
mathematics

Article

Modeling Y-Linked Pedigrees through
Branching Processes

Miguel González † , Cristina Gutiérrez † and Rodrigo Martínez *,†

Department of Mathematics and ICCAEx, University of Extremadura, Avda. Elvas s/n, 06006 Badajoz, Spain;
mvelasco@unex.es (M.G.); cgutierrez@unex.es (C.G.)
* Correspondence: rmartinez@unex.es
† All the authors contributed equally to this work.

Received: 20 January 2020; Accepted: 11 February 2020; Published: 15 February 2020
����������
�������

Abstract: A multidimensional two-sex branching process is introduced to model the evolution of a
pedigree originating from the mutation of an allele of a Y-linked gene in a monogamous population.
The study of the extinction of the mutant allele and the analysis of the dominant allele in the pedigree
is addressed on the basis of the classical theory of multi-type branching processes. The asymptotic
behavior of the number of couples of different types in the pedigree is also derived. Finally, using the
estimates of the mean growth rates of the allele and its mutation provided by a Gibbs sampler, a real
Y-linked pedigree associated with hearing loss is analyzed, concluding that this mutation will persist
in the population although without dominating the pedigree.
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1. Introduction

Branching Processes (BPs) (see [1]) are stochastic mathematical models widely used in population
genetics (see [2]) as an alternative approach to the Wright–Fisher model when the classical
assumption of constant population size is dropped (see [3]). Not only the simplest model,
the Bienaymé–Galton–Watson BP, has been applied (see, for example, the pioneering work [4], or more
recently [5,6], or [7]), but also more complex BPs have been used to better describe newly arisen genetic
issues (see, for example, logistic BP [8], infinite-allele BP [9], or multi-type self-regulating BP [10].)

In this setting, those processes that model sexual reproduction merit particular attention. Deriving
from the standard two-sex BP (see [11]), several multi-type discrete time two-sex BPs have been
proposed to model various genetic problems. In particular, in [12] and in Chapters 11 and 12 in [13],
two-sex multi-type self-regulating BPs were considered to model the evolution of autosomal loci
with several alleles. Furthermore, the evolution of the number of carriers of the alleles of sex-linked
genes has been considered for both Y-linked and X-linked cases. In particular, a Y-linked two-sex
BP was introduced in [14] in which a preference of females to mate with males having a specific
allele was modeled. In [15,16], it was considered that the Y-linked gene (without and with mutant
alleles, respectively) had no influence on the mating process, i.e., females chose their mates blindly.
An X-linked two-sex BP was introduced in [17] to study X-linked recessive diseases.

All those studies considered two-sex monogamous populations, i.e., one individual can mate
with at most one individual of the opposite sex, forming a couple or mating unit, which gives rise
to female and male offspring with different genotypes according to certain inheritance rules. Each
couple is classified according to its components’ genotypes. The total number of different types of
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couple formed in a generation depends on the total number of females and males in that generation
and is determined by the mating scheme (preference or blind choice) that defines the sexual interaction.
Those studies considered an overall population, dealing with such problems as its extinction, the
fixation of specific alleles, the coexistence of different alleles, their rates of growth, etc. In many real
cases, however, only a part of the population was observed, usually a pedigree or a family tree (see,
for example, in [18–20] for human populations and [21–26] for populations of other animals) related
to a target genetic trait (usually originating from mutation), so that the total number of females and
males in the overall population to which the pedigree belongs is unknown. The pedigree usually has
its own characteristics since, for example, mating with relatives (i.e., individuals within the pedigree)
may be forbidden so that external individuals to the pedigree from the rest of the overall population
have to be chosen as mates. These features are shown in Figure 1, which illustrates the evolution of
the first generations of a simulated Y-linked pedigree evolving within an overall population. Notice
that, in this genetic framework (the Y-linked gene case), the evolution of the number of carriers of
different genotypes in the overall population could be modeled by the Y-linked two-sex BP with the
mutant allele that was introduced in [16]. If one is dealing only with a pedigree, however, this is not
the case either with the aforementioned model or with other Y-linked two-sex BPs without mutation.
The reason is that the total numbers of females and of each type of male are unknown. This also
implies that the inferential methods developed in [27–31] are inadequate to quantify the presence of
the different alleles of the gene within the Y-linked pedigree.

Figure 1. Generation-by-generation evolution of a simulated Y-linked pedigree (bold line) within an
overall population. © Female, � male without the target allele, and � male with the target allele.

In general therefore, the characteristics that typify a pedigree mean that the existing models
introduced to describe the evolution in an overall population of the number of carriers of alleles linked
to sex chromosomes are not fully appropriate. Hence, there is need for proposals of new ad hoc
processes that can model, analyze, and infer the behavior of pedigrees that form part of an overall
population. As a first attempt to address this practical problem, we shall here focus on modeling
Y-linked pedigrees through BPs. With this aim, we have split this communication into seven sections.
In Section 2, which follows, a Y-linked pedigree two-sex BP is introduced. Its basic properties are
studied in Section 3, including how to consider part of the model as a specific multi-type BP. Then,
the extinction problem of the Y-linked gene in the pedigree, as well as its asymptotic growth rate in the
event of survival is considered in Section 4. An application to real data is described in Section 5, where a
Y-linked pedigree associated with the inheritance of non-syndromic hearing impairment is analyzed.
Finally, the conclusions to be drawn are reported in Section 6, and some technical mathematical results
together with the limiting behavior of the total number of mating units of each genotype, which is not
deduced directly from the multi-type BP results, are included as an Appendix A.
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2. Description of the Model

We shall now introduce a discrete-time Y-linked two-sex BP, which determines
generation-by-generation the evolution of a pedigree associated with a Y-linked gene with
two alleles, r and R, where R originates from a mutation of the r allele and will be the target
characteristic. Moreover, it is considered that any other mutation of the r allele will not give rise to the
same characteristic as the R allele, so that we can take all individuals with the R allele to stem from the
first individual with that allele. Thus, for every n ≥ 0, Fn, Mrn, and MRn denote the total numbers of
females and of r- and R-type males that belong to the pedigree at generation n, respectively. The total
numbers of r- and R-type couples or mating units related to the pedigree at generation n are denoted
by Zrn and ZRn, respectively, where the type of a mating unit is the same as the genotype of its male.
The numbers of females and of males of each type at the initial generation (n = 0) are fixed, and we
suppose that R-type males exist at this generation since the pedigree is originated by the R genotype.
From the vector (F0, Mr0, MR0), the size of the family tree in each generation is determined by taking
into account two phases: mating and reproduction.

In the mating phase, the number of couples of each genotype in generation n is obtained by
assuming that generations do not overlap and that there are Fn females, Mrn males with the r genotype,
and MRn males with the R genotype in the Y-linked pedigree. The point here is perfect fidelity mating,
i.e., each individual mates at most with one individual of the opposite sex. Mating with relatives is
forbidden, so that external individuals to the pedigree from the overall population are chosen as mates.
Furthermore, we assume that females generated in the family tree only form couples with external
r males (since, as explained at the beginning of the section, we suppose that there are no external R
males). Hence, each mating unit is one-to-one, with only one of the two individuals belonging to the
family tree. Hence, the R-type male of an R-type mating unit belongs to the pedigree, but for an r-type
mating unit, either the male or the female (but not both) belongs to the family tree. Denoting by Zr(1)n

and Zr(2)n the numbers of r-type mating units whose females and males, respectively, belong to the
pedigree, one therefore has that Zrn = Zr(1)n + Zr(2)n .

We now consider the following probabilities: that each R-type male of the pedigree mates with
one external female is βR, 0 < βR ≤ 1; that a female of the pedigree mates with an external r-type
male is βF, 0 < βF ≤ 1; and that an r-type male of the pedigree mates with an external female is
βr, 0 < βr ≤ 1. These probabilities may be different. Assuming that the probability that any given
individual of the pedigree mates is independent of the others, if there are Fn, Mrn, and MRn females
and r- and R-types males, respectively, then in the pedigree at generation n, the number of couples
that are formed is given by:

Zr(1)n |Fn ∼ B(Fn, βF), Zr(2)n |Mrn ∼ B(Mrn, βr) and ZRn|MRn ∼ B(MRn, βR), (1)

where B(N, p) denotes the binomial distribution of size N and probability p. Notice that, for
generation n, Zr(2)n + ZRn external females and Zr(1)n external r-type males were chosen from the
overall population (they are not considered in the pedigree).

To guarantee conditions that allow this model to be applicable, we assume that the pedigree
exists within an overall population that is large enough for it to be a continual source of females
and r-type males for the pedigree, allowing each individual in the pedigree to choose its mate by
itself and independently of the others and for the probability of its mating to be constant from
generation-to-generation, although possibly different for each type of individual.

In the reproduction phase, as was done in other Y-linked BPs (see [14,15]), each couple is assumed
to produce offspring independently of the other couples according to a probability distribution, which
will be the same for all the couples with a given genotype, irrespective of the generation to which
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they belong. This will be termed the reproduction law of the corresponding genotype. Formally, we
consider the following independent sequences:{(

Fr(t)n,l , Mr(t)n,l

)
: t = 1, 2 ; l = 1, 2, . . . ; n = 0, 1, . . .

}
and: {(FRn,l , MRn,l) : l = 1, 2, . . . ; n = 0, 1, . . .}

of independent, identically distributed, non-negative, and integer-valued bivariate random vectors,
where (Fr(t)n,l , Mr(t)n,l ) (resp. (FRn,l , MRn,l)) represents the number of females and males generated by
the lth couple of type r in generation n, with the female (t = 1) or the male (t = 2) belonging to the
pedigree (resp. type R).

Notice that (Fr(1)0,1 , Mr(1)0,1 ) and (Fr(2)0,1 , Mr(2)0,1 ) have the same distribution since both stem from

couples of type r. However, (Fr(t)0,1, Mr(t)0,1) for t = 1, 2 and (FR0,1, MR0,1) may have different
distributions, meaning that there may be differences in the reproductive capacities of r-type and
R-type couples. With respect to the distribution of these vectors, we assume the binomial reproduction
scheme introduced in [11], which we shall refer to throughout the paper as Daley’s scheme. This is
that the total number of offspring generated by an r-type (resp. R-type) couple is specified by a given
probability distribution, pr = {pr

l}l≥0 (resp. pR = {pR
k }k≥0), where pr

l = P(Fr(t)0,1 + Mr(t)0,1 = l), with
l ≥ 0 and t = 1, 2 (resp. pR

k = P(FR0,1 + MR0,1 = k), with k ≥ 0). Moreover, we denote by mr (resp.
mR) the average number of offspring generated by an r-type (resp. R-type) couple. Furthermore, an
offspring will be female with probability α, 0 < α < 1, or male with probability 1− α. These sex
designations are made independently among the offspring of any couple, and it is assumed that the
genotype has no influence on the sex determination, so that α is the same for both genotypes. Then,
if an r-type (resp. R-type) couple produces l (resp. k) offspring, i.e., Fr(t)0,1 + Mr(t)0,1 = l, with t = 1, 2

(resp. FR0,1 + MR0,1 = k), the number of females among these, Fr(t)0,1 (resp. FR0,1) follows a binomial
distribution of size l (resp. k) and probability α. Hence, the average number of females and males per
r-type (resp. R-type) couple will be αmr and (1− α)mr, respectively, independently of t (resp. αmR
and (1− α)mR).

On the basis of the rules described above, for a generation n with known Zr(1)n and Zr(2)n , i.e., the
total number of r-type couples at generation n whose females and males belong to the Y-linked
pedigree, respectively, and the total number of R-type couples at generation n, ZRn, one has that the
total number of females in generation n + 1 stemming from all couples in generation n is given by:

Fn+1 =
Zr(1)n

∑
j=1

Fr(1)n,j +
Zr(2)n

∑
l=1

Fr(2)n,l +
ZRn

∑
i=1

FRn,i, (2)

where ∑0
1 = 0. Moreover, the male offspring of all r-type and R-type couples in generation n are the

total of r-type and R-type males in the pedigree in generation n + 1, respectively. Their numbers are
given by the following expressions:

Mrn+1 =
Zr(1)n

∑
j=1

Mr(1)n,j +
Zr(2)n

∑
l=1

Mr(2)n,l , and MRn+1 =
ZRn

∑
i=1

MRn,i. (3)

We shall term the six-dimensional process {(Fn, Mrn, MRn, Zr(1)n , Zr(2)n , ZRn)}n≥0 a Y-linked
pedigree two-sex branching process.

Remark 1. The values of the β parameters may be determined in many different ways depending on the
population one is modeling. For example, if the behavior of the individuals in the population is that every
individual that can mate mates (and this behavior is also followed by the individuals of the pedigree), i.e., the
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population evolves as a two-sex BP with perfect fidelity mating (see [11]), then, when α > 0.5, it would
be reasonable to consider that βr = βR = 1 and βF = (1− α)α−1, because the total number of females is
eventually greater than the total number of males in the survival set of the population, and then eventually, all
males mate, and the ratio between males and females in the population stabilizes at around (1− α)α−1 (see [32]).
Analogously, when α < 0.5, βF = 1 and βr = βR = α(1− α)−1 are reasonable choices since the total number
of males is eventually greater than the total number of females in the survival set of the population, and in the
mating process, there is no preference for either one of the alleles. Nevertheless, in some situations, R-males may
be preferred by females as mates. In this case, the reasonable choice for βR would be βR = 1. Notice that these
examples of modeling have some similarity with those given in [15] for “blind choice” mating and in [14] for
mating with preference, respectively.

3. Basic Properties

From the foregoing description of the model, one deduces that the number of females and males
of each genotype belonging to the Y-linked pedigree in the next generation depends only on the current
number of individuals in the pedigree, and not on the number of ancestors in the pedigree or in the
overall population of any past generation.

Therefore, if the current numbers of females and of each type of male in the Y-linked pedigree
are known and given the parameters of the model, i.e., the probability of an offspring to be female,
α, the probabilities of mating, βF, βr, and βR, and the reproduction laws of both types, pR and pr,
which remain the same from generation-to-generation, then the numbers of mating units, of females,
and of males of each type in the following generations are generated recursively by Equations (1)–(3),
respectively. Mathematically therefore, a Y-linked pedigree two-sex BP is a homogeneous multi-type
Markov chain in discrete time, whose states are vectors with non-negative integer coordinates.

Moreover, since each mating unit is related to only one individual of the pedigree, then from
Lemma A1 in Appendix A, the marginal three-dimensional process {(Fn, Mrn, MRn)}n≥0 could be
regarded as a multi-type BP (see [33]). In fact, for all n ≥ 0,

(Fn+1, Mrn+1, MRn+1)
d
=

Fn

∑
j=1

(
Fr(1)n,j , Mr(1)n,j , 0

)
I(1)n,j +

Mrn

∑
l=1

(
Fr(2)n,l , Mr(2)n,l , 0

)
I(2)n,l +

MRn

∑
i=1

(FRn,i, 0, MRn,i) IR
n,i, (4)

where d
= denotes equality in distribution, and with {I(t)n,i : t = 1, 2; i = 1, 2, . . . ; n = 0, 1, . . .} and {IR

n,i :
i = 1, 2, . . . ; n = 0, 1, . . .} being independent sequences of independent and identically distributed
random variables following Bernoulli distributions with probabilities βF (t = 1), βr (t = 2), and βR,
respectively, determining for each individual whether it has mated or not.

Therefore, the basic properties of the process {(Fn, Mrn, MRn)}n≥0 are deduced from those of a
multi-type BP. In particular, we derive the following expression for the matrix of means of the offspring
distributions (see Proposition A1 in Appendix A for mathematical details): βFαmr βF(1− α)mr 0

βrαmr βr(1− α)mr 0
βRαmR 0 βR(1− α)mR

 ,

which depends on the sex ratio, α, the probabilities of mating, βF, βr, and βR, and the reproduction
means, mR and mr, in a usual way. To avoid trivialities, we henceforth consider that these parameters
are non-null.
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Then, using the multi-type BP terminology (see [33]), {(Fn, Mrn, MRn)}n≥0 is a reducible process
with two classes determined by the genotypes of the mating units. Specifically, females and r-type
males belonging to the pedigree form r-type mating units (first class), each of which gives rise to
females and r-type males, but not to R-type males, while R-type males form R-type mating units
(second class), which give rise to females and R-type males, but not to r-type males. Then, since the
pedigree is originated by the R allele, individuals of all types, including r-type males, may be present
generation-by-generation. However, if the R allele becomes extinct, then only females and r-type males
may be present in future generations. Furthermore, to avoid trivial non-branching situations, we shall
henceforth consider that pr

1 < 1, i.e., r-type mating units do not almost surely produce one single
offspring (see Proposition A2 in the Appendix A for technical details).

Finally, the eigenvalues of the matrix of means are ρ1 = (βFα + βr(1− α))mr, ρ2 = βR(1− α)mR,
and ρ3 = 0. These will play an important role in the evolution of the Y-linked pedigree. Intuitively,
ρ2 represents the mean growth rate of R-type males in the pedigree, and ρ1 unifies the reproductive
capacities of females and r-type males by themselves since they form the same type of mating unit.

Notice that, although the mating rules do not appear explicitly in the marginal process
{(Fn, Mrn, MRn)}n≥0 since this does not record the number of mating units of each type, they are
implicit in the β mating probabilities.

4. Asymptotic Behavior

In this section, we deduce the generation-to-generation behavior of a Y-linked pedigree two-sex
BP by applying the theory of multi-type BPs (see [33,34]) to the marginal process {(Fn, Mrn, MRn)}n≥0.
Since throughout this work, we are assuming that the pedigree is initiated by the R genotype, we focus
our attention on the case that there are only R-type males in the initial generation. Moreover, taking into
account the additive property of the marginal process and without loss of generality, we consider that
(F0, Mr0, MR0) = (0, 0, 1).

Hence, from Proposition A3 in Appendix A, one derives that only two limiting behaviors are
possible almost surely for each class: either it goes to zero (i.e., it becomes extinct) or it grows without
limit. Mathematically,

P(Fn + Mrn → 0) + P(Fn + Mrn → ∞) = 1,

P(MRn → 0) + P(MRn → ∞) = 1.

The same behavior is derived for the marginal process {(Zr(1)n , Zr(2)n , ZRn)}n≥0 associated with
mating units. From Equations (1)–(3) and the properties of the binomial distribution, one deduces
that if at some generation there are no individuals of one type, then neither are there any mating units
associated with that type, i.e., Fn = 0, Mrn = 0, and MRn = 0 imply almost surely that Zr(1)n = 0,
Zr(2)n = 0, and ZRn = 0, respectively. Furthermore, if there are no R-type mating units, then neither
are there any males of this type, i.e., MRn+1 = 0 when ZRn = 0, which implies the extinction of this
genotype independently of the existence of mating units of type r. However, females and r-type males
could be generated even when there are no r-type mating units, i.e., Zr(1)n + Zr(2)n = 0 does not imply
that Fn+1 = 0 and Mrn+2 = 0 since R-type mating units give rise to females that can only mate with
r-type males forming mating units that can generate r-type males. Therefore, a.s.,

{Fn → 0}⊆{Zr(1)n → 0}, {Mrn → 0}⊆{Zr(2)n → 0}and{MRn → 0} = {ZRn → 0}. (5)

Now, in order to quantify the Y-linked pedigree extinction probability, i.e., P(Fn + Mrn + MRn →
0), by Theorem 10.1, Chapter II, in [34] (p. 46), one has that this probability is unity if and only if ρ1 ≤ 1
and ρ2 ≤ 1 (recall that ρ1 and ρ2 are the greatest eigenvalues of the matrix of means). From (5), one
can also derive results concerning the extinction probability of mating units related to the family tree.
Notice that the event {MRn → ∞} has positive probability if and only if ρ2 > 1 (in this case, Theorem
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7.1, Chapter II, in [34] (p. 41) is being applied) independently of ρ1, which is only associated with
females and r-type males.

Finally, with respect to the growth rates in the cases of non-extinction, we derive from [35]
geometric growths defined by ρ1 and ρ2 for each type of individual. Moreover, taking into account
Daley’s scheme, the properties of the binomial distribution and the logarithmic conditions for pR and
pr that are typical in branching process theory, i.e.,

∞

∑
l=1

l log lpR
l < ∞, (6)

and

∞

∑
k=1

k log kpr
k < ∞, (7)

one also derives the limiting behavior of the mating units inherited from them (see Theorem A1 in
Appendix A). In particular, if ρ2 > 1 and (6) holds, then there exists a positive random variable, WR,
on the non-extinction set such that:

lim
n→∞

MRn

ρn
2

= WR and lim
n→∞

ZRn

ρn
2

= βRWR a.s.

Furthermore, when ρ > 1, with ρ = max{ρ1, ρ2}, and (6) and (7) hold, there exist positive random
variables, W1 and W2, on the non-extinction set such that if ρ1 6= ρ2, then:

lim
n→∞

Fn

ρn = W1 and lim
n→∞

Mrn

ρn = W2 a.s., and

lim
n→∞

Zr(1)n
ρn = βFW1 and lim

n→∞

Zr(2)n
ρn = βrW2 a.s.,

while if ρ1 = ρ2, then:

lim
n→∞

Fn

nρn = W1 and lim
n→∞

Mrn

nρn = W2 a.s., and

lim
n→∞

Zr(1)n
nρn = βFW1 and lim

n→∞

Zr(2)n
nρn = βrW2 a.s.

Thus, one also derives that there are just two limiting behaviors (extinction or unlimited growth)
almost surely for each type of mating unit since:

{Fn → ∞} ⊆ {Zr(1)n → ∞}, {Mrn → ∞} ⊆ {Zr(2)n → ∞}

and {MRn → ∞} ⊆ {ZRn → ∞} a.s.

Furthermore, from Theorem A1 in Appendix A, one has that:

{MRn → ∞} ⊆ {Fn → ∞} = {Mrn → ∞} a.s.

since R- and r-type mating units generate females and r-type males, respectively, following a binomial
scheme. Notice that the case ρ2 > 1 and ρ1 ≤ 1 is special since the probability of the event {Fn → ∞}
is non-null even if females do not reproduce.

Therefore, when ρ > 1 and ρ1 ≥ ρ2, i.e., ρ = ρ1, the numbers of females and r-type males, and
also of r-type mating units, dominate the Y-linked pedigree. However, when ρ > 1 and ρ1 < ρ2, i.e.,
ρ = ρ2, all types of individuals and mating units have the same geometric growth, defined by ρ2.
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Remark 2. Taking into account Remark 1 and the foregoing results, one can deduce the same asymptotic behavior
for both R-type males and R-type mating units as those derived in [36,37] since these kinds of individuals and
mating units are unrelated to either females or r-type males. This is not the case, however, for r-type males and
mating units or for females since r-type males can be generated not only by r-type males, but also by females
originating from R- or r-type males or females of the pedigree.

Remark 3. The behavior of mating units associated with a Y-linked pedigree was derived from the marginal
process of individuals since each mating unit is related to just one individual belonging to the family tree.

5. Analyzing Real Data

A Y-linked pedigree associated with the inheritance of non-syndromic hearing impairment was
reported in [20]. In particular, data on seven generations of a Chinese family were collected by the
Institute of Otolaryngology of the Chinese People’s Liberation Army General Hospital in Beijing in
which the inheritance pattern was likely due to a mutation that occurred in an ancestor’s putative
Y-chromosome linked gene. The hearing loss was not transmitted by females of this family who mated
with unrelated males with normal hearing. Thus, the Y-linked pedigree two-sex BP introduced in
this paper may be used to model this inheritance pattern, with the R allele meaning the hearing loss
disorder and the r allele normal hearing. The numbers of females and of r- and R-type males belonging
to the pedigree, as well as the numbers of each type of couple in the first six generations (n = 0, . . . , 5)
are presented in Figure 2 and Table 1. One more observed generation (the seventh) was described
in [20], but we discarded its data since that generation was still open when the data were collected.
Neither could generation n = 5 be completed since the number of R-type males fell, as did the numbers
of each type of mating unit (see Figure 2). Henceforth therefore, we shall consider the observed sample
to be:

FM4 = {(Fn, Mrn, MRn, Zr(1)n , Zr(2)n , ZRn) : n = 0, ..., 4}. (8)

Moreover, the last observed generation, (F5, Mr5, MR5, Zr(1)5 , Zr(2)5 , ZR5), will be useful in order
to assess the goodness of the predictions given by the model.
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Figure 2. Evolution generation-by-generation of {(Fn, Mrn, MRn)}0≤n≤5 (a) and

{(Zr(1)n , Zr(2)n , ZRn)}0≤n≤5 (b).
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Table 1. Number of individuals and couples of each type in the first six generations for the Y-linked
pedigree associated with the inheritance of non-syndromic hearing impairment reported in [20].

n Fn Mrn MRn Zr(1)
n Zr(2)

n ZRn

0 0 0 1 0 0 1
1 0 0 1 0 0 1
2 0 0 1 0 0 1
3 1 0 4 1 0 4
4 10 2 11 9 2 11
5 22 9 10 8 2 3

Given the data FM4, we took a Bayesian approach in a non-parametric framework based on
Markov chain Monte Carlo methods to estimate the key parameters ρ1 and ρ2. In particular, we
applied the Gibbs sampler algorithm proposed in [38], since a Y-linked pedigree two-sex BP could
be regarded as a multi-type BP. To this end, we simulated 150 chains formed by 20,000 iterations of
the method. According to the Gelman–Rubin–Brooks diagnostic tools, Five thousand was a sufficient
burn-in period with a batch size of 200. In this way, we obtained a sample of size 11,400 from the
conditional distribution of the parameter vector (ρ1, ρ2)|FM4. Summary statistics for this posterior
distribution are given in Table 2, and the estimates of its marginal density and joint density contour plot
are presented in Figure 3 and the left-hand-side of Figure 4, respectively. We deduced that both growth
rates were greater than unity, with that of R-type males, ρ2, being less than that of females and r-type
males, ρ1, since our estimates were that P(ρ1 > 1|FM4) and P(ρ2 > 1|FM4) were approximately
equal to unity and P(ρ1 > ρ2|FM4) ' 0.9991, with Bayes factors greater than unity.

Table 2. Summary statistics for the posterior distribution of ρ1, ρ2, F5, Mr5, MR5, Mr9, and
MR9, given FM4. SD: standard deviation; MCSE: Monte Carlo standard error; TSSE: time-series
standard error.

ρ1 ρ2 F5 Mr5 MR5 Mr9 MR9

Mean 4.6722 2.3657 50.239 27.864 26.038 23,847 1038.1
SD 0.6271 0.3746 10.869 7.8549 7.4970 7938.0 940.18
MCSE 0.0059 0.0035 0.1018 0.0736 0.0702 74.350 8.8060
TSSE 0.0059 0.0035 0.1018 0.0736 0.0702 76.940 8.8060

3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

HPD 95% HPD 95%

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HPD 95% HPD 95%

(a) (b)

Figure 3. Estimated density for ρ1|FM4 (a) and for ρ2|FM4 (b), with 95% HPD (highest posterior
density) sets.
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Figure 4. Contour plot of (ρ1, ρ2)|FM4 (a) and estimated predictive distribution F5|FM4 (b).

Applying these results therefore, we deduced that there existed a positive probability for the
hearing impairment not to disappear from this family, in which the presence of r-type males and
females would dominate the Y-linked pedigree in the following generations. Indeed, this behavior
was confirmed from the Monte Carlo estimated predictive posterior distributions of the number of
individuals of each type at Generations 5 and 9 (Figures 4–6) in which the R allele became extinct only
in one simulated path of 11,400. Notice that almost all estimates at Generation 5 exceeded the observed
values, coherent with our comment above that this generation was incomplete. Moreover, couples of
the different types could not be compared with the observed values in the pedigree because they were
not archivable from the multi-type BP. However, we deduced that their growth rates were the same
as the individuals. Figure 7 plots the logarithms of the number of individuals and mating units of
each type generation by generation together with the logarithms of the estimated mean growth rates
(straight lines). It indicates that the evolution of the observed Y-linked pedigree was in agreement with
the behavior predicted by the two-sex BPs introduced in this communication. Note that the fit was
better for the R genotype since this genotype was observed over more generations than females and
r-type males of the pedigree.
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Figure 5. Estimated predictive distributions of Mr5|FM4 (a) and MR5|FM4 (b).



Mathematics 2020, 8, 256 11 of 17

0e
+

00
1e

−
05

2e
−

05
3e

−
05

4e
−

05
5e

−
05

10,000 20,000 30,000 40,000 50,000 60,000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

6e
−

04

0 2000 4000 6000 8000 10,000

(a) (b)

Figure 6. Estimated predictive distributions of Mr9|FM4 (a) and MR9|FM4 (b).
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Figure 7. Evolution generation-by-generation of {(log(Fn), log(Mrn), log(MRn))}0≤n≤5 (a) and

{(log(Zr(1)n ), log(Zr(2)n ), log(ZRn))}0≤n≤5 (b), together with log(ρ1) (solid straight line) and log(ρ2)

(dotted straight line).

Remark 4. In this study, we used the statistical computing and graphics language and environment R (“GNU
S”) ([39]), the CODA package ([40]) to analyze the convergence of the Gibbs sampler algorithm, and the GenKern
package ([41]) for the two-dimensional kernel density estimation.

6. Conclusions

Motivated by the study of a real Y-linked pedigree associated with hearing loss (see [20]), we
presented and evaluated a model that should be very useful for studies of the evolution of Y-linked
pedigrees. Specifically, a Y-linked two-sex branching process was introduced aimed at studying the
generation-by-generation evolution of a pedigree, which appeared in a population from the mutation
of an allele linked to a gene on the male Y chromosome. Assuming that the population comprised
females and two types of males, r and its mutation R, the model was defined in a two-phase structure:
mating and reproduction. In the mating phase, two types of couple were formed depending on the
genotype of the male. The number of each type of couple was given by a binomial scheme under the
main assumptions of perfect fidelity mating and of each individual of the pedigree mating only with
external individuals, i.e., mating with relatives was forbidden. In the reproduction phase, each couple
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produced offspring independently according to some probability distribution, which was the same for
a given genotype and was independent of the generation.

It was proven that the marginal process formed by the total number of females and males with
r and R genotypes belonging to the pedigree could be regarded as a reducible multi-type branching
process with two classes determined by the genotypes of the mating units. It was then not difficult to
obtain the matrix of means of the offspring distributions, whose greatest eigenvalues (ρ1 and ρ2) were
directly related to the asymptotic behavior of the process. In particular, ρ1 = (βFα + βr(1− α))mr

(with βF being the probability that a female in the pedigree mates with an external r-type male, βr the
probability that an r-type male in the pedigree mates with an external female, α the probability of
an offspring being female, and mr the mean number of offspring generated by an r-type couple)
represented the unified reproductive capacity of females and r-type males belonging to the pedigree,
and ρ2 = βR(1− α)mR (with βR being the probability that an R-type male mates with an external
female and mR the mean number of offspring generated by an R-type couple) represented the mean
(geometric) growth rate of R-type males and couples on the non-extinction set. The mean growth rate
of females and of r-type males and couples was given by the greater of ρ1 and ρ2. When ρ1 6= ρ2, both
grew geometrically in the long term. However, if ρ1 = ρ2, the sequence that normalized them was
{nρn

1}n>0. It was then deduced that, on the non-extinction set, the r allele dominated the pedigree
when ρ1 ≥ ρ2, while if ρ1 < ρ2, then the two genotypes had the same geometric growth given by ρ2.
Mathematically, it has to be observed that the results related to the asymptotic behavior of the number
of couples of each type were not a direct consequence of those obtained from the reducible multi-type
branching model.

Finally, we evaluated the practical performance of the model against some real data. In particular,
the model allowed us to study the evolution of Y-linked patterns associated with the real pedigree
presented in [20]. From the observed sample given in that reference, which had the structure given
in Equation (8), we estimated the parameters ρ1 and ρ2 using the Gibbs sampler algorithm proposed
in [30] and deduced that there existed a positive probability for the hearing disorder not to disappear
from the family even though the dominant allele was the one that transmitted normal hearing.
The future population size of the total number of individuals of each type was estimated from the
approximation of the predictive posterior distributions, indicative that the present results showed the
usefulness of the model from a realistic perspective.
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Appendix A

In this section, we provide some technical details of the results that were used in the study.

Lemma A1. Let N, n ∈ N and 0 ≤ θ ≤ 1 be fixed. Furthermore, let X1, . . . , XN , Y, Z1, . . . , ZN be independent
random variables such that Xi is an n-dimensional random variable with probability generating function h(·),
Y follows a binomial distribution with parameters N and θ, and Zi follows a Bernoulli distribution with
probability θ, for every i = 1, . . . , N. Then:

Y

∑
i=1

Xi
d
=

N

∑
i=1

XiZi,
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where d
= denotes equality in distribution.

Proof. For all s = (s1 . . . , sn) ∈ Cn, with max1≤i≤n{|si|} ≤ 1, one has that:

E
[
s∑Y

i=1 Xi
]
=

N

∑
k=0

E
[
s∑k

i=1 Xi
]

P(Y = k) =
N

∑
k=0

h(s)k
(

N
k

)
θk(1− θ)N−k

= ((1− θ) + θh(s))N ,

where ∑0
1 = 0. Furthermore,

E
[
s∑N

i=1 XiZi
]
=

N

∏
i=1

E
[
sXiZi

]
=

N

∏
i=1

(
(1− θ) + θE

[
sXi
])

= ((1− θ) + θh(s))N ,

and the proof is complete.

Proposition A1. Let {(Fn, Mrn, MRn)}n≥0 be the marginal process of a Y-linked pedigree two-sex branching
process as defined in Equation (4). It holds that for all s ∈ C3 with max{|s1|, |s2|, |s3|} ≤ 1:

E
[

s
(

Fr(1)0,1 ,Mr(1)0,1 ,0
)

I(1)0,1

]
= (1− βF) + βFhr(αs1 + (1− α)s2),

E
[

s
(

Fr(2)0,1 ,Mr(2)0,1 ,0
)

I(2)0,1

]
= (1− βr) + βrhr(αs1 + (1− α)s2),

E
[
s(FR0,1,0,MR0,1)IR

0,1
]

= (1− βR) + βRhR(αs1 + (1− α)s3),

with hr(·) and hR(·) being the probability generating functions of the reproduction laws pr and pR, respectively.

Proof. Taking into account Daley’s scheme and that the reproduction phase of the process is
independent of the mating phase, we have that:

E
[

s
(

Fr(1)0,1 ,Mr(1)0,1 ,0
)

I(1)0,1

]
= E

[
E
[

s
(

Fr(1)0,1 ,Mr(1)0,1 ,0
)

I(1)0,1

∣∣∣∣ I(1)0,1 , Fr(1)0,1 + Mr(1)0,1 , Fr(1)0,1

]]
= (1− βF) + βF

∞

∑
l=0

pr
l

l

∑
k=0

(
l
k

)
(αs1)

k((1− α)s2)
l−k

= (1− βF) + βFhr(αs1 + (1− α)s2).

The rest of the equations are derived in a similar manner.

The following proposition is easily deduced from the previous one and is related to the singular
multi-type branching process (see Definition 5.2 in [33] (p. 11)).

Proposition A2. Let {(Fn, Mrn, MRn)}n≥0 be the marginal process of a Y-linked pedigree two-sex branching
process. The process {(Fn, Mrn)}n≥0 is singular when βF = βr = 1 and hr(s) = s, while {MRn}n≥0 is
singular when βR = 1, α = 0, and hR(s) = s, with s ∈ C such that |s| ≤ 1.

From Chapter II, Section 6 in [34], we derived the following result:

Proposition A3. Let {(Fn, Mrn, MRn)}n≥0 be the marginal process of a Y-linked pedigree two-sex branching
process such that {(Fn, Mrn)}n≥0 and {MRn}n≥0 are non-singular processes. Then, (0, 0, 0) is an absorbing
state, and every non-null state is transient. Moreover,

P(Fn + Mrn → 0) + P(Fn + Mrn → ∞) = 1 and P(MRn → 0) + P(MRn → ∞) = 1.
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Finally, from the asymptotic behavior of reducible multi-type BPs given in [35], we obtain the
following limiting behavior:

Theorem A1. Let {(Fn, Mrn, MRn, ZRn, Zr(1)n , Zr(2)n )}n≥0 be a Y-linked pedigree two-sex branching process.
If ρ2 > 1 and Equation (6) holds, then there exists a positive random variable, WR, on the non-extinction set
such that:

lim
n→∞

ZRn

ρn
2

= βRWR, and lim
n→∞

FRn

ρn
2

=
α

(1− α)
WR a.s.,

with FRn = ∑
ZRn−1
i=1 FRn−1,i, n = 1, 2, . . . Furthermore, when ρ > 1, with ρ = max{ρ1, ρ2}, and

Equations (6) and (7) hold, there exist positive random variables, W1 and W2, on the non-extinction set
such that if ρ1 6= ρ2, then:

lim
n→∞

Zr(1)n
ρn = βFW1, lim

n→∞

Mr(1)n
ρn =

(1− α)mrβF
ρ

W1, and lim
n→∞

Zr(2)n
ρn = βrW2 a.s.,

while if ρ1 = ρ2, then:

lim
n→∞

Zr(1)n
nρn = βFW1, lim

n→∞

Mr(1)n
nρn =

(1− α)mrβF
ρ

W1, and lim
n→∞

Zr(2)n
nρn = βrW2 a.s.,

with Mr(1)n = ∑
Zr(1)n−1
j=1 Mr(1)n−1,j, n = 1, 2, . . .

Proof. First, from Equations (6) and (7), we deduce the logarithmic conditions for the multi-type
branching process {(Fn, Mrn, MRn)}n≥0. In particular, taking into account Equation (4),
Daley’s scheme, and that the reproduction phase of the process is independent of the mating phase,
one has that:

E
[

FR0,1 IR
0,1 log

(
FR0,1 IR

0,1

)]
= βR

∞

∑
k=1

k log k
∞

∑
l=k

(
l
k

)
αk(1− α)l−k pR

l

= βR

∞

∑
l=1

pR
l

l

∑
k=1

k log k
(

l
k

)
αk(1− α)l−k

≤ βR

∞

∑
l=1

l log lpR
l < ∞.

The other logarithmic conditions are derived in a similar manner.
Finally, since all limiting assertions are obtained in a similar manner, we confine ourselves to

proving that if ρ2 > 1 and Equation (6) holds, then:

lim
n→∞

ZRn

ρn
2

= βRWR a.s.,

where WR is the almost sure limit of MRn/ρn
2 , which is non-degenerate at zero (applying the classical

theory of multi-type BPs given in [35]).
To this end, fix 0 < ε < 1/2, and define for n ≥ 0:

An = {|ZRn − βR MRn| ≥ MR1−ε
n }.
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By appeal to Chebyshev’s inequality and taking into account that WR > 0 on {MRn → ∞}, we
infer that, a.s. on {MRn → ∞},

∞

∑
n=0

P(An|Gn) ≤
∞

∑
n=0

Var(ZRn|Gn)

MR2(1−ε)
n

= βR(1− βR)
∞

∑
n=0

1
MR1−2ε

n
< ∞,

with Gn = σ(Fn, Mrn, MRn, Zr(1)k , Zr(2)k , ZRk, Fk, Mrk, MRk, k = 0, . . . , n − 1). Moreover, by the
conditional Borel–Cantelli lemma,

{MRn → ∞} ⊆
{

∞

∑
n=0

P(An|Gn) < ∞

}
= lim inf

n→∞

{∣∣∣∣ ZRn

MRn
− βR

∣∣∣∣ < MR−ε
n

}
a.s.,

and the result is derived, so that the proof is concluded.
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