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Abstract A Y-linked two-sex branching process with
mutations and blind choice of males is a suitable model

for analyzing the evolution of the number of carriers of

an allele and its mutations of a Y-linked gene. Consid-

ering a two-sex monogamous population, in this model

each female chooses her partner from among the male
population without caring about his type (i.e., the allele

he carries).

In this work, we deal with the problem of estimat-

ing the main parameters of such model developing the
Bayesian inference in a parametric framework. Firstly,

we consider, as sample scheme, the observation of the

total number of females and males up to some genera-

tion as well as the number of males of each genotype at

last generation. Later, we introduce the information of
the mutated males only in the last generation obtain-

ing in this way a second sample scheme. For both sam-

ples, we apply the Approximate Bayesian Computation

(ABC) methodology to approximate the posterior dis-
tributions of the main parameters of this model. The

accuracy of the procedure based on these samples is il-

lustrated and discussed by way of simulated examples.
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1 Introduction

In González et al. (2012), a stochastic model in the

field of branching processes was introduced with the

aim of describing the evolution of the number of carri-
ers of a Y-linked gene and its mutations in a two-sex

monogamic population. This model allows to study the

interesting and important problem of how mutations

of Y-linked genes evolve in a population. In a general
sense, we use the term mutation for any change in the

genetic material which gives rise to the transmission of

a different trait. We consider a population where two

types of alleles could coexist. We denote them as R and

r. The R−allele is considered a marker allele or an allele
which transmits a trait of interest (not expressed in the

phenotype of the male) and the r−allele is considered an

allele which transmits any other trait different of that

transmitted by R. Moreover, we assume that R−allele
could mutate transmitting a different trait of R and

therefore, we also denote this mutated allele as r. That

is, in our context, r-allele means all alleles which trans-

mit a trait different of that transmitted by R, stemming

or not from mutations. We also assume that backmuta-
tion is not allowed, i.e. the r−allele never can return to

the R−form. Therefore, there could exist a flow from

R to r but not vice versa. Notice that, if in the popula-

tion there would only be R-alleles, it could appear later
r−alleles which would stem from mutations.

This model, called Y-linked two-sex branching pro-
cess (Y-BBP) with mutations, considers a population

formed by females and males who mate with blind choi-

ce to produce offspring, i.e. each female chooses her

partner from among the male population without car-
ing about his genotype (because the trait is not ex-

pressed in the phenotype of the male or it is not decisive

at mating time). Applying the genetic inheritance rules,

http://arxiv.org/abs/1801.09064v1


2 Miguel González et al.

every couple gives birth to females and males, with ev-

ery male progeny inheriting the genetic material cor-

responding to the Y-chromosome from his father. But,

during reproduction, there could occur a mutation in

the transmitted allele by a father with R-allele, altering
the characteristic of the son with respect to his pro-

genitor. Hence, under these assumptions, a male with

R−allele could give birth either a male offspring who

is a clone of his genetic material (the same allele) or a
mutant with a new type of allele (r).

As important example of such mutations, one could

suppose that an alteration in the allele might impair

the individuals reproductive capacity. In this way, the

process could be applied to model problems of fertility.
In particular, it would allow one to study the case of

mutations which end in different levels of fertility in-

cluding total infertility (aspermia). A particular case of

this situation is presented in Sun and Heitman (2012),
in which it is suggested that a mutation in the USP9Y

Y-chromosomal gene causes the absence of sperm in

semen. Another possibility is that the mutation may

represent the beginning of a new paternal lineage, as

for example the one that gave rise to the haplogroup
I which is related to risk of suffering coronary disease,

see Charchar et al. (2012).

The aforementioned work González et al. (2012)

should be consulted for further background motivation
and information about conditions guaranteeing a pos-

itive probability of survival of the alleles in the popu-

lation. Such conditions depend on several parameters

of the model: the reproduction mean of each genotype,

the probability of being female and the probability of
mutation. Therefore, from a practical point of view, it

is necessary to develop estimation procedures for these

parameters.

The aim of this paper is to develop the Bayesian in-

ferential theory for a Y-BBP with mutations consider-
ing an enough informative and realistic sample scheme

(in the sense of the minimum amount of information

that it is necessary to be observed in order to obtain

accurate estimates). The branching process theory has
usually assumed that the entire family tree is needed

to be observed in order to make accurate inferences.

However, to observe such quantity of information is

hard in practice. In this sense, the authors published

in a previous work a study about the inference of the
parameters of a Y-BBP model without mutations (see

González et al. (2013a)), based on a more realistic sam-

pling scheme where the total number of females and

males up to some generation as well as the number of
males of each genotype in the last generation is ob-

served. Carrying on with these ideas, in this paper and

for the Y-BBP with mutations, we consider firstly the

same sample. However, in contrast with the model with-

out mutation, the son’s genotype is not determined di-

rectly from the father’s one. As consequence, this sam-

ple could determine the global behavior of alleles in

the population, but might not provide enough informa-
tion in order to make inference on the parameters of

the model with mutations. Therefore, to overcome this

lack of information, some knowledge about the num-

ber of mutated males in the last generation should be
added. This will be considered as the second sampling

scheme.

Moreover, in the Bayesian framework, a Markov cha-

in Monte Carlo (MCMC) method was used for the model

without mutations in González et al. (2013a), with very
good results. However, although in general MCMC me-

thod works well in many substantive problems, it can

perform poorly when is applied to large data sets or

complex models, as the model presented in this paper.
In fact, the approximation to this problem using the

MCMC methodology has provided poor results, fail-

ing to provide accurate posterior approximations in a

reasonable computational time. Besides, at least in our

context, such methodology often needs to make use of
the conjugate family theory representing a lack of gen-

erality.

Due to these limitations, we are interested in ap-

plying a different statistical tool to solve this incom-
plete data problem, the Approximate Bayesian Com-

putation (ABC) methodology (see, for example, Marin

et al. (2012), Sunnaker et al. (2013) or Lintusaari et al.

(2017) for a recent survey). This method is being de-

veloped during last decades as an alternative to such
more traditional MCMCmethods. These likelihood-free

techniques are very well-suited to models for which the

likelihood of the data are either mathematically or com-

putationally intractable but it is easy to simulate from
them, so that they look very appropriate, a priori, for

studying the inference of the Y-BBP with mutations.

Besides this Introduction, the paper is organized in

8 sections as follows. In Section 2, it is described in

detail the Y-BBP with mutations as well as the asymp-
totic behavior of the different types of alleles in the pop-

ulation. Section 3 is devoted to introduce the Tolerance

Rejection-ABC Algorithm. We apply it in Section 4 to

a simulated example based on the sample described in

this Introduction. In Section 5 we set out a more infor-
mative sampling scheme. We apply again the algorithm,

but now with this new sample, in Section 6, develop-

ing a series of simulated examples which cover the dif-

ferent situations that can be observed in the sample.
After that, in Section 7, we examine the robustness of

the methodology, and in Section 8 we use the approxi-

mation of the posterior distributions of the parameters
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to infer the predictive posterior distribution of the size

of future generations. Finally, in Section 9, we provide

some concluding remarks.

2 Description of the model

The genetic frame we model is given by a Y-linked gene
which presents two allelic forms, denoted as R and r,

where R can mutate giving rise to new (different) al-

leles, all denoted also as r. This allele represents the

transmission of any trait different from the characteris-

tic transmitted by the R-allele (stemming or not from
its mutations).

Since the Y-chromosome is specific to males, we

deal with a two-sex population formed by females, by

males which carry the R-allele (called R-males), and by
r-males which carry the r-allele. It is assumed that each

individual mates with only one individual of the op-

posite sex if available (perfect fidelity or monogamous

mating), forming a couple. Therefore, in the population

one could find two types of couples, denoted by R- and
r-couples, depending on whether its male is of type R

or of type r, respectively.

According to the rules of genetic inheritance, and

taking into account the possibility of mutation, an R-
couple can give birth to females, R-males, and r-males,

whereas, given the assumption of no backmutation and

that mutations of r-allele are also named as r, an r-

couple gives birth to females and r-males.

Assuming non-overlapping generations and given the
number of R- and r-couples in generation n, denoted by

ZR
n and Zr

n, respectively, the number of females, males,

and couples of each genotype in the (n+ 1)st genera-

tion is determined by considering a two-stage structure,
reproduction and mating, similarly as it was described

in González et al. (2006) and González et al. (2009) for

others Y-BBP without mutations.

In the reproduction phase, couples of the nth gen-

eration produce offspring independently of each other
and according to certain reproduction law which is the

same for a given genotype but may be different for dif-

ferent genotypes since the mutation could affect the re-

productive capacity. Moreover, these reproduction laws
are independent of the generation the couples belong

to. Mathematically, the number of females and males

of each genotype stemming from each type of couple is

identified with the following independent sequences of

independent, identically distributed, non-negative, and
integer-valued random vectors:

{(FR
ni,M

R
ni,M

R→r
ni ), i = 1, 2, ...; n = 0, 1, ...}

and

{(Fr
nj,M

r→r
nj ), j = 1, 2, ...; n = 0, 1, ...}.

Here, FR
ni and Fr

nj are, respectively, the number of fe-

males stemming from the ith R-couple and the jth r-

couple of generation n;MR
ni is the number of males stem-

ming from the ith R-couple of the nth generation which

have preserved the R-allele, and MR→r
ni is the number of

males stemming from the ith R-couple of the nth gener-

ation, whose alleles have mutated and now are of type

r; and finally, Mr→r
nj is the number of males stemming

from the jth r-couple of the nth generation, and which
therefore carry also the r-allele.

We assume that the distributions of FR
ni+MR

ni+MR→r
ni

and Fr
nj+Mr→r

nj have finite means, mR and mr, respec-

tively, and variances.

Moreover, the conditional distribution of the vector

(FR
ni,M

R
ni,M

R→r
ni ) given FR

ni+MR
ni+MR→r

ni = k is multino-

mial with parameters (k, α, (1−α)(1−β), (1−α)β), for

k ≥ 0, and 0 < α < 1, 0 ≤ β < 1 with α representing
the probability for an offspring to be female and β the

probability of mutation. Then, in accordance with this

multinomial scheme, the average numbers of females,

R-males, and r-males generated by an R-couple are,

respectively, αmR, (1− α)(1 − β)mR and (1− α)βmR.
Notice that, if β = 0, then mutations do not hap-

pen a.s. so, if in the population both alleles coexist,

r−allele stems from the r-couples in the initial genera-

tion and one has the Y-BBP without mutation studied
in González et al. (2009). The case β = 1 is not consid-

ered in this paper because in such case, from the first

generation on, only the r−allele would survive in the

population a.s. and then one has the classical bisexual

branching process introduced by Daley (1968) describ-
ing the evolution of this allele.

With respect to the mutant-allele, the conditional

distribution of (Fr
nj,M

r→r
nj ) given Fr

nj+Mr→r
nj = l is also

multinomial with parameters (l,α, (1 − α)), for l ≥ 0,

and 0 < α < 1, with α the same for both genotypes,

i.e., the gene has no influence on sex designation. Then,
the average numbers of females and r-males are, respec-

tively, αmr and (1− α)mr.

At the end of the reproduction phase, one has the

total number of females, R-males, and r-males, denoted

by Fn+1, M
R
n+1, and Mr

n+1, respectively, which together

constitute the (n+ 1)th generation. Specifically, one ob-
tains such variables by means of the following expres-

sions:

Fn+1 =

ZR
n∑

i=1

FR
ni +

Zr
n∑

j=1

Fr
nj, (1)

MR
n+1 =

ZR
n∑

i=1

MR
ni and Mr

n+1 = MR→r
n+1 +Mr→r

n+1, (2)
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where

MR→r
n+1 =

ZR
n∑

i=1

MR→r
ni and Mr→r

n+1 =

Zr
n∑

j=1

Mr→r
nj ,

with the empty sum defined as 0, and MR→r
n+1 and Mr→r

n+1

denoting the total number of males with r-genotype in

generation n+ 1 which stemming from R- and r-couples,

respectively.

Given the total numbers of females, R-males, and r-
males in the (n+ 1)st generation, the number of couples

of each type (R or r) in this generation is determined in

the mating phase as follows: perfect fidelity mating is

assumed, hence if the total number of females is greater

than or equal to the total number of males then every
male finds a mate in the female population resulting in

ZR
n+1 = MR

n+1 couples of type R and Zr
n+1 = Mr

n+1 cou-

ples of type r. On the other hand, every female mate

when the total number of males exceeds the total num-
ber of females. Moreover, since it is assumed that the

genotype has no impact on the mating mechanism, fe-

males choose its mate in a blind way. Hence, the total

number of R-couples in the (n+ 1)th generation, ZR
n+1,

follows a hypergeometric distribution with parameters
Fn+1, Mn+1 = MR

n+1+Mr
n+1, and MR

n+1, while the to-

tal number of r-couples in this generation equals the

number of remaining females, i.e., Zr
n+1 = Fn+1 −ZR

n+1,

whose distribution is also hypergeometric with param-
eters Fn+1, Mn+1, and Mr

n+1.

The bivariate sequence {(ZR
n ,Z

r
n)}n≥0, describing the

evolution of the number of couples of each type over

generations, is called Y-linked two-sex branching pro-
cess with mutations and blind choice of males. It is

shown in González et al. (2012) that the process above

is a homogeneous multitype Markov chain and that

each genotype shows the dual behavior typical for bran-

ching processes known as the extinction-explosion dicho-
tomy. However, the behavior of the r−allele dependents

on the behavior of the R-allele. In concrete, if the R-

allele becomes extinct, the survival or not of the r-allele

depends on its own reproductive capacity. Whereas,
considering β > 0, if the R-allele explodes, the r-allele

also explodes due to the mutations, independently of

the mr value, so that the coexistence set is a.s. {ZR
n →

∞,Zr
n → ∞} = {ZR

n → ∞}. Moreover, this set has a

positive probability if min{α, (1 − α)}(1 − β)mR > 1
(see González et al. (2012) for details).

In Gutiérrez (2012), a simulation-based study was

developed to determine the behavior of the different

types of alleles in the population on the coexistence
set. So, we established that the asymptotic behavior of

the r-allele depends on the relation between mr, and

(1 − β)mR. In particular, when mr ≥ (1 − β)mR, the

r−genotype is the dominant one in the sense that, a.s.

on {ZR
n → ∞}, the sequence {Zr

n /Z
R
n}n≥0, converges to

infinity. In the case mr < (1 − β)mR, there is no domi-

nant genotype because the previous sequence converges,

a.s. on {ZR
n → ∞}, to a positive and finite value.

Specifically, whenmr > (1−β)mR, for n large enough,
it can be stated that

Zr
n

ZR
n

≃

(
mr

(1− β)mR

)n

W,

withWa certain non-degenerate random variable. When

mr = (1 − β)mR, the sequence {Zr
n /Z

R
n}n≥0 also grows

a.s. to infinity, however now it does so linearly, that is,

for n large enough, it is satisfied that

Zr
n

ZR
n

≃ n
β

1− β
+W∗,

where W∗ is a non-degenerate random variable. Finally,

for n large enough,

Zr
n

ZR
n

≃
βmR

(1− β)mR −mr

in the case mr < (1 − β)mR, that is, {Z
r
n /Z

R
n}n≥0 con-

verges a.s. to the constant βmR((1 − β)mR−mr)
−1 which

had been determined empirically.

Moreover, we have determined computationally the

asymptotic ratio of the quotient between the total num-

ber of r−couples in consecutive generations, Zr
n+1/Z

r
n,

and we have concluded that such ratio is, a.s. on {ZR
n →

∞}, min{α, (1−α)}max{mr, (1−β)mR}. Finally, it was

proved in González et al. (2012) that the asymptotic

ratio of ZR
n+1/Z

R
n is, a.s. on {ZR

n → ∞}, min{α, (1 −
α)}(1− β)mR.

Based on these previous results and a deeper study
of the simulations, it is easy to deduce the rates of

growth of every type of couple in every case, on the

set where both genotypes survives. The knowledge of

such ratios is important for the development of the
results of this paper. So, when mr > (1 − β)mR, the

sequence {ZR
n}n≥0 grows geometrically at a rate τR =

min{α, (1−α)}(1−β)mR while {Zr
n}n≥0 grows, also ge-

ometrically, at a rate τr = min{α, (1− α)}mr, i.e., each

type of couple have a different rate of growth, being the
r-allele the dominant one.

On the other hand, when mr < (1− β)mR, {Z
R
n}n≥0

and {Zr
n}n≥0 have the same rate of geometric growth

given by τR, and moreover it is verified that, as n tends

to infinity, the limit of Zr
n /τ

n
R is, a.s. on {ZR

n → ∞},

proportional to the limit of ZR
n /τ

n
R with proportionality

constant βmR((1− β)mR −mr)
−1.

Finally, when mr = (1 − β)mR, {Z
R
n}n≥0 grows at

a geometric rate of τR while the sequence that nor-

malizes {Zr
n}n≥0 is {nτnR}n≥0. Moreover, as n tends to
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infinity, the limit of Zr
n /nτ

n
R is, a.s. on {ZR

n → ∞}, pro-

portional to the limit of ZR
n /τ

n
R with proportionality

constant β/(1− β).

As we indicated at the Introduction, our aim in this
paper is to apply the ABC methodology to obtain ac-

curate approximations to the posterior distributions of

the parameters of the model, that is, of α, β, mR and mr

and to verify that this methodology works adequately in
all the possible situations given by the explained above

relations between mr and (1−β)mR, always on the coex-

istence set. To do that, previously, we must select the

sample we are going to observe. We are interested in

finding a sufficiently informative sampling scheme ob-
serving the minimum amount of information that leads

us to obtain good estimates. Related to this question, as

we also indicated at the Introduction, the authors pub-

lished (see González et al. (2013a)) a study about the
estimation of the main parameters of a Y-BBP (with-

out considering mutations) based on a sample where

only the total number of females and males (without

knowing the genotype of the males) up to some gener-
ation N as well as the different types of males only in

the last generation N were assumed to be observed. Fol-

lowing these ideas, initially we set out in this paper the

Bayesian estimation of the parameters of the Y-BBP

with mutations based on that same sample.

3 Approximate Bayesian Computation

Let FMN denote the observed data until generation N

which is assumed that has been generated from a model

with parameter vector θ = (α, β,mR,mr). In particular

FMN = {FM0,FM1, ...,FMN−1,FMRrN}, (3)

where FMn = (Fn,Mn), n = 0, ...,N− 1, is the vec-

tor given by the total number of females and males

in generation n and FMRrN = (FN,M
R
N,M

r
N) is the vec-

tor given by the total number of females and males of

each genotype at last generation. Note that FM0 could

be fixed -initial generation at an experiment- or random

-representing the first generation one observes, non nec-
essarily the initial fixed generation. Henceforward, we

shall focuss on the first interpretation. Moreover, we

shall assume that FN > 0, MR
N > 0 and Mr

N > 0. Notice

that this assumption implies that Fn > 0 and Mn > 0,

for all n = 1, ...,N− 1 and also implies that both geno-
types have coexisted at least in the last generation.

The aim of Bayesian approach is to derive the poste-

rior distribution of the parameter vector, θ|FMN. ABC
methodology offers good approximations to the poste-

rior distributions of parameters for models which have

intractable likelihoods but are easy to simulate.

The use of ABC ideas initially comes from the field

of population genetics (see Beaumont et al. (2002),

Pritchard et al. (1999) and Tavaré et al. (1997)), al-

though these were quickly extended to a great variety

of scientific applications areas. The basic ideas are to
simulate a large number of data from a model depend-

ing on a parameter vector that is drawn from a prior

distribution and compare the simulated data with the

values from the observed sample. The aim of the ABC
methodology is to provide samples from a posterior-

type distribution (in the sense that it includes the sam-

ple information) which is a good (enough) approxima-

tion of the posterior distributions of the parameters of

the model. Several algorithms have been proposed in
the literature to solve the problem of how to choose

this approximation, surveys on ABC algorithms can be

read in Lintusaari et al. (2017), Marin et al. (2012) and

Sunnaker et al. (2013).
These general ideas can be properly adapted to our

model which is very easy to simulate given the param-

eter vector, some information about the initial gen-

eration, as for example, the total number of females

and males of each type, and the family of probabil-
ity distributions the reproduction laws belongs to. In

our case, as we have a complete absence of knowledge

on the reproduction laws of the model that has gener-

ated the observed data, we will assume, for simplicity,
a parametric setting with Poisson distributions as re-

production laws. This distribution is frequently used

as offspring distribution, see for example Bertoin et al.

(2008), Farrington and Grant (1999), Farrington et al.

(2003), Mode and Sleemam (2000), Pakes (2003) or
Blumberg and Lloyd-Smith (2013). Another paramet-

ric reproduction law could also be considered without

substantial changes in the estimates (see the sensitivity

analysis showed in Section 7).
Moreover, in our case, it is not possible to calculate

explicitly the likelihood function, f(FMN|θ), because

the complete branching structure cannot be derived due

to the fact that the total number of males of each geno-

type, the total number of r-males stemming from R-
couples and the total number of each type of couple are

not observed in each generation.

3.1 Description of the algorithm

In our particular case, the proposed algorithm is the

Tolerance Rejection-ABC Algorithm which is an adap-

tation of that proposed in Pritchard et al. (1999) which

works as follows. For a Y-BBP with mutations, assum-
ing observed the sample in (3), it is easy to simulate for

each specific vector of parameters θ (sampled from a

prior distribution π(θ)) the entire family tree up to the
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current Nth generation and to obtain the random vec-

tors (FR
n , M

R
n , M

R→r
n , Fr

n, M
r→r
n , ZR

n , Z
r
n), n = 0, . . . ,N.

Then, using Equations (1) and (2), can be obtained

a simulated sample of (Fn,Mn), n = 0, . . . ,N− 1 and

(FN,M
R
N,M

r
N), renamed as

FMsim

N = {FMsim

0 ,FMsim

1 , ...,FMsim

N−1,FMRrsimN }.

Notice, FMsim

N depends on FMN only through FM0.
Actually, Fsim

0 = F0 and the vector (MR
0

sim

,Mr
0
sim) is

simulated from the uniform distribution, subject to the

constraint MR
0

sim

+Mr
0
sim = M0. Moreover, we consider

only paths simulated by the algorithm where both al-

leles have coexisted in the last generation, i.e., where
Fsim

N > 0, MR
N

sim

> 0 and Mr
N

sim > 0, as it occurred in

the observed sample FMN.

Now, for a given ε > 0, known as tolerance level, and
a distance, ρ(·, ·), the algorithm compares (in terms of

metric) the simulated paths, FMsim

N , with the observed

sample FMN. This allows us to obtain an approxima-

tion of θ | FMN by the distribution

θ|ρ(FMsim

N ,FMN) ≤ ε,

using a small enough ε. In our case, we shall use a small

enough quantile of the sample of the distances as it is

usual in ABC studies (see, for example, Marin et al.

(2012)).

To quantify the distance between FMsim

N and FMN

we use

ρ(FMsim

N ,FMN) =(
N∑

n=1

(
Fn

sim

Fn

−
Fn

Fn
sim

)2

+

N−1∑

n=1

(
Mn

sim

Mn

−
Mn

Mn
sim

)2

+

(
MR

N

sim

MR
N

−
MR

N

MR
N

sim

)2

+

(
Mr

N
sim

Mr
N

−
Mr

N

Mr
N

sim

)2



1/2

Notice that we have re-scaled each coordinate of the

vectors since their magnitudes can be extremely differ-

ent, depending on generation, sex and genotype (see

Lintusaari et al. (2017) and Pritchard et al. (1999)).

Then, the Tolerance Rejection-ABC Algorithm is

formulated as,

Tolerance Rejection-ABC Algorithm

For i = 1 to m do

repeat

generate (αsim, γsim, φsim)∼U(0, 1)×U(0, 1)×U(0, 1)

generate βsim = 0 with probability γsim and

βsim ∼ π(β) with probability 1− γsim

generate msim
r = 0 with probability φsim and

msim
r ∼ π(mr) with probability 1− φsim

generate msim
R ∼ π(mR)

let θ̃ = (αsim, βsim,msim
R ,msim

r )

simulate FMsim
N from the likelihood f(FMN|θ̃)

until ρ(FMsim
N ,FMN) ≤ ε,

set θ(i) = θ̃

end for

Note that, we generate the parameter αsim from a
uniform distribution on (0, 1) and the parameter msim

R

from a generic prior distribution π(mR) on (0,∞). This

is consistent with the fact that FN > 0 and MR
N > 0. On

the other hand, taking into account that in the model,

r−allele can mean an allele different from R, βsim could
be null. Moreover, msim

r could also be null even being

Mr
N > 0 (in this case βsim > 0, see (2)). Therefore, we

generate the parameters βsim and msim
r from prior distri-

butions which are mixture of distributions: one degen-
erated at 0 (in order to consider the possibility that βsim

and msim
r takes exactly the value 0) and the other one

π(β) on (0, 1) and π(mr) on (0,∞), with weights given

by (γsim, 1−γsim) and (φsim,1−φsim), respectively. Since

we do not have information about the possible value of
these parameters, we consider γsim and φsim following a

uniform distribution on (0, 1).

4 A simulated example based on the observed

sample FMN

Now, the previous algorithm is implemented using as
observed data a sample which has been obtained by

simulation. We analyze first the case where the relation

between the parameters is mr ≥ (1− β)mR although it

is worth to remind here that we are searching for a gen-

eral method which works independently of the relation
between the parameters.

4.1 Case mr ≥ (1− β)mR

Our objective is to approximate the posterior distribu-

tion θ|FMN, where FMN is an observed sample which

has been simulated from a Y-BBP with mutation with
parameter vector θ=(α, β,mR,mr)=(0.46, 0.005, 3.2, 4)

(notice that with those values the relation mr ≥ (1 −

β)mR is satisfied) and initial vector (F0, MR
0 , Mr

0)=
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(10, 5, 5). For such a model with this set of parameters

and initial values, we proved in González et al. (2012)

that there exists a positive probability of survival of

both genotypes.

We simulate 15 generations of this Y-BBP with mu-

tations assuming that reproduction laws of both geno-

types follow the non-parametric offspring distributions
with finite support given in Table 1, with means mR =

3.2 and mr = 4, respectively. The observed data can be

seen in Table 2 and are denoted by FM15.

We apply the Tolerance Rejection-ABC Algorithm

generating the parameter vector assuming independent

non-informative prior distributions. In particular, for

αsim and βsim (when it is positive) uniform distributions

in the interval (0, 1) and for msim
R and msim

r (when it is
positive), uniform distributions in the interval (0, 10).

We have chosen, obviously, 0 as the minimum value for

the support of the latter uniform distributions and 10 as

the maximum value because we consider that number
high enough for the number of offspring of many ani-

mal species although this number could be adapted to

any specific situation. After that, we simulate Y-BBPs

with mutations until generation 15 using, as R and r re-

production laws, Poisson distributions with parameters,
respectively, msim

R and msim
r (recall we use this generic

type of distribution for the offspring laws because we

know nothing about the true reproduction laws). We

generate a pool of 50 millions of simulated paths. To
compare the observed sample and the simulated ones

we consider a tolerance level equal to the 0.00002 quan-

tile of the sample of the distances, so that the size of

ABC samples to approximate the posterior distribution

θ|FM15 is 1000.

In Figure 1, we present the approximate posterior

distribution of every parameter, that is,

δ|ρ(FMsim

15 ,FM15) ≤ ε,

with δ equal to α, β (in this case, only paths where

βsim > 0 have been considered), mR and mr, the cor-

responding in every case, together with the true value
of the parameters (vertical solid line) and 95% HPD

sets (vertical dotted lines). We can appreciate first that

the approximate posterior distribution for α is very

accurate. Actually, this happens in every example we

present in the paper and it is due to the fact that
the quotient between the total number of females and

the total number of individuals, which are observed,

converges precisely to α when the number of genera-

tions tends to infinity (see Gutiérrez (2012)), therefore,
the similitude between the chosen simulated paths and

the observed sample makes the estimation for α good

enough.

However, we can observe in Figure 1 that the esti-

mation of the posterior distribution of the parameter β

is not very accurate because P (β = 0|FM15) is very

high, estimated by 0.716, despite the real value of β is

strictly greater than 0. Note at this point that, to es-
timate β is a difficult task. First, because in general,

its value, although positive, is very small in real sit-

uations (0.005 in our example), close to zero (which

represents the non-mutation). Secondly, due to the fact
that from the total number of males with r−allele, Mr

n,

is not possible to know, without some additional in-

formation, how many of those come from mutations,

MR→r
n . On the other hand, the corresponding estimates

of mR|FM15 and mr|FM15 are enough accurate, with
the last one better than the first. This is due to the

fact that we are in the case in which the r−allele is the

dominant one (mr ≥ (1 − β)mR) and therefore one has

more information about males with the mutant allele,
in spite of the noise produced by the non-observed vari-

able MR→r
n . Anyway, if one goes more in deep analyzing

these data, one has to consider that both approxima-

tions of the posterior distributions (of mR and mr) are

related with β, as it is shown in Figure 2, and there-
fore the estimates of these parameters inherit in some

sense the inaccuracy of β. Actually, if we consider only

the simulated paths where βsim = 0, the kernel density

estimate of mR is really accurate (of course, since the
true value of β is close to zero).

To give a measure of the accuracy of the method

for the different parameters, we consider the relative

mean square error (RMSE), which was also proposed

in Beaumont et al. (2002) and González et al. (2013b),
calculated by

1

n

n∑

k=1

(δsimk − δ)2

δ2
,

with n = 1000, δ the true value of α, β, mR or mr, the

corresponding in each case, and δsimk the corresponding
value of δ on the kth simulated path chosen by the

method.

In particular, Table 3 shows the RMSE of the es-

timates of α, β, mR and mr given by the Tolerance
Rejection-ABC Algorithm when the sample FM15 is

observed and considering all chosen simulated paths

(i.e. those simulated paths such that ρ(FMsim
15 ,FM15)≤

ε), all chosen simulated paths where βsim = 0 and all

chosen simulated paths where βsim > 0. One can appre-
ciate that, in general, the RMSE for α, mR and mr are

very similar in all cases and very close to 0.

However, the RMSE for β when only simulated paths

where βsim > 0 are considered, takes a high value, con-
siderably greater than the value when all simulated

paths are considered, even being the first one the real

situation. This is due to the fact that P (β = 0|FM15)
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Table 1 Reproduction laws for both genotypes, with pk the probability that a couple generates k individuals, with k ∈
{0, . . . , 7}.

p0 p1 p2 p3 p4 p5 p6 p7

R-genotype 0.0139 0.0819 0.2069 0.2904 0.2445 0.1236 0.0347 0.0041
r-genotype 0.0027 0.0248 0.0991 0.2203 0.2938 0.2350 0.1044 0.0199

Table 2 The observed sample FM15 for the case mr ≥ (1 − β)mR, with (MR
15,M

r
15) = (1043, 45850). This sample has been

generated from the parameter vector θ = (α, β,mR,mr) = (0.46, 0.005, 3.2, 4).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fn 16 21 33 53 112 188 342 609 1112 1985 3563 6547 11980 21904 40101
Mn 23 36 46 75 103 215 397 731 1275 2340 4233 7716 13983 25441 46893

0.35 0.40 0.45 0.50 0.55

0
2

4
6

8

hpd 95% hpd 95%α

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5

hpd 95% hpd 95%β

3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hpd 95% hpd 95%mR

3.5 4.0 4.5 5.0 5.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

hpd 95% hpd 95%mr

Fig. 1 Approximate posterior densities, with 95% HPD sets, of the parameters α, β (in this case only considering paths where
βsim > 0), mR and mr, respectively, given FM15 in the case mr ≥ (1 − β)mR. Vertical solid lines represent the true value of the
parameters.
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Fig. 2 Scatter plots showing the relation between β and mR and mr, respectively, and approximate posterior density, with
95% HPD sets, of mR using paths with βsim = 0, given FM15.

is very high and that the true value of β is very close

to 0.

Anyway, note that although the methodology can-

not provide an adequate approximate posterior distri-
bution of the parameter β and consequently of the pa-

rameters mR and mr either, it can provide very accu-

rate approximate posterior distributions of the rates of

growth of both alleles, see Figure 3, since the total num-
ber of males of each genotype is observed. In particu-

lar, as it was indicated in Section 2, when α < 0.5 and

mr > (1− β)mR (as it is the case of our example), on

the set of coexistence of both alleles, the rate of growth

of the mutant allele is equal to αmr, while the rate of

growth of the R−allele is equal to α(1− β)mR.

Notice here that, although we do not know, a priori,

whether FMN will provide or not accurate estimates

of the parameters of the model in other cases different

from mr ≥ (1− β)mR, we are looking for a unified esti-
mation procedure whose behavior does not depend on

the parameters relation. This is why in the next section

we will modify the previous sample scheme including
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Table 3 RMSE for the estimates of α, β, mR and mr given by the Tolerance Rejection-ABC Algorithm when the sample
FM15 is observed.

α β mR mr

Considering all simulated paths 0.0080 0.0443 0.0408 0.0100
Considering only simulated paths where βsim = 0 0.0081 0.0117 0.0110
Considering only simulated paths where βsim > 0 0.0077 1557.8 0.1141 0.0076

additional information. This new sample scheme will

be use in the rest of the paper.

5 Introducing additional information: a new

sample scheme

Up to now, we have used the ABC algorithm to esti-

mate the main parameters of the model given FMN.

However, we have seen in the example given in Section
4.1 that the estimate of the parameter β is not very ac-

curate, having the approximate posterior distribution

huge variability. In the example we have observed an

atom at zero of size 0.716 when actually the true pa-

rameter is really small but not null.
Therefore, it seems reasonable to think that it is

necessary to get some information about the number

of mutant alleles stemming from R−fathers, at least in

some generation, in order to obtain a more accurate ap-
proximation of the posterior distribution of β. In par-

ticular, we introduce this kind of information for the

last generation. Hence, we assume from now on that

the available sample consists of the sample given by

(3) as well as the total number of r−males stemming
from R−fathers in the last generation, that is, MR→r

N .

Moreover, as Mr
N is known, the total number of r−males

stemming from r−fathers in the last generation, Mr→r
N ,

is also derived (see (2)). Notice that, to obtain MR→r
N

and Mr→r
N , it would be necessary to know who is ev-

ery r−male’s father of the generation N. Therefore, it is

plausible to assume that MR
N−1 and Mr

N−1 are also ob-

served, including males whom do not produce descen-

dants. From now on, we denote this sample as FMN.
Therefore,

FMN = {FMN,M
R
N−1,M

r
N−1,M

R→r
N ,Mr→r

N }.

6 A series of simulated examples based on the

observed sample FMN

In the following subsections, we will illustrate, by means

of simulated examples, how the Tolerance Rejection-

ABC Algorithm works to approximate the posterior
distribution θ|FMN. We will consider different situa-

tions depending on whether some variables of the sam-

ple FMN are positive or null.

6.1 Observing MR
N > 0, MR→r

N > 0 and Mr→r
N > 0

We first consider the situation in which MR
N>0, MR→r

N >

0 and Mr→r
N > 0. This implies that MR

N−1 > 0 and

Mr
N−1 > 0. Moreover, this assumption also implies that

β and mr are strictly positive and then their posterior

distributions are not concentrated at zero value, which
simplifies the Tolerance Rejection-ABC Algorithm de-

scribed in Subsection 3.1 because only simulated paths

where βsim > 0 and msim
r > 0 will be considered. On the

other hand, the metric is slight more complex, includ-
ing the new observed variables MR

N−1, M
r
N−1, M

R
N, M

R→r
N

and Mr→r
N in the same way as previously. In particular,

the distance between the simulated path, FM
sim

N , and

the observed data, FMN, is defined as

ρ∗(FM
sim

N ,FMN) =(
N∑

n=1

(
Fn

sim

Fn

−
Fn

Fn
sim

)2

+

N−2∑

n=1

(
Mn

sim

Mn

−
Mn

Mn
sim

)2

+

(
MR

N-1

sim

MR
N-1

−
MR

N-1

MR
N-1

sim

)2

+

(
Mr

N-1
sim

Mr
N-1

−
Mr

N-1

Mr
N-1

sim

)2

+

(
MR

N

sim

MR
N

−
MR

N

MR
N

sim

)2

+

(
MR→r

N

sim

MR→r
N

−
MR→r

N

MR→r
N

sim

)2

+

(
Mr→r

N
sim

Mr→r
N

−
Mr→r

N

Mr→r
N

sim

)2
)1/2

6.1.1 Case mr ≥ (1− β)mR

To illustrate how to approximate the posterior distri-

bution θ|FMN, first we study again the case mr ≥

(1−β)mR, considering the same observed sample given

in Table 2 and also assuming that now it is observed
that MR→r

15 = 6 (i.e. from 45850 males with r−allele in

generation 15, 6 of them come from mutations), that

Mr→r
15 = 45844, that MR

14 = 754 and that Mr
14 = 24687.

With this new information, we apply the Tolerance
Rejection-ABC Algorithm using the metric ρ∗(·, ·).

In Figure 4, we present the approximate posterior

distributions of all parameters together with the true
value of the parameters (solid line). One can appreci-

ate how the approximate posterior distribution of β has

improved compared with the corresponding approxima-
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Fig. 3 Approximate posterior densities, with 95% HPD sets, of the rates of growth of the mutant allele and R−allele, given
FM15 in the case mr ≥ (1− β)mR. Vertical solid lines represent the true value of the rates of growth.

tion given in Figure 1. Now, the true value of all param-

eters are into the 95% HPD sets and the corresponding

RMSE for β and mR are, respectively, 18.392 and 0.035,
considerably smaller than that given in Table 3 (1557.8

and 0.1141, respectively) where only simulated paths

with βsim > 0 were considered, as it is now our case.

For the rest of the parameters, the approximate poste-

rior distributions in Figure 4 are very similar to that
given in Figure 1 being the corresponding RMSE for

α and mr, 0.037 and 0.053, respectively, similar values

to that given in Table 3 (0.0077 and 0.0076, respec-

tively) where only simulated paths with βsim > 0 were
considered. Moreover, since the range of the posterior

distribution of β is very small, its estimation does not

affect to the estimation of neither mR nor mr, which

are positively correlated (see contour plots showed in

Figure 5).

6.1.2 Case 0 < mr < (1 − β)mR

Next we illustrate how the algorithm works to approx-

imate the posterior distribution θ|FMN, in the case

0 < mr < (1− β)mR. To this end, we consider a second

simulated example with initial vector (F0, M
R
0 , M

r
0)=

(10, 5, 5) as in the previous case, and parameter vector
θ = (α, β,mR,mr) = (0.45, 0.01, 3.5, 2.6). For a Y-BBP

with mutations with this set of parameters and initial

values, we also proved in González et al. (2012) that

there exists a positive probability of survival of both
genotypes.

We simulate 15 generations of this Y-BBP with mu-

tations assuming that reproduction laws of both geno-

types follow the non-parametric offspring distributions

with finite support given in Table 4, with means mR =

3.5 and mr = 2.6. The simulated data can be seen in
Table 5 and they are denoted by FM15.

We now plot (see Figure 6) the approximate poste-

rior distributions of the parameters, once the algorithm

have been applied. Again, we can appreciate that the

methodology provides accurate approximations to the

posterior distributions of all parameters in this new con-

text, being the RMSE for α, β, mR and mr, respectively,
0.0285, 1.7918, 0.0131, 0.0719. Notice that, in this case,

the RMSE for β and mR are smaller than that given

in the case mr ≥ (1 − β)mR in the previous subsec-

tion, since in the case mr < (1 − β)mR we have more

information on these parameters because the rate that
define the growth is essentially (1−β)mR that allows to

obtain more accurate approximations of β|FM15 and

mR|FM15.

Therefore, as final conclusion of this Subsection 6.1,
we can establish that the proposed Tolerance Rejection-

ABC Algorithm works adequately to estimate the pa-

rameters of a Y-BBP with mutations, given the infor-

mation provided by the sample FMN with MR
N > 0,

MR→r
N > 0 and Mr→r

N > 0 whichever the relation be-
tween the parameters.

6.2 Observing MR
N > 0, MR→r

N > 0 and Mr→r
N = 0

In the previous subsection it was considered thatmr > 0
since Mr→r

N was assumed to be non-null. Now, we re-

search the situation where Mr→r
N = 0. Obviously, this

event occurs in models with mr = 0 but it can be also

observed in models with mr > 0. Due to this fact, the
estimation of mr in this case can be a difficult task.

Most probably the approximate posterior distribution

of mr|FMN will present an atom at zero with non-null

probability. This kind of problems are usual in branch-

ing process theory. For example, based on the observa-
tion of a Galton-Watson process it is difficult to make

inference on whether the extinction or explosion of such

process will occur (see Guttorp and Perlman (2013) or

Guttorp and Perlman (2015)).

The algorithm works in the same way as it was de-

scribed in Subsection 3.1, now using the metric ρ∗(·, ·).

In this case we only consider simulated paths FM
sim

N
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Fig. 4 Approximate posterior densities, with 95% HPD sets, of the parameters α, β, mR and mr, respectively, given FM15

in Table 2 and (MR
14,M

r
14) = (754, 24687) and (MR

15,M
R→r
15 ,Mr→r

15 ) = (1043, 6, 45844), in the case mr ≥ (1− β)mR. Vertical solid
lines represent the true value of the parameters.
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Fig. 5 Contour plots showing the relation between β and mR and mr and the relation between mR and mr given FM15 in
Table 2, with (MR

14,M
r
14) = (754, 24687) and (MR

15,M
R→r
15 ,Mr→r

15 ) = (1043, 6, 45844), in the case mr ≥ (1 − β)mR. Solid lines
represent the true values of the parameter vectors.

Table 4 Reproduction laws for both genotypes, with pk the probability that a couple generates k individuals, with k ∈
{0, . . . , 7}.

p0 p1 p2 p3 p4 p5 p6 p7

R-genotype 0.0078 0.0547 0.1641 0.2734 0.2734 0.1641 0.0547 0.0078
r-genotype 0.0388 0.1604 0.2843 0.2800 0.1654 0.0586 0.0115 0.0010

Table 5 The observed sample FM15 for the case 0 < mr < (1−β)mR, with (MR
14,M

r
14) = (4113, 172) and (MR

15,M
R→r
15 ,Mr→r

15 ) =
(6351, 62, 196). This sample has been generated from the parameter vector θ = (α, β,mR,mr) = (0.45, 0.01, 3.5, 2.6).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fn 22 13 23 42 69 107 156 246 390 630 940 1469 2266 3461 5437
Mn 12 16 25 42 73 125 192 302 477 739 1219 1763 2876 4285 6609

such that Mr→r
N

sim = 0. Therefore, the last sum term of

ρ∗(·, ·) is deleted.

To illustrate this particular case, we fix the para-

meter vector θ = (α, β,mR,mr) = (0.45, 0.10, 3, 0) and

initial vector (F0, M
R
0 , M

r
0)= (10, 5, 5). For a Y-BBP

with mutations with this set of parameters and ini-
tial values, we proved in González et al. (2012) that

there exists a positive probability of survival of the R-

genotype and therefore also of the r-genotype.

We simulate 15 generations of this Y-BBP with mu-

tations assuming that the reproduction law of R-geno-

type follows non-parametric offspring distribution with

finite support given in Table 6, with mean mR = 3. The
simulated data can be seen in Table 7 and they are

denoted, as in the previous cases, by FM15.

In Figure 7, we present the approximate posterior
densities of every parameter. The approximations of

α|FM15, β|FM15 and mR|FM15 have been calculated

considering all chosen simulated paths. In those cases,
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Fig. 6 Approximate posterior densities, with 95% HPD sets, of the parameters α, β, mR and mr, given FM15 in Table 5, in
the case 0 < mr < (1− β)mR. Vertical solid lines represent the true value of the parameters.

Table 6 Reproduction laws for R-genotype, with pk the probability that a couple generates k individuals, with k ∈ {0, . . . , 7}.

p0 p1 p2 p3 p4 p5 p6 p7

R-genotype 0.0199 0.1044 0.2350 0.2938 0.2203 0.0991 0.0248 0.0027

Table 7 The observed sample FM15 for the case Mr→r
N = 0, with (MR

14,M
r
14) = (96, 12) and (MR

15,M
R→r
15 ,Mr→r

15 ) = (99, 16, 0).
This sample has been generated from the parameter vector θ = (α, β,mR,mr) = (0.45, 0.10, 3, 0).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fn 6 7 13 8 9 11 15 23 27 34 52 56 70 81 97
Mn 7 7 9 13 7 8 20 22 34 48 48 73 79 108 115
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Fig. 7 Approximate posterior densities, with 95% HPD sets, of the parameters α, β, mR and mr, respectively, given FM15

in Table 7 where Mr→r
N = 0 and considering all simulated paths except for the parameter mr for which only simulated path

with mr
sim > 0 have been considered. Vertical solid lines represent the true value of the parameters and solid bar represents

the estimate of P (mr = 0|FM15).

the algorithm provides accurate approximations to the

posterior densities of all parameters with the 95% HPD

sets containing their true values and with small values
of their RMSE (see Table 8). On the other hand, the

approximation of mr|FM15 has been obtained consid-

ering only chosen simulated paths where mr
sim > 0. In

this case, we also represent in such figure the P (mr =
0|FM15) (area of the vertical solid bar) which is esti-

mated by 0.504.

At this point, from the estimates and the observed

sample, one can wonder about the following hypothesis

test:

H0 : mr = 0 vs. H1 : mr > 0. (4)

Considering that we have assumed in the implementa-

tion of the algorithm that msim
r could take the value 0

with probability φsim, being φsim ∼ U(0, 1), we consider

its expected value at calculating the Bayes factor, K,

and therefore, it is verified that P (mr > 0) = P (mr = 0)
and then

K =
P (mr = 0|FM15)P (mr > 0)

P (mr > 0|FM15)P (mr = 0)
=

0.504

0.496
= 1.06.
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Although the Bayes factor is greater than 1 and this

leads us to conclude that mr = 0 is supported by the

observed sample, it is also true that the value of K

is very close to 1 and then, the acceptance of H0 is

not strongly supported. For that reason, in Figure 8
we present a comparison of the approximate posterior

densities of the parameters α, β and mR considering

simulated paths where msim
r = 0 (dotted line) and sim-

ulated paths where msim
r > 0 (solid line). Notice that

the true values of the three parameters are into 95%

HPD sets in both cases. Moreover, in Table 8 are pre-

sented the RMSE for the estimates of all parameters

for these cases. One can appreciate that in all cases the

RMSE for α is very similar and close to 0. Moreover,
the RMSE for β and mR take their smaller values when

only simulated paths where msim
r > 0 are considered.

This is due to the close relation of these parameters so,

when msim
r > 0 the values of βsim and msim

R are smaller
than in the case msim

r = 0 since the r-males do not stem

only from mutations.

We finally estimate the difference in means of the

approximate posterior densities of each parameter be-

tween these two groups (we name Group A1 to the set

of all chosen simulated paths where msim
r = 0 and name

Group A2 to the set of all chosen simulated paths where

msim
r > 0) using the Bayesian alternative to the t test

(see Kruschke and Meredith (2017)). We obtain that

the 95% HPD for β and mR are, respectively, (0.02236,
0.0536) and (0.0472, 0.2286) which do not include zero.

The Bayes factors are, respectively, 4704.56 and 7.15,

and the probabilities that the true values of the dif-

ferences are greater than zero are, respectively, 100%

and 99.8% which leads us to conclude that there exist
significant differences in the means of the approximate

posterior densities of β|FM15 and mR|FM15 between

Groups A1 and A2. However, the 95% HPD for α is

(−0.0122, 0.0162) which includes zero. The Bayes fac-
tor in this case is 0.104 and the probability that the

true value of the differences is greater than zero is 60%.

This leads us to conclude that there are no significant

differences in the means of the approximate posterior

density of α|FM15 between Groups A1 and A2. Visu-
ally, one can appreciate such differences in Figure 8.

6.3 Observing MR
N > 0, MR→r

N = 0 and Mr→r
N > 0

In a similar way than in previous subsection, next we

describe the algorithm when it has been observed that

MR
N > 0, MR→r

N = 0 and Mr→r
N > 0. Obviously, this event

occurs in models with β = 0, but it can be also observed

in models with β > 0. Due to this fact, as we pointed

out previously, the estimation of β in this case can be

a difficult task. Now, the approximate posterior distri-

bution of β|FMN will present an atom at zero with

non-null probability. The algorithm works in the same

way as it was described in Subsection 3.1, now using

the metric ρ∗(·, ·). In this case we only consider simu-
lated paths FM

sim

N such that MR→r
N

sim

= 0. Therefore,

the next-to-last sum term of ρ∗(·, ·) is deleted.

To illustrate this particular case, we fix the para-

meter vector θ = (α, β,mR,mr) = (0.65, 0.01, 3, 3.5)

and initial vector (F0, M
R
0 , M

r
0)= (10, 5, 5). For a Y-

BBP with mutations with this set of parameters and

initial values, we proved in González et al. (2012) that
there exists a positive probability of survival of the R-

genotype and therefore also of the r-genotype.

We simulate 15 generations of this Y-BBP with mu-
tations assuming that reproduction laws of R and r-

genotypes follow non-parametric offspring distributions

with finite support given in Table 9, with means mR = 3

and mr = 3.5. The simulated data can be seen in Table
10 and they are denoted, as in the previous cases, by

FM15.

In Figure 9, we show the approximate posterior den-
sities of every parameter. The approximations of α|

FM15, mR|FM15 and mr|FM15 have been obtained

considering all chosen simulated paths. In all those cases,

the algorithm provides accurate approximations to the
posterior densities of all parameters with the 95% HPD

sets containing their true values and with small values

of their RMSE (see Table 11). On the other hand, the

approximation of β|FM15 has been obtained consider-

ing only chosen simulated paths where βsim > 0. In this
case the 95% HPD set also contains the true value of the

parameter so the approximation to the posterior den-

sity is also considered enough accurate. Moreover, we

also represent the P (β = 0|FM15) (area of the vertical
solid bar) which is estimated by 0.152.

As in the previous subsection, from the estimates

and the observed sample, one can wonder about the
following hypothesis test:

H0 : β = 0 vs. H1 : β > 0. (5)

Considering that we have assume in the implementation

of the algorithm that βsim could take the value 0 with

probability γsim, being γsim ∼ U(0, 1), we consider its
expected value at calculating the Bayes factor, K, and

then, it is verified that P (β > 0) = P (β = 0), thus

K =
P (β = 0|FM15)P (β > 0)

P (β > 0|FM15)P (β = 0)
=

0.152

0.848
= 0.18.

That value of the Bayes factor leads us to conclude (see

Jeffreys (1961)) that there are substantial evidences

against the null hypothesis, and then β > 0 is more
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Table 8 RMSE for the estimates of α, β, mR and mr given by the Tolerance Rejection-ABC Algorithm when the sample
FM15 in Table 7 is observed.

α β mR mr

Considering all simulated paths 0.0349 1.2934 0.0751 4.8186∗

Considering only simulated paths where mr
sim = 0 0.0327 1.6791 0.0864

Considering only simulated paths where mr
sim > 0 0.0371 0.9014 0.0636 2.3900∗

∗RMSE proposed in Knuth (2005), when the true value is zero
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Fig. 8 Comparison of the approximate posterior densities, with 95% HPD sets, of the parameters α, β and mR, given FM15

in Table 7 when only simulated paths with msim
r = 0 have been considered (dotted line) and when only simulated paths with

msim
r > 0 have been considered (solid line), in the case Mr→r

N = 0. Vertical solid lines represent the true value of the parameters.

Table 9 Reproduction laws for both genotypes, with pk the probability that a couple generates k individuals, with k ∈
{0, . . . , 7}.

p0 p1 p2 p3 p4 p5 p6 p7

R-genotype 0.0199 0.1044 0.2350 0.2938 0.2203 0.0991 0.0248 0.0027
r-genotype 0.0078 0.0547 0.1641 0.2734 0.2734 0.1641 0.0547 0.0078

Table 10 The observed sample FM15 for the case MR→r
N = 0, with (MR

14,M
r
14) = (11, 77) and (MR

15,M
R→r
15 ,Mr→r

15 ) = (10, 0, 90).
This sample has been generated from the parameter vector θ = (α, β,mR,mr) = (0.65, 0.01, 3, 3.5).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fn 24 18 32 23 28 25 45 76 90 112 135 157 185 202 204
Mn 10 14 11 14 16 30 35 41 50 62 73 78 92 88 100
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Fig. 9 Approximate posterior densities, with 95% HPD sets, of the parameters α, β, mR and mr, given FM15 in Table 10 in
the case MR→r

N = 0 considering all simulated paths except for β where only simulated paths with βsim > 0 have been considered.

Vertical solid lines represent the true value of the parameters and solid bar represents the estimate of P (β = 0|FM15).

supported by the observed sample, which is the real

situation.

In Figure 10 we present the approximate posterior

densities of α|FM15, mR|FM15 and mr|FM15 calcu-
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Fig. 10 Approximate posterior densities, with 95% HPD sets, of the parameters α, mR and mr, given FM15 in Table 10
in the case MR→r

N = 0 considering only simulated paths where βsim > 0. Vertical solid lines represent the true value of the
parameters.

lated considering only paths where βsim > 0. Notice

that, the true values of the all three parameters are

into 95% HPD sets. Moreover, in Table 11 are presented

the RMSE for the estimates of those parameters. No-
tice that the RMSE are very similar to those calcu-

lated when all chosen simulated paths are considered

and they are very close to 0.

As final conclusion of Subsections 6.2 and 6.3 we
establish that, if in the observed sample, one of the

random variables MR→R
N or MR→r

N is equal to 0 then

we apply the Tolerance Rejection-ABC Algorithm and

solve the corresponding hypothesis test considering the
approximate posterior distributions conditioned to the

decision given by this test.

Remark 1 In order not to extend the paper, we have

not considered explicitly in subsection 6.2 an example

where Mr
N = 0 and mr > 0, however an example of this

kind of situation is considered in subsection 6.3 where

MR
N = 0 and β > 0. Analogously, it has not been con-

sidered explicitly in subsection 6.3 an example where

MR
N = 0 and β = 0, however an example of this kind

of situation is consider in subsection 6.2 where Mr
N = 0

and mr = 0. In both cases, the results are analogous to
those shown in the paper.

Remark 2 The case Mr
N = 0, i.e. MR→r

N = 0 and

Mr→r
N = 0, is not illustrated in the paper. A sample

where Mr
N = 0 is observed could belong to a coexis-

tence path although it would not be guaranteed. Anyway,

to make inference about the parameters in this situa-

tion, the Tolerance Rejection-ABC Algorithm would be
applied and then both hypothesis test, in (4) and (5),

should be solved.

Remark 3 The case MR
N = 0 is not illustrated either

in the paper, since this case represents the extinction of

the R-allele and then the behavior of r-allele is described

by a two-sex Galton-Watson process (see González et al.

(2012)).

7 Sensitivity analysis

In this section we examine the sensitivity of inferences

depending on the probability distribution used to gener-

ate the simulated paths. We apply the Tolerance Rejec-
tion-ABC Algorithm to the examples in Subsections

6.1.1 and 6.1.2. but now generating the pool of simu-

lated paths, instead from the Poisson distribution, from

negative binomial distribution laws with different value
of size (k) since these kind of distributions have been

also used in practical cases (see Farrington and Grant

(1999), Mode and Sleemam (2000) or Pakes (2003)).

In Tables 12 and 13 we present the point estimates
of α, β, mR and mr, under squared error loss as well as

their 95% HPD sets for the two examples, respectively.

It can be seen that in all cases the HPD sets contain

the true values of the parameters, being very similar

among them for different distributions. This allow us to
conclude that this is a robust methodology against the

probability distribution used to simulate the processes.

8 Prediction of the future population size

Finally, once that the algorithm has been proved to be

a useful tool to obtain accurate approximations of the

posterior distributions of the parameters, from them,

we can also estimate others random variables related to
the process. For instance, from a practical standpoint,

it is of interest to infer the size of future generations.

Next, we apply a Monte Carlo procedure, proposed in

González et al. (2016), to approximate the predictive
distributions. In particular, for each θ(i), i = 1, . . . ,m

sampled from θ|FMN, one can simulate s process un-

til the lth generation, which started with FN females,
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Table 11 RMSE for the estimates of α, β, mR and mr given by the Tolerance Rejection ABC Algorithm when the sample
FM15 in Table 10 is observed.

α β mR mr

Considering all simulated paths 0.0096 120.72 0.0858 0.0448
Considering only simulated paths where βsim > 0 0.0097 142.18 0.0890 0.0432

Table 12 Point estimates, with 95% HPD sets, for the parameters α, β, mR and mr, given the sample FM15 in Table 2
with (MR

14,M
r
14) = (754, 24687) and (MR

15,M
R→r
15 ,Mr→r

15 ) = (1043, 6, 45844), in the case mr ≥ (1 − β)mR, where (α, β,mR,mr) =
(0.46, 0.005, 3.2, 4).

α|FM15 β|FM15 mR|FM15 mr|FM15

Base distribution Mean 95% HPD Mean 95% HPD Mean 95% HPD Mean 95% HPD
Poisson 0.443 0.289 0.602 0.020 0.001 0.050 3.520 2.676 4.574 4.578 3.434 6.159

Negative binomial
k = 1 0.449 0.281 0.628 0.022 0.001 0.056 3.622 2.539 4.970 4.716 3.467 6.270
k = 2 0.436 0.278 0.615 0.021 0.001 0.056 3.608 2.589 4.779 4.703 3.491 6.266
k = 5 0.445 0.287 0.615 0.020 0.001 0.051 3.563 2.689 4.686 4.620 3.492 6.110
k = 10 0.445 0.292 0.610 0.020 0.001 0.048 3.550 2.657 4.674 4.584 3.462 6.019

Table 13 Point estimates, with 95% HPD sets, for the parameters α, β, mR and mr, given the sample FM15 in Table 5, in
the case mr < (1− β)mR, where (α, β,mR,mr) = (0.45, 0.01, 3.5, 2.6).

α|FM15 β|FM15 mR|FM15 mr|FM15

Base distribution Mean 95% HPD Mean 95% HPD Mean 95% HPD Mean 95% HPD
Poisson 0.478 0.358 0.606 0.019 0.003 0.037 3.721 3.145 4.377 2.238 1.078 3.348

Negative binomial
k = 1 0.477 0.341 0.615 0.020 0.002 0.041 3.766 3.075 4.596 2.231 0.800 3.590
k = 2 0.472 0.346 0.603 0.019 0.002 0.039 3.733 3.092 4.522 2.238 0.939 3.458
k = 5 0.479 0.353 0.605 0.019 0.002 0.037 3.706 3.121 4.416 2.232 0.999 3.392
k = 10 0.474 0.351 0.603 0.019 0.002 0.036 3.725 3.113 4.440 2.224 1.077 3.273

MR
N R-males and Mr

N r-males, obtaining values to ap-

proximate the predictive posterior distributions (FN+l,

MR
N+l, M

R→r
N+l , M

r→r
N+l)|FMN and (ZR

N+l, Z
r
N+l)|FMN by

Gaussian kernel estimators.

To illustrate this procedure, we consider the exam-

ple given en subsection 6.1.2 considering the observed

sample FM15 given in Table 5,m = 1000, s = 2000 and

l = 1. Concretely, we simulate a generation of 2000 pro-
cesses started with (F15,M

R
15,M

r
15) = (5437, 6351, 258),

for each parameter θ(i), i = 1, . . . , 1000.

Figure 11 shows the approximated predictive poste-

rior distributions for F16, M
R
16, M

R→r
16 and Mr→r

16 , given
FM15 in Table 5. Notice that these estimates are in

accordance with the relation between the parameters

and with the observed sample, where the R-allele is the

dominant one.

Remark 4 The software environment for statistical

computing and graphics R (“GNU S”, see R Develop-

ment Core Team (2011)) has been used to perform the
ABC methodology and the simulation study. To calcu-

late the kernel density estimation the GenKern package

(see Lucy and Aykroyd (2010)) and sm package (see

Bowman and Azzalini (2014)) have been used. To im-

plement the Bayesian t-test, the BayesFactor and BEST

packages (see Morey and Rouder (2015) and Kruschke

and Meredith (2017), respectively) have been applied.

9 Concluding Remarks

The aim of this work has been to develop Bayesian in-

ference theory for a Y-linked two-sex branching process

with blind choice which is useful to model the evolu-
tion of the number of carriers of two alleles (named as

R and r) of a Y-linked gene considering the possibility

of mutations from R−allele to the r−allele.

We have focussed mainly on approximating the pos-

terior distributions of the main parameters of such mo-
del considering for that, at the beginning, a realistic

sampling scheme where the observation of the total

number of females and males in each generation is as-

sumed as well as the observation of the total number
of each type of males (males with R−allele and males

with r−allele) in the last generation. Then, we have

described the development of a method based on the
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Fig. 11 Approximate predictive posterior densities for F16, MR
16, M

R→r
16 and Mr→r

16 , respectively, given FM15 in Table 5.

Approximate Bayesian Computation (ABC) methodol-

ogy (Tolerance Rejection-ABC Algorithm) to approxi-
mate the posterior distributions of the model parame-

ters based on such sample scheme.

We have shown throughout a simulated example

that the methodology presents difficulties to estimate
the posterior distribution of the probability of muta-

tion, β, due to the fact that with the observed sample

it is not possible to know how many of the observed

r−alleles stem from mutations. For that reason, we con-

sider another sampling scheme where also is observed,
in the last generation, the total number of r−males

stemming from R−fathers as well as the total number

of each type of males in the penultimate generation.

We have illustrated how the Tolerance Rejection-
ABC Algorithm works based on this sampling scheme

and considering different situations which can be ob-

served in the sample in the case of coexistence of both

alleles. In this sense, we have considered special sit-
uations which can be observed in the last generation

of the sample: when there are the two types of males

(i.e. MR→r
N > 0 and Mr→r

N > 0), when there are not

r−males stemming from r−fathers (i.e. Mr→r
N = 0) and

when there are not r−males stemming from R−fathers
(i.e. MR→r

N = 0). In all cases, we have obtained accurate

approximations to the posterior densities of all param-

eters with the 95% HPD sets containing the true values

of the parameters.

The case where Mr→r
N = 0 is the special interest

because it is no possible to know whether the mean

number of individuals stemming from r−couples, mr,

is equal to 0 or strictly positive. Analogously, the case

where MR→r
N = 0 is interesting because it is no possible

to know whether the probability of mutation is equal

to 0 or strictly positive. In both cases, after applying

the ABC methodology, we have proposed a hypothesis

test to decide the more plausible option (see (4) and
(5)). In the two considered examples, the Bayes factor

has lead us to conclude that the true situation was the

supported one by the observed sample.

Notice that we have taken 15 generations in the sam-

ple schemes of all simulated examples considered in the
paper. We considere that this is a balanced number in

the sense that it is big enough to observe whether one of

the alleles is the dominant and also it is a feasible num-

ber to be observed in many animal populations with

sex reproduction. Moreover, in the examples, we have
covered all possible situations between the parameters

in the coexistence set taking into account the different

magnitudes of the rates of growth.

We have also studied the robustness of the method-

ology by mean of a general simulated experiment where
we have applied the methodology for different base dis-

tributions concluding that this is a robust methodology

against the probability distribution used to simulate the

processes.

Finally, we have been able to predict the future pop-

ulation size approximating the predictive distributions
of the random variables related to the total number of

females and the total number of each type of males in

the following generation to the last one observed.

Note that the Approximate Bayesian Computation

is a proved statistical tool very useful for inference in

parameters of complex models in population genetics
as is our case. It is easy and fast to simulate from our

model, and therefore, in this case has been more con-

venient that the Gibbs sampler.
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