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Motivated by a longitudinal oral health study, the Signal-Tandmobiel R© study, a Bayesian appro-
ach has been developed to model misclassified ordinal response data. Two regression models have
been considered to incorporate misclassification in the categorical response. Specifically, probit and
logit models have been developed. The computational difficulties have been avoided by using data
augmentation. This idea is exploited to derive efficient Markov chain Monte Carlo methods. Although
the method is proposed for ordered categories, it can also be implemented for unordered ones in a
simple way. The model performance is shown through a simulation-based example, and the analysis
of the motivating study.

Keywords: Bayesian analysis; Data augmentation; Markov chain Monte Carlo methods;
Misclassification; Ordinal regression model

Classification codes: 62F15; 62J99; 62P10

1. Introduction

Dental caries is one of the most prevalent chronic diseases worldwide, affecting indivi-
duals of all ages. Many epidemiological surveys and clinical studies are carried out to
obtain a further understanding of this disease. However, the process of detecting caries
experience (CE) is not obvious. CE scoring may not perfectly reflect the tooth’s true con-
dition, and therefore, the presence of CE can be misdiagnosed, leading to misclassified
outcomes. In order to standardize data collection techniques in epidemiological surveys
and clinical trials, CE assessment guidelines have been developed by the International
Caries Detection and Assessment System ([14]). These guidelines highlight the need for
training the examiners and measuring the reliability of the obtained scores. However,
despite these criteria, the process of CE detection is still subject to misclassification.

In situations where misclassification may happen, additional parameters are necessary
to correct the bias yielded by using error-prone data. If misclassification in a data-
generating process is not properly modeled, the information may be perceived as being
more accurate than it actually is, leading, in many cases, to a non-optimal decision-
making. Therefore, correction for misclassification is needed to obtain unbiased estimates
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for the regression coefficients. Statistical models addressing misclassification should be
available in these contexts.

Several models to address misclassification on binary regression have been proposed
in the statistical literature, see, e.g., [26], [23], [19], [22], [18], and [21]. [4, 5, 13] pre-
sented reviews on the effects of misclassification on model estimates. However, there are
few models that consider measurement error for polychotomous responses. Computati-
ons in multidimensional settings are more difficult, and this case is not an exception.
[2] proposed a class of models to analyze repeated monotonic ordinal responses with di-
agnostic misclassification. They separately modeled the underlying monotonic response
and the misclassification process, by developing an EM algorithm for maximum likeli-
hood estimation that incorporates covariates and randomly missing data. [20] presented
a Bayesian approach for correcting interobserver measurement error in an ordinal lo-
gistic regression model taking into account the variability of the estimated correction
terms. [28] considered a multivariate probit model for correlated binary responses. Some
of the responses were subject to classification errors and hence they were not directly
observable. Besides, measurements on some of the predictors were not available, instead
measurements on their surrogate were available. However, the conditional distribution of
the unobservable predictors given the surrogate was completely specified. The authors
proposed models based on the likelihood approach that takes into account one or both
of these sources of errors. [25] developed a class of parametric models that generalizes
the multivariate model and the errors-in-variables model to analyze ordinal data. They
assumed a general model structure to accommodate the information that is obtained via
surrogate variables. The authors developed a hybrid Gibbs sampler to estimate the model
parameters and applied the parameter expansion technique to the correlation structure
of the multivariate probit models to obtain a rapidly converging algorithm. Recently, [27]
developed an ordered probit model that corrects for the classification errors in ordinal
responses and/or measurement error in covariates by using maximum likelihood.

Motivated by a longitudinal oral health study, in this paper, the Signal-Tandmobiel R©

study (ST), a Bayesian approach is proposed to address misclassified ordinal response
data. A regression model is developed to incorporate misclassification in the categorical
response. A data augmentation framework is proposed to derive Markov chain Monte
Carlo (MCMC) algorithms to polychotomous response data that are subject to misclas-
sification. Although only the ordered case is explored, the approach can be adapted for
unordered categories. This approach generalizes the binary probit regression model ad-
dressing misclassification proposed by [21] and the data augmentation scheme for ordinal
regression models proposed by [1] and [9]. The model performance is illustrated with a
simulated-based example, and the analysis of the motivating ST data is presented.

The outline of the paper is as follows. The ST study is introduced in Section 2, illus-
trating the need of addressing misclassification. The way misclassification is addressed
in polychotomous response data models is presented in Section 3. In Section 4, the prior
distributions are described and the posterior distributions are explored. Section 5 shows
the model performance for a simulation-based example, whereas the analysis of the ST
data is presented in Section 6. Finally, Section 7 presents the conclusion and some future
research lines. The paper is completed with Appendix A showing details of the algo-
rithms of the ordinal response data model considering misclassification by using probit
and logit link functions.
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2. The Signal-Tandmobiel R© study

The Signal-Tandmobiel R© study is a longitudinal prospective oral health intervention
project conducted in Flanders (North of Belgium), between 1996 and 2001. For this
project, 4468 children (2315 boys and 2153 girls) were examined on a yearly basis during
their primary school time (between 7 and 12 years of age) by one of sixteen trained
dentists (examiners) based on visual and tactile observations. The clinical examinations
took place in a mobile dental clinic, with a standard chair and artificial dental light. No
radiographs were taken. Data on oral hygiene and dietary habits were obtained through
structured questionnaires completed by the parents. For a more detailed description of
the study design and research methods, see [32].

The status of surfaces of the teeth were recorded using various modalities. In this work,
two ordinal outcomes at both mouth and tooth levels have been used, which have been
generated from these original records. Specifically, the ordinal outcome at mouth level is
based on the dmft index, which is a count that measures CE in deciduous teeth and it
is a sum of the number of decayed, missing due to caries and filled teeth, ranging from
0 (no caries experience) to 20 (all teeth affected). Then, a percentage is obtained from
the dmft index divided by the total teeth in the mouth, and the ordinal outcome at
mouth is defined as the following: 1=“0%− 1%”, 2=“> 1%− 10%”, 3=“> 10%− 50%”,
and 4=“> 50%− 100%”. The ordinal outcome at tooth level denotes the number of CE
surfaces for a specific tooth. The number of surfaces is 4 for incisors and canines, while it
is 5 for pre-molars and molars. Consequently, on surface level the response is maximally
4 or 5 depending on the tooth. Therefore, this ordinal outcome at tooth level has four
ordinal categories.

The statistical findings were applied to the scoring of the four permanent first molars,
i.e., teeth 16 and 26 on the maxilla (upper quadrants), and teeth 36 and 46 on the man-
dible (lower quadrants). The numbering of teeth follows the notation of the Federation
Dentaire Internationale, which indicates the position of the tooth in the mouth. Diagno-
sing CE is difficult for a variety of reasons. For instance, composite materials can imitate
the natural enamel so well that it is difficult to spot a restored lesion; or the location
of the cavity, far back in the mouth, hampers the view of the dental examiner. But the
dental examiner could also classify discolorations as CE. Hence, it is likely to happen in
practice that CE is underrated or overrated.

In the ST study, 16 dental examiners were calibrated for scoring CE. The calibration
exercises were performed according to the guidelines of training and calibration published
by the British Association for the Study of Community Dentistry (BASCD, [24]). The
calibration of the dental examiners was performed by comparing their scores on the
tooth surfaces of a group of children to those of a benchmark examiner. Note that there
exists no infallible scorer for CE. The best one can do is to take a very experienced dental
examiner, called benchmark (see [33]), which is assumed to be error-free or is nearly so. In
order to maintain a high level of intra- and inter-examiner reliability, calibration exercises
were carried out twice a year for all examiners involved. During the study period (1996-
2001), three calibration exercises were devoted to the scoring of CE (1996, 1998, 2000),
involving 92, 32 and 224 children, respectively. A contingency table of dental examiners
and the benchmark examiner was determined, yielding a table with misclassified scores.
Data of the three calibration exercises were combined into one validation dataset, and
also examiners’ data were combined into one. All examiners were lumped together, but
the approach can be generalized to take into account multiple examiners. The results
suggested that examiners overscore or underscore the true CE status.

In the main dataset the dental examiners scored the children, but their scores are
likely to be prone to error. Ignoring in the statistical analysis that the levels of CE lesion

3



severity are prone to misclassification might lead to wrong estimates, and so, to wrong
conclusions. Bayesian ordinal regression models considering misclassification can help to
provide better predictions than standard models.

3. Addressing misclassification in polychotomous response data models

Suppose that n independent random variables Y1, . . . , Yn are observed, where Yi ta-
kes one of J categories, i = 1, . . . , n. Suppose that Y1, . . . , Yn are prone to error. Let
θis = p(Yi = s|xi) denote the probability that the i-th observation with covariate pat-
tern xi is classified in the s-th category (it is possibly misclassified), s = 1, . . . , J . The
parameters θis are related to a set of covariates xi through a regression model that
considers misclassification. They are defined as

θis = p(Yi = s|xi) =

J∑
r=1

p(Yi = s|vi = r)p(vi = r|xi) =

J∑
r=1

λsrpir,

where λsr = p(Yi = s|vi = r) is the probability that an observation yi is classified in the
s-th category when the true category vi is the r-th one, and pir = p(vi = r|xi) denotes
the probability that the true category for an observation with covariate pattern xi is the
r-th.

Note that v = (v1, . . . , vn), is an unknown random vector of the true classifications, and
vi has a categorical distribution vi ∼ Cat(pi1, . . . , piJ), with the vector of probabilities

(pi1, . . . , piJ), and
∑J

r=1 pir = 1, where pir depends on g−1(x′iβ), β is the k × 1 vector
of unknown regression parameters, and g is the link function that usually depends on
a cumulative distribution function (cdf). The most common link functions are the logit
and probit links, coming from the cdf of a logistic and a normal distribution, respectively
(see, for example, [15] and [8]). These two link functions will be considered to develop
the proposed regression models.

The likelihood function for a model considering misclassification can be expressed as

L(p,λ|y,x) ∝
n∏
i=1

(
J∑
s=1

J∑
r=1

λsrpirI[yi = s]

)
,

where I[·] denotes the indicator function, i.e., I[A] = 1 if A is true, and I[A] = 0
otherwise, and λ is a matrix

λ =


λ1

λ2
...
λJ


′

=


λ11 λ12 · · · λ1J

λ21 λ22 · · · λ2J
...

...
. . .

...
λJ1 λJ2 · · · λJJ

 ,

where
∑J

s=1 λsr = 1, and the elements of the diagonal, λrr for r = 1, . . . , J , denote the
probabilities of correct classification.

Latent variables related with the misclassification are introduced to simplify the gene-
ration process. Binary latent variables cisr are defined, r, s = 1, . . . , J , where r represents
the index for the true value and s represents the index for the observed value. When the
latent variable takes value one, it denotes the group where the ith observation has been
assigned: the true category is r and the observed category is s, i.e. cisr = 1 if vi = r and
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yi = s. Note that cis+ =
∑J

r=1 c
i
sr = 1 when the observed category is s, i.e. yi = s, and

ci+r =
∑J

s=1 c
i
sr = 1 means that the true category is r, i.e. vi = r, other sums are zero.

For each i = 1, . . . , n, a latent matrix ci is defined

ci =


ci11 c

i
12 · · · ci1J

ci21 c
i
22 · · · ci2J

...
...

. . .
...

ciJ1 c
i
J2 · · · ciJJ

 .

Then, an augmented likelihood function is considered

L(p,λ|c,y,x) ∝
n∏
i=1

([
J∏
r=1

J∏
s=1

λc
i
sr
sr

][
J∏
r=1

p
ci+r

ir

][
J∑
s=1

I[yi = s]I[cis+ = 1]

])
.

This data augmentation scheme allows us to derive easy-to-implement Gibbs sampling
algorithms in the context of polychotomous regression models considering misclassifica-
tion.

4. Exploring the posterior distributions in ordered categories

In this section the prior distributions are presented, which together with the specifications
of the previous section allow us to derive MCMC sampling algorithms (see [12]) to sample
from the posterior distributions.

For ordered response categories the ordinal regression model is defined by cutpoints
κ0, κ1, . . . , κJ−1, κJ considering that pir = Ψ (κr − x′iβ) −Ψ (κr−1 − x′iβ), where κ =
(κ1, . . . , κJ−1)′ is the vector of unknown cutpoints, κ0 = −∞, κJ =∞, and Ψ is a cdf (see
[1]). Note that if a constant term is included in xi and β includes an intercept, then there
are only J−2 unknown cutpoints κ2, . . . , κJ−1, with κ1 = 0 (see [15]), κ = (κ1, . . . , κJ−1).
This option is often less complex for numerical stability in sampling (see [7]).

4.1 Prior distributions

There is some literature addressing informative prior elicitation for generalized linear
models. [3] proposed the conditional means prior approach to introduce a prior dis-
tribution on the regression parameters, and [6] proposed power prior distributions for
the regression parameters based on the notion of availability of historical data. All of
them assume models without errors. The literature about informative prior elicitation
to binomial regression models with misclassification is mainly focused on the regression
parameter vector, see some applications in [19], [22] and [21].

The prior distributions for the regression parameter vector and the cutpoints are
flat. For the misclassification parameters, since λsr ∈ (0, 1) and

∑J
s=1 λsr = 1,

for r, s = 1, . . . , J , the natural prior distributions for λr are Dirichlet, i.e. λr ∼
Dirichlet(a1r, . . . , aJr), where asr > 0, whose probability density function (pdf) is

π(λr) =
Γ
(∑J

s=1 asr

)
∏J
s=1 Γ(asr)

J∏
s=1

λasr−1
sr ∝

J∏
s=1

λasr−1
sr .

When the response is presented in an ordinal scale, adjacent categories have bigger
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risk to be misclassified, so that the natural constraints are λ1r < · · · < λr−1,r < λrr
and λrr > λr+1,r > · · · > λJr. In case of nominal response data, the categories are
not related, however, a natural constraint is to assume that the correct classification
probability is greater than the misclassification probabilities, i.e., λrr > λsr. Alternative
sets of constraints on the parameters are presented by [30]. Besides, some restrictions on
the parameters values such like asr ≤ λsr ≤ dsr, with asr and dsr fixed values, can be
specified by using truncated Dirichlet distributions (see [11]).

4.2 Posterior distributions

The joint posterior distribution of the unobservables β, κ, c, and λ is

π(β,κ, c,λ|y,x) ∝ π(β)π(κ)π(λ)L(β,κ,λ|c,y,x).

In order to derive the Gibbs sampling algorithm, the full conditional distributions must
be obtained. The full conditional distributions for λ and c are easy to obtain. Specifically,
the full conditional distributions for c given β, κ, λ, the data y, and the covariates x is

π(c|β,κ,λ,y,x) ∝
n∏
i=1

([
J∏
r=1

J∏
s=1

λc
i
sr
sr

][
J∏
r=1

p
ci+r

ir

][
J∑
s=1

I[yi = s]I[cis+ = 1]

])
,

where
∑J

r=1

∑J
s=1 c

i
sr = 1, so that for i = 1, . . . , n,

[
(cis1, . . . , c

i
sJ)|β,κ,λ,y,x

]
∼Multinomial

(
1, (πcis1 , . . . , πcisJ )

)
I[yi = s], (1)

and (cij1, . . . , c
i
jJ) = (0, . . . , 0) for j 6= s, where

πcisr =
λsrpir∑J
j=1 λsjpij

I[yi = s].

The full conditional distribution for λ given β, κ, c, the data y, and the covariates x
is

π(λ|β,κ, c,y,x) ∝
J∏
r=1

J∏
s=1

λ
∑n

i=1 c
i
sr+asr−1

sr ,

where
∑J

s=1 λsr = 1, so that for r = 1, . . . , J ,

[λr|β,κ, c,y,x] ∼ Dirichlet

(
n∑
i=1

ci1r + a1r, . . . ,

n∑
i=1

ciJr + aJr

)
. (2)

However, the full conditional distributions π(β|κ, c,λ,y,x) and π(κ|β, c,λ,y,x) do
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not have closed expressions to easily generate from, because these are given by

π(β|κ, c,λ,y,x) ∝ π(β)

n∏
i=1

J∏
r=1

p
ci+r

ir ,

π(κ|β, c,λ,y,x) ∝ π(κ)

n∏
i=1

J∏
r=1

p
ci+r

ir .

Our proposal considers the introduction of latent variables in order to allow other easy-
to-sample steps within this Gibbs sampling. These latent variables are based on the
data augmentation framework of the ordinal regression model proposed by [1] and [9].
Independent latent continuous random variables z1, . . . , zn are assumed, z = (z1, . . . , zn),
whose cdf is given by Ψ, ci+r = 1 if κr−1 < zi < κr, and ci+r = 0 otherwise. The new joint
full conditional posterior distribution of z and κ is the analogous to the one defined in
[9], and it is given by

π(z,κ|β, c,λ,y,x) = π(κ|β, c,λ,y,x)π(z|κ,β, c,λ,y,x),

where

π(κ|β, c,λ,y,x) ∝
J∏
r=1

∏
{i:ci+r=1}

[
Ψ
(
κr − x′iβ

)
−Ψ

(
κr−1 − x′iβ

)]
I [0 ≤ κr] ,

π(z|κ,β, c,λ,y,x) ∝
J∏
r=1

∏
{i:ci+r=1}

(zi − x′iβ)

[Ψ (κr − x′iβ)−Ψ (κr−1 − x′iβ)]
,

where ψ is the pdf of zi and 0 = κ1 < κ2 < · · · < κJ−1. See [9] for more details.
In order to generate from these distributions, Metropolis-Hastings steps are considered.

Then, the conditional posterior distributions of z, β and κ are obtained by using the
multivariate Metropolis-Hastings-within-Gibbs update step algorithm defined by [9] for
ordinal models. Appendix A shows the Metropolis-Hastings steps for probit and logit
models.

5. Simulation-based example

A simulation-based study has been carried out to analyze the model performance of the
proposed approach. In this section, an example is presented to illustrate the advantages
of using this approach.

Different criteria have been considered for model performance. The deviance informa-
tion criterion (DIC) proposed by [29] is evaluated as:

DIC = 2D(η)−D(η),

where D(η) = −2 logL(η) is the deviance of the model, L(η) is the likelihood, D(η) =
E(D(η)|data) is the posterior mean of the deviance, and D(η) is the deviance at the
posterior means of the parameters of interest η = E(η|data). Another criterion is the
total variation distance (TVD) between the true and estimated probabilities. It is defined
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as:

TV D =

n∑
i=1

J∑
r=1

∣∣∣θtrueir − θ̂ir
∣∣∣ ,

and it has been proposed to measure the discrepancy between the true probabilities
(which are known for simulated data) and the estimated ones in simulation-based sce-
narios (see [21]). Finally, the third criterion that will be considered in this section is the
pseudo-predictors method (see [10]). The variables θobsir , where θobsir = 1 if yi = r and
θobsir = 0 otherwise, correspond to the observed probabilities for category r at the ith

observation in contrast to the predicted probabilities θ̂ir. When category r is observed at
the observation i, it is clear that a good model fit leads to a high probability θ̂ir, and to
small probabilities θ̂ij for other categories j 6= r. Large differences should be penalized
more than small differences. Then, the verification score is defined as:

S =
1

n

J∑
r=1

n∑
i=1

(
θobsir − θ̂ir

)2
,

providing an idea of the goodness-of-fit. For all the criteria, models with smaller criteria
values are preferred over models with large values.

Multiple misclassified ordinal response data are generated. The main objective is to
compare the performance of the proposed ordinal regression models addressing misclas-
sification with the standard ordinal regression ones. These simulation-based scenarios
allow to compare the predictive outcomes with the true ones instead of comparing them
with the observed ones (which are subject to misclassification). Also, these scenarios
allow to know which model performs better.

The generating process is as follows. A covariate set is generated by xil ∼ U(0, 1), for
i = 1, . . . , n and l = 2, . . . , k and xi1 = 1, by using several sample sizes n = {300, 500}
and different number of categories and J = {3, 4}. The vectors of regression parameters
are β = (−2, 3, 3)′ (k = 3) and β = (−2, 3, 3, 3)′ (k = 4), and the vectors of cutpoints
are κ = (0, 2)′ and κ = (0, 2, 4)′ (κ0 = −∞ and κJ = ∞). Two link functions are
considered and DΨ denotes the distribution related with the cdf Ψ of the standard normal
distribution, N(0, 1), or with the cdf Ψ of the standard logistic distribution, L(0, 1). The
true ordinal dependent variable v is randomly generated by using the following process:
(i) compute pir = Ψ(κr − x′iβ) − Ψ(κr−1 − x′iβ) for r = 1, . . . , J , (ii) generate vi from
the distribution Categorical(pi1, . . . , piJ). Now, the outcomes are randomly misclassified
according to the following process: (iii) generate ui ∼ U(0, 1), (iv) for vi = r define
yi = 1 if 0 < ui ≤ λ1r, and define yi = s with s = 2, . . . , J if

∑s−1
j=1 λjr < ui ≤∑s

j=1 λjr, where λsr are the elements of the matrix of misclassification probabilities.
For the misclassification probabilities two cases have been considered assuming that the
misclassification is assigned to upper or lower categories. For J = 3 it is

λupper =

0.75 0 0
0.25 0.75 0

0 0.25 1

 or λlower =

1 0.25 0
0 0.75 0.25
0 0 0.75

 ,
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Figure 1. Dataset with ordinal misclassified data. The black lines represent the theoretical probabilities. The first
graph shows the three shaded areas of the stacked bar chart that represent the empirical probabilities. The second

graph shows the misclassified data: ◦ (empty dots) denote the probabilities pir, and • (filled dots) denote the

category of each observation yi.

and for J = 4 it is

λupper =


0.70 0 0 0
0.25 0.70 0 0
0.05 0.25 0.75 0

0 0.05 0.25 1

 or λlower =


1 0.25 0.05 0
0 0.75 0.25 0.05
0 0 0.70 0.25
0 0 0 0.70

 .

Note that adjacent categories are more likely to be misclassified.
Figure 1 shows a randomly chosen data set. In both graphics, the black lines represent

the true probabilities. The first graph shows the three shaded areas of the stacked bar
chart that represent the empirical probabilities. It is evident that there exists misclassi-
fication because the empirical probabilities and the true probabilities are different. The
second graph shows the misclassified data. In this graph, there are data whose highest
probability are, for example, the category 1 (drawn as empty red dots), but these are
classified as category 2 (drawn as filled green dots) or category 3 (drawn as filled blue
dots).

When considering measurement error models, it is usually needed to have validation
data, prior information or impose some assumptions [4]. This allows to identify the
estimates of the misclassification parameters and to achieve convergence of the Markov
chain. In this case, informative prior distributions must be considered. Specifically, initial
information is introduced according to the misclassification proportions that have been
considered for the simulated data, that is, λr ∼ Dirichlet(ar) where ar is the rth column
of the matrix of misclassification probabilities multiplied by 10.

The MCMC algorithms have been implemented in R. The standard ordinal models
that have been used are the probit and logit models defined by [1] and [15], respectively.
A total of 15,000 iterations have been generated for each model. Then, 5,000 iterations
were taken as burn-in and one out of 5 values have been saved (thinning equal to 5).
With these specifications the chains seem to have converged.

In order to avoid that the results depend on a single simulation, the experiment has
been replicated 100 times. The same covariate set, parameters and specifications are
used, but data are generated and randomly misclassified at each time (steps (i)-(iv)).

Tables 1 and 2 show the posterior estimations of the regression parameters and the
three goodness-of-fit criteria. Note that TVD criterion values for the models conside-
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ring misclassification are much smaller than the ones for the standard models. This
is translated into better estimations, i.e., the estimations from the models addressing
misclassification are less biased than the ones from the models that do not consider
misclassification.

Table 1. Simulated data (n = 300, J = 3): Estimated means (SD) for the parameters and the goodness-of-fit

criteria.

Dataset Parameter Upper misclassification Lower misclassification
or Criterion Probit Probit Mis Probit Probit Mis
β1 = −2 -1.172 (0.257) -2.348 (0.529) -1.893 (0.275) -2.111 (0.409)

Probit β2 = 3 2.306 (0.317) 3.303 (0.569) 2.289 (0.350) 3.282 (0.527)
Mis β3 = 3 2.367 (0.334) 3.382 (0.602) 2.306 (0.331) 3.341 (0.674)

κ2 = 2 1.596 (0.126) 2.218 (0.467) 1.573 (0.113) 2.262 (0.410)
DIC 484.908 (20.864) 483.561 (20.878) 502.996 (21.196) 501.767 (20.685)
TVD 85.385 (13.874) 43.366 (26.940) 95.037 (13.418) 45.146 (21.817)
S 292.972 (12.566) 288.893 (16.006) 304.018 (12.872) 293.916 (15.209)

Dataset Parameter Upper misclassification Lower misclassification
or Criterion Logit Logit Mis Logit Logit Mis
β1 = −2 -1.193 (0.365) -2.326 (0.614) -2.112 (0.402) -1.884 (0.666)

Logit β2 = 3 2.599 (0.447) 3.266 (0.686) 2.571 (0.437) 3.207 (0.653)
Mis β3 = 3 2.648 (0.564) 3.356 (0.793) 2.576 (0.528) 3.240 (0.792)

κ2 = 2 1.909 (0.172) 2.315 (0.554) 1.887 (0.190) 2.326 (0.798)
DIC 564.785 (20.120) 562.970 (20.725) 580.099 (18.839) 579.910 (19.116)
TVD 66.441 (15.456) 53.670 (28.542) 72.603 (14.625) 51.520 (30.778)
S 335.006 (12.616) 335.348 (13.599) 344.800 (11.811) 345.228 (11.613)

Table 2. Simulated data (n = 500, J = 4): Estimated means (SD) for the parameters and the goodness-of-fit

criteria.

Dataset Parameter Upper misclassification Lower misclassification
or Criterion Probit Probit Mis Probit Probit Mis
β1 = −2 -0.951 (0.285) -2.280 (0.428) -1.686 (0.331) -1.908 (1.131)

Probit β2 = 3 2.180 (0.338) 3.240 (0.436) 1.972 (0.396) 3.190 (0.564)
Mis β3 = 3 2.186 (0.324) 3.281 (0.507) 2.003 (0.347) 3.256 (0.545)

β4 = 3 2.205 (0.315) 3.312 (0.479) 1.998 (0.329) 3.231 (0.535)
κ2 = 2 1.549 (0.141) 2.215 (0.323) 1.375 (0.109) 2.333 (1.111)
κ3 = 4 3.021 (0.184) 4.306 (0.429) 2.810 (0.187) 4.479 (1.248)
DIC 912.413 (39.208) 903.654 (36.247) 1033.199 (50.375) 1022.597 (46.975)
TVD 176.448 (16.638) 74.358 (39.463) 216.136 (17.570) 82.400 (37.979)
S 527.576 (20.241) 514.938 (21.616) 589.383 (25.009) 550.077 (25.601)

Dataset Parameter Upper misclassification Lower misclassification
or Criterion Logit Logit Mis Logit Logit Mis
β1 = −2 -1.055 (0.367) -2.273 (0.462) -2.034 (0.371) -1.995 (0.858)

Logit β2 = 3 2.602 (0.426) 3.244 (0.559) 2.415 (0.428) 3.219 (0.701)
Mis β3 = 3 2.591 (0.432) 3.218 (0.522) 2.435 (0.439) 3.229 (0.663)

β4 = 3 2.612 (0.464) 3.247 (0.633) 2.446 (0.457) 3.250 (0.833)
κ2 = 2 1.895 (0.179) 2.195 (0.365) 1.730 (0.161) 2.167 (0.745)
κ3 = 4 3.681 (0.229) 4.412 (0.683) 3.554 (0.214) 4.348 (0.757)
DIC 1094.323 (34.386) 1092.900 (33.579) 1190.164 (35.821) 1188.822 (36.688)
TVD 126.221 (20.768) 82.119 (48.678) 153.598 (19.295) 90.235 (44.171)
S 604.093 (17.459) 606.154 (17.154) 654.239 (17.485) 643.964 (21.428)
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In general, the standard deviations for the regression parameters of the misclassification
models are larger than the ones of the standard models (that do not consider misclassifi-
cation), see e.g., [4]. This happens because there are additional parameters and, therefore,
the models addressing misclassifications become more complex to estimate. In spite of
their complexity, they perform better. Note that in some cases of this simulation-based
example, biases around 10-15% have been obtained for the misclassification models (less
than the ones obtained for those models that do not consider misclassification), but it
should be noted that the considered misclassification parameters ranged from 0.05 to
0.25, which included a large amount of uncertainty to be addressed.

Tables 3 and 4 show the posterior estimations for the misclassification parameters.
The correct information provided for the misclassification parameters allows the propo-
sed approaches to properly recover the misclassification parameters in the considered
scenarios.

Table 3. Simulated data (n = 300, J = 3): Estimated means (SD) for the misclassification parameters.

Parameter Upper misclassification Lower misclassification
Probit Mis Logit Mis Probit Mis Logit Mis

λ11 0.7356 (0.0585) 0.7394 (0.0579) 0.9992 (0.0011) 1.0000 (0.0000)
λ21 0.2639 (0.0586) 0.2598 (0.0579) 0.0006 (0.0011) 0.0000 (0.0000)
λ31 0.0005 (0.0008) 0.0008 (0.0011) 0.0002 (0.0004) 0.0000 (0.0000)
λ12 0.0011 (0.0037) 0.0019 (0.0074) 0.2647 (0.0597) 0.2891 (0.0670)
λ22 0.7342 (0.0579) 0.7130 (0.0491) 0.7344 (0.0600) 0.7109 (0.0670)
λ32 0.2647 (0.0588) 0.2850 (0.0498) 0.0009 (0.0026) 0.0000 (0.0000)
λ13 0.0003 (0.0011) 0.0010 (0.0044) 0.0006 (0.0014) 0.0000 (0.0001)
λ23 0.0005 (0.0005) 0.0004 (0.0003) 0.2506 (0.0565) 0.2551 (0.0541)
λ33 0.9992 (0.0012) 0.9986 (0.0043) 0.7487 (0.0565) 0.7449 (0.0541)

Table 4. Simulated data (n = 500, J = 4): Estimated means (SD) for the misclassification parameters.

Parameter Upper misclassification Lower misclassification
Probit Mis Logit Mis Probit Mis Logit Mis

λ11 0.6972 (0.0571) 0.6983 (0.0587) 0.9998 (0.0005) 0.9999 (0.0002)
λ21 0.2575 (0.0599) 0.2558 (0.0596) 0.0000 (0.0000) 0.0000 (0.0001)
λ31 0.0452 (0.0269) 0.0459 (0.0167) 0.0001 (0.0005) 0.0001 (0.0002)
λ41 0.0001 (0.0002) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0001)
λ12 0.0000 (0.0001) 0.0000 (0.0001) 0.2552 (0.0703) 0.2692 (0.0582)
λ22 0.6784 (0.0702) 0.6760 (0.0582) 0.7448 (0.0704) 0.7307 (0.0582)
λ32 0.2672 (0.0624) 0.2690 (0.0538) 0.0001 (0.0002) 0.0001 (0.0002)
λ42 0.0544 (0.0304) 0.0550 (0.0302) 0.0000 (0.0000) 0.0000 (0.0000)
λ13 0.0000 (0.0000) 0.0000 (0.0000) 0.0493 (0.0264) 0.0519 (0.0277)
λ23 0.0001 (0.0002) 0.0000 (0.0000) 0.2593 (0.0569) 0.2728 (0.0548)
λ33 0.7403 (0.0564) 0.7216 (0.0622) 0.6914 (0.0686) 0.6752 (0.0564)
λ43 0.2596 (0.0564) 0.2784 (0.0622) 0.0000 (0.0001) 0.0001 (0.0006)
λ14 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0002) 0.0002 (0.0017)
λ24 0.0000 (0.0000) 0.0000 (0.0000) 0.0462 (0.0260) 0.0484 (0.0246)
λ34 0.0001 (0.0004) 0.0000 (0.0001) 0.2548 (0.0649) 0.2622 (0.0631)
λ44 0.9999 (0.0004) 1.0000 (0.0001) 0.6990 (0.0679) 0.6892 (0.0646)

The obtained results show that the proposed models considering misclassification per-
form better than the models that do not consider it in these simulated scenarios. Next,
the proposed approach will be applied to data coming from a real application.
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6. The analysis of the Signal-Tandmobiel R© data

The proposed methodology uses the misclassification information provided by the vali-
dation dataset and relates it to the main dataset from the study to arrive at a posterior
predictive distribution that is used to estimate probabilities of the levels of CE degree.
The interest of the present analysis is to evaluate the misclassification probabilities of
the levels of CE degree, and to address the influence of oral hygiene and geographical
information on the levels of CE degree.

The ordinal outcome y is the level of CE degree. The covariates considered in the model
were the following: gender, age, frequency of brushing, plaque index proscimal surfaces,
plaque index occlusal surfaces, and geographical location (represented by the standardi-
zed (x, y) coordinate of the municipality of the school to which the child belongs).

In order to illustrate de applicability of the proposed methods, three different mo-
dels for both probit and logit link functions have been considered for the main dataset.
The first models are the ordinal probit and logit regression ones (Probit-Standard and
Logistic-Standard), i.e. the standard models without considering misclassification. In the
second models (Probit-Validation and Logistic-Validation), the validation dataset has
been used to estimate the misclassification probabilities λ, and afterwards, the regression
parameters β and the cutpoints κ of the ordinal regression models have been estimated
for the main dataset. The regression parameters and cutpoints are estimated by using
the full conditional distributions of the algorithm proposed in Section 4.2. Specifically,
the algorithms consist of choosing initial values z(0), β(0), κ(0) and c(0), and iteratively
sampling z(t), β(t), κ(t) and c(t) from the following full conditional distributions. For the
probit link they are sampled from the algorithm defined in Appendix A.1, whereas for the
logit link, they are sampled from the algorithm defined in Appendix A.2. Note that, in
these cases, the matrix of misclassification probabilities remain fixed as the estimations
obtained from the validation dataset. Finally, the third models (Probit-Misclassification
and Logistic-Misclassification) are the algorithms proposed in Appendices A.1 and A.2.
In these cases, the validation dataset has been used to elicit the prior distribution for the
misclassification parameters λ, and then the algorithms are applied to the main dataset.

Note that the validation dataset has been used in two different ways. In the second
models, the validation dataset is used to compute the misclassification probabilities. This
is common when there exists a validation dataset, because the scores from the exami-
ners and from the benchmark are available. Therefore, the misclassification probabilities
can be estimated from the validation dataset and the regression parameters can be es-
timated by using a simplified version of the MCMC method that uses the estimated
misclassification probabilities as fixed values. In the third models, the validation data-
set has been used to construct a prior distribution for the misclassification parameters.
However, historical data and/or experts’ information can be also considered to elicit the
prior distribution for the misclassification parameters in many contexts.

The way how the validation dataset has been used is as follows. Let yexa and yben be the
scores of the examiners and the benchmark in the validation dataset, respectively. The
hierarchical model yexa|yben = r ∼ Multinomial(1,λr), λr ∼ Dirichlet(ar), and ars ∼
Gamma(0.01, 0.01), for r, s = 1, . . . , 4, allows to estimate the posterior distributions of the
misclassification probabilities in the validation dataset. Then, the posterior estimations
(mean and standard deviation) are given by

λ̂ =


0.880 (0.019) 0.198 (0.039) 0.060 (0.038) 0
0.120 (0.019) 0.702 (0.045) 0.249 (0.074) 0

0 0.099 (0.029) 0.691 (0.074) 0
0 0 0 1

 , (3)
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and the marginal posterior distributions are

λ1 ∼ Dirichlet(25.198, 3.584, 0, 0), (4)

λ2 ∼ Dirichlet(6.846, 23.868, 3.511, 0),

λ3 ∼ Dirichlet(2.187, 8.954, 25.129, 0),

λ4 ∼ Dirichlet(0, 0, 0, 1).

From the estimation of the misclassification probabilities it is evident that adjacent
categories are related, in the sense that the probability of misclassification in an adjacent
category is higher than the one of misclassification in a non adjacent category. The mis-
classification probabilities obtained from the validation dataset can be used to correct for
misclassification. For the Probit-Validation and Logistic-Validation models, the estima-
ted misclassification probabilities λ̂ are given in (3). For the Probit-Misclassification and
Logistic-Misclassification models, the distributions (4) are used as the prior distributions
of λ.

The estimated parameters obtained with the probit and logit models are summarized
in Table 5. The posterior means, standard deviations (SD), and the 95% highest posterior
density (HPD) intervals are represented.

Table 5. Summary of the posterior estimates for the parameters of the ST data by using several methods.

Parameter Mean (SD)
95% HDP
interval

Mean (SD)
95% HDP
interval

Intercept
Gender (girl)
Age
Brushing
Proscimal
Occlusal
x-coordinate
y-coordinate
κ2
κ3

Probit-Standard
-2.758 (0.737) (-4.209,-1.290)
0.201 (0.045) (0.111,0.293)
0.219 (0.062) (-0.101,0.341)

-0.093 (0.016) (-0.126,-0.062)
0.276 (0.047) (0.189,0.370)
0.364 (0.112) (0.141,0.587)
0.002 (0.001) (0.001,0.003)

-0.001 (0.001) (-0.003,0.002)
0.683 (0.024) (0.638,0.732)
2.061 (0.072) (1.930,2.214)

Logistic-Standard
-4.501 (1.380) (-7.074,-1.695)
0.316 (0.077) (0.161,0.466)
0.369 (0.111) (0.134,0.565)

-0.151 (0.028) (-0.203,-0.092)
0.469 (0.077) (0.314,0.621)
0.585 (0.204) (0.225,1.012)
0.003 (0.001) (0.002,0.005)

-0.001 (0.002) (-0.005,0.003)
1.149 (0.043) (1.065,1.226)
4.046 (0.173) (3.720,4.383)

Intercept
Gender (girl)
Age
Brushing
Proscimal
Occlusal
x-coordinate
y-coordinate
κ2
κ3

Probit-Validation
-3.507 (0.902) (-5.299,-1.713)
0.260 (0.057) (0.148,0.371)
0.268 (0.076) (0.118,0.417)

-0.115 (0.020) (-0.154,-0.075)
0.322 (0.057) (0.207,0.427)
0.468 (0.134) (0.202,0.725)
0.003 (0.001) (0.002,0.004)

-0.001 (0.002) (-0.003,0.003)
0.375 (0.045) (0.286,0.467)
1.997 (0.073) (1.857,2.142)

Logistic-Validation
-5.873 (1.536) (-8.923,-2.922)
0.438 (0.099) (0.238,0.631)
0.458 (0.130) (0.216,0.720)

-0.196 (0.034) (-0.262,-0.128)
0.568 (0.101) (0.378,0.769)
0.794 (0.226) (0.351,1.231)
0.005 (0.001) (0.003,0.006)

-0.001 (0.003) (-0.006,0.004)
0.624 (0.076) (0.476,0.771)
3.949 (0.181) (3.603,4.328)

Intercept
Gender (girl)
Age
Brushing
Proscimal
Occlusal
x-coordinate
y-coordinate
κ2
κ3

Probit-Misclassification
-3.458 (0.969) (-5.431,-1.605)
0.259 (0.058) (0.150,0.374)
0.269 (0.079) (0.116,0.431)

-0.114 (0.020) (-0.153,-0.075)
0.327 (0.059) (0.211,0.444)
0.460 (0.139) (0.186,0.731)
0.003 (0.001) (0.001,0.004)

-0.001 (0.002) (-0.003,0.003)
0.384 (0.197) (0.033,0.807)
2.029 (0.136) (1.761,2.298)

Logistic-Misclassification
-6.257 (1.730) (-9.610,-2.919)
0.464 (0.099) (0.278,0.664)
0.487 (0.141) (0.213,0.757)

-0.201 (0.036) (-0.270,-0.130)
0.566 (0.108) (0.359,0.776)
0.849 (0.244) (0.366,1.326)
0.005 (0.001) (0.003,0.007)

-0.001 (0.003) (-0.007,0.004)
0.470 (0.284) (0.038,1.067)
3.880 (0.227) (3.434,4.341)
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The standard deviations estimated with the models considering misclassification are
larger than those obtained with the standard models due to the inclusion of more pa-
rameters. Therefore, the 95% credible intervals for the models considering misclassi-
fication are wider than the ones that do not consider it. Also, as expected, the es-
timations from misclassification-based models (Logistic-Misclassification and Probit-
Misclassification) are closer to the ones from the validation-based models (Logistic-
Validation and Probit-Validation) than they are to the standard models (Logistic-
Standard and Probit-Standard). Once the validation dataset has shown that the study
has misclassification errors, the standard models should not be used. The purpose of
including the parameter estimation of the standard models in the experimental results
is purely illustrative, i.e., to show that the regression parameters go far from the ones
corrected by misclassification.

Some model selection criteria have been used in real data application for misclassifica-
tion (see, e.g., [16], [31] and [34]). DIC and S criteria have been used in this application
for the four models that consider misclassifications. TVD criterion cannot be applied in
this context, since the real misclassification probabilities are not known as it happened
in the simulation-based example. Standard models have been discarded from this com-
parison, since misclassifications have been proved to exist and no correction has been
performed with those models.

Table 6 presents the values of DIC and S criteria for these models considering misclas-
sification. When comparing logit and probit models, DICs show that models based on
logit link provide similar results than the probit-based models, whereas the logit-based
models are preferred based on the S criteria.

Table 6. DIC and S values for the estimated models considering misclassification.

Probit-Validation Logistic-Validation
DIC 5473.849 5474.976
S 3004.884 2997.624

Probit-Misclassification Logistic-Misclassification
DIC 5474.721 5475.128
S 3032.063 2969.581

Finally, the practical conclusions obtained from regression parameters is presented.
Positive regression coefficients reflect higher probabilities of CE lesion severity compared
to the reference level for categorical covariates. For the variable gender, the category of
boys was taken as the reference. The girls have higher probability of having CE than the
boys. The reason is that the permanent teeth emerge earlier with girls than with boys,
and hence teeth of girls are longer at risk at the same age as those of boys. The probability
of CE lesion severity increases as the age of children increases, which is a biologically
expected result due to the fact that CE is a progressive illness. The regression coefficient
of brushing frequency is negative, indicating that the brushing frequency is a protection
factor against CE. The regression coefficients of plaque index on both proximal and
occlusal surfaces are positive, indicating that high values of the corresponding covariates
are associated with high probabilities of having high levels of CE lesion. Moreover, there
was a significant effect of the x-coordinate, but not of the y-coordinate of the school
geographical location. These results indicating which covariables are protective or risk
factors matches with the one obtained by [32] and [20] for different models with the same
data.
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7. Conclusion

A Bayesian approach to polychotomous response data that are subject to misclassification
has been proposed and discussed in this paper. The idea of using a data augmentation
framework has been exploited to derive MCMC algorithms. This model has been explo-
red for ordered categories in the response variable by using both probit and logit link
functions. Besides, the proposed approach can be extended using other link functions.

The applicability of the proposed approach has been illustrated through a simulated
example that shows their good performance when compared with models that do not
consider misclassification. A longitudinal oral health study conducted in Flanders (Bel-
gium), the Signal-Tandmobiel R© study, has been analyzed. The main advantage of the
proposed model is provided better estimations than the standard ones. Through the si-
mulated example we have shown that, when data are misclassified, the estimates from
models that do not consider misclassification are biased, and that the estimates from
models considering misclassification are closer to the real ones. Moreover, by using la-
tent variables and considering prior information it is possible to update misclassification
probabilities. Therefore, when ordinal data are subjected to misclassification, it is highly
recommended to consider model that take into account this fact.

Although the approach has been explored in the case of ordered categories, it also can
be adapted for unordered categories as follows. The data augmentation scheme provi-
ded in Section 3 is firstly considered. The latent variables c and the misclassification
probabilities λ are introduced in the nominal response data model. The Gibbs sampling
described in Section 4.2 is used to sample c and λ from the full conditional posterior
distributions (1) and (2), respectively. Then, the latent vector v is obtained from c, which
correspond to the true classifications, where vi = r if ci+r = 1. Finally, the outcomes Y
are replaced by the latent vector v to obtain the probabilities p. The regression para-
meters are estimated by using other algorithms (see, for example, [17]). Moreover, the
approach can also be extended to other link functions. The potential applicability of this
approach to many fields of knowledge makes this proposal appealing.
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and Fundación Sof́ıa Kovalévskaia.

15



References

[1] J. Albert and S. Chib, Bayesian analysis of binary and polychotomous response data, Journal of the
American Statistical Association 88 (1993), pp. 669–679.

[2] P.S. Albert, S.A. Hunsberger, and F.M. Biro, Modeling repeated measures with monotonic ordinal
responses and misclassification, with applications to studying maturation, Journal of the American
Statistical Association 92 (1997), pp. 1304–1311.

[3] E.J. Bedrick, R. Christensen, and W. Johnson, A new perspective on priors for generalized linear
models, Journal of the American Statistical Association 91 (1996), pp. 1450–1460.

[4] J.P. Buonaccorsi, Measurement Error, Chapman & Hall/CRC, London, 2010.
[5] R.J. Carroll, D. Ruppert, L.A. Stefanski, and C.M. Crainiceanu, Measurement Error in Nonlinear

Models: A Modern Perspective, 2nd ed., Chapman & Hall/CRC, Boca Raton, Florida, 2006.
[6] M.H. Chen, J.G. Ibrahim, and Q.M. Shao, Power prior distributions for generalized linear models,

Journal of Statistical Planning and Inference 84 (2000), pp. 121–137.
[7] P. Congdon, Bayesian Models for Categorical Data, John Wiley & Sons, Chichester, 2005.
[8] P. Congdon, Bayesian Statistical Modelling, 2nd ed., John Wiley & Sons, Chichester, 2006.
[9] M.K. Cowles, Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized

linear models, Statistics and Computing 6 (1996), pp. 101–111.
[10] C. Czado, A. Heyn, and G. Müller, Modeling individual migraine severity with autoregressive ordered

probit models, Statistical Methods and Applications 20 (2011), pp. 101–121.
[11] K.T. Fang, Z. Geng, and G.L. Tian, Statistical inference for truncated Dirichlet distribution and its

application in misclassification, Biometrical Journal 42 (2000), pp. 1053–1068.
[12] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, Markov Chain Monte Carlo in Practice, Chapman

and Hall, London, 1996.
[13] P. Gustafson, Measurement error and misclassification in statistics and epidemiology: Impacts and

Bayesian adjustments, Chapman and Hall, Boca Raton, Florida, 2003.
[14] ICDAS, Criteria Manual. International Caries Detection and Assessment System (ICDAS II), In-

ternational Caries Detection and Assessment System (ICDAS) Coordinating Committee, 2005.
[15] V.E. Johnson and J.H. Albert, Ordinal Data Modeling, Springer, New York, 1999.
[16] S. Luo, X. Su, S.M. DeSantis, X. Huang, M. Yi, and K.K. Hunt, Joint model for a diagnostic test

without a gold standard in the presence of a dependent terminal event, Statistics in Medicine 33
(2014), pp. 2554–2566.

[17] R.E. McCulloch, N.G. Polson, and P.E. Rossi, A Bayesian analysis of the multinomial probit model
with fully identified parameters, Journal of Econometrics 99 (2000), pp. 173–193.

[18] A. McGlothlin, J.D. Stamey, and J.W.J. Seaman, Binary regression with misclassified response and
covariate subject to measurement error: a Bayesian approach, Biometrical Journal 50 (2008), pp.
123–134.

[19] P. McInturff, W.O. Johnson, D. Cowling, and I.A. Gardner, Modelling risk when binary outcomes
are subject to error, Statistics in Medicine 23 (2004), pp. 1095–1109.

[20] S.M. Mwalili, E. Lesaffre, and D. Declerck, A Bayesian ordinal logistic regression model to correct for
interobserver measurement error in a geographical oral health study, Journal of the Royal Statistical
Society: Series C, Applied Statistics 54 (2005), pp. 77–93.
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Appendix A. Steps within the Gibbs sampling

In order to generate κ(t), z(t) and β(t) at the t-th iteration of the Gibbs sampler defined
in Section 4.2, the Metropolis-Hastings-within-Gibbs algorithm can be implemented as
the following.

A.1 Ordinal probit model

Let Ψ = Φ be the cdf of a standard normal distribution, N(0, 1). The Metropolis-
Hastings-within-Gibbs algorithm is as follows:

(1a) Generate a candidate κnewr for r = 2, . . . , J − 1, from a truncated normal distribu-

tion N
(
κ

(t−1)
r , σ2

κ

)
I
[
κ

(t)
r−1 < κnewr < κ

(t−1)
r+1

]
, where σ2

κ is a value chosen to obtain an

appropriate acceptance rate, e.g. σκ = 0.4.
(1b) Evaluate the acceptance probability for the vector of new cutpoints as α = min(1, R)

where

R =

J−1∏
r=2

Φ
(

(κ
(t−1)
r+1 − κ

(t−1)
r )/σκ

)
− Φ

(
(κnewr−1 − κ

(t−1)
r )/σκ

)
Φ
(
(κnewr+1 − κnewr )/σκ

)
− Φ

(
(κ

(t−1)
r−1 − κnewr )/σκ

)
×

Φ
(
κnewvi − x

′
iβ

(t−1)
)
− Φ

(
κnewvi−1 − x′iβ

(t−1)
)

Φ
(
κ

(t−1)
vi − x′iβ

(t−1)
)
− Φ

(
κ

(t−1)
vi−1 − x′iβ

(t−1)
) .

Note that vi = r is equivalent to ci+r = 1.

(1c) With probability α, set κ(t) = κnew and generate z(t) = (z
(t)
1 , . . . , z

(t)
n ) from the trun-

cated normal distribution

N
(
x′iβ

(t−1) , 1
)
×

J∑
r=1

I
[
κ

(t)
r−1 < zi < κ(t)

r

]
I
[
ci+r = 1

]
.

Otherwise, set κ(t) = κ(t−1) and z(t) = z(t−1).
(1d) Generate β(t) from Nk

(
(x′x)−1x′z , (x′x)−1

)
.

The final algorithm consists of choosing initial values κ(0), z(0), β(0), c(0) and λ(0),
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and iteratively sampling κ(t), z(t), β(t), c(t) and λ(t) from the algorithm described in
(1a)-(1d) and the full conditional distributions (1) and (2).

A.2 Ordinal logit model

Let Ψ be the cdf of a standard logistic distribution, L(0, 1). The Metropolis-Hastings-
within-Gibbs algorithm is as follows:

(2a) Generate a candidate κnewr for r = 2, . . . , J − 1, from a truncated logistic distribution

L
(
κ

(t−1)
r , σκ

)
I
[
κ

(t)
r−1 < κnewr < κ

(t−1)
r+1

]
.

(2b) Evaluate the acceptance probability for the vector of new cutpoints as ακ = min(1, Rκ)
where

Rκ =

J−1∏
r=2

Ψ
(

(κ
(t−1)
r+1 − κ

(t−1)
r )/σκ

)
−Ψ

(
(κnewr−1 − κ

(t−1)
r )/σκ

)
Ψ
(
(κnewr+1 − κnewr )/σκ

)
−Ψ

(
(κ

(t−1)
r−1 − κnewr )/σκ

)
×

Ψ
(
κnewvi − x

′
iβ

(t−1)
)
−Ψ

(
κnewvi−1 − x′iβ

(t−1)
)

Ψ
(
κ

(t−1)
vi − x′iβ

(t−1)
)
−Ψ

(
κ

(t−1)
vi−1 − x′iβ

(t−1)
) .

(2c) With probability ακ, set κ(t) = κnew and generate z(t) = (z
(t)
1 , . . . , z

(t)
n ) from the

truncated logistic distribution

L
(
x′iβ

(t−1) , 1
)
×

J∑
r=1

I
[
κ

(t)
r−1 < zi < κ(t)

r

]
I
[
ci+r = 1

]
.

Otherwise, set κ(t) = κ(t−1) and z(t) = z(t−1).

(2d) Generate a candidate βnew from a normal distribution Nk

(
β(t−1), (x′x)−1

)
.

(2e) Evaluate the acceptance probability for the vector of regression parameters αβ =
min(1, Rβ) where

Rβ =

n∏
i

(
z

(t)
i − x′iβ

new
)

(
z

(t)
i − x′iβ

(t−1)
) .

(2f) With probability αβ, set β(t) = βnew. Otherwise, set β(t) = β(t−1).

The final algorithm consists of choosing initial values κ(0), z(0), β(0), c(0) and λ(0),
and iteratively sampling κ(t), z(t), β(t), c(t) and λ(t) from the algorithm described in
(2a)-(2f) and the full conditional distributions (1) and (2).
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