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Abstract

The Galton-Watson process is a Markov chain modelling the population size

of independently reproducing particles giving birth to k offspring with probability

pk, k ≥ 0. In this paper we consider defective Galton-Watson processes having

defective reproduction laws, so that
∑

k≥0 pk = 1 − ε for some ε ∈ (0, 1). In

this setting, each particle may send the process to a graveyard state ∆ with

probability ε. Such a Markov chain, having an enhanced state space {0, 1, . . .} ∪

{∆}, gets eventually absorbed either at 0 or at ∆. Assuming that the process

has avoided absorption until the observation time t, we are interested in its

trajectories as t → ∞ and ε → 0.
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1 Introduction

The classical Galton-Watson process (GW-process) is a discrete time Markov chain

Z = {Z(t)}t≥0 with the state space {0, 1, . . .} defined recursively by

Z(0) = 1, Z(t+ 1) =

Z(t)∑
j=1

νt,j, t = 0, 1, . . . , (1)

where νt,j
d
= ν are independent random variables with a common distribution

f(s) = Esν =
∑
k≥0

pks
k. (2)

In terms of probability generating functions, the branching property (1) yields

EsZ(t) = f(t, s), f(0, s) = s, f(t+ 1, s) = f(f(t, s)), t ≥ 0. (3)

There are two types of trajectories for this simple demographic model, unless p1 = 1. A

GW-process either becomes extinct at time T0 = inf{t ≥ 1 : Z(t) = 0} or Z(t) → ∞, as

t → ∞. It is well known that the corresponding probability of extinction q = P (T0 <

∞) is given by the smallest non-negative root of the equation f(s) = s, see [2, Ch

I.5]. Much of the theory of branching processes is devoted to the limit behavior of Z(t)

conditioned on T0 > t as t→ ∞, see [6].

This paper deals with defective GW-processes having f(1) ∈ (0, 1). We treat the

defect ε = 1− f(1) of the reproduction law (2) as the probability that a given particle

existing at time t sends the Markov chain at time t+1 to an additional graveyard state

∆. Thus, a defective GW-process becomes a Markov chain with a countable state space

N∆ = {0, 1, . . .} ∪ {∆}. Two of the states are absorbing: the process either becomes
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extinct at time T0, or is stopped at time T∆ = inf{t ≥ 1 : Z(t) = ∆}. If T = T0 ∧ T∆

denotes the ultimate absorption time, then for some q ∈ [0, 1),

P (T0 <∞) = q, P (T∆ <∞) = 1− q, P (T <∞) = 1.

Applying the graveyard absorption properties

∆ + x = ∆, x ∈ N∆, s∆ = 0, s ≥ 0,
∆∑
j=1

xj = ∆, xj ∈ N∆,

to the recursion (1), we obtain again (3) implying f(q) = q. Clearly, P (Z(t) = ∆) =

1− f(t, 1), and if q = 0, then T = T∆. It is straightforward to see that

E(sZ(t);T∆ > t) = f(t, s), E(sZ(t);T > t) = E(sZ(t);T0 > t) = f(t, s)− f(t, 0),

since

E(sZ(t);T ≤ t) = E(sZ(t);T0 ≤ t) = P (Z(t) = 0) = f(t, 0).

This implies,

P (t < T∆ <∞) = f(t, 1)− q,

P (t < T0 <∞) = q − f(t, 0),

P (T > t) = f(t, 1)− f(t, 0).

The main aim of this paper is to provide, for the first time, results on the asymptotic

distribution of Z(t − k) conditioned on the survival event {T > t} as t → ∞, with

k ∈ [0, t] either being fixed or going to infinity. Note that since the process Z becomes
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absorbed at time T with probability one, it is natural to examine the nature of this

convergence. In Section 2 we provide some asymptotic results for the sequence f(t, ·) as

t→ ∞, assuming that the reproduction law f(·) is fixed. We find that with fixed f(·),

there are two different asymptotic regimes depending on whether γ = f ′(q) is positive

or equals zero. Moreover, from these results we derive limit theorems for distribution

of Z(t − k) conditioned on the survival event {T > t} as t → ∞. The proofs of the

results of Section 2 are collected in Section 5.

In realistic settings, the defect ε of the reproduction law is small and therefore

it is interesting to find asymptotic results as t → ∞ and ε → 0. This is a difficult

issue to be addressed without further assumptions on the reproduction law. For this

reason, as a first approach, in Sections 3 and 4 we consider sequences of defective GW-

processes (Zn)n≥1 governed by reproduction laws fn(·) such that εn → 0 as n→ ∞ and

fn(s) → f̂(s) uniformly over s ∈ [0, 1], provided f̂(1) = 1. Under these assumptions,

we prove that the key parameter determining the limit behaviour is not γ as in Section

2, but rather m̂ = f̂ ′(1). We assume m̂ > 1 and even study the case m̂ = ∞. The

proofs of the results of Sections 3 and 4 are collected in Section 6.

The main difference between the results of Sections 3 and 4 is in the restrictions

put upon the reproductions laws {fn(·)}n≥1. In Section 3 we assume that fn(·) can

be written in terms of a common probability generating function f̂(·) and a scale

parameter rn such that rn → 1 so that εn → 0. While in Section 4, we examine a certain

parametric family of GW-processes in order to gain some knowledge in the general case,

when the main restriction of Section 3 is removed. The advantage of these, so-called

theta-branching processes, is that their reproduction generating functions have explicit

iterations. The results in Section 4 can be also seen as a continuation of the study of

this family initiated in [9].
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Earlier, a special subclass of the defective GW-processes, the so-called GW-processes

with killing, was studied in [5, 7]. A GW-process with killing has a reproduction law of

the form f(s) = g(αs), where g(·) is a non-defective generating function and α ∈ (0, 1).

In this case f(1) ∈ (0, 1) and f(s0) = 1 for s0 = 1/α > 1. To see a counterexample

violating the latter restriction, consider

f0(s) = 1− (p1
√
1− s+ 1− p1)

2, s ∈ [0, 1], (4)

having f0(1) = p1(2− p1) and

f0(t, s) = 1− (pt1
√
1− s+ 1− pt1)

2.

Since f ′
0(1) = ∞, the generating function f0(s) is not defined for s > 1. Example (4)

belongs to the above mentioned family of theta-branching processes. A broad class of

continuous time defective branching processes was investigated in [8].

Defective GW-processes arise naturally in the framework of some special non-

defective GW-processes with countably many types. For example, the authors of [3]

construct an embedded defective GW-process in which absorption in the graveyard

state corresponds to local survival of the GW-process with countably many types, and

absorption in state 0 corresponds to its global extinction. In another multi-type set-

ting [10], the defect ε is treated as the probability of a favorable mutation allowing

a population of viruses to escape extinction. Some other biological examples, where

these processes apply as models, can be found in [5].

Notice that the defective GW-processes can be put into the framework of ϕ-branching
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processes using a random control function

ϕ(k) =

 k with probability (1− ε)k,

∆ with probability 1− (1− ε)k,
k ≥ 0,

cf. [11]. Indeed, in the defective case, the branching property (1) can be rewritten as

Z(t+ 1) =

ϕt(Z(t))∑
j=1

ν̃t,j, t = 0, 1, . . . ,

where ϕt(·)
d
= ϕ(·). Here the common distribution of the random variables ν̃t,j has

a proper probability generating function f(·)/f(1). For a given small value of ε, the

control function gets a chance to stop the growth of a non-defective GW-process, when

the population size k becomes inverse-proportional to ε, that is when the stopping

probability 1− (1− ε)k is approximated by 1− e−εk.

2 Limit theorems with fixed reproduction law

In this section we assume that the defective reproduction law f(·) is fixed while the

observation time t tends to infinity. Recall that q ∈ [0, 1) is defined by q = f(q) and

γ = f ′(q). Observe that γ ∈ [0, 1), and denote

l = min{k ≥ 0 : pk > 0}.

Clearly, q = 0 if and only if l ≥ 1, and γ = 0 if and only if l ≥ 2. Define πt = γt for

l = 0, 1, and

πt =
t−1∏
k=0

p lk

l = patl , at =
lt − 1

l − 1
, t ≥ 1,
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for l ≥ 2. Observe that given l ≥ 1, the minimal t-th generation size is lt and

P (Z(t) = lt) = πt.

Proposition 1. Consider iterations f(t, ·) of a defective probability generating function

f(·).

(a) If γ > 0, then for each s ∈ [0, 1],

f(t, s)− q ∼ (s− q)H(s)πt, t→ ∞,

where H(·) is a generating function defined as

H(s) =
∞∏
j=0

h(f(j, s)), h(s) =
f(s)− q

(s− q)γ
,

and having H(q) = 1, H(1) <∞.

(b) If γ = 0, then for each s ∈ [0, 1],

f(t, s) ∼ (sR(s))l
t

πt, t→ ∞,

where R(·) is a generating function defined as

R(s) =
∞∏
j=0

(b(f(j, s)))l
−j−1

, b(s) =
f(s)

plsl
,

and having

1 = R(0) < R(1) < p
−1/(l−1)
l .
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Proposition 1 indicates that there are two different asymptotic regimes depending

on whether γ > 0 or γ = 0. It is worthwhile to note that Proposition 1-a and 1-b are

analogous results to Theorem 2 in [2, Ch I.11] and Proposition 3 in [1], respectively,

for non-defective GW-processes.

An immediate consequence of Proposition 1-a is

γ−tP (T > t) → qH(0) + (1− q)H(1), t→ ∞, (5)

which implies

P (T = t+ k|T ≥ t) → (1− γ)γk, k ≥ 1.

As it is shown next by Theorem 2, devoted to the case γ > 0, relation

(s− q)H(s) + qH(0)

(1− q)H(1) + qH(0)
=
∑
j≥1

vjs
j (6)

defines an important proper distribution (vj)j≥1. Indeed, Theorem 2-a is the counter-

part result of Theorem 1 in [2, Ch I.14] for non-defective GW-processes and Theorem

2-b is a multivariate analogue of Theorem 2-a.

Theorem 2. Consider a defective GW-process with γ > 0.

(a) The asymptotic relation (5) holds, and for 0 ≤ k ≤ t, j ≥ 1,

P (Z(t− k) = j|T > t) → vk,j, t→ ∞,

where (vk,j)j≥1 is a proper probability distribution defined by

vk,j = vjγ
−k(f(k, 1)j − f(k, 0)j), (7)
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so that v0,j ≡ vj are given by (6).

(b) For j0 ≥ 1, . . . , jk ≥ 1, k ≥ 0,

P (Z(t) = j0, . . . , Z(t− k) = jk|T > t) → vk,jkQ
(k)
jk,jk−1

· · ·Q(1)
j1,j0

, t→ ∞,

where

Q
(k)
ij =

f(k − 1, 1)j − f(k − 1, 0)j

f(k, 1)i − f(k, 0)i
Pij,

∑
j≥1

Q
(k)
ij = 1, i ≥ 1,

is a transformation of the time-homogeneous transition probabilities

Pij = P (Z(t+ 1) = j|Z(t) = i).

We see that in the case γ > 0, the conditional branching process asymptotically

behaves as a time-inhomogeneous Markov chain. Observe that given q ∈ (0, 1), the

limit towards the past

Q
(k)
ij → Pijjq

j−i

γi
, k → ∞,

recovers the well known formula for the so-called Q-process, see [2, Ch I.14] and [9].

On the other hand, for γ = 0, Proposition 1-b gives a much faster decay of the tail

distribution

P (T > t) ∼ πtR(1)
lt = p

− 1
l−1

l ρl
t

, t→ ∞, (8)

where ρ = p
1

l−1

l R(1) ∈ (0, 1). This yields P (T = t|T ≥ t) → 1. The next Theorem 3

establishes a conditional weak law of large numbers for lt−kZ(t− k) as t→ ∞.
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Figure 1: Simulation results for f(s) = 0.7s2 + 0.2s3 and t = 7. Left panel. Grey

lines represent the vectors (Z(0), 2−1Z(1), . . . , 2−tZ(t)) for 240 successful simulations

having T > t. The thick black line shows the limit vector (c(t), c(t − 1), . . . , c(0))

suggested by Theorem 3, which provides with a good approximation for the average

trajectory (shown by circles) even for the small observation time t = 7. Right panel.

The histogram presents the observed values Z(t) in the successful simulations.
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Theorem 3. Consider a defective GW-process with γ = 0. Then the asymptotic

relation (8) holds and for the normalized process Y (t) = l−tZ(t), we have the following

results concerning its expectation and variance.

(a) If f ′(1) <∞, then uniformly over 0 ≤ k ≤ t,

E(Y (k)|T > t)− c(t− k) → 0, t→ ∞,

where in terms of R̄(s) = R′(s)/R(s),

c(k) = 1 + f(k, 1)R̄(f(k, 1)), k = 0, 1, . . . , (9)

is a strictly decreasing sequence with

1 < . . . < c(k + 1) < c(k) < c(k − 1) < . . . < c(1) < c(0) <∞.

(b) If f ′′(1) <∞, then uniformly over 0 ≤ k ≤ t,

V ar(Y (k)|T > t) → 0, t→ ∞.

According to Theorem 3-b, if f ′′(1) < ∞, then conditionally on T > t, we have

convergence in probability Y (t− k) → c(k) as k ≥ 0 is fixed and t → ∞, and conver-

gence in probability Y (k) → 1 as t−k → ∞. This indicates that being conditioned on

survival, the reproduction regime prefers the minimal offspring number l, especially at

early times (see Figure 1).
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3 Extendable defective GW-processes

Suppose f(r) = r for some r > 1, so that necessarily f(1) < 1 (see Figure 2). In this

case the corresponding defective GW-process Z could be called an extendable GW-

process because the usual range 0 ≤ s ≤ 1 for the reproduction generating function

f(s) can be extended to 0 ≤ s ≤ r. The transformed function

f̂(s) = r−1f(rs), s ∈ [0, 1], f̂(1) = 1,

generates a proper reproduction distribution p̂k = rk−1pk with mean m̂ = f̂ ′(1) =

f ′(r). Denote by Ẑ = {Ẑ(t)}t≥0 the GW-process with the reproduction law f̂(·). If

m̂ ∈ (1,∞), then by Theorem 3 in [2, Ch I.10], there exists a sequence C(t) → ∞,

t → ∞ such that Ẑ(t)/C(t) → W a.s., where P (W > 0) = 1− q̂ and q̂ = q/r. In this

case, for any given λ ≥ 0, we have a positive finite limit

E(e−λẐn(t)/C(t)|T̂0 > t) → Ψ(λ), t→ ∞, (10)

where Ψ(λ) = E(e−λW |W > 0). On the other hand, if m̂ = ∞, then by [4],

P (b−t ln Ẑ(t) ≤ u|T̂0 > t) → ψ(u), u ∈ (0,∞), (11)

provided the following condition holds

g′(x) = axb−1(1 +O(xδ)), x→ 0, a > 0, b > 1, δ > 0.
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Figure 2: Extendable generating function f(·).

Here g(·) = G−1(·) is the inverse function of G(x) = 1− f̂(1− x), and the limit ψ(·) in

(11) is continuous and strictly monotonic increasing function such that

ψ(u) → 0, u→ 0+, ψ(u) → 1, u→ ∞.

Theorem 4. Let f̂(·) be a probability generating function for a proper reproduction law.

Consider a sequence of defective GW-processes {Zn}n≥1 corresponding to the sequence

of reproduction laws

fn(s) = rnf̂(s/rn), rn > 1, n ≥ 1, (12)

and with absorption time Tn.

(a) Suppose m̂ ∈ (1,∞) so that (10) holds. If for some sequence tn → ∞,

(rn − 1)C(tn) → x ∈ (0,∞),
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then

P (Tn > tn) → (1− q̂)Ψ (x) ,

and for each λ ≥ 0,

E(e−λZn(tn)/C(tn)|Tn > tn) → Ψ(λ+ x)/Ψ(x), n→ ∞. (13)

(b) Suppose m̂ = ∞ and (11) holds. If for some sequence tn → ∞,

b−tn ln(rn − 1)−1 → y, y ∈ (0,∞), n→ ∞,

then

P (Tn > tn) → (1− q̂)ψ(y),

and for u ∈ [0, y],

P (b−tn lnZn(tn) ≤ u|Tn > tn) → ψ(u)/ψ(y), n→ ∞.

Theorem 4-a should be compared to [7, Theorem 3.4] concerning a sequence of

GW-processes with killing: if Zn has a reproduction law of the form fn(s) = f̂(αns),

where f̂(1) = 1, f̂ ′(1) ∈ (1,∞), and

(1− αn)C(tn) → (m̂− 1)x/m̂, n→ ∞,

then the same weak convergence result (13) holds. The proof of Theorem 4 given in Sec-

tion 6 is more straightforward than the proof of [7, Theorem 3.4], which demonstrates

the advantage of dealing with the extendable GW-processes.
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4 Explicit limits for defective theta-branching pro-

cesses

As was pointed out in the Introduction, the main assumption of Section 3 is quite

restrictive on the mode of convergence fn(·) → f̂(·), namely, condition (12) requires

that the sequence fn(·) has a common shape of the reproduction laws and only a scale

parameter rn → 1 is changing as n→ ∞. In this section we take a step towards a more

general setting for the convergence fn(·) → f̂(·). We focus on the parametric family

of the theta-branching processes introduced in [9]. Our Propositions 5, 6 and 7 give

explicit expressions for the corresponding limit distributions.

Proposition 5 is a counterpart of Theorem 4-a in terms of a sequence of extendable

GW-processes whose generating functions are explicitly characterized by four param-

eters

(θn, qn, γn, rn) ∈ (0, 1]× [0, 1)× (0, 1)× (1,∞)

as follows

fn(t, s) = rn −
[
γtn(rn − s)−θn + (1− γtn)(rn − qn)

−θn
]−1/θn

, s ∈ [0, rn],

In agreement with our previous notation, qn is the extinction probability and γn =

f ′
n(qn). These defective GW-processes have the defect value

εn =
[
γn(rn − 1)−θn + (1− γn)(rn − qn)

−θn
]−1/θn − (rn − 1).

Proposition 5. Fix a triplet (θ, q, γ) ∈ (0, 1] × [0, 1) × (0, 1) and consider the above
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described sequence of defective theta-branching processes {Zn}n≥1 with

(θn, γn, qn, rn) → (θ, γ, q, 1), n→ ∞.

Denote mn = f ′
n(1) = γ

−1/θn
n , and assume that for some tn → ∞,

(rn − 1)mtn
n → x ∈ (0,∞), n→ ∞. (14)

(a) As n→ ∞,

P (Tn > tn) → (1− q)Ψ (x) ,

where

Ψ(λ) = 1−
[
1 + (1− q)θλ−θ

]−1/θ
, λ ≥ 0. (15)

(b) If k ≥ 0 and tn − k → ∞, then for each λ ≥ 0,

E
(
exp{−λmk−tn

n Zn(tn − k)}|Tn > tn
)
→ Ψ(x+ λ)

Ψ (x)
, n→ ∞.

Under the conditions of Proposition 5 we have fn(s) → f̂(s), where

f̂(s) = 1−
[
γ(1− s)−θ + (1− γ)(1− q)−θ

]−1/θ
. (16)

For the corresponding supercritical GW-process having the offspring mean m̂ = γ−1/θ,

it is straightforward to check that the limit Laplace transform

E(e−λẐ(t)m̂−t |T̂0 > t) = 1− 1− f̂(t, e−λγt/θ
)

1− f̂(t, 0)
→ Ψ(λ), t→ ∞,
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is given by (15). Since

εn ∼ (γ−1/θ − 1)(rn − 1), n→ ∞,

the first part of Proposition 5 essentially says that for a given small ε, the absorp-

tion time T of a defective theta-branching process with θ ∈ (0, 1] is of order θ logγ ε.

Observe that the new normalization mtn
n may not be asymptotically equivalent to the

normalization m̂tn suggested by Theorem 4-a under an additional ”xlogx” condition.

The next two propositions deal with two different sequences fn(·) converging to the

same limit reproduction law given by

f̂(s) = 1− (1− q)1−γ(1− s)γ, s ∈ [0, 1], (17)

with q ∈ [0, 1), γ ∈ (0, 1), f̂(1) = 1, and m̂ = f̂ ′(1) = ∞. Plugging s = exp{−λe−uγ−t}

into

f̂(t, s) = 1− (1− q)1−γt

(1− s)γ
t

,

it is straightforward to find a convergence

P
(
γt ln Ẑ(t) ≤ u|T̂0 > t

)
→ 1− e−u, u ≥ 0

to a standard exponential distribution. Observe that both propositions are counter-

parts of Theorem 4-b. Proposition 6 deals with the family of reproduction laws de-

pending on three parameters, while Proposition 7 handles a more complicated four-

parameter case.

Proposition 6. Consider a sequence of defective GW-processes {Zn}n≥1 having the
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following reproduction laws

fn(s) = rn − (rn − qn)
1−γn(rn − s)γn , s ∈ [0, rn),

with (qn, γn, rn) ∈ [0, 1)× (0, 1)× (1,∞). Suppose that for some (q, γ) ∈ [0, 1)× (0, 1),

(qn, γn, rn) → (q, γ, 1) n→ ∞,

and that for some tn → ∞,

γtnn ln(rn − 1)−1 → y ∈ (0,∞), n→ ∞. (18)

(a) As n→ ∞,

P (Tn > tn) → (1− q)(1− e−y). (19)

(b) If k ≥ 0 and tn − k → ∞, then

P
(
γtn−k
n lnZn(tn − k) ≤ u|Tn > tn

)
→ 1− e−u

1− e−y
, 0 ≤ u ≤ y. (20)

Since in this parametric case the defect size has the asymptotic value

εn ∼ (1− q)1−γ(rn − 1)γ, n→ ∞,

the first part of Proposition 6 essentially says that for a given small defect value ε,

the absorption time of a defective theta-branching process with θ ∈ (0, 1] is of order

ln ln ε−1.
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Proposition 7. Consider a sequence of defective GW-processes {Zn}n≥1 having the

following reproduction laws

fn(s) = An −
[
γn(An − s)|θn| + (1− γn)(An − qn)

|θn|
]1/|θn|

, s ∈ [0, An],

where (θn, qn, γn, An) ∈ (−1, 0)× [0, 1)× (0, 1)× [1,∞). Suppose that for some (γ, q) ∈

(0, 1)× [0, 1),

(θn, γn, qn, An) → (0, γ, q, 1), n→ ∞,

in such a way that for some tn → ∞,

|θn| ln(An − 1)−1 → a ∈ (0,∞], (21)

γtnn |θn|−1 → y ∈ (0,∞), n→ ∞. (22)

(a) As n→ ∞,

P (Tn > tn) → (1− q)(1− e−y(1−e−a)).

(b1) If k ≥ 0 is fixed , then putting û(x) = −x ln(1− u/x),

P
(
γtn−k
n lnZn(tn − k) ≤ û(yγ−k)|Tn > tn

)
→ 1− e−u

1− e−y(1−e−a)
, 0 ≤ u < y(1−e−a).

(b2) If k → ∞, tn − k → ∞, then

P
(
γtn−k
n lnZn(tn − k) ≤ u|Tn > tn

)
→ 1− e−u

1− e−y(1−e−a)
, 0 ≤ u < y(1− e−a).

Here, εn ∼ (1−q)(1−γ)1/|θn| and by Proposition 7-a, given a small defect value ε, the

absorption time is again of order ln ln ε−1. If An ≡ 1, then a = ∞, and convergence in
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Proposition 7-a is given by (20). To see a connection of the convergence in Proposition

7-b1 to that of Proposition 7-b2, notice that û(x) → u, as x→ ∞.

Observe that in Propositions 6 and 7, the absorption time is of the same order.

Moreover, the asymptotic distribution of the processes conditioned upon survival and

equally normalized is a truncated exponential distribution in Proposition 6-b, with

k ≥ 0 fixed, as well as in Proposition 7-b2, as k → ∞. However, the exponential

distribution resulting in Proposition 6-b has mean equal to one, whereas the mean of

its counterpart in 7-b2 is equal to (1 − e−a)−1, where a is defined in (21). In both

cases, the support of the corresponding truncated distribution depends on the rate of

convergence of εn → 0.

5 Proofs of Proposition 1 and Theorems 2 and 3

5.1 Proof of Proposition 1

Assume γ > 0. Putting

Ht(s) =
f(t, s)− q

(s− q)γt
, 0 ≤ s ≤ 1, t ≥ 1,

observe that

Ht(s) =
t−1∏
j=0

h(f(j, s)), h(s) =
f(s)− q

(s− q)γ
.

It is easy to check that h(·) is a generating function with h(q) = 1. (In fact, f(s)−f(q)
s−q

is a tail generating function naturally linked to the reproduction law f(·), see [8].) It

follows that Ht(·) is also a generating function such that Ht(q) = 1.

Since h(f(t, s)) < 1 for s < q, and h(f(t, s)) > 1 for s > q, we conclude that
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Ht+1(s) < Ht(s) for s < q, and Ht+1(s) > Ht(s) for s > q. Due to this monotonicity

property, we have Ht(s) → H(s), as t → ∞, where the limit function H(s) has the

stated form.

To finish the proof of Proposition 1-a it remains to show that H(1) <∞ or equiv-

alently,
∞∑
j=1

(h(f(j, 1))− 1) <∞.

The last is indeed true because

h(f(t, 1))− 1 ≤
(
1− ε

1− q

)t

c, t > t0,

for some finite c and t0. This upper bound is justified using two observations: on one

hand, we have

h(s)− h(q)

s− q
→ f ′′(q)

γ
∈ (0,∞), s→ q,

and on the other hand,

f(t, 1)− q ≤ (1− q)

(
1− ε

1− q

)t

,

which is due to the following convexity property of f(·)

f(s) ≤ q + (s− q)
1− q − ε

1− q
, s ∈ [q, 1].

Assume now γ = 0, or equivalently l ≥ 2. By iterating the function f(s) = pls
lb(s),

21



we get the following representation

f(t, s) = πt(sRt(s))
lt , Rt(s) =

t∏
j=1

(
b(f(j − 1, s))

)l−j

, t ≥ 0. (23)

A straightforward adjustment to the defective case f(1) < 1 of the argument used in

[1, Prop. 3] shows that the sequence of monotonely increasing functions Rt(·) has a

well defined limit

R(s) = lim
t→∞

Rt(s) =
∞∏
j=1

b(f(j − 1, s))l
−j

, s ∈ [0, 1],

and moreover, that

lim
t→∞

(Rt(s)/R(s))
lt = 1.

This proves the main assertion of Proposition 1-b. It remains to verify the stated upper

bound for R(1) which in terms of ρ = p
1

l−1

l R(1), is equivalent to the inequality ρ < 1.

Since f(t, 1) → q = 0, the relation

f(t, 1) ∼ πtR(1)
lt = p

− 1
l−1

l ρl
t

, t→ ∞

indeed implies that ρ < 1. This also gives (8).
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5.2 Proof of Theorem 2

We will need the following relations

P (T > t|Z(k) = i) = f i(t− k, 1)− f i(t− k, 0), (24)

E(sZ(k)|T > t) =
f(k, sf(t− k, 1))− f(k, sf(t− k, 0))

f(t, 1)− f(t, 0)
, (25)

holding for 0 ≤ k ≤ t <∞, s ∈ [0, 1]. Relation (24) follows from

{T > t} = {T∆ > t} \ {T0 ≤ t}

and

P (T∆ > t|Z(k) = i) = P (Z(t− k) ̸= ∆)i = f i(t− k, 1),

P (T0 ≤ t|Z(k) = i) = P (Z(t− k) = 0)i = f i(t− k, 0).

Relation (25) is obtained using (24) as follows

E(sZ(t)|T > t+ k) =
E(sZ(t)P (T > t+ k|Z(t)))

P (T > t+ k)

=
E((sf(k, 1))Z(t))− E((sf(k, 0))Z(t))

f(t+ k, 1)− f(t+ k, 0)

=
f(t, sf(k, 1))− f(t, sf(k, 0))

f(t+ k, 1)− f(t+ k, 0)
.
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Applying (25) and Proposition 1-a, we get

E(sZ(t−k)|T > t) =
f(t− k, sf(k, 1))− f(t− k, sf(k, 0))

f(t− k, f(k, 1))− f(t− k, f(k, 0))

→ (sf(k, 1)− q)H(sf(k, 1))− (sf(k, 0)− q)H(sf(k, 0))

(f(k, 1)− q)H(f(k, 1))− (f(k, 0)− q)H(f(k, 0))
.

In particular,

E(sZ(t)|T > t) → (s− q)H(s) + qH(0)

(1− q)H(1) + qH(0)
=

∞∑
j=1

vjs
j.

Thus, P (Z(t− k) = j|T > t) → vk,j with

∞∑
j=1

vk,js
j =

(sf(k, 1)− q)H(sf(k, 1))− (sf(k, 0)− q)H(sf(k, 0))

(f(k, 1)− q)H(f(k, 1))− (f(k, 0)− q)H(f(k, 0))
.

Modifying the denominator by a repeated use of the relation

(f(s)− q)H(f(s)) = γ(s− q)H(s),

we find

∞∑
j=1

vk,js
j = γ−k (sf(k, 1)− q)H(sf(k, 1))− (sf(k, 0)− q)H(sf(k, 0))

(1− q)H(1) + qH(0)

= γ−k

(
∞∑
j=1

vj(sf(k, 1))
j −

∞∑
j=1

vj(sf(k, 0))
j

)
,

which implies (7) thereby finishing the proof of Theorem 2-a.
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Turning to the proof of Theorem 2-b, observe that

P (T > t|Z(t) = j0, . . . , Z(t− k) = jk) = 1,

implying

P (Z(t) = j0, . . . , Z(t− k) = jk;T > t) = P (Z(t) = j0, . . . , Z(t− k) = jk).

Similarly, by (24),

P (Z(t− k) = jk;T > t) = P (Z(t− k) = jk)(f(k, 1)
jk − f(k, 0)jk),

which gives

P (Z(t− k) = jk) ∼ vk,jk(f(k, 1)
jk − f(k, 0)jk)−1P (T > t).

Therefore, by the Markov property,

P (Z(t) = j0, . . . , Z(t− k) = jk|T > t) ∼ vk,jk
Pjk,jk−1

· · ·Pj1,j0

f(k, 1)jk − f(k, 0)jk

= vk,jkQ
(k)
jk,jk−1

· · ·Q(1)
j1,j0

.

Finally, observe that (Q
(k)
ij )j≥1 is a proper distribution with the probability gener-

ating function
∞∑
j=1

Q
(k)
ij s

j =
f(sf(k − 1, 1))i − f(sf(k − 1, 0))i

f(k, 1)i − f(k, 0)i
.

25



5.3 Proof of Theorem 3

Recall notation R̄(s) = R′(s)/R(s) and observe that

R(s) =
d

ds
lnR(s) =

∞∑
j=0

1

lj+1

b′(f(j, s))f ′(j, s)

b(f(j, s))
,

where f ′(j, s) = d
ds
f(j, s). Put furthermore, R̄t(s) =

R′
t(s)

Rt(s)
for s ∈ [0, 1] and t ≥ 0.

Using (23), we obtain

R̄t(s) =
d

ds
lnRt(s) =

t−1∑
j=0

1

lj+1

b′(f(j, s))f ′(j, s)

b(f(j, s))
.

Lemma 8. Assume γ = 0, f ′(1) <∞, and put

δt =
∞∑
j=t

γ0 · · · γj−1, γi = f ′(f(i, 1)).

Then δt → 0 as t→ ∞ and

R̄(s)− R̄t(s) <
f ′(1)δt
pl

, s ∈ [0, 1].

Proof. Using the expressions for R̄(s) and R̄t(s), as well as the inequality b(s) ≥ 1, we

see that indeed

R̄(s)− R̄t(s) =
∞∑
j=t

b′(f(j, s))f ′(j, s)

b(f(j, s))lj+1
≤ b′(1)

∞∑
j=t

f ′(j, 1) <
f ′(1)δt
pl

.

The fact that δt < ∞ follows from γi → 0 as i → ∞, which, in turn, is a consequence

of γ = 0.
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Lemma 9. Assume f ′(1) <∞, γ = 0. The sequence (9) is strictly decreasing.

Proof. It suffices to show that

1 + f(s)R̄(f(s)) < 1 + sR̄(s), s ∈ [0, 1].

Using the definition of R(·) given in Proposition 1 it is easy to verify the equality

f(s)R(f(s)) = pl(sR(s))
l,

which entails

ln f(s) + lnR(f(s)) = ln pl + l ln s+ l lnR(s).

After differetiating

f ′(s)

f(s)
+ R̄(f(s))f ′(s) =

l

s
+ lR̄(s),

we find

1 + f(s)R̄(f(s)) =
(ln pls

l)′

(ln f(s))′
(1 + sR̄(s)),

where (ln pls
l)′

(ln f(s))′
< 1, since

(ln pls
l)′ < (ln pls

l)′ + (ln b(s))′ = (ln f(s))′.
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Lemma 10. If γ = 0, then

f ′(t, s)s

f(t, s)
= lt(1 + sR̄t(s)),

f ′′(t, s)s2

f(t, s)
= l2t(1 + sR̄t(s))

2 + lt(s2R̄′
t(s)− 1).

Proof. Both relations are straightforward corollaries of formula (23).

Assuming γ = 0, we first prove Theorem 3-a using Lemmas 8, 9 and 10, and then

turn to the proof of Theorem 3-b.

Let f ′(1) <∞. From (25), we compute the conditional expectation

E (Z(k)|T > t) =
f ′(k, f(t− k, 1))f(t− k, 1)

f(k, f(t− k, 1))
,

and applying the first relation in Lemma 10, we find

E (Y (k)|T > t) = 1 + f(t− k, 1)R̄k(f(t− k, 1)).

Thus the difference

c(t− k)− E (Y (k)|T > t) =f(t− k, 1)(R̄(f(t− k, 1))− R̄k(f(t− k, 1))

is non-negative and bounded from above by a constant times f(t− k, 1)δk, see Lemma

8. By the monotonocity of the sequences {f(j, 1)}j≥0 and {δj}j≥1, we have for all

1 ≤ k, k′ ≤ t,

f(t− k, 1)δk ≤ max
0≤k≤k′

f(t− k, 1)δk + max
k′≤k≤t

f(t− k, 1)δk ≤ f(t− k′, 1)δ0 + δk′ .
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The obtained upper bound goes to 0 as first t → ∞ and then k′ → ∞. This proves

the uniform convergence stated in Theorem 3-a.

Let f ′′(1) <∞. To prove Theorem 3-b it suffices to show the inequality

V ar(Y (k)|T > t) < c l−kf(t− k, 1), 0 ≤ k ≤ t,

for some constant c. From formula (25) one can obtain the following expression, where

s0 = f(t− k, 1),

V ar (Z(k)|T > t) =
f ′′(k, s0)s

2
0

f(k, s0)
+
f ′(k, s0)s0
f(k, s0)

−
(
f ′(k, s0)s0
f(k, s0)

)2

,

so that by Lemma 10, we get

V ar (Z(k)|T > t) = lkf(t− k, 1)
(
R̄k(f(t− k, 1)) + f(t− k, 1)R̄′

k(f(t− k, 1))
)
.

Since we already know that R̄t(s) is uniformly bounded by a constant, it remains

to establish a similar property for the derivative R̄′
t(s), which satisfies

R̄′
t(s) <

∞∑
j=0

b′′(f(j, s))f ′(j, s)2 + b′(f(j, s))f ′′(j, s)

lj+1b(f(j, s))
,

and since b′′(s) ≤ f ′′(1)/pl, we obtain

R̄′
t(s) <

f ′′(1)

lpl

∞∑
j=0

f ′(j, 1)2

lj
+
f ′(1)

lpl

∞∑
j=0

f ′′(j, 1)

lj
.
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We finish the proof by verifying that
∑∞

j=0 f
′′(j, 1) <∞. Indeed, by the chain rule,

f ′′(j + 1, 1) =

j∑
i=0

f ′(i, 1)2f ′′(f(i, 1))f ′(f(i+ 1, 1)) · · · f ′(f(j, 1))

≤ f ′′(1)

j∑
i=0

γ20 · · · γ2i−1γi+1 · · · γj,

and because γj → 0 as j → ∞, we have

∞∑
j=0

j∑
i=0

γ20 · · · γ2i−1γi+1 · · · γj <∞.

6 Proofs of Theorem 4 and Propositions 5, 6 and 7

For a sequence of defective GW-processes with reproduction laws fn(·), we have

P (Tn > t) = fn(t, 1)− fn(t, 0),

and by (25),

E(e−λZn(t−k)|Tn > t) =
fn(t− k, e−λfn(k, 1))− fn(t− k, e−λfn(k, 0))

fn(t, 1)− fn(t, 0)
, (26)

so that in particular,

E(e−λZn(t)|Tn > t) =
fn(t, e

−λ)− fn(t, 0)

fn(t, 1)− fn(t, 0)
.
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6.1 Proof of Theorem 4

Relation (12) is easily extended to the iterations of the generating functions

fn(t, s) = rnf̂(t, s/rn).

Therefore, if ln rn ∼ x/C(tn), then

fn(tn, e
−λ/C(tn)) = (1 + o(1))f̂(tn, e

−(λ+x+o(1))/C(tn)), n→ ∞.

On the other hand, by (10) and

E(e−λẐ(t)/C(t)|T̂0 > t) =
f̂(t, e−λ/C(t))− f̂(t, 0)

1− f̂(t, 0)
,

we get

f̂(t, e−λ/C(t)) → q̂ + (1− q̂)Ψ(λ), t→ ∞.

This and the previous relation lead to the assertion of Theorem 4-a.

Turning to the proof of Theorem 4-b, observe that by (11),

P (e−ubtẐ(t) < z|T̂0 > t) → ψ(u), u ∈ (0,∞), z ∈ (0,∞),

and therefore, for λ ≥ 0,

f̂(t, e−λe−ubt

) → q̂ + (1− q̂)ψ(u), t→ ∞,

implying

f̂(t, e−e−(u+o(1))bt

) → q̂ + (1− q̂)ψ(u), t→ ∞. (27)
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If for some sequence tn → ∞,

ln(1/rn) = −e−(y+o(1))btn , y ∈ (0,∞), n→ ∞,

then for fixed positive λ and u, we can write

fn(tn, e
−λe−ubtn

) = (1 + o(1))f̂(tn, exp{−e−(u+o(1))btn − e−(y+o(1))btn}), n→ ∞.

Applying (27) we conclude that

fn(tn, e
−λe−ubtn

) → q̂ + (1− q̂)ψ(u ∧ y), n→ ∞,

yielding

P (e−ubtnZ(tn) < z|Tn > tn) →
ψ(u ∧ y)
ψ(y)

, u ∈ (0,∞), z ∈ (0,∞),

and eventually for u ∈ (0, y),

P (b−tn lnZn(tn) ≤ u|Tn > tn) → ψ(u)/ψ(y), n→ ∞.

6.2 Proof of Proposition 5

Here we deal with the sequence

fn(tn − k, s) = rn −
[
γtn−k
n (rn − s)−θn + (1− γtn−k

n )(rn − qn)
−θn
]−1/θn

, (28)
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assuming γn → γ ∈ (0, 1), θn → θ ∈ (0, 1], qn → q ∈ [0, 1), and rn → 1 so that (14)

holds. Note that the convergence γn → γ ∈ (0, 1) implies γtnn → 0. Proposition 5-a

directly follows from two relations

fn(tn, 1) = rn −
[
γtnn (rn − 1)−θn + (1− γtnn )(rn − qn)

−θn
]−1/θn

→ 1− (1− q)
[
1 + (1− q)θx−θ

]−1/θ
,

fn(tn, 0) = rn −
[
γtnn r

−θn
n + (1− γtnn )(rn − qn)

−θn
]−1/θn → q.

Turning to Proposition 5-b, let k ≥ 0 and tn − k → ∞. In view of (26), we have to

show that putting γ̂n = γ
tn−k
θn

n ,

fn(tn − k, e−λγ̂nfn(k, 1)) → 1− (1− q)
(
1 + (1− q)θ(λ+ x)−θ

)1/θ
,

fn(tn − k, e−λγ̂nfn(k, 0)) → q.

The second convergence is easily obtained from (28) using the following limit that holds

for n→ ∞ and each k ≥ 0,

fn(k, 0) = rn − (γknr
−θn
n +(1− γkn)(rn − qn)

−θn)−1/θn → 1− (γk +(1− γk)(1− q)−θ)−1/θ.

The first convergence is also obtained from (28) using the following asymptotic formu-

las. Since for each k ≥ 0, γ
−k/θn
n (rn − 1) → 0 as n→ ∞, we have

1− fn(k, 1) ∼ 1− rn + (γkn(rn − 1)−θn)−1/θn ∼ (rn − 1)(γ−k/θn
n − 1).
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Thus, for each k ≥ 0,

rn − e−λγ̂nfn(k, 1) ∼ λγ
tn−k
θn

n + (rn − 1)γ−k/θn
n , as n→ ∞,

implying

γtn−k
n

(
rn − e−λγ̂nfn(k, 1)

)−θn ∼
(
λ+ (rn − 1)γ

− tn
θn

n

)−θn → (λ+ x)−θ, as n→ ∞.

6.3 Proof of Proposition 6

Here we deal with the sequence

fn(t, s) = rn − (rn − qn)
1−γt

n(rn − s)γ
t
n ,

as γn → γ ∈ (0, 1), qn → q ∈ [0, 1), and rn → 1. We assume that (18) holds for some

tn → ∞.

Condition (18) gives

(rn − 1)γ
tn
n → e−y,

which implies

fn(tn, 1) = rn − (rn − qn)
1−γtn

n (rn − 1)γ
tn
n → 1− (1− q)e−y,

fn(tn, 0) = rn − (rn − qn)
1−γtn

n rγ
tn
n

n → q.

yielding Proposition 6-a.

Let k ≥ 0 and tn − k → ∞. To prove Proposition 6-b it suffices to show that
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putting r̂n = (rn − 1)uy
−1γk

n ,

E
(
e−λr̂nZn(tn−k)|Tn > tn

)
→ 1− e−u

1− e−y
, n→ ∞,

for λ ≥ 0 and u ∈ [0, y]. This in turn, follows from

fn
(
tn − k, e−λr̂nfn(k, 1)

)
→ 1− (1− q)e−u,

fn
(
tn − k, e−λr̂nfn(k, 0)

)
→ q,

which we prove next. The first of these two relations is obtained as follows: using

1− fn(k, 1) ∼ (rn − 1)γ
k
n(1− q)1−γk

n ,

and taking into account that u ≤ y, we get

(
rn − e−λr̂nfn(k, 1)

)γtn−k
n ∼

(
rn − 1 + λr̂n + (rn − 1)γ

k
n(1− q)1−γk

n

)γtn−k
n

∼ (λr̂n)
γtn−k
n → e−u,

and, as a consequence,

fn
(
tn − k, e−λr̂nfn(k, 1)

)
= rn − (rn − qn)

1−γtn−k
n

(
rn − e−λr̂nfn(k, 1)

)γtn−k
n

→ 1− (1− q)e−u.

The second relation follows from

fn(k, 0) = rn − rγ
k
n

n (rn − qn)
1−γk

n → 1− (1− q)1−γk

.
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6.4 Proof of Proposition 7

Here we deal with the sequence

fn(t, s) = An −
[
γtn(An − s)|θn| + (1− γtn)(An − qn)

|θn|
]1/|θn|

,

as γn → γ ∈ (0, 1), qn → q ∈ [0, 1), An → 1, and θn → 0. We assume that (22) holds

for some tn → ∞.

Propositions 7-a and 7-b2 are proven similarly to Proposition 6. To prove Propo-

sition 7-b1, fix k ≥ 0 and let tn − k → ∞. We write û(x) = −x ln(1 − u/x) and

also

θ̂n = (1− uy−1γkn)
yγ−tn

n .

It suffices to show that

E
(
e−λθ̂nZn(tn−k)|Tn > tn

)
→ 1− e−u

1− e−y(1−e−a)
, n→ ∞,

for λ ≥ 0 and u ∈ [0, y(1− e−a)), or in terms of generating functions,

fn

(
tn − k, e−λθ̂nfn(k, 1)

)
→ 1− (1− q)e−u,

fn

(
tn − k, e−λθ̂nfn(k, 0)

)
→ q.

We finish the proof by checking only the first of these two relations.

Since

An−fn(k, 1) =
[
(An − qn)

|θn| − γkn

(
1− (An − 1)|θn|

)]1/|θn|
=
[
1− γk(1− e−a) + o(1)

]1/|θn|
,
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we get

(
An − e−λθ̂nfn(k, 1)

)|θn|
=
([

1− γk(1− e−a) + o(1)
]1/|θn|

+ (λ+ o(1))θ̂n

)|θn|
.

Using

θ̂ |θn|
n → 1− uy−1γk,

and u < y(1− e−a), we obtain

fn

(
tn − k, e−λθ̂nfn(k, 1)

)
= 1− (1− q)

(
1− (u/y + o(1))γtnn

)1/|θn|
(1 + o(1))

→ 1− (1− q)e−u,

since (1− γtnn )
1/|θn| → e−y due to condition (22).
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