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SUMMARY

Motivated by a study tracking the progression of Parkinson’s disease (PD) based on features extracted
from voice recordings, an inhomogeneous hidden Markov model with continuous state-space is proposed.
The approach addresses the measurement error in the response, the within-subject variability of the
replicated covariates and presumed nondecreasing response. A Bayesian framework is described and an
efficient Markov chain Monte Carlo method is developed. The model performance is evaluated through
a simulation-based example and the analysis of a PD tracking progression dataset is presented. Although
the approach was motivated by a PD tracking progression problem, it can be applied to any monotonic
nondecreasing process whose continuous response variable is subject to measurement errors and where
replicated covariates play a key role.

Keywords: Bayesian methods; Measurement error; Nondecreasing process; Parkinson’s disease; Replicated measure-
ments; Voice features.

1. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder with symptoms that persist and worsen over time.
According to the USA Parkinson’s Disease Foundation and the European Parkinson’s DiseaseAssociation,



2 L. NARANJO AND OTHERS

nearly one million people in the USA and 1.2 million in Europe are living with this medical condition.
Its cause is unknown, and at present there is no cure. There are treatment options, such as medication and
surgery, to manage its symptoms. Early detection and subsequent progression tracking play a fundamental
role for the quality of life of the patient.

Voice and speech are also affected by PD. This is because voice production depends on respiratory
and articulatory functions which are disrupted in people with PD. Non-dopaminergic changes can also
affect cognition and mood, which may have an important impact on communication. Vocal impairment
is recognized as one of the earliest signs of PD (Duffy, 2005). Even in the early stages of PD, there are
subtle abnormalities in speech that might not be perceptible to listeners, but can be evaluated objectively by
performing acoustic analyses of recorded speech, i.e., the voices of the subjects are recorded to extract some
specific characteristics of the speech signals, which are used to detect the disease or track its progression.

Voice recordings have become a potential non-invasive low-cost biomarker for PD. In the recent lit-
erature, there are many techniques that have considered feature extraction from speech recordings and
machine learning to distinguish healthy people from those with PD (Little and others, 2009; Sakar and
others, 2013; Hariharan and others, 2014; Novotny and others, 2014; Naranjo and others, 2016, 2017).
However, less attention has been paid to tracking the disease’s progression. Some authors have addressed
the problem of finding a statistical model to relate speech parameters and Unified Parkinson’s Disease
Rating Scale (UPDRS) scores (Tsanas and others, 2010; Eskidere and others, 2012; Castelli and others,
2014; Arias-Vergara and others, 2016). UPDRS is the most commonly used scale to follow the longitudi-
nal course of PD (Ramaker and others, 2002). In general, recruiting a large number of people with PD is
difficult, and even more so to engage them for tracking over a long period of time. This has resulted in their
being a relatively small number of acoustic databases. In addition, these databases have been specifically
designed for the purpose of diagnosis rather than for tracking the progression of the disease. Gender and
the variety of medications also complicate the collection of the data.

The database most commonly used to develop methods for tracking PD progression with acoustic
features is based on one multicenter study, which tested the feasibility of a computer-based At-Home
Testing Device (AHTD) (Goetz and others, 2009). TheAHTD database contains acoustic features extracted
from replicated voice recordings and is publicly available.Although this voice recording database has been
carefully collected and the acoustic features have been extracted appropriately, regression models have
been applied without matching the right statistical model to the experimental design (Tsanas and others,
2010; Eskidere and others, 2012). It has become necessary to develop methods employing a statistical
model that is appropriate to the experimental design so as to provide a more accurate tracking of the
disease’s progression. Such a new approach should address simultaneously three aspects: (i) a time-
dependent process, which is assumed to be continuous and monotonic nondecreasing; (ii) measurement
errors in the response; and (iii) replications in the covariates. The need to address these three aspects in
the model will be justified in the next three paragraphs.

PD, as a neurodegenerative disease, is characterized by a worsening of its status over time. The natural
progression of the disease is caused by an irreversible and continual death of neurons, which is reflected
in disease status measures such as UPDRS scores. The natural history of PD has been widely studied. For
instance, a linear progression trend is one biologically plausible hypothesis (see, e.g., Chan and Holford,
2001 and references therein). Other studies have suggested that the disease may progress more rapidly
initially and the rate of deterioration slows in more advanced stages of the disease (see, e.g., Jankovic
and Kapadia, 2001). Consensus is achieved in considering PD as a nondecreasing process. Other medical
diseases, such as caries, are also characterized by nondecreasing processes (García-Zattera and others,
2012).

UPDRS enables the quantification of the type, number, and severity of extrapyramidal signs. Since
this quantification is partially based on subjective criteria, disagreement among raters in the interpretation
of these criteria introduces measurement errors in these scores (Richards and others, 1994). This may
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result in an imprecise clinical characterization of the patient and in the loss of reliability when UPDRS
values are analyzed. Therefore, scoring UPDRS is subjective and the clinician’s assessment of a patient’s
score may be subject to error. Post and others (2005) suggested that the amount by which raters disagree
should be quantified before starting longitudinal studies of disease progression or clinical trials. For
example, Satten and Longini (1996) proposed a hidden Markov model subject to measurement error to
describe the progression of longitudinal observations of CD4, a marker of the progression of the human
immunodeficiency virus (HIV).

Several voice recordings were obtained for each patient, in different sessions. The acoustic features
have been extracted from them. For each subject, the acoustic features should be identical at a concrete
session, but imperfections in technology and their own biological variability result in differences in the
replicated features (see, e.g., Naranjo and others, 2016). Naranjo and others (2017) addressed both the
within-subject variability and progression over time.

Motivated by PD progression tracking based on the AHTD database, an hidden Markov model with
continuous state-space is proposed in this article. This model addresses measurement errors in the response
and replications in the covariates, as well as employing a statistical treatment appropriate for nondecreasing
processes. A fully Bayesian framework will be presented, and an efficient Markov chain Monte Carlo
(MCMC) method has been derived to solve the computational problem. The approach has been applied to
simulated data in order to evaluate its performance and also to the AHTD database. As far as the authors’
knowledge extends, an approach addressing these three issues simultaneously (nondecreasing process,
measurement error, and replications) has not yet been proposed.

The outline of this article is as follows. Section 2 presents the motivation for this approach. Section
3 presents the proposed approach and how it handles nondecreasing time processes, measurement errors
in the response, replicated measurements in the explanatory variables, and conditional independence
assumptions. In Section 4, the Bayesian analysis is presented. Section 5 is devoted to an experimental
study with theAHTD database and the significance of the results. Next, conclusions are presented in Section
6. Lastly, a supplementary material available at Biostatistics online document presents the derivation of
the full conditional distributions, a sensitivity analysis of the AHTD application, and a simulation-based
experiment.

2. MOTIVATING PROBLEM

The AHTD study was presented by Goetz and others (2009). Originally, 52 early-stage subjects, having
idiopathic PD diagnosed within the previous 5 years of the trial’s onset, were recruited from six medical
centers in the USA. Patients could not be on symptomatic therapies for PD. Inclusion criteria considered
that by best estimates and follow-ups the patients could remain untreated during the study period of 6
months. Subjects who showed clinical decline needed dopaminergic medication and were excluded from
the study. The subjects were physically assessed and assigned UPDRS scores at baseline, 3 months, and
6 months later into the trial. During the 6 months the trial lasted, six phonations of sustained /a/ were
recorded weekly for each patient. This means that the patients produced six vowel phonations for some
seconds in each session, trying to keep the pitch and loudness as constant as possible.

Tsanas and others (2010) considered the information and voice recordings for the 42 out of
the 52 patients who remained in the trial and for which at least 20 valid study sessions were
performed. The voice recordings from the AHTD study are not publicly available, but the fea-
tures extracted and analyzed by Tsanas and others (2010) for these 42 patients (28 men and
14 women) are available online in the AHTD database at the UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring). Specifically, the database contains
the name, age, gender, time interval from baseline recruitment date, motor UPDRS and total UPDRS
(in both cases, real and interpolated values), and 16 biomedical voice measures, i.e., five measures of

https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
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Fig. 1. Experimental design in a time scale based on days. Black points represent replicated voice recordings and
UPDRS measures. Crosses represent only replicated voice recordings.

variation in fundamental frequency, six measures of variation in amplitude, two measures of the ratio of
the noise to the tonal components in the voice, one nonlinear dynamical complexity measure, one signal
fractal scaling exponent, and one nonlinear measure of fundamental frequency variation. This provided
acoustic features with temporal and within-subject dependencies. The experimental design is summarized
in Figure 1.

In the analysis, we performed for the 42 subjects, only real UPDRS scores (at 0, 3, and 6 months) and
six acoustic features extracted from their corresponding voice recording sessions at each time point are
used from the AHTD database, avoiding the use of interpolated UPDRS scores. A detailed explanation
of the selection of the acoustic features is presented in Section 5. Note that the AHTD database considers
both motor and total UPDRS scores. ‘Motor UPDRS’ refers to Part III of the questionnaire applied to each
subject, and is the section that assesses the motor skills. ‘Total UPDRS’ refers to the whole questionnaire
and is the core outcome measure of many studies. Higher scores indicate more advanced stages of the
disease. Figure 2 shows the profiles of the subjects for motor and total UPDRS scores at baseline, 3, and
6 months.

Since the patients were unmedicated, it is to be expected that both UPDRS scores are nondecreasing,
since PD symptoms do not improve without medication. However, it can be observed that many profiles
show decreasing patterns in the response. For example, patient number 17 had motor UPDRS observed
scores of 19.1, 33.9, and 20.4 at baseline, 3 months, and 6 months, respectively. This means that in 3
months, an increase of 77.5% was observed, in contrast with other similar early-stage studies, such as
Shoulson and Parkinson Study Group (1992), which found a rate of progression for one complete year of
51.1% for unmedicated patients. Even more, in the next 3 months, a decrease of 60.2% was found, which is
not realistic under no medication. Post and others (2005) found an inter-rater variability for motor UPDRS
of less than five points (out of a total of 68 points). There are some profiles with motor scores outside of
the range attributable to a reasonable inter-rater variability. The same happens for the total UPDRS. We
believe that some unrealistic fluctuations may be explained by a poor UPDRS assessment.

This problem has been the motivation for deriving a statistical model that appropriately matches the
experimental design, addressing three aspects that have not been considered simultaneously, as far as the
authors’ knowledge extends, i.e., (i) assuming the process to be monotonic nondecreasing in time, since
under no medication PD is not expected to improve; (ii) including mechanisms to correct the possible
errors when measuring UPDRS scores; and (iii) addressing the within-subject variability resulting from
replicated acoustic features (not the statistical concept of repeated measurements) originating from several
voice recordings obtained at the same time for each subject.

Only gender and acoustic features will be used as predictors in this article, since the goal is that the
model can be implemented in the future in an expert system. An expert system should be able to remotely
obtain voice recordings from Smartphones, and process them by extracting automatically the gender and
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Fig. 2. Profiles of the AHTD database.

acoustic features. However, other variables as the time since diagnosis, could be included if they were
available. An accurate system would help neurologists to carry out a more continuous follow-up.

3. APPROACH

The approach considers a time-dependent process, which is continuous and monotonic nondecreasing. It
addresses the measurement errors in the response and the replications in the explanatory variables, and it
takes into account several conditional independence assumptions. This approach seeks to appropriately
match the experimental design and to provide accurate estimations to assist neurologists in tracking the
progression of the disease in their patients.

3.1. A continuous monotonic nondecreasing process

Suppose that the UPDRS score is obtained for the ith subject, i = 1, . . . , N , at time points {tik : k =
1, . . . , K}. Without loss of generality, the subjects are assumed to have the same number of time points,
which will be denoted by K . Let Yik be the true continuous response for the ith subject at time tik , and
put Y i = (Yi1, . . . , YiK)′. They denote the UPDRS score process, which is assumed to be monotonically
nondecreasing, i.e., Yi1 ≤ Yi2 ≤ · · · ≤ Yi,K−1 ≤ YiK , for all i = 1, . . . , N . This assumption is consistent
with the fact that the PD worsens with time if there is no medication treatment.
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Note that Yik is not observed. Instead, Y ∗
ik is recorded and is subject to measurement error. Hence, Yik is

treated as a latent variable. The unknown response vector Y i is related to a set of covariates xi and zi. Let
xik be an L-dimensional vector of time-varying covariates associated with the ith subject at time point tik ,
measured with error, and suppose xi = (xi1, . . . , xiK)′ represents the vector of covariates for the ith subject.
These covariates will be the acoustic features. In addition, let zik be an M -dimensional vector, possibly
the time-varying covariates associated with the ith subject at time point tik , and let zi = (zi1, . . . , ziK)′

represent the vector of observed covariates for the ith subject. These covariates could be the gender and
age.

Let ηik be the linear predictor for the ith subject at time tik that consists of linear combinations of the
covariates xik and zik ,

ηik = α + x′
ikβ + z′

ikγ , (3.1)

where β and γ are, respectively, the L-dimensional and M -dimensional vectors of coefficients for the
covariates xik and zik , and α is the intercept parameter. Note that different intercept parameters for each
time (αk ) or different slope parameters depending on the time (γ tik

or γ k ) could be incorporated with
the zik covariates. Also, in Equation (3.1), the parameters β i and γ i could be defined in an hierarchical
structure as well as taking into account random effects by means of αi.

Assume that for the first time point, k = 1, the true unobserved continuous response Yi1 is related to
the linear predictor ηi1 through a normal distribution,

Yi1 ∼ Normal
(
ηi1, σ 2

)
. (3.2)

For the next time points, k = 2, . . . , K , due to the monotonic nondecreasing continuous nature of the
process (Yi,k−1 ≤ Yik ), the true unobserved continuous response Yik is related to the linear predictor ηik

through a truncated normal distribution, namely

Yik

∣∣Yi,k−1 = yi,k−1 ∼ Normal
(
ηik , σ 2

)
I
[
Yik ≥ yi,k−1

]
, (3.3)

where I[·] denotes the indicator function, i.e., I[A] = 1 if A is true, and I[A] = 0 otherwise. In this way,
the first-order Markov chain property for continuous processes is assumed and the truncation allows the
nondecreasing restriction to be satisfied at the same time as maintaining model conjugacy.

In addition, Equations (3.2) and (3.3) could also be employed for heteroskedastic models, i.e., by
using different variances σ 2

k for each time point or σ 2
i for each subject. However, in the AHTD database,

homoskedasticity has been assumed, because 6 months is not enough time to properly notice non-constant
variances.

3.2. Measurement errors in the response

The true response variables Yik are latent variables assumed to be prone to measurement errors. Let Y ∗
ik be

the non error-free continuous response for subject i at time tik , and set Y ∗
i = (Y ∗

i1, . . . , Y ∗
iK)′. They denote

the observed UPDRS scores, which may have been measured with errors, and therefore, could have both
nondecreasing or decreasing patterns. For each continuous latent variable, its measurement error is defined
as follows, where Y ∗

ik is assumed to be conditionally dependent on Yik and normally distributed,

Y ∗
ik |Yik = yik ∼ Normal

(
yik , τ 2

)
. (3.4)

Equation (3.4) is the usual expression for defining the classical additive measurement error model (Carroll
and others, 2006; Buonaccorsi, 2010), i.e., Y ∗

ik = Yik+εik , where εik ∼ Normal(0, τ 2) and εik is independent
of Yik .
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Note that in the AHTD database there is no information about the neurologists who examined the
patients. However, if there were detailed information about who examined each patient i at each time
k , then a different variance parameter τ 2

ξik
could be used to estimate the degree of error made by each

examiner ξik .

3.3. Replications in the explanatory variables

Assume that the covariates zi are exactly known, but that the xi have been measured with J replicates.
More specifically, X ∗

ikj = (X ∗
ikj1, . . . , X ∗

ikjL)
′ is the jth replication of the unknown vector of covariates

X ik = (Xik1, . . . , XikL)
′ and a linear relationship (additive measurement error model (Carroll and others,

2006; Buonaccorsi, 2010)), is assumed. One must assume a distribution for the latent variables X ik . In this
case, multivariate normal distributions are used, i.e., X ik ∼ NormalL(μ, �). Now, instead of the covariates
X ik , their replicates X ∗

ikj are recorded, and

X ∗
ikj = X ik + δikj, (3.5)

δikj ∼ NormalL (0, �),

for j = 1, . . . , J , where � is an L × L matrix of variances and covariances, which allows for the replicates
between covariates to be dependent or independent, by using a non-diagonal or a diagonal matrix �,
respectively. In the case of the AHTD database, the assumption of multivariate normal distributions takes
into account the correlations between the errors in the acoustic features. The error vector δikj is independent
of X ik , implying that X ∗

ikj is a surrogate for X ik . Moreover, the errors are independent for each ith subject,
at each kth time point tik , and for each jth replication.

Note that the covariates X ik denote the acoustic features of the ith subject at time point tik , but they
are not exactly known. Instead, the covariates X ∗

ikj are the observed acoustic features, but they are not
identical for each subject in a concrete time. The relation defined in (3.5) allows taking into account the
within-subject variability.

Independence-based methods should not be used when the data have been obtained by replicating voice
recordings from the same subjects. This fact artificially increases the sample size and provides inaccurate
estimations. Some authors have proposed to aggregate related data before learning, by using some different
functions as the mean, minimum, maximum, or a linear trend prediction. However, simplifying all the
replicated measures from each subject into one single measure (for each voice feature) leads to a loss
of information. The within-subject variability is removed when aggregating data and statistical methods
should address this instead of removing it.

3.4. Conditional independence assumptions

The full approach, which comprises Equations (3.2), (3.3), (3.4), and (3.5), is an inhomogeneous hidden
Markov model with continuous state-space. Figure 3 displays the probabilistic graphical model showing
the dependencies among the variables in the proposed model, with the usual convention of graphical models
where square boxes represent observed variables and ovals represent latent variables. The direction of the
arrows indicates conditional dependence.

The process is characterized by the following conditional independence assumptions:

(A.1) ⊥⊥ 1≤i≤N Y ∗
i

∣∣ Y 1, . . . , Y N , τ 2, i.e., the observed continuous response vectors for each sub-
ject are independent given the true unobserved continuous responses and the variance of the
measurement error.
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Fig. 3. Graphical representation of the proposed model. Square boxes represent observed variables and ovales
represent latent variables. The direction of the arrows indicates conditional dependence.

(A.2) Y ∗
i ⊥⊥ Y 1, . . . , Y i−1, Y i+1, . . . , Y N ,

∣∣ Y i, τ 2, ∀i, i.e., the distribution of the observed continuous
response vector for a subject only depends on his/her true unobserved continuous response
vector and variance of the measurement error.

(A.3) ⊥⊥ 1≤k≤K Y ∗
ik

∣∣ Y i, τ 2, ∀(i, k), i.e., the observed continuous responses for a subject at one point of
time is independent of that for the same subject at any other point of time, given the subject’s
true unobserved continuous response vector and the measurement error variance.

(A.4) Y ∗
ik ⊥⊥ Yi1, . . . , Yi,k−1, Yi,k+1, . . . , YiK

∣∣ Yik , τ 2, i.e., the distribution of the observed continuous
response in the kth examination only depends on the subject’s true unobserved continuous
response at the same examination and variance of the measurement error.

The conditional independence assumptions (A.1)–(A.4) lead to distributions, which are free of other
model parameters. In particular, they are independent on parameters σ 2, α, β, γ , and �, and also they
are independent on latent variables X and observed variables X ∗ and z. Note that assumptions (A.1)–
(A.4) are a natural extension of the usual conditional independence assumptions for the hidden Markov
model (Cappé and others, 2005). These assumptions are analogous to those defined by García-Zattera and
others (2012), but with a different approach and in a different context. Moreover, here the independence
assumptions are defined for the latent continuous variables by using both the latent continuous response
variable Yik and the observed continuous response variable subject to measurement error Y ∗

ik .

4. BAYESIAN ANALYSIS

This section presents the prior distributions, which together with the model specified in the previous
section, enable the use of a MCMC method to sample from the posterior distribution of interest (Gilks
and others, 1996).

4.1. The prior distributions

A prior distribution is defined. Some components of the prior are conditionally conjugate. The coefficients
in the linear predictor are specified to be normal: α ∼ Normal1(a, A), β ∼ NormalL(b, B), and γ ∼
NormalM (c, C).
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The prior distribution for the variance of the response variable is specified as inverse Gamma: σ 2 ∼
InverseGamma(sσ , rσ ). The prior distribution for the variance of the measurement error is also specified
as inverse Gamma: τ 2 ∼ InverseGamma(sτ , rτ ).

Finally, the prior distribution for the covariance matrix of the replicated covariates is specified as inverse
Wishart: � ∼ InverseWishart(V , ν).

Note that all these distributions allow obtaining the full conditional posterior distributions easily.
Moreover, if initial information is available, prior informative distributions can be elicited (O’Hagan and
others, 2006).

4.2. Exploring the posterior distribution

Under the conditional independence assumptions defined in subsection 3.4, the likelihood function
considering the observed and latent variables is given by

L (
Y , X , α, β, γ , σ 2, τ 2, � | Y ∗, X ∗, z

)
(4.6)

=
N∏

i=1

{[
K∏

k=1

P
(
Y ∗

ik |Yik , τ 2
)]

P
(
Yi1|X i1, zi1, α, β, γ , σ 2

)
×

[
K∏

k=2

P
(
Yik |Yi,k−1, X ik , zik , α, β, γ , σ 2

)] [
K∏

k=1

{
J∏

j=1

P
(
X ∗

ikj|X ik , �
)}

P (X ik)

]}
.

The joint posterior distribution of the unobservable latent variables Y and X , and the parameters α, β,
γ , σ 2, τ 2 and � is obtained by using the likelihood function (4.6) and the prior distributions defined in
Section 4.1, and it is given by

π
(
Y , X , α, β, γ , σ 2, τ 2, � | Y ∗, X ∗, z

)
(4.7)

∝ L (
Y , X , α, β, γ , σ 2, τ 2, � | Y ∗, X ∗, z

)
π (α) π (β) π (γ ) π

(
σ 2

)
π

(
τ 2

)
π (�) .

This approach uses the relationship between the covariates and the latent variables jointly with the prior
distributions to achieve a posterior inference of the latent variables and model parameters.

A graphical representation of the proposed approach is shown in Figure S1 in supplementary material
available at Biostatistics online. This graphical representation is based on doodle objects of WinBUGS
(Lunn and others, 2000) and indicates that the model can also be implemented in general Bayesian
software, such as OpenBUGS, JAGS, or STAN.

The joint posterior density is not directly tractable for computing. Hence, a Gibbs sampling algo-
rithm with Metropolis-Hastings steps has been developed. The supplementary material available at
Biostatistics online document presents the full conditional distributions for the proposed approach.
The algorithm has been developed and implemented in the R language (https://cran.r-project.org/)
and JAGS (http://mcmc-jags.sourceforge.net/). The source code and instructions that allow to repli-
cate the analysis for a simulation-based dataset can be found in the GitHub repository through the link
https://github.com/lizbethna/HMMprogressionUPDRS.

5. APPLICATION TO THE AHTD DATABASE

Some acoustic features in the AHTD database are highly correlated since they describe similar mea-
surements. Therefore, they provide redundant information to the model. For example, there are five
jitters, measuring the variation in fundamental frequency, but with slight differences in the formulation

https://cran.r-project.org/
http://mcmc-jags.sourceforge.net/
https://github.com/lizbethna/HMMprogressionUPDRS
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(Baken and Orlikoff, 2000). They are pairwise highly correlated. In the signal processing field, it is usual
to obtain similar features and use all of them, leading in many cases to multicollinearity problems. Naranjo
and others (2017) used one acoustic feature from each group in a PD detection context. We will also con-
sider this reduction in our analysis, by using Jitter in Percentage, Local Shimmer, Harmonic-to-Noise
Ratio (HNR), Recurrence Period Density Entropy (RPDE), Detrended Fluctuation Analysis (DFA), and
Pitch Period Entropy (PPE).

The following specifications will be used to estimate both the clinician’s motor UPDRS scores (motor
UPDRS) and the clinician’s total UPDRS scores (total UPDRS) based on acoustic features and gender
as covariables. Three scenarios have been considered based on the physiological differences in the vocal
apparatus of men and women: (i) the acoustic features and the gender are considered as predictor variables
for all subjects; (ii) only men are considered with their acoustic features as predictor variables; and (iii) only
women are considered with their acoustic features as predictor variables. In each scenario, the acoustic
features are individually standardized to have mean 0 and standard deviation 1.

The following prior distributions have been used: α ∼ Normal(0, 10000), β ∼ NormalL(0,
diag(10000)) with L = 6, γ ∼ Normal(0, 10000), σ 2 ∼ InverseGamma(0.001, 0.001), τ 2 ∼
InverseGamma(0.001, 0.001), X ik ∼ NormalL(0, diag(1)) and � ∼ InverseWishart(diag(1), L).

Gelman (2006) reported that using the inverse gamma as prior distributions for the variance parameters
could provide sensitive results in hierarchical models. A sensitivity analysis is presented in the supplemen-
tary material available at Biostatistics online document to study the robustness of the prior distribution of
σ 2 and τ 2. Different prior distributions are used and the results show that the choice of prior distribution
does not affect the conclusions.

A total of 30 000 iterations with a burn-in of 10 000 and a thinning period of 10 generated values was
used, yielding a sample of length 2000. With these specifications, the chain generated by using the MCMC
sampling algorithm appears to have converged. The convergence analysis was performed by using the
BOA package (Smith, 2007). The chains require a long burn-in period and the previous specifications are
enough to provide evidence of convergence for all parameters.

The proposed approach provides information about the relative contribution of the voice feature vari-
ables to the progression process through the regression parameters β, the differences between gender
through the regression parameter γ , and about the variability of the process through the standard devia-
tion parameter σ . Moreover, an estimate of the degree of the error made in the UPDRS score is quantified
through the standard deviation parameter τ . Table 1 presents the posterior estimates of the regression
and standard deviation parameters of the proposed model, including their corresponding means, standard
deviations, and 2.5% and 97.5% quantiles (95% intervals). The observed and estimated scores for the 42
subjects are presented in Table S1 in supplementary material available at Biostatistics online.

With respect to motor UPDRS, Schüpbach and others (2009) found a progression rate of 39.34% in
6 months, starting from a baseline of 13.42 ± 5.93 points with unmedicated early-stage patients. The
estimated progression rate in 6 months obtained with the proposed approach is 31.58%, which is closer to
39.34% than the observed progression rate, which is 10.56%. Shoulson and Parkinson Study Group (1992)
found a rate of progression for motor UPDRS scores of 51.07% in one year, also with unmedicated patients
starting from a baseline of 16.8 ± 8.8. In spite of the fact that the progression rate is measured in one year,
it can be observed that the estimated scores are proportionally closer than the observed ones, indicating
that the error correction may be in the right direction. With respect to the total UPDRS, Shoulson and
Parkinson Study Group (1992) found a rate of progression in 1 year of 51.61% starting from a baseline of
25.4 ± 11.6, which is also closer to the estimated progression rate than to the observed one. This supports
the idea that the proposed approach may also be adequately correcting some profiles of total UPDRS.

Figure S2 in supplementary material available at Biostatistics online shows the profiles based on the
AHTD data. Figure 4 shows the observed and estimated trajectories of motor UPDRS and total UPDRS
for four subjects. The dots represent the observed responses y∗

ik , and the lines represent the mean and
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Table 1. AHTD database: means, standard deviations (SD), and 95% intervals of the posterior estimates
of the regression and SD parameters

Motor UPDRS
All Men Women

Mean SD 95% interval Mean SD 95% interval Mean SD 95% interval

α 17.206 1.162 (14.868, 19.440) 17.002 1.244 (14.449, 19.349) 17.781 2.128 (13.554, 21.899)
β1 −7.634 2.807 (−13.126, −2.304) −2.220 3.974 (−10.061, 5.666) −7.503 5.466 (−16.927, 4.439)
β2 0.424 2.166 (−3.877, 4.576) 7.344 3.975 (−0.422, 15.181) −1.149 4.138 (−10.011, 4.920)
β3 −1.286 2.634 (−6.600, 3.731) −0.336 3.806 (−7.761, 7.240) 1.272 3.996 (−5.849, 9.340)
β4 1.560 1.817 (−2.037, 5.075) −2.014 2.493 (−6.991, 2.818) 6.170 3.004 (0.649, 11.396)
β5 −3.313 0.960 (−5.199, −1.396) −4.212 1.295 (−6.774, −1.709) −3.558 1.595 (−6.608, −0.478)
β6 8.088 2.847 (2.500, 13.641) 5.725 3.962 (−2.255, 13.496) 9.771 4.040 (1.705, 17.391)
γ −2.301 1.944 (−6.134, 1.502) — — — — — —
σ 4.738 0.717 (3.249, 6.092) 5.148 0.776 (3.614, 6.699) 1.359 1.325 (0.157, 4.724)
τ 4.701 0.523 (3.808, 5.852) 4.513 0.622 (3.475, 5.912) 5.142 0.834 (3.782, 7.056)

Total UPDRS
All Men Women

Mean SD 95% interval Mean SD 95% interval Mean SD 95% interval

α 23.145 1.452 (20.186, 25.897) 22.706 1.657 (19.283, 25.754) 26.288 2.418 (21.019, 30.261)
β1 −6.935 3.689 (−14.162, 0.349) −2.219 5.647 (−13.204, 9.090) −0.140 7.271 (−12.114, 16.778)
β2 −1.117 2.918 (−6.839, 4.646) 7.787 5.564 (−2.931, 18.918) −6.649 5.391 (−19.274, 2.714)
β3 −3.006 3.409 (−9.673, 3.677) −1.237 5.233 (−11.545, 9.200) −2.858 3.927 (−9.811, 4.310)
β4 1.604 2.419 (−3.116, 6.320) −1.918 3.457 (−8.839,4.779) 5.668 3.077 (0.151, 11.881)
β5 −4.056 1.256 (−6.542, −1.616) −5.910 1.784 (−9.450, −2.433) −2.289 1.506 (−5.296, 0.478)
β6 8.251 3.657 (1.081, 15.373) 7.217 5.443 (−3.646, 17.716) 5.755 4.004 (−0.965, 14.130)
γ −3.375 2.554 (−8.349, 1.591) — — — — — —
σ 6.898 0.741 (5.472, 8.406) 7.654 0.918 (5.958, 9.556) 1.408 1.494 (0.062, 5.183)
τ 5.211 0.568 (4.228, 6.449) 4.846 0.669 (3.722, 6.329) 6.230 0.921 (4.634, 8.244)

the 2.5% and 97.5% quantiles of the estimated true responses with nondecreasing patterns ŷik . Patients
2 and 8 provide nondecreasing observed motor and total UPDRS scores, whereas patients 17 and 21
exhibit patterns that contain measurement errors given the values of the differences between consecutive
scores. The corrections performed seem to be in agreement with the dynamic progression of unmedicated
early-stage PD patients.

In the supplementary material available at Biostatistics online document, a simulation study based on
the AHTD database is presented. It shows how the proposed model properly recovers the real parameters
in a simulation-based context.

6. CONCLUSION

An inhomogeneous hidden Markov model with continuous state-space has been proposed to address mea-
surement errors in the response, any within-subject variability of replicated covariates, and monotonic
nondecreasing processes. The proposed Bayesian framework has been implemented by deriving an effi-
cient MCMC sampling algorithm, which has been tested on a simulation-based experiment and applied to
track the progression of PD based on the At-Home Testing Device (AHTD) database (Goetz and others,
2009) of acoustic features extracted from voice recordings. Results are encouraging and could potentially
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Fig. 4. AHTD database: analysis of some profiles of motor and total UPDRS.

improve the tracking of the progression of PD. Although the approach has been motivated by a PD context,
it is applicable to any monotonic nondecreasing process whose continuous response variable is subject to
measurement errors and where replications are considered. This is the case for several neurodegenerative
diseases that are characterized by a progressive decline and have no cure. Two particular cases are multiple
sclerosis of the primary progressive type and Huntington’s disease.

Changes in the proposed model could allow the inclusion of several examiners involved in the scor-
ing of the responses for a given subject across time, very useful in real situations. Moreover, different
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specifications of the regression parameters or of the variance parameters could also be modified to allow
heterogeneity models. In addition, the number of replications could be different for each individual: a
small variation in the model specification could be made to take this into account. Besides, different prior
distributions could also be considered, although it seems that the proposed model is robust to different
specifications of the prior distributions of the variance parameters. In addition, the proposed model can
be modified to handle monotonic nonincreasing responses.

Only gender and acoustic features have been used as predictors, since the goal is that in the future,
the proposed approach can be implemented in a real-time expert system through Android or iOs-based
smartphones. Since the approach pools information across individuals, UPDRS estimates showing the
current state of each patient can be performed. This would lead to a warning system that would consider
a certain threshold or a fast UPDRS increase to encourage a visit to the neurologist. Such an intelligent
telediagnosis system would be very valuable for patients, medical staff, and administration, since it would
be based on acoustic biomarkers that are objective, low cost and noninvasive. The database could be
increased and more accurate results would be obtained. Therefore, a well calibrated system would facilitate
a fast and frequent remote tracking of the progression of the disease. This would help neurologists, although
human expertise cannot be completely put aside.

The AHTD database has many limitations, including the small number of women participating as
well as the fact that there is no information about how many examiners participated and their degree of
expertise. It would be interesting to conduct a new experiment with a greater sample size, using several
examiners in a controlled way. This would enable the analysis of the model performance on a different
database, assessing the accuracy of the approach.

The AHTD database has many limitations, but it is the only publicly available database of these
characteristics. Some them are the reduced duration of the experiment, the fact that there is no information
about how many examiners participated and their degree of expertise and the small number of women
participating. Although, there is a great difficulty to recruit patients for this kind of experiments, it would
be interesting to conduct a new experiment with a greater sample size of both sexes with several examiners
in a controlled way. This would enable the analysis of the model performance on a different database,
assessing several aspects, including accuracy of the approach.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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