∗
0,n+p,t = αcn−1sn+1 + αcn(sn+2 − sn+1) + . . .+ αcn+p−1(t− sn+p) (46)

and β for 1 ≤ i ≤ n, Wn+j(t) follows a gamma distribution with parameters

α∗
n+j,n+p,t =

p−1∑

i=j

αcn+i−1(sn+i+1 − sn+i) + αcn+p−1(t− sn+p) (47)

and β for 1 ≤ j ≤ p − 1 and finally Wn+p(t) follows a gamma distribution
with parameters αcn+p−1(t− sn+p) and β.

Hence,

P (σz ≥ t, N(t) = n + p | W (0) = x) = exp(−λ(t)) (
∫ t

0

∫ t

sn+1

. . .

∫ t

sn+p−1

p∏

j=1

λ(sn+j)

n∏

i=1

Fα∗
0,n+p,t,β

(z − xi)

p∏

j=1

Fα∗
n+j,n+p,t,β

(z)

)
.
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Finally, summing all the terms, we get that

F̄σz |x(t) =
∞∑

p=0

P (σz ≥ t, N(t) = n+ p | W (0) = x)

= exp(−λ(t))

(
n∏

i=1

Fαcn−1t,β(z − xi)

+
∞∑

p=1

∫ t

0

∫ t

sn+1

. . .

∫ t

sn+p−1

p∏

j=1

λ(sn+j)
n∏

i=1

Fα∗
0,n+p,t,β

(z − xi)

p∏

j=1

Fα∗
n+j,n+p,t,β

(z)

)
.
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Zhu, W., Fouladirad, M., Bérenguer, C., 2015. Condition-based maintenance
policies for a combined wear and shock deterioration model with covariates.
Computers & Industrial Engineering 85, 268–283.

37


