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 Lw variability is necessary for estimating the emissions of a vehicle flow

 Consideration of Lw variability is needed to compare static and dynamic 

approaches

 Lw variability for a given velocity is Gaussian in most cases.

 The standard deviation of Lw variability can be used to correct the emission model
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Abstract 

Classically, one mean vehicle representative of each category is used by both static and 

dynamic traffic noise prediction models. The spectrum associated with this mean vehicle is 

determined from a linear statistical regression analysis based on measurement campaigns on a 

track or in situ. However, the variability of individual vehicle emissions can influence 

predictions and hinder comparison between static and dynamic models. In order to estimate the 

induced bias, statistical analysis of the distributions of sound power levels emitted by the 

individual passage of vehicles during 82 measurement campaigns was carried out. The results 

show that 92% of the residual regression distributions are Gaussian and that standard deviations 

can reach 3.6 dBA. The value of the proposed correction term for this case study could reach 

1.4 dBA for light vehicles and 1.2 dBA for heavy vehicles. This analysis also shows that the 

variability in sound power levels and thus the corresponding corrections are higher at the lowest 

speeds that correspond to urban driving conditions. 

Keywords: sound power level distribution; static prediction model; dynamic prediction model; 

road traffic noise.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59



2

1. Introduction

Road traffic is the main source of noise annoyance in urban areas [1,2]. Accurate road 

traffic prediction models are important to design suitable actions and interventions to mitigate 

urban noise. Two modelling approaches exist to estimate the sound power level of vehicles: 

static and dynamic. Static models, such as the CNOSSOS-EU method [3], determine the sound 

power level of a vehicle flow as a function of its average speed, flow rate and percentage of 

heavy vehicles, in addition to field data such as slope and road surface type [4]. Therefore, the 

values of the variables input in the noise model do not vary for a certain period of time. 

CNOSSOS-EU method is sometimes called semi-dynamic model because it considers the 

average speed and the overall line source [5]. Other static models do not consider vehicle speed 

to estimate sound levels [6, 7]. Dynamic models determine the sound power level of each 

vehicle in the network at each time step (typically 1 s) from its instantaneous speed and 

acceleration [8-10]. These dynamic models differ from dynamic noise maps based on 

measurements and interpolations [11, 12]. The two modelling approaches can rely on the same 

noise emission models and therefore differ only in the calculation method.

Static models are used to compute the spatial distribution of sound levels over large areas 

with a limited amount of input data [13]. Their limitation mainly concerns their poor 

description of traffic dynamics [8]. Dynamic models outperform static models for local 

applications as they better capture the variability of vehicle kinematics [8]. However, to obtain 

the vehicles’ trajectories, they generally require in counterpart the calibration of a traffic 

microsimulation tool that can be tedious. Dynamic models additionally make it possible to 

estimate time series of noise levels, which gives access to the estimation of advanced indicators 

[9, 10], and opens the door to the estimation of noise indicators related to annoyance and 

awakenings such as peaks of noise and the number of events [14, 15].
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Both static and dynamic models aggregate by default the emissions of a fleet of vehicles 

into one representative vehicle, through statistical regressions carried out from measurement 

campaigns recorded on a track or pas. The sound power laws are constructed from linear 

statistics and consider only one average sound power level per vehicle category. When the 

variability of sound power level between vehicles is high, the following should be taken into 

account:

 In dynamic models, this variability can be taken into account explicitly when 

calculating the sound power level of each vehicle. This should make it possible to 

estimate specific indicators such as noise peaks, which can result from the noisiest 

vehicles, as some studies suggest [16-18]; 

 In static models, Barry and Reagan have demonstrated that if sound power level 

variability follows a Gaussian distribution, the difference between the arithmetical and 

energetic average of a set of individual sound power levels is  where  is 0.115 × 𝜎2  𝜎

the standard deviation [19]. This difference should therefore be added to the sound 

power level determined by static models as a correction term [20]. 

Not considering the variability of sound power levels can be problematic in three respects:

 It biases the sound power level of a vehicle flow estimated by static models; 

 It hinders comparison of the results provided by static and dynamic models for an 

identical case study;

 High variability in the sound power levels of a vehicle fleet can mask the potential 

benefits of noise control actions.

A better knowledge and understanding of the variability of sound power levels on site is 

thus required. Brown and Tomerini measured the distribution of sound power levels generated 

by the pass-by of vehicles at ten measurement sites with a posted speed limit ranging from 60 

to 100 km/h [21]. The standard deviations of sound levels measured for this experiment 
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extended from 4.0 to 7.5 dBA depending on the mean speed and vehicle category. Following 

the equation proposed by Barry and Reagan [19], the corresponding correction term can reach 

6.5 dBA. Although useful, this first study considered the posted speed limit as a reference, thus 

a large part of the variance can be explained by the variability in vehicle speeds and 

accelerations on the road sections studied, which hides the relative influence of kinematic 

variables and fleet composition on emission variability.

In this paper, a statistical analysis of 82 measurement campaigns, during which the 

kinematics and sound power level of each vehicle were recorded as it passed-by, is proposed. 

The part of the variance due to speed variability is excluded from the analysis, and the case 

studies presented incorporate very little variability in acceleration. For each of these 

campaigns, the sound power level of an average vehicle is calculated and then the distribution 

of the vehicle fleet’s sound power levels around this average value is analysed. The impact of 

the width of this distribution on the correction to be applied is calculated and discussed, as well 

as the impact of taking into account a Gaussian approximation as the distribution shape. A 

discussion on the consequences in terms of predicting road traffic sound levels then follows.

2. Material and methods

2.1. Databases 

Two sound emission databases for light and heavy vehicles registered on different roads 

in France were used for the present study. One of the databases consisted of measurements 

made on tracks (2001–2006) and the other of on-site measurements on public roads (2007–

2013). Light vehicles were monitored in 57 locations (3 on track and 54 on public roads) and 

heavy vehicles in 25 locations (2 on track and 23 on public roads), constituting a set of 82 

measurement campaigns (see Tables 1 and 2 – Supplementary Material). On-track 

measurements were made in controlled conditions (controlled pass-by procedure NF S 31 119-
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2 [22]), and on-site measurements were made in real traffic conditions (statistical pass-by 

procedure NF S 31 119 [23] and ISO 11819-1 [24]). Pass-by methods are based on noise levels 

measured at the far field. These methods are used when a large number of different types of 

vehicles are analysed. There are also methods to measure vehicle radiated noise in the near 

field [25-27].

In statistical pass-by (SPB) measurements, the maximum sound level (LAFmax (dBA)) 

and speed of individual vehicles passing-by were recorded, as shown in Fig. 1. A temporal 

recording of broadband sound levels every 125 ms was carried out to identify the vehicle pass-

bys and their LAFmax. Background noise levels were at least 10 dBA below the LAFmax 

during pass-bys according to ISO 11819-1 [24]. The sound power level, Lw (dBA), of a vehicle 

was obtained from its measured LAFmax, using the ISO 9613 propagation model [28], 

assuming free field propagation conditions, default meteorological conditions and a hard 

surface throughout the simulated area. Previous studies have carried out a similar procedure 

[17, 21, 29]. The following restrictions were considered in SPB measurements, in order to 

eliminate sound power variations not due to the variability in the vehicle fleet: constant vehicle 

speed, flat road, dry road surface and homogeneous pavement in good condition. The sound 

measurements were conducted using a portable PULSE System (type 3560C, Brüel & Kjaer) 

with a microphone (type 4188-A-021, Brüel & Kjaer) protected by a windscreen. A 

speedometer (MESTA 208) was also used in the measurements.
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Fig. 1. Schematic diagram of the experimental protocol according to ISO 11819-1 [24]

The controlled pass-by (CPB) procedure is similar to the SPB procedure, but specified 

vehicles with specified sets of tyres are used. Thus, the following vehicle characteristics are 

known: vehicle model, engine, speed, acceleration, engine speed, gear ratio and tyre type. From 

this information, only vehicles with diesel or gasoline engines were selected. Hybrid and 

electric engines were eliminated because these vehicle categories are not yet defined in the 

noise prediction models. Furthermore, these vehicles were only recorded on track 

measurements and they passed very few times. Two filters were also applied to ensure that 

vehicles on the track had a constant speed. The first filter was to select acceleration in the range 

between −0.1 and 0.1 m/s2. Secondly, measurements of vehicles with an engine speed higher 

than 3000 r.p.m. were eliminated. However, not all data recorded acceleration and engine 

speed. In such cases, the engine speed was computed from the ratio between speed and the 

gearbox of the registered vehicles. A total of 33 models of light vehicles with 14 tyre types, 

and seven models of heavy vehicles with three configurations (without trailer, with trailer and 

with loaded trailer) and two types of tyres were analysed on test tracks. 
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The number of light vehicles recorded was, on average, 106 for each on-site and 806 for 

each on-track measurement campaign, giving a total of 8177 registered vehicles (see Table 1 – 

Supplementary Material). The number of heavy vehicles registered was, on average, 79 for 

each on-site and 200 for each on-track measurement campaign, giving a total of 2195 registered 

vehicles. (see Table 2 – Supplementary Material).

2.2. Estimation of average sound power levels

A model linking the sound power level of an average vehicle to its speed was calibrated for 

each of the 82 experimental campaigns i, in order to highlight the importance of the variations 

in sound power levels within a given site. As in many standard models [3, 30, 31], the model 

used takes into account: (i) the rolling noise produced by the tyre/road interaction and 

aerodynamic noise, and (ii) the propulsion noise generated by the driveline of the vehicle. 

Those two sound power levels sum to form the sound power level of a vehicle as a function of 

its speed v:

  (1)𝐿𝑤𝑖 = 10 × 𝑙𝑔(10

𝐴𝑅,𝑖 + 𝐵𝑅,𝑖 × 𝑙𝑔( 𝑣
𝑣𝑟𝑒𝑓)

10 + 10

𝐴𝑃,𝑖 + 𝐵𝑃,𝑖 × (𝑣 ‒ 𝑣𝑟𝑒𝑓
𝑣𝑟𝑒𝑓 )

10 ),

where vref is a reference speed set to 70 km/h. 

The four coefficients AR,i, BR,i, AP,i and BP,i are calibrated for each measurement campaign 

i, based on the sound power levels and speeds collected. Some examples of the fit of Eq. (1) to 

the sound power levels generated by the light and heavy vehicle pass-bys at different speeds 

are shown in Fig. 2. The coefficient of determination for each of the measurement campaigns 

is shown in Tables 1 and 2 – Supplementary Material.
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Fig. 2. Relationship between sound power level (dBA) and speed (km/h) for light and heavy 

vehicle pass-bys registered in the France_2006 (a) and Erstein (b) campaigns, respectively.

2.3. Statistical analysis of the residuals

Once the noise emission model was calibrated for a given measurement campaign i, the 

residuals were calculated for each individual pass-by j. As the shape of the residuals 

distributions could eventually depend on the speed, analysis by speed interval k was performed. 

These residuals (Ri,j,k) are the difference between the observed sound power level Lwi,j,k and the 

sound power level  calculated with the model.𝐿𝑤𝑖,𝑘

Twelve speed intervals of 10 km/h were considered, with the exception of the first and last 

intervals, which ranged between 0 and 20 km/h (although most speeds exceeded 10 km/h), and 

included speeds above 120 km/h, respectively. Kolmogorov–Smirnov and Shapiro–Wilk tests 

were used to test the hypothesis that the residuals followed a normal distribution.

2.4. Correction term

As the sound power level of an average vehicle is calculated through a statistical regression 

analysis of a set of n pass-by measurements in dBA, it differs from the equivalent value of the 

sound energy as shown in Eq. 2.
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    (2)𝛥𝐿𝑤𝑖,𝑘(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠) = 10 × 𝑙𝑔(∑𝑛
𝑗 = 110

𝐿𝑤𝑖,𝑗,𝑘
10

𝑛 ) ‒ 𝐿𝑤𝑖,𝑘

Eq. 2 defines the difference in sound power level between the one estimated by the model 

and the one that should be used to ensure that the equivalent pressure level incorporates the 

variability in sound power levels of the vehicle fleet. Due to the energetic average, the 

contribution of vehicles with higher sound power levels is higher than the contribution of other 

vehicles. 

If a normal distribution of the residuals from the regression models is assumed,  ΔLwvehicles   

can be written as [13]:

  (3)𝛥𝐿𝑤𝑖,𝑘(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠,  𝐺𝑎𝑢𝑠𝑠) = 0.115 × 𝜎 2
𝑅𝑖,𝑗,𝑘

where corresponds to the standard deviation of the estimated gaussian distribution.𝜎𝑅𝑖,𝑗,𝑘 

The standard deviation of the residuals (Ri,j,k) is equivalent to the standard deviation of the 

sound power level Lwi,j,k, if they follow a normal distribution.

3. Results

3.1. Descriptive analysis

For each on-site measurement campaign, the standard deviation of the sound power levels 

was calculated for all the pass-bys. The standard deviations ranged between 1.0 and 2.6 dBA 

with an average of 1.7 dBA for light vehicles (see Table 1 – Supplementary Material), and 

between 0.9 and 2.0 dBA with an average of 1.5 dBA for heavy vehicles (see Table 2 – 

Supplementary Material). Since speed was not controlled for on-site measurements, this 

variability is due to both the variability in vehicle characteristics and the variability in vehicle 

speed.
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The average speed for on-site measurement campaigns ranged between 65 and 117 km/h 

for light vehicles with a standard deviation of 9.0 km/h (see Table 1 – Supplementary Material), 

and between 49 and 88 km/h for heavy vehicles with a standard deviation of 3.5 km/h (see 

Table 2 – Supplementary Material). The speed range recorded in each on-site measurement 

campaign generally covered three or four intervals of 10 km/h for light vehicles and one or two 

intervals for heavy vehicles. On the contrary, the track measurements covered all the speed 

intervals.

The standard deviation of sound power levels increased at low speeds for both light and 

heavy vehicles, as shown in Table 3, exceeding for example 2 dBA for light vehicles for speeds 

below 50 km/h. This suggests a greater variability in sound power levels under urban driving 

conditions than on interurban roads, even when ignoring vehicles’ acceleration phases.

Table 3. Average standard deviation of sound power level, and number of light and heavy 

vehicles for the different speed ranges.

Light vehicles Heavy vehicles
Speed (km/h) Average σLw 

(dBA) No. Average σLw 
(dBA) No. 

0–20 2.40 169 1.74 31
20–30 3.56 351 2.68 42
30–40 2.79 258 2.06 58
40–50 2.46 337 1.35 98
50–60 1.84 364 1.46 82
60–70 1.28 848 2.50 74
70–80 1.23 1395 1.54 185
80–90 1.16 1329 1.56 1408
90–100 1.19 781 1.54 217
100–110 1.09 958 – –
110–120 1.08 730 – –

> 120 1.07 657 – –
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3.2. Distribution of the residuals

An example of the distribution of residuals (Rij) for the different speed intervals is shown 

in Fig. 3 for the example of the Satolas campaign, in which light vehicle pass-bys were 

registered in all speed ranges. The distributions shown in Fig. 3 are Gaussian except in the 

ranges from 0 to 30 km/h and from 40 to 70 km/h. The increase in variability of the residuals 

with a decrease in speed is also shown in Fig. 3.

Adjustment of the residuals distribution to normal distributions was analysed for the 

complete dataset. Kolmogorov–Smirnov (with Lilliefors significance correction) and Shapiro–

Wilk tests show that 92% of the residuals analysed at the different speed intervals follow a 

normal distribution (p > 0.05), for which Eq. 3 provides ΔLwvehicles-Gauss with the standard 

deviation as a single parameter.

Fig. 3. Distribution of the residuals at different speeds in the Satolas campaign (France).

Fig. 4 shows the value of the standard deviation of the residuals for the 82 experimental 

campaigns. For the Satolas example, the standard deviation decreased as speed increased in the 

case of light vehicles. This decrease was less pronounced for heavy vehicles. Fig. 4 shows that 

the average variability of vehicle emissions at constant speed was between 1.0 and 3.6 dBA for 

light vehicles and 1.3 and 2.3 dBA for heavy vehicles.
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Fig. 4. Standard deviation of regression residuals for light (a) and heavy (b) vehicles in the 

different speed ranges (82 measurement campaigns).

3.3. Correction term calculation.

As presented in section 2.4, a correction term should be used within static models to 

include the variability in sound power levels. It can be calculated directly from the actual 

distribution of the measurements around the mean sound power level, but also from its 

Gaussian approximation, which provides the correction term in a simple manner with the 

standard deviation as a single descriptive parameter. To observe the potential error made by 

considering that all the distributions of residuals are Gaussian, the correction term ΔLwvehicles is 

calculated using Eq. 2 and Eq. 3. Fig. 5 shows the relationship between ΔLwvehicles and the 

standard deviation of residuals for all of the measurement campaigns. 

a) b)

 

Fig. 5. Relationship between the correction term and regression residuals for light (a) and heavy 

(b) vehicles.
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As the residual distribution does not differ significantly from a normal distribution (see 

Section 3.2), the differences between ΔLwvehicles and ΔLwvehicles-Gauss are small. Following Fig. 

5, the observed variability of sound power levels implies a correction ΔLwvehicles on the emission 

model of 0.1 to 1.4 dBA for light vehicles and 0.1 to 1.2 dBA for heavy vehicles. This justifies 

the approximation of the residuals distributions by Gaussian functions under static modelling. 

4. Discussion

4.1. General comments

This study gives insight into the distribution of sound power levels within a vehicle car 

fleet. However, most of the 82 measurement campaigns covered traffic conditions more fluid 

and with higher speeds than urban ones. Additional measurement campaigns, specifically 

addressing urban areas, are now required to better understand the distribution of sound power 

levels at the lowest speeds. The locations also presented different types of pavement and 

although the variability of sound power levels was analysed for each measurement campaign, 

the measurement campaigns did not permit a specific variability per road pavement to be 

highlighted, which could be done with a dedicated experimental campaign.

The variability of sound power levels between vehicles is greater at low speeds. Propulsion 

noise is predominant at low speeds and its variability between vehicles will be influenced when 

electric or hybrid vehicles are registered. Hamet et al. also showed greater variability in the use 

of different gears at low speeds [29].

4.2. Introducing kinematic variability in static modelling

Static road traffic prediction models generally rely on the mean vehicle speed to estimate 

the sound power level of a vehicle flow on a road segment. Accounting for the distribution in 
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speed values improves this estimation [32]. In addition, the variability in both speed and 

acceleration between vehicles contributes to the overall variability of sound power levels.

In this study, the distribution of the speed values has a standard deviation of 9 km/h for 

light vehicles and 3.5 km/h for heavy vehicles. This speed variability introduces an additional 

variability of sound power levels (ΔLwspeed). The sound power level of a set of vehicles 

travelling at a given average speed can be calculated from usual noise emission models. The 

sound power level of a set of vehicles with different individual speeds is the energetic average 

of each individual sound power level computed at the individual vehicle speed. ΔLwspeed is the 

difference between both. For example, a ΔLwspeed of 0.9 and 0.55 dB is obtained for light 

vehicles at an average speed of 30 and 50 km/h, respectively. Both ΔLwspeed and ΔLwvehicles 

should be considered.

4.3. Comparison with previous studies

Fig. 6 compares the results of previous studies with those obtained in this study for light 

and heavy vehicles, taking into account standard deviations of the sound power level in each 

speed range [20, 21].
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Fig. 6. Standard deviation of sound power levels from heavy (HV) and light vehicles (LV) 

obtained by NORD [20], Brown and Tomerini [21] and this study.

The standard deviations of the sound power levels recorded in this study are lower than 

those of the NORD study [20]. This difference may be due to the fact that the NORD results 

integrate the variability of speed into the global variability.

Another example of on-site measurement of the distribution of noise levels from the pass-

by of vehicles was carried out by Brown and Tomerini [21]. The standard deviations of the 

measured sound levels for their experiment extend from 4.0 to 7.5 dBA depending on the road 

speed limit and vehicle class. But again, this variability includes acceleration and speed-related 

variabilities that were not taken into account in the present study. For this case study, the 

measured variabilities could result in combined corrections (ΔLwvehicles + ΔLwspeed) of more 

than 2 dBA on the static modelling results.

4.4. Dynamic prediction of noise emissions

Dynamic models would benefit from taking into account the distribution of sound power 

levels in the vehicle fleet for a given kinematics scenario. A small proportion of noisy vehicles 

could mask the expected benefits when evaluating traffic strategies such as the introduction of 

Intelligent Transportation Systems or the promotion of eco-driving whose interest in reducing 

speed variations has been demonstrated in the field of airborne pollutants [33,34].

Understanding the distribution in sound power levels is also crucial for the estimation of 

specific indicators such as noise peaks. However, it is not certain that distributing speeds, 

accelerations and sound power levels would be sufficient to assess noise peaks. For instance, 

it is likely that the conditions ‘noisy vehicle’ and ‘high acceleration’ are not independent: sport 

vehicles are for instance prone to reach high accelerations while being noisier.
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5. Conclusion

Static and dynamic traffic noise prediction models suffer from a lack of knowledge about 

the distribution of sound power levels within a car fleet. This information is crucial since: (i) it 

can bias the estimates of static models, which are based on linear regressions despite the 

logarithmic behaviour of the decibel, and (ii) it makes it impossible to compare results between 

static and dynamic models. In the present study, the kinematics and sound levels of individual 

pass-bys recorded in 82 measurement campaigns carried out on public roads and tracks in 

France were analysed. The following conclusions can be drawn:

 The distributions of the regression residuals obtained at speed intervals of 10 km/h for 

each measurement campaign follow a normal distribution in most cases. Consequently, 

the noise emission levels calculated through usual static noise prediction models should 

be corrected using the following equation: .∆𝐿𝑤𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠, 𝐺𝑎𝑢𝑠𝑠 = 0.115 × 𝜎 2
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

 The variability of sound power levels was between 1.0 and 3.6 dBA for light vehicles 

and between 1.3 and 2.3 dBA for heavy vehicles after correction with speed, implying 

a correction ΔLw on the emission model of 0.1 to 1.4 dBA for light vehicles and 0.1 to 

1.2 dBA for heavy vehicles for a static modelling use. However, greater variabilities 

can be found in the literature, up to 7.5 dBA, which would result in corrections of 6.5 

dBA.

 Speed variation is a factor that should also be considered in sound emission levels. The 

mean speed standard deviation in this study was 9 km/h for light vehicles and 3.5 km/h 

for heavy vehicles. Therefore, the effect of speed would be accounted for by addition 

of between 0.5 and 1 dBA to the ΔLwvehicles under usual urban driving mean speeds.
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These conclusions imply that for a study that would seek to compare static approaches to 

in situ measurement or dynamic approaches using the same input data, the ΔLwvehicles and 

ΔLwspeed corrections should be taken into account.
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Supplementary material

Table 1

Characteristics of the locations where light vehicle pass-bys were recorded.

Location Road type Road surface type
Averagespeed

(km/h)

σspeed

(km/h)

σLw

(dBA)

σresiduals

(dBA)
R2

No. 

vehicles

France_2006 Track Dense Asphalt Concrete - - - 2.09 0.86 805

Nantes Track Dense Asphalt Concrete - - - 1.71 0.87 46

Satolas Track Dense Asphalt Concrete - - - 2.57 0.80 1598

Boofzheim Regional Surface Dressing 6/10 78.08 10.03 2.60 1.32 0.74 89

DianeCapelle Regional Cold-applied Slurry 
Surfacing 81.76 9.19 2.35 1.15 0.76 99

Diebolsheim Regional Surface Dressing 6/10 77.67 9.91 2.31 1.02 0.80 92

Duttlenheim Regional Surface Dressing 6/10 79.39 8.12 1.99 1.30 0.57 100

Kogenheim Regional Very Thin Asphalt 
Concrete 0/6 class 2 65.84 5.46 1.36 1.00 0.68 104

Krautegersheim Regional Surface Dressing 4/6 79.78 9.41 1.99 1.04 0.73 88

Moernach Regional Very Thin Asphalt 
Concrete 0/4 77.06 8.47 1.56 1.25 0.59 95

Schnersheim Regional Surface Dressing 6/10 79.62 10.78 2.32 1.29 0.69 97

Erstein Regional Stone Mastic Asphalt 
10(EB10) 98.72 7.51 1.34 0.96 0.49 121

Erstein National Stone Mastic Asphalt 10 
(EB10) 100.06 7.98 1.35 0.83 0.63 105

Erstein National Stone Mastic Asphalt 10 
(EB10) 98.98 6.87 0.99 0.83 0.30 107

Marainviller National Bituminous Bound 
Macadam 0/10 97.60 9.69 1.41 0.79 0.69 115

Marainviller National Surface Dressing 10/14 102.26 7.26 1.75 0.98 0.69 102

Moncel-les-Luneville National Surface Dressing 10/14 105.87 8.12 1.74 1.22 0.51 104

Moncel-les-Luneville National Dense Asphalt Concrete 
0/10 101.53 9.27 1.59 0.94 0.65 128

Durlinsdorf Regional Very Thin Asphalt 
Concrete 0/4 78.14 11.18 1.93 1.42 0.68 105

Weiterswiller Regional Surface Dressing 4/6 75.40 7.17 1.68 1.06 0.60 104

Hohengoeft Regional Surface Dressing 6/10 84.37 10.27 2.16 1.11 0.74 107

Reitwiller Regional Surface Dressing 10/14 81.77 7.48 2.11 1.21 0.67 102

Stutzheim Regional Dense Asphalt Concrete 
0/10 77.22 6.47 1.43 0.70 0.76 116

Cutrellles Regional Cold-applied Slurry 
Surfacing 82.18 8.26 1.72 0.92 0.71 97

Cutrelles Regional Cold-applied Slurry 
Surfacing 75.17 7.22 1.75 0.85 0.76 113

Lutzelhouse Regional Surface Dressing 4/6 65.32 7.72 1.88 1.22 0.58 98

Arcis-sur-Aube Regional Cold-applied Slurry 
Surfacing 79.27 9.89 2.07 0.99 0.77 101

Kogenheim Regional Very Thin Asphalt 
Concrete 0/6 - type 2 70.58 7.26 1.44 1.00 0.52 109

Dorlisheim Regional Very Thin Asphalt 
Concrete 0/6 - type 2 79.02 5.91 1.19 0.86 0.48 103

Moernach Regional Very Thin Asphalt 
Concrete 0/4 80.33 9.90 1.74 1.37 0.61 108

Voulangis Regional Very Thin Asphalt 
Concrete 0/6 - type 1 74.33 8.85 1.59 0.75 0.78 112

Cutrelles Regional Cold-applied Slurry 
Surfacing 75.41 8.56 1.89 0.88 0.79 111
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Voulangis Regional Very Thin Asphalt 
Concrete 0/4 80.07 10.29 2.06 1.17 0.68 103

Dachstein Regional Surface Dressing 4/6 73.59 9.73 2.30 0.93 0.84 96

Dachsetin Regional Surface Dressing 4/6 75.96 9.32 2.27 0.94 0.83 98

Nantes_RD30 Regional Surface Dressing 4/6 81.09 9.43 2.22 1.05 0.78 87

Nantes_RD30 Regional Surface Dressing 4/6 79.49 10.17 2.20 1.16 0.72 83

Dachstein Regional Surface Dressing 4/6 75.29 8.62 1.94 1.15 0.65 80

Dachstein Regional Surface Dressing 4/6 80.60 8.41 1.83 1.08 0.65 87

Dachstein Regional Surface Dressing 4/6 83.58 11.61 2.22 1.33 0.64 101

Dachstein Regional Surface Dressing 4/6 83.73 8.90 1.86 1.24 0.55 97

Molsheim Regional Surface Dressing 4/6 75.71 7.84 1.78 1.05 0.65 103

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 110.45 11.88 1.28 0.90 0.51 110

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 115.93 9.08 1.13 0.89 0.61 112

Nantes Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 116.26 10.26 1.41 1.19 0.54 107

Nantes A35 Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 112.44 9.71 1.49 1.24 0.55 99

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 117.15 8.87 1.17 1.04 0.47 125

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 115.93 9.72 1.38 1.19 0.51 147

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 111.89 9.55 1.45 1.16 0.61 139

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 112.40 10.50 1.37 1.11 0.59 135

Barr Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 114.92 10.06 1.29 1.03 0.60 99

Barr Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 108.77 10.54 1.24 0.88 0.71 106

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 117.15 8.87 1.17 1.04 0.47 125

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 111.89 9.55 1.45 1.16 0.61 139

Nantes A35 Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 116.26 10.26 1.41 1.19 0.54 107

Barr Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 114.92 10.06 1.29 1.03 0.60 99

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 115.93 9.08 1.13 0.89 0.61 112

Table 2

Characteristics of the locations where heavy vehicle pass-bys were recorded.

Location Type of road Pavement
Averagespeed

(km/h)

σspeed

(km/h)

σLw

(dBA)

σresiduals

(dBA)
R2

No. 

vehicles

Lohr Track Bituminous Bound 
Macadam - - - 2.41 0.66 306

Lohr Track Bituminous Bound 
Macadam - - - 2.35 0.76 94

Kogenheim Regional Very Thin Asphalt 
Concrete 0/6 class 2 48.96 3.58 1.22 1.15 0.34 55

Erstein Regional Stone Mastic Asphalt 
10(EB10) 83.47 4.56 1.59 1.27 0.60 57

Erstein Regional Stone Mastic Asphalt 
10 (EB10) 84.77 3.87 1.34 1.10 0.60 48

Erstein Regional Stone Mastic Asphalt 
10 (EB10) 82.56 4.86 1.23 1.16 0.33 45
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Marainviller National Bituminous Bound 
Macadam 0/10 83.07 3.72 0.91 0.79 0.49 58

Marainviller National Surface Dressing 10/14 84.73 3.74 1.06 0.92 0.49 52

Moncel-les-Luneville National Surface Dressing 10/14 87.41 2.86 1.16 1.05 0.43 44

Moncel-les-Luneville National Dense Asphalt Concrete 
0/10 84.79 3.72 1.15 1.02 0.46 57

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 86.08 3.63 1.51 1.41 0.36 83

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 85.79 4.10 1.46 1.19 0.58 84

Nantes A35 Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 87.14 3.53 1.66 1.59 0.29 97

Nantes A35 Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 87.27 2.68 1.60 1.51 0.32 104

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 87.53 2.37 1.70 1.60 0.34 73

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 87.37 2.49 1.69 1.64 0.25 73

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 85.95 3.34 1.79 1.76 0.17 99

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 85.47 3.97 1.96 1.92 0.19 115

Barr Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 86.23 3.61 1.96 1.85 0.32 113

Barr Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 84.63 3.36 1.45 1.41 0.24 72

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 87.53 2.37 1.70 1.60 0.34 73

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 85.95 3.34 1.79 1.76 0.17 99

Nantes A35 Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 87.14 3.53 1.66 1.59 0.29 97

Barr Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 86.23 3.61 1.96 1.85 0.32 113

Stotzheim Motorway Very Thin Asphalt 
Concrete 0/6 - type 2 85.79 4.10 1.46 1.19 0.58 84
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