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Abstract: A two-type two-sex branching process is considered to model the evolution of the number
of carriers of an allele and its mutations of a Y-linked gene. The limiting growth rates of the different
types of couples and males (depending on the allele, mutated or not, that they carry on) on the set of
coexistence of both alleles and on the fixation set of the mutant allele are obtained. In addition, the
limiting genotype of the Y-linked gene and the limiting sex frequencies on those sets are established.
Finally, the main results have been illustrated with simulated studies contextualized in problems of
population genetics.

Keywords: two-sex Galton–Watson branching process; genotype frequencies; mutant allele; growth
rate; sex ratio

1. Introduction

In many populations, the sex of an individual is determined by a pair of chromosomes
X and Y. The females are homozygous and carry XX chromosomes, the males are het-
erozygous and carry XY chromosomes. Sex-linkage occurs if the phenotypic expression
of an allele is related to the chromosomal sex of the individual. Here we are interested in
Y-linkage. Although there are much less Y-linked traits than X-linked traits, recent studies
have shown the significance of Y-linkage in the biology of humans and other animals,
see e.g., [1]. A mathematical model for the propagation of Y-linked genes in two-sex
populations was introduced by González et al. [2] and further studied in [3,4]. The genes
occur in two allelic forms, called R and r, where the latter one cannot mutate, the mating is
assumed to be monogamous (perfect fidelity mating) and with blind choice, that is, females
ignore or do not care about the genotype of the chosen partner.

In this paper we consider the model just outlined but with the additional possibility
of mutations. Such a model was introduced in González et al. [5]. More precisely, in this
paper it is assumed that R represents the nonmutant allelic form of the gene which can
mutate and thus give rise to new allelic forms, all of them denoted by r and called mutant
alleles. Although the latter can also mutate this is ignored in this case because we do not
further distinguish between possible types of mutation, and a reversion, i.e., a mutation
from r back to R, is not allowed. In such paper, conditions for the extinction and survival of
those alleles were studied and also further biological information that explain the relevance
of mutations in this context were provided. Furthermore, inference on the main parameters
of the model was made in [6].

The aim of this work is to find the allele growth rates as well as the limiting genotype
and sex frequencies for such a model in the supercritical case (in terms of the usual
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nomenclature used in branching processes theory). Particularly, the growth rate of the
mutant allele on its fixation set and the one of the nonmutant allele on the coexistence set
are obtained. Also on that set of coexistence, the growth rate of the mutant allele is studied.
However, in this case, mutant allele survival depends on the behaviour of the nonmutant
allele, and this fact makes this study more complex. The obtained results depend on the
relation between the means of the offspring distributions of the different genotypes (with
mutant or nonmutant alleles) and the probability of mutation. Finally, we illustrate the
attained results by way of simulated studies contextualised in problems of population
genetics, such as the evolution of infertility problems in males, the existence of degeneration
of Y chromosome or the possibility of diversity of species without natural selection.

We have split the paper into eight sections. In Section 2 we provide a mathematical
description of the model. Then, in Section 3, we research the limiting growth rate of
the nonmutant allele. Next, we found the rate of growth of the mutant allele on the
coexistence set and also on its fixation set, in Section 4. As consequence, in Section 5, we
deal with the limiting genotype and sex frequencies. Illustrative examples are shown in
Section 6. Finally, in Section 7 some concluding remarks are given and the paper ends with
an Appendix which contains the proofs of the results provided throughout the paper.

2. Model Description

A detailed description of the mathematical model is provided next: individuals are
called females, R-males (males with R-genotype) and r-males (males with r-genotype), and
these can mate with females to form R- or r-couples depending on whether the male is of
type R or r, respectively. In accordance with the rules of genetic inheritance and by taking
the possibility of mutation into account, an R-couple can give birth to females, R-males,
and r-males, whereas, given the assumption of no backmutation, an r-couple gives birth to
females and r-males.

Assuming nonoverlapping generations and given the number of R- and r-couples
in generation n, denoted by ZR

n and Zr
n, respectively, the numbers of females, males, and

couples of each genotype in the next generation are determined by the following two-stage
procedure of reproduction and mating:

In the reproduction phase, couples produce offspring independent of each other and in
accordance with an offspring law which does not depend on the generation, is the same
for a given genotype, but may vary for different genotypes since the mutation could affect
the reproductive capacity. Formally, the numbers of females and males produced by the
couples of type R and r are determined by sequences of independent, identically distributed
(i.i.d.) random vectors, viz.

(FR
ni, MR

ni, MR→r
ni ) and (Fr

ni, Mr→r
ni ), (n, i) ∈ N0 ×N,

respectively. Here, Fx
ni denotes the number of female offspring of the ith x-couple in

generation n with x ∈ {R, r}, while MR
ni and Mr→r

ni denote the numbers of nonmutant male
offspring of the ith R and r-couples, respectively, in generation n, and MR→r

ni denotes the
number of mutant males produce by the ith R-couple in generation n. All variables are
assumed to have finite mean and variance, and we denote

mR = E[FR
ni+MR

ni+MR→r
ni ] and mr = E[Fr

ni + Mr→r
ni ].

Furthermore, the conditional law of (FR
ni, MR

ni, MR→r
ni ) given FR

ni+MR
ni+MR→r

ni = k,
k ≥ 0, is assumed to be multinomial with parameters k, α, (1− α)(1− β) and (1− α)β and
the conditional law of (Fr

ni, Mr→r
ni ) given Fr

ni + Mr→r
ni = k, k ≥ 0, to be multinomial with

parameters k, α, (1− α). This means that α equals the probability that an offspring is female,
while β equals the probability that a newborn male of an R-couple has the mutant allele.
At the end of the reproduction phase, one has Fn+1, MR

n+1, and Mr
n+1, the total numbers of

females, R-males, and r-males, respectively, which constitute the generation n + 1 and they
are determined by the following relations (with the empty sum defined as 0):
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Fn+1 =
ZR
n

∑
i=1

FR
ni+

Zr
n

∑
j=1

Fr
nj,

MR
n+1 =

ZR
n

∑
i=1

MR
ni and Mr

n+1 = MR→r
n+1 +Mr→r

n+1, (1)

where

MR→r
n+1 =

ZR
n

∑
i=1

MR→r
ni and Mr→r

n+1 =
Zr
n

∑
j=1

Mr→r
nj .

Thus, MR→r
n+1 and Mr→r

n+1 denote the total number of r-males stemming from R- and
r-couples in generation n, respectively. Moreover, we denote Zn = ZR

n +Zr
n to the total

number of couples in generation n.
In the mating phase the number of couples of each genotype, that is ZR

n+1 and Zr
n+1, are

determined as follows, given the total number of females, R-males and r-males in generation
n+1. We assume monogamous mating which means that the total number of couples
equals the minimum of Fn+1 and Mn+1 = MR

n+1+Mr
n+1. In the case when Fn+1 ≥ Mn+1,

this means that each male finds a female to mate with, i.e., ZR
n+1 = MR

n+1 and Zr
n+1 = Mr

n+1.
In the case when Fn+1 < Mn+1, females must choose a partner. We assume that this is done
without preference of the genotype (blind choice). As a consequence, the conditional law
of the total number of x-couples Zx

n+1 given (Fn+1, MR
n+1, Mr

n+1) is hypergeometric with
parameters (Fn+1, Mn+1, Mx

n+1) with x ∈ {R, r}.
The bivariate sequence {(ZR

n , Zr
n)}n≥0 describing the evolution of the number of

couples for each type of males over generations is called Y-linked two-sex branching process
with mutations, fidelity mating and blind choice of males. As shown in [5], it is a temporally
homogeneous multitype Markov chain and exhibits the extinction-explosion dichotomy
which is usual for branching processes with independent reproduction.

Notice that, since the empty sum is assumed to be zero, if in some generation there
are no mating units of type R then, from this generation on, the couples and males of that
type as well as mutant-males coming from them no longer exist, that is, if ZR

n = 0 for some
n > 0, then ZR

k = 0, MR
k = 0 and MR→r

k = 0 for all k > n. Also, if ZR
n = 0 and Zr

n = 0 for
some n > 0, then Zr

k = 0 and Mr
k = 0 for all k > n. However, this behaviour is different

for the r-allele when ZR
n 6= 0. Indeed, despite Zr

n = 0, it could happen that some R-couple
gives birth to males whose corresponding allele has suffered a mutation and some of these
males could mate forming couples of type r. Hence, if ZR

n 6= 0, one can find that Mr
k > 0

and Zr
k > 0, for some k > n, even being Zr

n = 0. Taking into account this fact, in [5] was
shown that the survival of the population over generations is determined by the two events
{ZR

n → 0, Zr
n → ∞}, termed r-fixation, and {ZR

n → ∞, Zr
n → ∞} = {ZR

n → ∞} almost
surely (a.s.), termed simultaneous survival of both genotypes or coexistence, that is, the
survival of R-genotype implies also the survival of r-genotype.

The following sections are devoted to the study of asymptotic growth of each genotype
on survival events (in the usually called supercritical case). In all of them we shall write
P(i,j)(·) for P(·|ZR

0 = i, Zr
0 = j) or even the index (i, j) will be dropped in the notation if there

is no ambiguity. To end this section, it is worth mentioning that detailed investigation of
some particular two-type branching processes beyond the general theory has been also
developed in other settings as, for example, in [7].

3. Nonmutant Allele Growth Rate

Next, we assume that (α∧ (1− α))(1− β)mR > 1, where, recall that (1− α)(1− β)mR

is the mean number of R-males per R-couple and α(1− β)mR can be interpreted as the
mean number of females produced by R-couples who mate with R-males. Under this
condition, it was proved in [5] that the survival of R-genotype (equivalently, simultaneous
survival of both genotypes) occurs with positive probability. It then makes, to determine in
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this case, the limiting growth rates for the number of R-couples and R-males. Answer is
provided by the following result.

Theorem 1. Let τR = (α ∧ (1− α))(1− β)mR. If τR > 1, then there exists a random variable
WR which is positive and finite on {ZR

n → ∞}, such that

lim
n→∞

ZR
n

τnR
= WR and lim

n→∞

MR
n

τnR
=

(1− α)(1− β)mR

τR
WR a.s. on {ZR

n → ∞}.

Intuitively speaking, this theorem establishes that the numbers of R-couples and
R-males grow geometrically at the rate given by the mean number of nonmutant males
generated by an R-couple or by the mean number of females stemming from an R-couple
who mate with nonmutant males, respectively, depending on whether α is higher than 0.5
or not.

4. Mutant Allele Growth Rate

Firstly, we consider the study of the rate of growth of the process {Zr
n}n≥0 on the

event of coexistence, that is on {ZR
n → ∞}. This study turns out to be more difficult than

the previous case because of the possible dependency of the survival of the r-allele on the
behaviour of the R-allele. In fact, from the previous result, it is easy to deduce that r-males
stemming from R-couples grow geometrically at the same rate as R-males. To carry out
this study, we again assume that (α ∧ (1− α))(1− β)mR > 1 and distinguish two cases:
when α > 0.5 and when α ≤ 0.5, in order to better understanding. Finally, we consider the
study on r-fixation set.

4.1. On Coexistence Set: Case α > 0.5

When α > 0.5, the number of females always exceeds the number of males from some
generation onwards on the set of survival of both genotypes (see Corollary A.1 in [5]). Then,
eventually, the number of each type of couple equals the number of males of each genotype.
Therefore, the process behaves essentially as a two-type Galton–Watson process where one
of the types (R-allele) gives birth the two types of individuals existing in the population
(R-males and r-males) while the other type (r-allele) only produces individuals of its own
type (r-males). For more details, the reader is referred to the state-space representation in
page 10 of the Appendix A. The limit theorems for a reducible multitype Galton–Watson
process (as it is our case) are well studied in [8] and can be applied here to obtain the
following theorem.

Theorem 2. If α > 0.5 and (1− α)(1− β)mR > 1, then there exists a random variable Wr which
is positive and finite on {ZR

n → ∞}, such that, a.s. on {ZR
n → ∞},

(i) if mr > (1− β)mR, then lim
n→∞

Zr
n

((1− α)mr)n
= lim

n→∞

Mr
n

((1− α)mr)n
= Wr,

(ii) if mr = (1− β)mR, then lim
n→∞

Zr
n

n((1− α)mr)n
= lim

n→∞

Mr
n

n((1− α)mr)n
=

β

1− β
WR,

(iii) if mr < (1− β)mR, then lim
n→∞

Zr
n

((1− α)(1− β)mR)n
= lim

n→∞

Mr
n

((1− α)(1− β)mR)n
=

γWR,

with WR as in Theorem 1 and γ =
β mR

(1− β)mR−mr
.

Notice that, in the previous results it is shown that the rate of growth of {Zr
n}n>0

(and also the rate of growth of {Mr
n}n>0) changes depending on the relation between

mr (the mean number of offspring per r-couple) and (1 − β)mR (the mean number of
offspring per R-couples related with R-allele). In fact, when mr > (1− β)mR its asymptotic
growth is geometric being the rate of growth the mean number of males stemming from
r−couples. On the other hand, when mr = (1− β)mR, the normalized sequence is {n((1−
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α)mr)n}n>0 = {n((1− α)(1− β)mR)
n}n>0. However, when mr < (1− β)mR, the growth

of the r-allele is mainly (at least in part or totally when mr = 0) due to the mutations.
For that, its asymptotic growth is geometric with rate given by the mean number of males
produced by R-couples (the same rate as R-allele (see Theorem 1)). Therefore, when
mr ≥ (1 − β)mR, the r-allele is the dominant one in the population (in the sense that
eventually there are more males in the population with r-genotype that with R-genotype).

4.2. On Coexistence Set: Case α ≤ 0.5

Now, when α < 0.5, the number of males is eventually higher than the number of
females (see Corollary A.1 in [5]). Then, in this case, the total numbers of couples of each
type are distributed according to hypergeometric distributions. Therefore, the process
{(ZR

n , Zr
n)}n≥0 cannot be seen as a multitype branching process as in the previous case.

Moreover, in the boundary case, α = 0.5, we have an oscillating situation where we cannot
assert that eventually the number of females (or males) is higher than the number of males
(or females) from one generation onward. These two statements make the case α ≤ 0.5 to
be more complicated to study from a mathematical point of view than the case α > 0.5,
although we can establish similar results to such given in Theorem 2.

In particular, it can be proved that when α ≤ 0.5 and mr < (1− β)mR, the asymptotic
growth of the total number of r-couples is geometric being the growth rate the mean number
of females stemming from R-couples who have mated with R-males, that is α(1− β)mR

(the same rate as R-allele, see Theorem 1), while than, when mr > (1− β)mR, it is also
geometric, but now being the rate of growth the mean number of females stemming from
r-couples, that is α mr. The case mr = (1− β)mR is special, being the normalised sequence
{n(α mr)n}n>0 = {n(α(1− β)mR)

n}n>0, since in each generation R-couples can produce
r-males and this partial pedigree grows geometrically at rate given by α mr (the mean
number of females stemming from r-couple).

Theorem 3. If α ≤ 0.5 and α(1− β)mR > 1, then there exists a random variable W∗r which is
positive and finite on {ZR

n → ∞}, such that, a.s. on {ZR
n → ∞},

(i) if mr > (1− β)mR, then lim
n→∞

Zr
n

(α mr)n
=

α

1− α
lim
n→∞

Mr
n

(α mr)n
= W∗r ,

(ii) if mr = (1− β)mR, then lim
n→∞

Zr
n

n(α mr)n
=

α

1− α
lim
n→∞

Mr
n

n(α mr)n
=

β

1− β
WR,

(iii) if mr < (1− β)mR, then lim
n→∞

Zr
n

(α(1− β)mR)n
=

α

1− α
lim
n→∞

Mr
n

(α(1− β)mR)n
= γWR,

with WR as in Theorem 1 and γ as in Theorem 2.

4.3. On r-Fixation Set

Finally, we study the growth rate of r-allele on r-fixation set, that is on {ZR
n → 0, Zr

n →
∞}. It was shown in [5] that the process {Zr

n}n≥0 evolves as a two-sex Galton–Watson
branching process on the event {ZR

n → 0} (at least from one n on for each path); therefore,
the asymptotic properties established by [9] can be applied here and we deduce the
following result:

Theorem 4. Let τr = (α ∧ (1− α))mr. If τr > 1, then there exists a random variable W̃r which
is positive and finite on {ZR

n → 0, Zr
n → ∞}, such that, a.s. on {ZR

n → 0, Zr
n → ∞},

lim
n→∞

Zr
n

τnr
= W̃r and lim

n→∞

Mr
n

τnr
=

(1− α)mr

τr
W̃r.

Intuitively, this theorem states that, if R-couples have disappeared when the number
of r-couples explodes to infinity, then this number as well as the number of r-males grow
geometrically at the rate given by the minimum between the mean number of males or
females stemming from those r-couples. Notice that this behaviour on r-fixation set is the
same as the one obtained on the coexistence set when mr > (1− β)mR.
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5. Limiting Genotype and Sex Frequencies

From the previous study, the following results relative to the limiting genotype and
the sex frequencies are easily deduced and therefore their proofs are omitted. Recall that
Zn = ZR

n +Zr
n denotes the total number of mating units in generation n.

Theorem 5. If (α ∧ (1− α))(1− β)mR > 1, then, a.s. on {ZR
n → ∞},

(i) if mr ≥ (1− β)mR, then lim
n→∞

ZR
n

Zn
= 0 and lim

n→∞

Zr
n

Zn
= 1.

(ii) if mr < (1− β)mR, then lim
n→∞

ZR
n

Zn
=

(1− β)mR−mr

mR−mr
and lim

n→∞

Zr
n

Zn
=

β mR

mR−mr
.

The same result can be established in termed on males. Anyway, notice that the
limiting R-genotype frequency is a constant less than or equal to 1− β, achieving this
maximum value when mr = 0 and the minimum (equals to 0) when mr ≥ (1− β)mR.
Hence, for the r-genotype, the limiting frequency is always positive, higher than or equal
to β, achieving this minimum value when mr = 0 and the maximum (equals to 1) when
mr ≥ (1− β)mR (see Figure 1). We conclude thus that, independently of the mutation
rate, the higher reproduction capacity of the r-genotype, the lower the limiting R-genotype
frequency. Moreover, there is no dominant genotype in the case mr < (1− β)mR, which
implies an important difference in comparison with the results described in [3] for the
Y-linked model without mutations, where the limiting genotype frequency is null or one.
Notice that this 0−1 duality is also obtained on r-fixation set, that is, Theorem 5 (i) holds
on {ZR

n → 0, Zr
n → ∞}, when (α ∧ (1− α))mr > 1.

m
R

mr

Z
R

n/Z
n

1 − β

mr = (1 − β)mR

0

m
R

mr

Z
rn/Z

n

1

β

mr = (1 − β)mR

Figure 1. Limiting genotype frequency for R-allele (left) and for r-allele (right), depending on mR and mr, for fixed β.

Finally, we give a general result related to the limiting sex frequency. One can ob-
serve that, in all cases, the limiting sex frequency in the population only depends on the
probability of an offspring to be female.

Theorem 6. It is verified that

lim
n→∞

Fn

Fn+Mn
= α

(i) a.s. on {ZR
n → ∞}, if (α ∧ (1− α))(1− β)mR > 1, and

(ii) a.s. on {ZR
n → 0, Zr

n → ∞}, if (α ∧ (1− α))mr > 1.

6. Illustrative Examples

In this section, the different asymptotic behaviours for an allele of a Y-linked gene
and its mutations obtained in the previous sections are illustrated by means of a series of
simulated examples. First, we justify the values of the parameters chosen in the simulations
that follow. The sex ratio is well-known not to be balanced but closed to 0.5, being less that
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0.5 in some situations (see for example [10,11]) and greater than 0.5 in others (see [12–14]).
We fix α = 0.45, since the case α < 0.5 is mathematically more interesting. For the mutation
rate, we take β equal to 0.01. Although such value seems to be inflated related to actual
values in nature as can be seen in [15], we consider that is adequate for the convenience
of modelling the process. Moreover, with respect to the number of mating units at initial
generation, we consider ZR

0 = 1, which could represent Y-chromosomal most recent
common ancestor with the nonmutant original allele R (see for example [16–18]), and
Zr
0 = 0, since mutations appear randomly along time. Finally, Poisson distributions are

considered as reproduction laws. This type of distribution is frequently used as offspring
distribution (see for example [19–24]). The reproduction mean for R-genotype is fixed
taking a value of mR = 2.3 which is included in usual ranges for mammalian, for example in
human (see the web page https://datos.bancomundial.org/indicador/SP.DYN.TFRT.IN).
Those parameters verified that α < 0.5 and α(1− β)mR > 1, and then there exists a positive
probability of coexistence of both genotypes. In order to illustrate the different behaviours
on this event, we consider the following three specific and real scenarios depending on mr:

• In the first scenario, we consider mr = 0, that is, the r-allele does not reproduce
and, then, only appears in the population from R-mating units via mutation. This
is the case of infertility in humans, where most of the cases turn out from new
random deletions on the Y chromosome in the azoospermia factor regions in an
affected individual’s father who is not himself infertile (see [25] and the web page
https://medlineplus.gov/genetics/condition/y-chromosome-infertility/). Notice
that in this scenario, mr < (1− β)mR.

• On the other hand, in the next two scenarios, we consider that mr 6= 0, and then the
r-allele may be transmitted by both types of mating units.

– In the second scenario, we consider that accumulated mutations do not affect the
reproductive capacity of r-mating units, and therefore mr = mR. This situation
happens, for example, when the diversity of species is generated by accumulated
mutations and not via natural selection (see [26,27]). Notice that in this scenario,
mr > (1− β)mR.

– In the third scenario, mutations of mutations are considered deleterious, since ac-
cumulated mutations may drive to degeneration of Y chromosome
(see [28–31]). Hence, only first mutations (may be different in every stance)
of males stemming from R-type mating units are archived as r-allele and are
transmitted to descendant. Notice that in this scenario it is reasonable to assume
that mr = (1− β)mR by considering that couples with males stemming from a
first mutation of the R-allele have the same capacity of producing nonmutant
males as an R-couple and therefore (1− α)mr = (1− α)(1− β)mR.

In all three scenarios we simulated 20 paths of the process {(ZR
n , Zr

n)}n≥0 in which both
genotypes have survived until generation 500. Figure 2 illustrates the limiting genotype
frequency of r-allele, being equal to β for the first scenario and equal to one for last two
scenarios. Then, we conclude that infertile males (first scenario) are present in male
population as a proportion given by the mutation rate (see [32]). On the other hand, the
original nonmutant allele is negligible with respect to the mutant allele in the other two
scenarios. This statement is a mathematical explanation of the evolution and diversity
of species without natural selection (see [26]) and the beginning of degeneration of Y
chromosome (see [33]), where nonmutant original allele disappears along time.

https://medlineplus.gov/genetics/condition/y-chromosome-infertility/
https://medlineplus.gov/genetics/condition/y-chromosome-infertility/
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Figure 2. Plot of Zr
n /Zn, for several paths on coexistence set of a process when mr < (1− β)mR (left), mr > (1− β)mR

(middle) and mr = (1− β)mR (right).

In the second scenario we also studied the relation between the limiting random vari-
ables WR, Wr

∗, and W̃r. As previously, we considered the process starting with (ZR
0 , Zr

0) =
(1, 0) couples and a parameter vector (α, β, mR, mr) with values (0.45, 0.01, 2.3, 2.3). To ap-
proximate the joint probability distribution of the random vector (Wr

∗, WR) we simulated
2000 paths of the process until generation 500 belonging to the coexistence set (i.e., both
alleles were alive in the last observed generation). The distribution of the random vector
of (Zr

500, ZR
500) with each coordinate normalised by the corresponding growth rate (to the

500th power) is considered a good enough approximation of the distribution of (Wr
∗, WR).

Figure 3, left and middle graphs, shows the estimates of the joint distribution of (Wr
∗, WR)

and its marginal densities, respectively, obtained using kernel density estimators, as well as
the mean values of those distributions, (12.178, 14.963). We obtain a positive correlation be-
tween both random variables (Pearson’s correlation coefficient 0.664, p-value < 2.2× 10−16)
and a statistically significant difference between their means (paired t-Student test: p-value
< 2.2× 10−16). To estimate the distribution of W̃r, we simulated again 2000 paths of the
process until generation 500 but now belonging to the r-fixation set (i.e., such that ZR

500 = 0
and Zr

500 > 0). Figure 3 (right) compares the kernel density estimates of the distributions
of W̃r (dashed line) and Wr

∗ (solid line) as well as their mean values (E[W̃r] ≈ 7.597 and
E[Wr

∗] ≈ 12.178). In this case we also found statistically significant differences between
the mean values of both distributions (Welch’s test: p-value < 2.2× 10−16).
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Figure 3. (Left) Contour plot showing the joint probability distribution of (Wr
∗,WR) and its mean vector. (Middle)

Comparison of the kernel density estimates of the density functions of WR (dashed line) and Wr
∗ (solid line), jointly with

their mean values (vertical lines). (Right) Comparison of the kernel density estimates of the distributions of Wr
∗ (solid line)

and W̃r (dashed line), jointly with their mean values (vertical lines).
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7. Concluding Remarks

This work deals with the problem of determining the limiting growth rates and the
limiting genotype frequencies of two alleles named R and r of a Y-linked gene, allowing
the possibility that the R-allele mutates into the r-form assuming a two-sex (male-female)
population. Moreover, the limiting sex ratio of this population is also obtained. The model
studied in this communication is the so-called Y-linked bisexual branching processes with
mutations and blind choice of males defined in [5]. This model studies the evolution
of the number of carriers of two alleles in a two-sex monogamous population under
the assumption that the considered gene has no effect on the mating process and also
considering the possibility that one of the allelic forms of the gene can mutate into the other
form without allowing the possibility of reversion.

We derived the limiting growth rates of surviving genotypes as functions of the mean
numbers of females and males generated by a couple and the mutation rate. In particular,
on the r-fixation set such genotype evolves as a two-sex Galton–Watson branching process
and therefore there exists a positive probability of survival of this genotype if the mean
number of female and male offspring per r-couple are both greater than unity. In this case,
the numbers of couples and males grow geometrically at the same growth rate which is
given by the mean number of females (if the probability α for an offspring to be female
is less than or equal to 0.5) or males (if α > 0.5) per r-couple (that is, α mr and (1− α)mr,
respectively).

On the coexistence set, both, R and r-genotypes have a positive probability of survival
if the mean number of female offspring per R-couple who mate with R-males and the mean
number of male offspring per R-couple are both greater than unity. Our results show in
this case that, the growth rates for the number of R-couples and males with R-genotype
coincide on the event of survival. In particular, both variables grow geometrically, and the
limiting growth rate equals the mean number of female offspring per R-couple who mate
with R-males if α ≤ 0.5 (that is, α(1− β)mR, with β being the probability of mutation),
whereas it equals the mean number of R-male offspring per R-couple if α > 0.5 (that is,
(1− α)(1− β)mR).

The growth rate for the number of couples and males of r-genotype on the coexistence
set turns out to be more complicated due to the mutations and it is necessary to take into
account the relation between the mean number of offspring per r-couple, mr, and the mean
number of offspring per R-couple, mR, multiplied by (1− β). Notice that both quantities
appeared in the previous growth rates, for r and R-allele, respectively, independently
on α. So, in the case that mr > (1− β)mR, the numbers of r-couples and r-males grow
geometrically at a growth rate given by the mean number of females or males (depending
on weather α ≤ 0.5 or α > 0.5, respectively) per r-couple. Notice that, this behaviour
is the same as the one obtained on the r-fixation set. On the other hand, in the case
mr < (1− β)mR, the growth rate of the numbers of r-couples and r-males equals the
growth rate of the R-genotype, that is, α(1− β)mR if α ≤ 0.5 or (1− α)(1− β)mR if α > 0.5.
Finally, the case mr = (1− β)mR is a boundary case in which we have proved that the
number of couples and males with r-genotype along time is normalised by the sequence
{n(min{α, (1− α)}mr)n}.

As a consequence of such results, r-genotype is the dominant one with limiting
frequency unity on the event of coexistence if mr ≥ (1− β)mR, while mr < (1− β)mR

entails a balanced situations in the sense that there is not a dominant genotype and the
limiting frequencies are constants which depend on mR, mr and β. In particular, the higher
the reproduction capacity of the r-genotype, the lower the limiting R-genotype frequency,
being the maximum value given by the rate of nonmutation (that is 1− β) when r-couples
do not generate any descendants (that is, mr = 0). Finally, we found that the limiting
female frequency equals the probability of being female in any case, and thus it does not
depend on the Y-linked gene.

From a practical point of view, these mathematical results could give a scientific answer
to questions of population genetics, as for example, the evolution of infertility in males



Mathematics 2021, 9, 131 10 of 19

(see [25,32]), the existence of degeneration of Y chromosome (see [28–31]) or the possibility
of evolution and diversity of species without natural selection (see [26,27]). In particular, we
conclude that although infertility conditions not to be inherited (mr = 0), the frequency of
this mutation in the population is not negligible along time (see [34–36]), and it is given by
the mutation rate, β (this is also true when the males are not infertile, but their reproductive
capacity is very small, i.e., mr = (1 − β)mR). Another conclusion is that the original
nonmutant allele is negligible in the population with respect to mutations (the dominant
allele) along time, when the reproductive capacity is not affected by mutations (i.e., natural
selection does not work). Hence, accumulative mutations (mutation of mutation is archived,
mr = mR) may explain the possibility of diversity of species without natural selection
(see [26]), while deleterious mutations (mutation of mutation is not archived, mr = (1−
β)mR) could explain the beginning of the degeneration of Y chromosome (see [33,37]).
Of course, the obtained results also explain the phenomenon of evolution by natural
selection, since when there is a differential reproduction (mr > mR), the r-allele is the
dominant allele along time.

In conclusion, the limiting behaviour of Y-linked genes in a two-sex branching process
with blind choice of males and mutations shown here turns out to be the main novelty of
the present work. We note that this behaviour may be different from those obtained for
other two-sex branching models in a genetic context (see, for example, [3] or [38]) and also
different from those obtained in classical genetic models, in which no dominant genotype
exists in the population due to the Hardy-Weinberg law. Moreover, the results of the paper
are expected to be a valuable contribution to the theory of two-sex branching processes and
to clarify well-known phenomena of population genetics in a mathematically rigorous way.
The mathematical tools used to obtained the results of this paper also allow to solve the
conjectures proposed in [39] relative to the limiting growth rates for an X-linked two-sex
branching process. Such a model describes the evolution of the number of carriers of the
genotypes and phenotypes defined by the alleles of an X-linked gene with two alleles
when one of them is considered recessive and responsible for a serious disorder of a severe
disease as could be hemophilia, Duchenne muscular dystrophy, or other genetic diseases
(see [40] for background information).
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Appendix A. Proofs

In order to prove the results of this paper, we introduce the following notation. We con-
sider the filtrations Gn = σ(ZR

0 , Zr
0, FR

k , MR
k , Fr

k, Mr
k, ZR

k , Zr
k, k = 1, ..., n), n ≥ 1 (G0 =

σ(ZR
0 , Zr

0)) and Fn = σ(Gn−1, FR
n , MR

n , Fr
n, Mr

n), n ≥ 1. Then, it is verified that Gn−1 ⊆
Fn ⊆ Gn, n ≥ 1. In addition, we write P(i,j)(·) for P(·|ZR

0 = i, Zr
0 = j) and E(i,j)[·] for

E[·|ZR
0 = i, Zr

0 = j], for any i, j ≥ 0.
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Proof of Theorem 1.
One infers from Lemmas A.1 and A.5 in [5] and Theorem 7.28 in [41] that

0 <
∞

∏
n=0

ZR
n+1

τR ZR
n

< ∞ a.s. on {ZR
n → ∞},

which gives the desired result, since for each N ≥ 1,

ZR
N

τNR
= ZR

0

N−1
∏
n=0

ZR
n+1

τR ZR
n

.

Moreover, taking into account Lemma A.3 in [5], the result holds also true for MR
n ,

which concludes the proof.

Proof of Theorem 2.
As α > 0.5 and (1− α)(1− β)mR > 1, by Corollary A.1 in [5] and the definition of

the model, we have that

{ZR
n → ∞} ⊂ {Mn < Fn eventually} ⊂ {ZR

n = MR
n , Zr

n = Mr
n eventually} a.s.

Therefore, for almost all paths in {ZR
n → ∞}, there exists a constant depending on

path, K ∈ N, such that, a.s. on {ZR
n → ∞}, we can write (1) in the following way,

(MR
n+1, Mr

n+1) =

MR
n

∑
i=1

MR
ni,

MR
n

∑
i=1

MR→r
ni +

Mr
n

∑
j=1

Mr→r
nj

, for n > K.

Then, defining the variables MR→R
ni = MR

ni and Mr→R
ni = 0, for all (n, i) ∈ N0 ×N, we

can rewrite

(MR
n+1, Mr

n+1) = ∑
x∈{R,r}

Mx
n

∑
i=1

(Mx→R
ni , Mx→r

ni ), for n > K.

Hence, {(ZR
n , Zr

n)}n>K turns out to be like a path of a reducible two-type branching
process where the first component can give birth individuals of two types while the second
component can only give birth individuals of its own type. Taking into account the relation
between both types, the mean matrix associate with this multitype process takes the
following form:

(1− α)

(
(1− β)mR β mR

0 mr

)
.

This is a reducible matrix with two associated eigenvalues λ1 = (1− α)(1− β)mR—
with left and right eigenvectors ν1 = (1, γ) and ν2 = (1, 0)′, respectively—and λ2 =
(1− α)mr—with left and right eigenvectors µ1 = (0, 1) and µ2 = (−γ, 1)′ respectively,
with γ = β mR((1− β)mR−mr)−1, when (1− β)mR 6= mr.

Therefore, the result follows directly applying Theorem 2.1 (for (i) and (iii)) and
Theorem 2.3 (for (ii)) in [42]

Auxiliary results for the proof of Theorem 3.
Let α ≤ 0.5 and α(1− β)mR > 1. Given ε > 0, we define

η1 = α(1− β)(mR−ε)(1− 3ε/m), with m = (mR ∧mr)(1− δmr ,0) + mR δmr ,0 + ε

η2 = α(1− β)(mR+ε)(1 + 3ε/m′), with m′ = (mR ∧mr)(1− δmr ,0) + mR δmr ,0 − ε

η3 = (1− δmr ,0)α(mr−ε)(1− 3ε/m)

η4 = α(β mR−ε)(1− 3ε/m)

η5 = (1− δmr ,0)α(mr +ε)(1 + 3ε/m′)

η6 = α(β mR+ε)(1 + 3ε/m′),
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where δmr ,0 is the Kronecker delta. Trivially, there exists a > 0 such that, for every ε ∈ (0, a),
one can easily verify

1 < η1 < η2, 0 ≤ η3 ≤ η5 and 0 < η4 < η6.

For any of those ε, we define, for n = 0, 1, ...

Aε
n = {η1 ZR

n < ZR
n+1 < η2 ZR

n , η3 Zr
n+η4 ZR

n < Zr
n+1 < η5 Zr

n+η6 ZR
n }.

Theorem A1. Let α ≤ 0.5 and α(1− β)mR > 1. Fixed ε > 0 such that η1 > 1, η3 ≥ 0 and
η4 > 0, it is verified that

lim inf
n→∞

Aε
n = {ZR

n → ∞} a.s.

Proof.
Since η1 > 1, then lim infn→∞ Aε

n ⊆ {ZR
n → ∞} a.s., and therefore it is enough to

prove that P(lim infn→∞ Aε
n) ≥ P(ZR

n → ∞). To this end, for any N ≥ 1, we define the
stopping time T(N) = min{n : Zr

n ∧ZR
n ≥ N}, where T(N) = ∞ if ZR

n < N or Zr
n < N

for every n ≥ 0. Obviously, {ZR
n → ∞} ⊆ {T(N) < ∞} a.s., for each N ≥ 1, since

{ZR
n → ∞} = {ZR

n → ∞, Zr
n → ∞} a.s.

Given k ≥ 0, note that {T(N) = k} = {Zr
k ∧ZR

k ≥ N, Zr
n ∧ZR

n < N, n = 0, ..., k−1},
and taking into account that {(ZR

n , Zr
n)}n is a Markov chain, one has that

P(
∞⋂

n=k

Aε
n|T(N) = k) = P(

∞⋂
n=k

Aε
n|Zr

k ∧ZR
k ≥ N)

≥ inf
i,j≥N

P(
∞⋂

n=k

Aε
n|ZR

k = i, Zr
k = j)

= inf
i,j≥N

P(
∞⋂

n=0
Aε
n|ZR

0 = i, Zr
0 = j) = inf

i,j≥N
P(i,j)(

∞⋂
n=0

Aε
n).

Therefore, one obtains that

P(lim inf
n→∞

Aε
n) = P(

∞⋃
k=1

∞⋂
n=k

Aε
n) ≥ P(

∞⋂
n=T(N)

Aε
n)

=
∞

∑
k=0

P(
∞⋂

n=k

Aε
n|T(N) = k)P(T(N) = k)

≥ inf
i,j≥N

P(i,j)(
∞⋂

n=0
Aε
n)P(T(N) < ∞)

≥ inf
i,j≥N

P(i,j)(
∞⋂

n=0
Aε
n)P(ZR

n → ∞).

Hence, to conclude, it is enough to prove that, for all n ≥ 0,

P((Aε
n)

c|Gn) ≤ Ce−BZR
n +

K
ZR
n

, a.s. on {ZR
n > M}, (A1)
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for some suitable positive constants C, B, K and M. Indeed,

P(i,j)(
∞⋃

n=0
(Aε

n)
c) =

∞

∑
n=0

P(i,j)((Aε
n)

c ∩ Aε
n−1 ∩ ...∩ Aε

0)

=
∞

∑
n=0

E(i,j)[IAε
n−1∩...∩Aε

0
P((Aε

n)
c|Gn)]

≤ C
∞

∑
n=0

e−B i ηn
1 +

K
i

∞

∑
n=0

η−n1 ,

and therefore limi,j→∞ P(i,j)(
⋃∞
n=0(Aε

n)
c) = 0, since η1 > 1.

In order to prove (A1), we decompose the set (Aε
n)

c as follows,

(Aε
n)

c = {ZR
n+1 ≤ η1 ZR

n } ∪ {ZR
n+1 ≥ η2 ZR

n }
∪{Zr

n+1 ≤ η3 Zr
n+η4 ZR

n } ∪ {Zr
n+1 ≥ η5 Zr

n+η6 ZR
n }.

Then, it is enough to prove that the probabilities of each one of these sets are up-
per bounded by the same bound given in (A1). Since the study of each one of these
probabilities can be developed in the same manner, we confine ourselves to analyse
P(Zr

n+1 ≤ η3 Zr
n+η4 ZR

n |Gn), as both genotypes are implied. For that, we define, for
n = 1, 2, ...

AFn
={| Fn−(α mR ZR

n−1 + α mr Zr
n−1)| ≤ αε(ZR

n−1 + (1− δmr ,0)Z
r
n−1)},

AMn
={|Mn−((1− α)mR ZR

n−1 + (1− α)mr Zr
n−1)| ≤ (1− α)ε(ZR

n−1 + (1− δmr ,0)Z
r
n−1)},

AMr
n
={|Mr

n−((1− α)β mR ZR
n−1 + (1− α)mr Zr

n−1)| ≤ (1− α)ε(ZR
n−1 + (1− δmr ,0)Z

r
n−1)},

and write

{Zr
n+1 ≤ η3 Zr

n+η4 ZR
n } ⊆ {Zr

n+1 ≤ η3 Zr
n+η4 ZR

n , Mr
n+1 > η3 Zr

n+η4 ZR
n , Mn+1 ≤ Fn+1}

∪ {Mr
n+1 ≤ η3 Zr

n+η4 ZR
n } ∪ Dc

1

∪ ({Zr
n+1 ≤ η3 Zr

n+η4 ZR
n , Mn+1 > Fn+1} ∩ D1), (A2)

with D1 = AFn+1
∩ AMn+1

∩ AMr
n+1

. By the definition of the model, it is clear that the first
set has null probability. The probability of the second set is bounded taking into account
that α ≤ (1 − α), the reproduction laws are assumed to have finite variances and the
conditional Chebyshev’s inequality:

P(Mr
n+1 ≤ η3 Zr

n+η4 ZR
n |Gn)

≤P(Mr
n+1−(1−δmr ,0)(1− α)mr Zr

n−(1−α)β mR ZR
n ≤ (1− δmr ,0)α(mr −ε)(1−3ε/m)Zr

n

− (1− δmr ,0)αmr Zr
n+α(β mR−ε)(1− 3ε/m)ZR

n −αβ mR ZR
n |Gn)

≤ P(|Mr
n+1−(1− δmr ,0)(1− α)mr Zr

n−(1− α)β mR ZR
n | ≥ b((1− δmr ,0)Zr

n+ZR
n )|Gn)

≤
Var(Mr

n+1 |Gn)
b2((1− δmr ,0)Zr

n+ZR
n )

2 ≤
K1

ZR
n

a.s. on {ZR
n > 0},

for certain positive constants b and K1. In a similar way, P(Ac
Fn+1
|Gn), P(Ac

Mn+1
|Gn) and

P(Ac
Mr

n+1
|Gn) are bounded, and therefore we deduce that P(Dc

1|Gn) is also bounded a.s. on

{ZR
n > 0} by K2/ ZR

n , for some positive constant K2.
Finally, we deal with the probability of the last set in (A2). Notice that, Zr

n+1 |Fn+1 ∼
Hyper(Fn+1, Mn+1, Mr

n+1) on {Mn+1 > Fn+1}, therefore E[Zr
n+1 |Fn+1] =

Fn+1
Mn+1

Mr
n+1 a.s.

on that set. Moreover, it is verified a.s. on D1 that,
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Fn+1

Mn+1
Mr

n+1

≥ α((β mR−ε)ZR
n +(1− δmr ,0)(mr − ε)Zr

n)

(
1− 2ε(ZR

n +(1− δmr ,0)Zr
n)

(mR+ε)ZR
n +(mr +ε)(1− δmr ,0)Zr

n

)

≥ α((β mR−ε)ZR
n +(1− δmr ,0)(mr − ε)Zr

n)(1−
2ε

m
),

and then, on {Mn+1 > Fn+1} ∩ D1, it is verified a.s. that,

η3 Zr
n+η4 ZR

n −E[Zr
n+1 |Fn+1] ≤ −

ε

m
α((1− δmr ,0)(mr − ε)Zr

n+(β mR−ε)ZR
n ).

Now, applying the bounds for the tails of a hypergeometric distribution provided
in [43], we deduce that, a.s. on {Mn+1 > Fn+1} ∩ D1 and {ZR

n > M}, for some suitable
positive constants C, B and M,

P(Zr
n+1 ≤ η3 Zr

n+η4 ZR
n |Fn+1)

≤ P
(

Zr
n+1−E[Zr

n+1 |Fn+1] ≤ −
ε

m
α((1− δmr ,0)(mr − ε)Zr

n+(β mR−ε)ZR
n )|Fn+1

)
≤ exp

{
−2

(αε/m((1− δmr ,0)(mr − ε)Zr
n+(β mR−ε)ZR

n ))
2 − 1

Mr
n+1+1

}

≤ exp

{
−2

(αε/m((1− δmr ,0)(mr − ε)Zr
n+(β mR−ε)ZR

n ))
2 − 1

(1− α)((1− δmr ,0)(mr + ε)Zr
n+(β mR+ε)ZR

n ) + 1

}
≤ Ce−B((1−δmr ,0)Z

r
n +ZR

n )

≤ Ce−BZR
n .

Then, a.s. on {ZR
n > M},

P({Zr
n+1 ≤ η3 Zr

n+η4 ZR
n , Mn+1 > Fn+1} ∩ D1|Gn)

= E[P(Zr
n+1 ≤ η3 Zr

n+η4 ZR
n |Fn+1)I{Mn+1>Fn+1}∩D1

|Gn]

≤ Ce−BZR
n .

Finally, combining all the above probabilities, we obtain that,

P(Zr
n+1 ≤ η3 Zr

n+η4 ZR
n |Gn) ≤ Ce−BZR

n +
K

ZR
n

, a.s. on {ZR
n > M},

and the proof is completed.

From previous theorem, the limit of the quotient of the total number of couples of
each type is established in the following result, when mr 6= (1− β)mR.

Theorem A2. Let us assume α ≤ 0.5 and α(1− β)mR > 1.

(i) If mr > (1− β)mR, then lim
n→∞

Zr
n

ZR
n
= ∞, a.s. on {ZR

n → ∞}.

(ii) If mr < (1− β)mR, then lim
n→∞

Zr
n

ZR
n
= γ, a.s. on {ZR

n → ∞},

with γ as in Theorem 2.
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Proof.
For each k ≥ 0 and n ≥ k, iterating, it is verified that a.s. on

⋂∞
n=kAε

n

η4

η2

n−k
∑
l=1

(
η3

η2

)l−1
+

ηn−k
3

ηn−k
2

Zr
k

ZR
k

≤ η4

η2
+

η3

η2

Zr
n−1

ZR
n−1

≤ Zr
n

ZR
n
≤ η6

η1
+

η5

η1

Zr
n−1

ZR
n−1

≤ η6

η1

n−k
∑
l=1

(
η5

η1

)l−1
+

ηn−k
5

ηn−k
1

Zr
k

ZR
k

.

When mr > (1− β)mR, it is possible to choose ε small enough, such that η2 < η3,
and then the result is derived taking into account Theorem A1. Moreover, when mr <
(1 − β)mR, we take ε small enough such that 0 ≤ η3 ≤ η5 < η1 < η2. Then, from
Theorem A1 we deduce that a.s. on {ZR

n → ∞},

η4

η2 − η3
≤ lim inf

n→∞

Zr
n

ZR
n
≤ lim sup

n→∞

Zr
n

ZR
n
≤ η6

η1 − η5
,

which gives the desired result, when ε goes to zero.

Moreover, for the case mr > (1− β)mR, the following result is established.

Lemma A1. If α ≤ 0.5, α(1− β)mR > 1 and mr > (1− β)mR, then

lim inf
n→∞

Zr
n+1

Zr
n

> 1 and lim
n→∞

MR→r
n+1

Zr
n

= 0 a.s. on {ZR
n → ∞}.

Moreover, for each 0 < ρ < 1/2, a.s. on {ZR
n → ∞}, as n→ ∞,

Mr→r
n+1

Zr
n

= (1− α)mr +O((Zr
n)
−ρ),

Zr
n

Mr
n
=

α

1− α
+ O((Zr

n−1)
−ρ),

Mr
n+1

Zr
n

= (1− α)mr +O((Zr
n)
−ρ) and

Zr
n+1

Zr
n

= α mr +O((Zr
n)
−ρ).

Proof. Since mr > (1− β)mR and α(1− β)mR > 1, it is possible to choose ε small enough,
such that 1 < η3 and 0 < η4. For each k ≥ 0 and n ≥ k, iterating, it is verified that, a.s. on⋂∞
n=k Aε

n,

Zr
n+1

Zr
n
≥ η3 Zr

n+η4 ZR
n

Zr
n

= η3 + η4
ZR
n

Zr
n

,

and the first limit is deduced from Theorems A1 and A2. In addition, we conclude the
second limit by Lemma A.3 in [5] and Theorem A2, since

MR→r
n+1

Zr
n

=
MR→r

n+1

ZR
n

ZR
n

Zr
n

.

Moreover, taking into account the first limit, the proofs of the third and fourth state-
ments follow the same ideas as Lemma 5 in [3] and Lemma A.4 in [5], respectively, and
they are therefore omitted. Finally, the last two statements are directly deduced, since

Mr
n+1 = MR→r

n+1 +Mr→r
n+1 and

Zr
n+1

Zr
n

=
Zr
n+1

Mr
n+1

Mr
n+1

Zr
n

.
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In order to prove the Theorem 3 for the case mr = (1− β)mR, it is necessary a more
detailed description of the model. To this end, we introduce a partition of Zr

n, that is, a
sequence {(Zr,0

n , . . . , Zr,n
n )}n≥0, such that Zr

n = Zr,0
n + . . . + Zr,n

n a.s., where Zr,l
n denotes the

number of r-type mating units at generation n whose males have their first ancestor of
r-type at generation l, 0 ≤ l ≤ n, n ≥ 0. Let Zr,0

0 = Zr
0 and let {(Fr,l

nj , Mr→r,l
nj )}n,l≥0,j≥1 be i.i.d.

random vectors with the same distribution as (Fr
01, Mr→r

01 ). Given n ≥ 0 and the vector
(Zr,0

n , . . . , Zr,n
n ), it is verified a.s. that

Fn+1 =
ZR
n

∑
i=1

FR
ni+

n

∑
l=0

Zr,l
n

∑
j=1

Fr,l
nj and Mr→r

n+1 =
n

∑
l=0

Mr→r,l
n+1 ,

where Mr→r,l
n+1 = ∑Zr,l

n
j=1Mr→r,l

nj , l = 0, . . . , n.

Notice that Mr→r,l
n+1 denotes the number of r-type males at generation n+1 generated

by Zr,l
n mating units.
Given (Fn+1, Mn+1, Mr→r,0

n+1 , . . . , Mr→r,n
n+1 , MR→r

n+1 ), if Fn+1 ≥ Mn+1, let Zr,l
n+1 = Mr→r,l

n+1 for
l = 0, . . . , n, and Zr,n+1

n+1 = MR→r
n+1 . On the other hand, if Fn+1 < Mn+1, (Zr,0

n+1, . . . , Zr,n+1
n+1 ) fol-

lows a multivariate hypergeometric distribution with parameters (Fn+1, Mn+1, Mr→r,0
n+1 , . . .,

Mr→r,n
n+1 , MR→r

n+1 ). Hence, it is verified that Zr
n+1 = Zr,0

n+1 + . . . + Zr,n+1
n+1 a.s. Furthermore, it

is easy to prove that {(ZR
n , Zr,0

n , . . . , Zr,n
n )}n≥0 is a Markov chain. In comparison with the

model description of Section 2, we only relabel the vectors {(Fr
nj, Mr→r

nj )}n≥0,j≥1, consider

new partial sums, Mr→r,l
n+1 , for n ≥ 0 and l = 0, . . . , n, and count new subtypes of r-type

mating units. Intuitively, we observe the model in a more precise way.
Now, let ε > 0, such that η1 > 1 and η4 > 0. For any of these ε, we define, for

k = 1, 2, ... and n ≥ k− 1,

Aε
n,k = {η1 ZR

n < ZR
n+1 < η2 ZR

n } ∩ {η1Z̄r,k−1
n ≤ Z̄r,k−1

n+1 ≤ η2Z̄r,k−1
n }

n⋂
l=k

{η1Zr,l
n < Zr,l

n+1 < η2Zr,l
n } ∩ {η4 ZR

n < Zr,n+1
n+1 < η6 ZR

n },

where Z̄r,k−1
n = Zr,0

n + . . .+Zr,k−1
n . Notice that Z̄r,k−1

n may be null. Also, for each k = 1, 2, . . .,
let

Bε
k =

∞⋂
n=k−1

Aε
n,k.

Since Z̄r,k
n = Z̄r,k−1

n + Zr,k
n , then it is easy to deduce that Bε

k ⊆ Bε
k+1 a.s. and therefore

lim
k→∞

Bε
k =

∞⋃
k=1

∞⋂
n=k−1

Aε
n,k a.s.

Moreover, the following result holds.

Theorem A3. Let us assume α ≤ 0.5, α(1− β)mR > 1 and mr = (1− β)mR. Fixed ε > 0 such
that η1 > 1, it is verified that

lim
k→∞

Bε
k = {ZR

n → ∞} a.s.

Proof.
Fixed k ≥ 1, N ≥ 1 and ε > 0, such that η1 > 1, defining T(N) as in the proof of

Theorem A1 and taking into account that Z̄r,k−1
k−1 = Zr

k−1 and {(ZR
n , Zr,0

n , . . . , Zr,n
n )}n≥0 is a

Markov chain, then we deduce that
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P(Bε
k|T(N) = k−1) = P(Bε

k|Z
R
k−1 ∧ Zr

k−1 ≥ N)

≥ inf
i,j≥N

P(Bε
k|Z

R
k−1 = i, Zr

k−1 = j)

= inf
i,j≥N

P(Bε
1|ZR

0 = i, Zr
0 = j) = inf

i,j≥N
P(i,j)(

∞⋂
n=0

Aε
n,1).

Following similar arguments as in the proof of Theorem A1, we derive that

P(i,j)(
∞⋃

n=0
(Aε

n,1)
c) ≤ C

∞

∑
n=0

e−Biη
n
1 +

K

i

∞

∑
n=0

η− n
1 + C

∞

∑
n=0

e−Bjη
n
1 +

K

j

∞

∑
n=0

η−n
1

+C
∞

∑
n=0

(n+1)e−Biη
n−1
1 η4 +

K

i

∞

∑
n=0

(n+1)η− n+1
1 η−1

4 ,

for some suitable positive constants C, B, K and M, and the proof is concluded.

The following lemma can be obtained from the previous result and applying similar
arguments as in the proof of Lemma A1.

Lemma A2. If α ≤ 0.5, α(1− β)mR > 1 and mr = (1− β)mR, fixed l ≥ 1, then

lim inf
n→∞

Zr,l
n+1

Zr,l
n

> 1 a.s. on {ZR
n → ∞}.

Moreover, for each 0 < ρ < 1/2, a.s. on {ZR
n → ∞}, as n→ ∞,

Mr,l
n+1

Zr,l
n

= (1− α)mr +O((Zr,l
n )−ρ),

Zr,l
n

Mr,l
n

=
α

1− α
+ O((Zr,l

n−1)
−ρ),

Zr,l
n+1

Zr,l
n

= α mr +O((Zr,l
n )−ρ),

Zr,n
n

Mr,n
n

=
α

1− α
+ O((ZR

n−1)
−ρ)

and
Zr,n
n

ZR
n−1

=
β

1− β
α mr +O((ZR

n−1)
−ρ).

Proof of Theorem 3.

(i) First, we consider the case mr > (1− β)mR. Since

Zr
N

(α mr)N
= Zr

0

N−1
∏
n=0

Zr
n+1

α mr Zr
n

for each N ≥ 1, one infers from Lemma A1 and Theorem 7.28 in [41] that

0 <
∞

∏
n=0

Zr
n+1

α mr Zr
n

< ∞ a.s. on {ZR
n → ∞},

which gives the desired results.
The result holds also true for Mr

n, from Lemma A1 and taking into account that

Mr
n+1

(α mr)n
=

Mr
n+1

Zr
n

Zr
n

(α mr)n
.
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(ii) Secondly, we deal with the case mr = (1− β)mR. Let ω ∈ {ZR
n → ∞}. Then, given

ε > 0 such that η1 > 1, from Theorem 8.3, there exists k ≥ 1 such that ω ∈ Bk
ε. Since,

for each n ≥ k,

Zr
n = Z̄r,k−1

n +
n

∑
l=k

Zr,l
n ,

then, for n ≥ k and ω (which we do not write further for simplicity)

Zr
n

n(α mr)n
=

1
n

Z̄r,k−1
0

n−1

∏
j=0

Z̄r,k−1
j+1

α mr Z̄r,k−1
j

+
1
n

β

(1− β)

n

∑
l=k

ZR
0

l−2
∏
j=0

ZR
j+1

α(1− β)mR ZR
j

(1− β)Zr,l
l

βα mr ZR
l−1

n−1

∏
j=l

Zr,l
j+1

α mr Zr,l
j

Therefore, from Lema A.3 in [5] and Lemma A2, we deduce, a.s. on Bk
ε, that

Zr
n

n(α mr)n
= O(n−1) +

n−k + 1

n

β

(1− β)

ZR
k−1

(α(1− β)mR)k−1

n

∏
j=k

(1 + O((ηn−j
1 )−ρ),

for some 0 < ρ < 1/2, and we obtain the result from Theorem 7.28 in [41], since
η1 > 1.

(iii) Finally, the case mr < (1− β)mR is an immediate consequence of Theorems 1 and
A2-(ii).
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