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ABSTRACT 
 

A statistical study was made of the temporal trend in extreme 
rainfall in the region of Extremadura (Spain) during the period 1961-
2009. A hierarchical spatio- temporal Bayesian model with a GEV 
parameterization of the extreme data was employed. The Bayesian model 
was implemented in a Markov chain Monte Carlo framework that allows 
the posterior distribution of the parameters that intervene in the model to 
be estimated. The results show a decrease of extreme rainfall in winter and 
spring and a slight increase in autumn. The uncertainty in the trend 
parameters obtained with the hierarchical approach is much smaller than 
the uncertainties ob- tained from the GEV model applied locally. Also 
found was a negative relationship between the NAO index and the 
extreme rainfall in Extremadura during winter. An increase was observed 
in the intensity of the NAO index in winter and spring, and a slight 
decrease in autumn. 
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1. Introduction 

 

In the morning of November 7th 1997 our city of Badajoz (Spain, with 150 000 

inhabitants) woke up to the news that during the night a flash flood had wiped out a 

whole neighbourhood located between two small streams. There were 21 deaths and 

important material damage. This is only one example of the consequences of extreme 

meteorological events. Although destructiveness is one of the features of extreme 

phenomena, to classify a meteorological or climatological event as an extreme we 

follow the definition given by the Intergovernmental Panel on Climate Change 

(IPCC): “A phenomenon that is rare within its statistical reference distribution at a 

particular place”. Among all the different kinds of climate and meteorological extreme 

events that may occur in nature, we shall focus on extreme rainfall. Nowadays our 

society is growingly concerned about the consequences of such extreme rainfall 

events, considering that climate change could exacerbate the occurrence and intensity 
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of this kind of phenomenon since the increase of greenhouse gases in the atmosphere 

will increase the water vapour and energy available in the climate system (Min et al. 

2011, Pall et al. 2011). For this reason, one of the main aims of the present work was 

to try to determine whether there exists a temporal trend in extreme rainfall in our 

region of Extremadura (Spain). 

There are several ways to address the statistical study of extreme events described in 

the scientific literature. One of the most widely used is Extreme Value Theory 

(EVT). In addition, due to the spatial character of the rainfall, it seems natural to 

apply a spatial theory of extremes to describe these extreme events. There are several 

theories to address the problem of spatial extremes Davison et al. (2012), e.g., copulas, 

max-stable theory, and hierarchical Bayesian models, this last being the one we shall 

use in the present work. Probably one of the most important benefits of using a 

spatial extreme theory instead of trying to model each observatory individually is that 

of improving the precision in the estimation of the parameters of the distribution by 

sharing information from similar sites (see Casson and Coles (1999), Cooley et al. 

(2007), and Renard (2011)). This is a key point, because, by definition, extreme events 

are “rare”, so that there are not many data values that correspond to them. Moreover, 

as it was pointed out by Renard (2011), spatial theory allows estimation of the 

parameters of the extreme distribution at an ungauged or poorly gauged site. Also, the 

use of Bayesian statistics allows one to account properly for the uncertainties that arise 

when modeling meteorological phenomena (see Epstein (1985)). Hierarchical Bayesian 

models have been used to study extreme rainfall in different parts of the world. 

Examples are Renard (2011) for southern France, Gaetan and Grigoletto (2007) for 

Triveneto (Italy), Dyrrdal et al. (2015) for Norway, Cooley et al. (2007) for 

Colorado (USA), Aryal et al. (2009) for southwestern Australia, Sun et al. (2014) for 

Southeast Queensland (Australia), and Ragulina and Reitan (2017) at the whole Earth, 

among others, also in the context of hydrology we can cite the work of Viglione et al. 

(2013). However, to the best of the authors’ knowledge, this is the first time that they 

have been applied for Spain. 

The outline of this paper is as follows. In section 2 the data used in the present work 

are presented. In section 3 the hierarchical models are introduced and the results are 

shown in section 4. The assessment of the models is studied in section 5. Section 6 ex- 

amines the dependence of the region of Extremadura on the North Atlantic Oscillation 

(NAO). Finally, some conclusions from the study are drawn in Section 7. 
 

 
 

2. Data 

 
The data used corresponds to the extreme rainfall observed at a set of meteorological 

observatories distributed over the Extremadura Region (Spain). Figure 1 shows the 

location of this Region in Spain and the spatial distribution of the observatories 

considered. The period of study spans from 1961 to 2009. More information about the 

data selection and the methodology used to obtain the final choice of 72 homogeneous 

time series can be found in Acero et al. (2017). Due to the strong seasonal character of 

the rainfall in this region, the seasonal maxima were used instead of the annual 

maxima. Seasonal maxima are extracted from the series of daily rainfall at the rain 

gauge in a range of 24 hours. Winter was taken to be December, January, and 

February, spring was taken to be March, April, and May, and autumn was taken to be 
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September, October, and November. Summer was not considered because of the low 

number of rainy events in that season in most parts of Extremadura. 
 

3. Statistical model 
 
As was noted in the Introduction, there exist several statistical approaches with which 

to address the problem of spatial extremes. These include copulas, max-stable pro- 

cesses, and Bayesian hierarchical models (Davison et al. 2012). Our choice of this 

last, a Bayesian approach, was motivated by its flexibility, the possibility of adding 

further elements or layers, and its adaptability to situations in which there appear 

complex variations in the parameters of the Extreme Value Distribution. This kind of 

model has, however, some drawbacks. One of the most important is that of conditional 

independence among data observed at different observatories (Davison et al. 2012). 

Indeed, as will be seen below, such conditional independence is one of the hypotheses 

of our proposed hierarchical model. Although this is strictly unrealistic since there re- 

main some correlations between data observed at different observatories, in the present 

case, the seasonal extreme rainfall observed at different observatories may occur on 

different days, thus reducing the risk of strong correlations. Moreover, as was pointed 

out by Ribatet et al. (2016) and Davison et al. (2012), unless the goal of the study is 

to make regional level inferences about future extreme values, a Bayesian hierarchical 

model is a good choice. Also, the other two approaches do not easily accommodate 

the incorporation of non-stationary processes. 

There has recently arisen a major debate about whether or not to use non-stationary 

models to fit hydrological time series. See, for example, Milly et al. (2008) who 

advocate for using non-stationary models, or Montanari and Koutsoyiannis (2014) 

and Koutsoyiannis and Montanari (2015) who advocate for using stationary 

models. In the present work, both types of model are proposed and compared with 

each other. The main hypothesis we posit for using the non-stationary model is that 

the climate change observed so far may have affected the extreme rainfall in the 

region under study being a sign the change of the distribution parameters. 

In describing the statistical model, we shall use the usual notation that, for some 

given random variable X, P(X) represents its probability distribution, and if X1 and 

X2  are two random variables then P(X1 |X2) represents the conditional probability 

distribution of X1  given X2, and P(X1, X2) represents their joint probability 

distribution. As it was mentioned in the Introduction, the statistical model we use 

is a hierarchical Bayesian model (HBM) of extreme values. To the best of the 

authors’ knowledge, probably the first time that a HBM formalism was applied to 

model extreme values was in the paper by Casson and Coles (1999) which studied wind 

speed extremes along the southeastern coastlines of the United States. Afterwards, the 

HBM formalism in the context of extreme value analysis was applied by Wikle and 

Anderson (2003), Renard et al. (2006), Cooley et al. (2007), Sang and Gelfand (2009), 

Davison et al. (2012), Renard et al. (2013) and Renard and Lall (2014), among 

others. 

The fundamental idea behind hierarchical Bayesian models is that of breaking a 

complex statistical problem into pieces of more elementary conditional models, 

estimating the parameters that may appear in them following the Bayesian formalism 

(Berliner 1996, Wikle et al. 1998, Cressie and Wikle 2011). A useful way to 

accomplish this task is through the following factorization (Cressie and Wikle   2011): 
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Stage 1 (data model) P(data | process, parameters) 

Stage 2 (process model) P(process | parameters) 

Stage 3 (parameter model)  P(parameters) 
 

At the first (or data) level, the observed noisy data are assumed to depend on a latent 

(unknown) process plus several parameters. At the second (process) level, a model is 

proposed for the latent process through a conditional probability. At the third 

(parameter) level, probability distributions for the parameters are introduced to take 

into account their uncertainties. Within the framework of Bayesian statistics, all 

parameters that appear in the model are considered to be random variables. This 

allows one to take the uncertainty that appears in the data and in the model into 

account, in a statistically rigorous manner. Bayes’ theorem allows one to obtain the 

distribution of the parameters of the model once the data has been observed through 

the relationship 
 

 
P(process,  parameters  | data) (1) 

∝     P(data  |  process,   parameters) · P(process  |  parameters) · P(parameters). 
 
In Bayesian statistics, the distribution on the left hand side is called the posterior 

distribution, the distribution P(parameters) to the right is called the prior distribution, 

and the distribution P(data|process, parameters) is called the likelihood. One of the 

problems of estimating the parameters through the relationship (1) is that of estimating 

the proportionality constant. This is only feasible in simple problems. However, the 

introduction of such numerical techniques as the Markov chain Monte Carlo (MCMC) 

methods (see (Gilks et al. 1996)) has allowed numerical simulation of the posterior 

distribution of the parameters, i.e., to obtain a sample of the parameters of interest. In 

the following subsections, we shall describe the models used in the present work in 

more detail. 

3.1 First stage 
 

In the first stage, the block extreme data at observatory s are assumed to follow a 

Generalized  Extreme  Value  (GEV)  distribution  with  probability  distribution  

function 
 

𝐏(𝑌𝑠 ≤ 𝑦|𝜇𝑠, 𝜎𝑠, 𝜉𝑠) = exp {− [1 + 𝜉𝑠 (
𝑦−𝜇𝑠

𝜎𝑠
)]

−1/𝜉𝑠
},                           (2) 

 

where 1+ s((y-s)/s)  0. It is also assumed that the block extremes conditional on µs, σs, 

and ξs are spatially and temporally conditionally independent, i.e., the block extreme at 

observatory s conditional on µs, σs, and ξs is independent of the block extreme at 

observatory s ’ , and that the block extreme observed at time t is independent of that 

observed at time t’. 
 

 
3.2 Second stage 
 

In the second stage, the parameters {µs, σs, ξs}, of the GEV distribution are assumed to be 
described by a spatio-temporal model, with these parameters being dependent on spatial 
position s and time t. In spatial data problems, there are three basic types of data sets 
(Banerjee et al. 2004): (i) point-reference or geostatistical data, where the spatial 
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coordinate s varies continuously over a fixed subset D of Rn; (ii) areal or lattice data, where 
the domain D is partitioned into a finite numbers of areal units with well-defined 
boundaries; and (iii) point pattern data, where D is itself a random set. Our data may be 
considered as point-reference data since the position of the observatories may be anywhere 
inside the region of interest. A common model for the spatio-temporal dependence of the 
GEV parameter is (Wikle et al.   1998, Banerjee et al. 2004): 
 

𝜇(𝐬, 𝑡) = 𝐗(𝐬) ⋅ 𝛂𝜇 + 𝑊𝜇(𝐬, 𝑡) + 𝜖𝜇(𝐬, 𝑡)

𝜎(𝐬, 𝑡) = 𝐗(𝐬) ⋅ 𝛂𝜎 + 𝑊𝜎(𝐬, 𝑡) + 𝜖𝜎(𝐬, 𝑡)
𝜉(𝐬, 𝑡) = 𝐗(𝐬) ⋅ 𝛂𝜉 + 𝑊𝜉(𝐬, 𝑡) + 𝜖𝜉(𝐬, 𝑡)

                                             (3) 

 

where X(s) represents p spatial covariates (geographical coordinates), αi is a set of p 

regression parameters, Wi(s, t) is a spatio-temporal model capturing the associations 

between different sites, and 𝜖i(s, t) represents the noise not included in the spatio-

temporal model (commonly known as the nugget effect), s denotes a spatial coordinate, 

and t is the time. Subscript i represents one of µ, σ, ξ. (Recall that, in the framework of 

Bayesian statistics, µ(s, t), σ(s, t), ξ(s, t), αi, Wi(s, t), and 𝜖i(s, t) are random variables.) 

Usually, a Gaussian model independent of the position, i.e., N (0, τi 
2), is adopted for the pure 

noise effect 𝜖i(s,t). For the spatial covariates X(s), the geographic positions of the 

observatories are used. However, because Extremadura Region is not large (less than 2 

degrees in latitude and longitude and with a total area of 41632 km2) and one of our 

interest was to study the effect of the altitude on extreme rainfall, the altitude hs of the 

observatories was the only covariate chosen. For the spatio-temporal term Wi(s, t), several 

models were selected. Firstly, a stationary model was fitted, where Wi(s, t) was considered 

to be a random variable with a Gaussian distribution function, P(Wi(s, t)|·) = N (0, Σ(s,s’, 

βi)). For the covariance matrix Σ(s,s’, βi), an exponential model was chosen: 

 

𝛴(𝑠, 𝑠′, 𝜷𝑖) = 𝛽𝑖0
2 exp(−| 𝑥⃗ (𝑠) − 𝑥⃗ (𝑠′)|/𝛽𝑖1),           (4) 

 

where 𝛽𝑖0
2  (sill) and 𝛽𝑖1 (range) are unknown parameters, 𝑥⃗ (𝑠) is the geographical 

position (longitude, latitude) of the observatory 𝑠, and | 𝑥⃗ (𝑠) − 𝑥⃗ (𝑠′)| is the distance 

between the observatories 𝑠 and 𝑠′. In these models, equation (3) may be regarded as 

universal Kriging with nugget effect (Cressie and Wikle 2011). We were not only 

interested in the spatial distribution of extreme rainfall over the Extremadura Region, 

but also (probably our main interest) we are interested to know if there has been a 

change in extreme rainfall along the time during the period under study. For this reason, 

a temporal trend was added to the model, but only in the location parameter 𝜇(𝐬, 𝑡), 

whose 𝑊𝜇(𝐬, 𝑡) term now includes a linear temporal trend 

𝑊𝜇(𝐬, 𝑡) = Ψ𝜇(𝐬) + (𝑌(𝐬) ⋅ 𝛄𝜇 + Φ𝜇(𝐬))𝑡,        (5) 

in which it is assumed that the trend coefficient 𝑌(𝐬) ⋅ 𝛄𝜇 + Φ𝜇(𝐬) depends on some 

covariates 𝑌(𝐬) in addition to a coefficient Φ𝜇(𝐬) that takes into account some spatial 

correlations (observatories that are geographically close show more similar temporal 

trends than those that are far away from each other). The altitude of the observatories 

was taken for the spatial covariate 𝑌(𝐬), as in the stationary model. Ψ𝜇(𝐬) and Φ𝜇(𝐬) are 

two independent geostatistical models similar to those used in the stationary case, i.e., 

𝐏(Ψ𝜇(𝐬)| ⋅) = 𝑁(𝟎, Σ𝜓(𝑠, 𝑠′, 𝜷𝜓)) and 𝐏(Φ𝜇(𝐬)| ⋅) = 𝑁(𝟎, Σ𝜙(𝑠, 𝑠′, 𝜷𝜙)). 

Summarizing, the model for the location parameter in the non-stationary case is 
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𝜇(𝐬, 𝑡) = 𝐗(𝐬) ⋅ 𝛂𝜇 + Ψ𝜇(𝐬) + (𝑌(𝐬) ⋅ 𝛄𝜇 + Φ𝜇(𝐬))𝑡 + 𝜖𝜇(𝐬, 𝑡)

= 𝜇0(𝐬) + 𝜇1(𝐬)𝑡 + 𝜖𝜇(𝐬, 𝑡),
                     (6) 

where 𝜇0(𝐬) and 𝜇1(𝐬) have the same form, with a spatial covariate matrix multiplied by 

regression coefficients plus a spatially correlated noise. For the scale 𝜎 and shape 𝜉 

parameters, the models are the same as in the stationary case (equation (3)). To close 

this second stage, the random variables that appear in the left-hand term of equations (3) 

are assumed to have a normal distribution: 

𝐏(𝜇(𝐬, 𝑡)) = 𝑁(𝐗(𝐬) ⋅ 𝛂𝜇 + 𝑊𝜇(𝐬, 𝑡), 𝜏𝜇
2)

𝐏(𝜎(𝐬)) = 𝑁(𝐗(𝐬) ⋅ 𝛂𝜎 + 𝑊𝜎(𝐬), 𝜏𝜎
2)

𝐏(𝜉(𝐬)) = 𝑁(𝐗(𝐬) ⋅ 𝛂𝜉 + 𝑊𝜉(𝐬), 𝜏𝜉
2)

 

Note that this is equivalent to saying that 𝜖𝑖(𝐬, 𝑡) is distributed as 𝑁(0, 𝜏𝑖
2). 

 
3.3 Third stage 
 

In the third stage, it is necessary to specify a model for the prior distribution of the 

different parameters appearing in the model, specifically, the prior distributions of the 

spatial regression parameters 𝛂𝑖 = (𝛼𝑖0, 𝛼𝑖1), the spatial model parameters 𝛃𝑖 =
(𝛽𝑖0

2 , 𝛽𝑖1), the variance parameters 𝜏𝑖
2, and, in the non-stationary case, the trend 

parameter 𝛄 = (𝛾0, 𝛾1). In the case of 𝛂𝑖, considering that the only covariate is the 

altitude ℎ𝑠 of the observatory, 𝑋(𝐬) ⋅ 𝛂𝑖 = 𝛼𝑖0 + ℎ𝑠𝛼𝑖1, each 𝛼𝑖𝑗 was taken to have a 

Gaussian distribution 

𝐏(𝛼𝑖𝑗) = 𝑁(𝑎𝛼𝑖𝑗
, 𝑏𝛼𝑖𝑗

2 ),  𝑖 = {𝜇, 𝜎, 𝜉}, 𝑗 = {0,1}, 

where the hyperparameters of mean (𝑎𝛼𝑖𝑗
) and variance (𝑏𝛼𝑖𝑗

2 ) were chosen appropriately 

in such a way that the distribution was either non or weakly informative with no extra 

information about the parameters, e.g., 𝐏(𝛼𝑖𝑗) = 𝑁(0,10000). A similar model 

(Gaussian) was selected for the trend parameter 𝛄. Since the normal and inverse gamma 

distributions are conjugate (Link and Barker 2010), inverse gamma distributions were 

selected for the sill parameters 𝛽𝑖0
2  and 𝜏𝑖

2. A gamma distribution was chosen for the 

range parameters 𝛽𝑖1. 

 
 
3.4 Parameter estimation 
 

For the stationary model, from expression (1) and taking into account the hierarchical 

model introduced in the above subsections, the posterior distribution of the parameters is 

given by 

𝑃(𝝁,𝝈, 𝝃,𝑾,𝑾,𝑾,  ,,, 𝜷, 𝜷, 𝜷, 𝜏𝜇
2,  𝜏𝜎

2, 𝜏 
2|𝒀, 𝑿) 

 

 

 

 

 ∏ ∏ gev(𝑦𝑡𝑠|𝝁, 𝝈, 𝝃)

𝑛𝑑𝑎𝑡

𝑡=1

𝑛𝑜𝑏𝑠

𝑠=1

∙ 𝐏(𝝁|𝑿,,𝑊,  𝜏𝜇
2)𝐏(𝝈|𝑿,,𝑊, 𝜏𝜎

2)𝐏(𝝃|𝑿,,𝑊, 𝜏 
2)

∙ 𝐏(𝐖|𝜷)𝐏(𝐖𝜎|𝜷𝜎)𝐏(𝐖|𝜷)                                                                                                                

∙ 𝐏(0)𝐏(1)𝐏(𝜎0)𝐏(𝜎1)𝐏(0)𝐏(1) 

∙ 𝐏(𝛽0
2 )𝐏(𝛽1)𝐏(𝛽𝜎0

2 )𝐏(𝛽𝜎1)𝐏(𝛽0
2 )𝐏(𝛽1) 𝐏(𝜏

2) 𝐏(𝜏𝜎
2) 𝐏(𝜏

2)                                                                                       
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where 𝝁, 𝝈, and 𝝃 denote the vectors of the GEV parameters at the 𝑛𝑜𝑏𝑠 observatories, 

𝐠𝐞𝐯 denotes the GEV probability density function. 

For the non-stationary model: 

𝑃(𝝁1,… , 𝝁𝑛𝑑𝑎𝑡 , 𝝈, 𝝃,𝚿𝜇 , 𝚽𝜇 ,𝐖𝜎,𝑾,  , 𝜸𝜇 ,, , 𝜷 . 
Ψ 𝜷𝜇 

Φ , 𝜷, 𝜷, 𝜏𝜇
2,  𝜏𝜎

2, 𝜏 
2|𝒀, 𝑿, 𝑇) 

 ∏ ∏ gev(𝑦𝑡𝑠|𝝁𝑡 , 𝝈, 𝝃)

𝑛𝑑𝑎𝑡

𝑡=1

𝑛𝑜𝑏𝑠

𝑠=1

∙ 𝐏(𝝁𝑡|𝑿, 𝑇,, 𝜸𝜇 ,Ψ𝜇 , Φ𝜇 , 𝜏𝜇
2)𝐏(𝝈|𝑿,,𝑊, 𝜏𝜎

2)𝐏(𝝃|𝑿,, 𝑊, 𝜏 
2)

∙ 𝐏(𝚿𝜇| 𝜷. 
Ψ )𝐏(𝚽𝜇| 𝜷𝜇 

Φ )𝐏(𝐖𝜎|𝛽𝜎)𝐏(𝐖|𝛽)                                                                                                                 

∙ 𝐏(0)𝐏(1)𝐏(𝛾0)𝐏(𝛾1)𝐏(𝜎0)𝐏(𝜎1)𝐏(0)𝐏(1)  

∙ 𝐏( 𝛽0
2

 
Ψ )𝐏( 𝛽1 

Ψ )𝐏( 𝛽0
2

 
Φ )𝐏( 𝛽1 

Φ )𝐏(𝛽𝜎0
2 )𝐏(𝛽𝜎1)𝐏(𝛽0

2 )𝐏(𝛽1) 𝐏(𝜏
2) 𝐏(𝜏𝜎

2) 𝐏(𝜏
2)       

 

where now 𝝁𝑡 represents the vector of GEV parameters 𝜇𝑡𝑠 at observatory 𝑠 at time 𝑡, 

𝑠 = 1,… , 𝑛𝑜𝑏𝑠. The variable 𝑡 represents the time vector {𝑡𝑖 , 𝑖 = 1,2,… , 𝑛𝑑𝑎𝑡}. 

Note that in the hierarchical models these likelihood functions are built from the 

probability distributions defined on the first and second stages, and then the prior 

distribution defined on the third stage is added to obtain the posterior distributions 

defined on equations (7) and (8). 

The simulation of the posterior distribution was carried out by means of a Markov 

chain Monte Carlo (MCMC) method, specifically, by using a Gibbs sampler with 

embedded Metropolis-Hastings steps. See Gilks et al. (1996) for more details about 

MCMC methods. The theory of MCMC methods shows that once the Markov chain 

reaches its stationary distribution it becomes equal to the posterior distribution, even 

when the latter is only known up to a normalizing constant (Gilks et al. 1996). This 

means that it is important to wait for some time until the moment the stationary 

distribution is attained. This period is known as the “burn-in” period. The problem is 

that usually the number of iterations needed to reach this stationary limit is unknown, 

and diagnostic tools are necessary to deal with the situation. In the present work, we 

used the Gelman-Rubin diagnostic convergence test, (see Cowles and Carlin (1996) for 

a review). In this method, several parallel chains initialized from different starting 

points are run, and convergence is monitored by a parameter called the potential scale 

reduction factor which measures the ratio of the between-chain variance to the within- 

chain variance. When this factor approaches unity, convergence is taken to have been 

attained. Once the convergence is attained, one gathers the last half of each chain to 

form a single chain that is used for subsequent calculations. In this work, 5 chains 

with 20000 samples each were run, and a single 50000 sample chain was formed from 

these. The Gelman-Rubin diagnostic convergence test was implemented using the 

CODA (Plummer 2006) package of the R language. 

The computer programs used to carry out the simulations were written in FOR- 

TRAN. The map figures were prepared using the R packages fields and sp. 
 

 
3.5 Assessment of goodness of fit of the model 
 

The goodness-of-fit assessment was performed in two stages. In the first stage, several 
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models were fitted to the observed data, and the best one was chosen according to the 

DIC (Spiegelhalter et al. 2014).  

This criterion is based on constructing a parameter which takes into account both the 

“goodness-of-fit” and the “complexity of the model”. The posterior mean of the 

deviance 𝐷𝜃 = 𝐸𝜃(𝐷(𝜃)) is used as a measure of the goodness-of-fit, where the 

deviance 𝐷(𝜃) is defined as minus two times the logarithm of the likelihood of the 

random variable 𝑦 under study, i.e., 𝐷(𝜃) = −2log(𝐏(𝑦|𝜃)), with 𝜃 being the vector of 

parameters of the likelihood, that is, 𝜇, 𝜎, 𝜉 and 𝐏 the GEV density distribution function. 

The complexity of the model is taken into account by the parameter 𝑝𝐷 defined as 𝑝𝐷 =

𝐷𝜃 − 𝐷(𝜃), which is called the effective number of parameters, where 𝐷(𝜃) is the 

deviance at the posterior means of the parameters of interest 𝜃. The DIC is defined as 

𝐷𝐼𝐶 = 𝐷𝜃 + 𝑝𝐷 , 

with the lower the DIC, the better the model. The values of the parameters 𝜇, 𝜎, 𝜉 used to 

evaluate DIC has been obtained during the MCMC evaluation. 

In the second stage, the fit of the proposed model was assessed by using the Bayesian 

posterior predictive distribution (Lynch and Bruce 2004, Gelman et al. 1996). This 

distribution is used to obtain replicated data 𝑦rep which can be regarded as predictions of 

the model. If these predictions are not consistent with the observed data in some way, 

the model can be rejected. Otherwise, one would be disinclined to reject it. The posterior 

predictive distribution under the hypothesis of conditional independence is given by 

(Gelman et al. (1996))  

𝐏(𝑦rep|𝑀, 𝑦) = ∫ 𝐏(𝑦rep|𝑀, 𝜃)𝐏(𝜃|𝑀, 𝑦)𝑑𝜃, 

where 𝑦 represents the observed data, 𝜃 is a set of parameters, 𝑀 is the model, 

𝐏(𝑦rep|𝑀, 𝜃) corresponds to the distribution under 𝑀 and 𝜃 , and 𝐏(𝜃|𝑀, 𝑦) is the 

posterior distribution under model 𝑀 and observed data 𝑦. 𝑦rep could be regarded as the 

value one might observe in the future under the hypothesis that the model is the same as 

today, i.e., the prediction. In order to compare these replicated data with the observed 

ones, one computes some statistic 𝑇(𝑦) that can represent some features of the data we 

want the model to reproduce. For example 𝑇(𝑦) could be the mean, the standard 

deviation, the maximum, the minimum, etc. A metric quite often used to measure the 

degree of agreement between the data and the model is the 𝑝-value which is defined in 

the Bayesian context as 

𝑝𝑏(𝑦) = 𝐏(𝑇(𝑦rep) ≥ 𝑇(𝑦) | 𝑀,𝑦). 
 

A 𝑝𝑏-value that is too small or too large would indicate that the model does not 

reproduce the data (or at least some features of the data) well. One way to calculate the 

𝑝𝑏-value is by means of an MCMC method. As was noted above, an MCMC method 

allows one to obtain values of the parameter 𝜃 from the posterior distribution 𝐏(𝜃|𝑦). 
For each simulated 𝜃 value, a 𝑦rep value is simulated by using the posited model, and 

then the discrepancy statistic 𝑇(𝑦rep) is computed. Evaluating the number of times that 

𝑇(𝑦rep) ≥ 𝑇(𝑦) gives the 𝑝𝑏-value as 
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𝑝𝑏 =
#(𝑇(𝑦rep) ≥ 𝑇(𝑦))

𝑁
, 

with 𝑁 being the number of samples of 𝜃 taken from the Markov chain. It is possible to 

extend the statistic 𝑇(𝑦) used in the comparison by incorporating the parameter 𝜃, i.e., 

using a statistic 𝑇(𝑦, 𝜃) for the observed data and 𝑇(𝑦rep, 𝜃) for the replicated data. 

These statistics are termed discrepancy statistics, and, in the case of the observed data, 

the realized discrepancy Gelman et al. (1996). The model’s goodness-of-fit can then be 

visualized by means of a scatter plot of 𝑇(𝑦, 𝜃) 𝑣𝑠 𝑇(𝑦rep, 𝜃) for each 𝜃. The proportion 

of points that are above the 45 line is the 𝑝𝑏-value. 

Because of the interest in examining the existence of a temporal trend in the extreme 

rainfall, a Mann-Kendall test was used as our statistic 𝑇(𝑦). For each observatory, we 

estimated the Mann-Kendall test statistic, using the expression (Gallego et al. 2011) 

𝑇(𝑦) =
1

√𝑛(𝑛 − 1)(2𝑛 + 5)/18
(∑ ∑ sgn

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

(𝑦𝑗 − 𝑦𝑖) − sgn(𝑇)), 

where sgn(𝑥) is the sign function defined as +1 if 𝑥 > 0, −1 if 𝑥 < 0, and 0 if 𝑥 = 0, 

and 𝑛 is the number of data for each observatory. Evaluating this statistic for the 

observed and the replicated data, we calculated the 𝑝𝑏-value, and plotted the results as a 

histogram. 

4 Results 

 
4.1 Stationary models 
 

As mentioned above, in a first step and before fitting the whole spatio-temporal model, 

we fitted a set of stationary models of increasing complexity with the aim of choosing 

the one which best fits our data. We then introduced into it a temporal trend term to 

form the spatio-temporal model. The models fitted were the following: model S0 with 

no spatial trend in any of the GEV parameters, model S1 with spatial trend only in the 

location parameter, model S2 with spatial trend in location and scale parameters, and 

model S3 with spatial trend in the three parameters of the GEV. As again mentioned 

before, for the spatial trend, the altitude of the observatories was chosen as covariate. It 

was normalized as 

ℎ̃𝑖 =
ℎ𝑖

𝑜𝑏𝑠 − min𝑖{ℎ𝑖}

max𝑖{ℎ𝑖} − min𝑖{ℎ𝑖}
, 

where ℎ𝑖
𝑜𝑏𝑠 is the altitude above mean sea level of observatory 𝑖, and max𝑖{ℎ𝑖} and 

min𝑖{ℎ𝑖} are the maximum and minimum altitudes of the observatories, respectively, so 

that the new altitude covariate ℎ̃𝑖 is 0 for the lowest observatory and 1 for the highest. 

The altitudes of the chosen gauges range from 185 to 796 m a.s.l. 

In order to compare the suitability of the four candidate models, the deviance 

information criterion (DIC) was used. The results are presented in Table 1. In winter 
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Model D 𝐷(𝜃) 𝑝𝐷 DIC Season 

S0 28861.38 28687.38 173.99 29035.37 Winter 

S1 28859.28 28694.96 164.31 29023.60 Winter 

S2 28857.88 28693.16 164.72 29022.60 Winter 

S3 28860.12 28695.93 164.18 29024.30 Winter 

S0 29831.58 29663.79 167.79 29999.38 Autumn 

S1 29832.42 29675.61 156.81 29989.24 Autumn 

S2 29829.69 29673.57 156.12 29985.82 Autumn 

S3 29831.07 29675.69 155.38 29986.45 Autumn 

S0 27000.82 26826.60 174.21 27175.03 Spring 

S1 27000.94 26836.21 164.72 27165.67 Spring 

S2 27000.59 26836.07 164.51 27165.11 Spring 

S3 26999.54 26835.48 164.06 27163.61 Spring 
 

 
 

and autumn, S2 is the best model, and in spring S3. These will therefore be chosen as 

our spatial (stationary) models. 

Figure 2 shows the estimated posterior distributions of the spatial trend parameter 

(α1) of the chosen models. The spatial trend coefficients (α1) are clearly positive in the 

cases of the location and scale parameters (for the latter, what actually appears is the 

trend in the logarithm of the scale parameter) for all three seasons. The largest value 

of spatial trend for the location parameter appears in winter with a mean (standard 

deviation) of 30.59 (5.17) mm/km. The lowest appears in spring with a mean of 22.11 

(3.86) mm/km, and a slightly larger value in autumn with a mean of 24.43 (4.94) 

mm/km. (Note that the units of these estimates are mm/km, i.e., they are not 

normalized.) The spatial trend of the scale parameter, however, is quite similar for all 

three seasons, with a value of about 0.85 (0.33) km−1. In the case of spring, for which 

the S3 model was the best according to the DIC, the spatial trend coefficient for the 

shape parameter was slightly negative with a mean of -0.175 km−1 and a standard 

deviation of 0.295 km−1. The fact that the location and scale parameter spatial trends 

are positive is a consequence of the increase in both the amount and variability of the 

extreme rainfall with altitude. This effect can be seen in Figure 3 in which the highest 

values of the median appear at the high altitudes in the north and the south of the 

region, and the lowest values in the river valleys. The pattern is similar for the 

variances. 

With the purpose of understanding more clearly the dependence on altitude of the 
GEV parameters, we have plotted in Figure 4 the means of X(s) · α and of X(s) · α + 
W(s) (the latter includes the error term) in equation (3) versus the altitude of the 
observatories. 

There is a clear positive relationship between both the location and the scale pa- 

rameters and the altitude of the observatory in the three seasons, even taking the error 

term W(s) into account. The shape parameter, however, remains nearly constant in 

winter and autumn, and decreases slightly with altitude in spring. The more negative 

the shape parameter, the stronger is the tail in the extreme rainfall distribution, so that 
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these results would indicate a stronger tail for the higher observatories in spring. 

Another interesting result is the covariance function of the GEV parameters given 

by equation (4). Table 2 lists the medians and (2.5%, 97.5%) quantiles of the range 

coefficient βi1 for the location, scale, and shape parameters. The strength of the spatial 

dependence is similar for the shape and scale parameters, which are nearly three times 

greater than that of the location parameter. Also, this strength is similar for all three 

seasons except for the location parameter for which it is somewhat greater in autumn 

than in the two other seasons. 
 

 

Season Location Scale Shape 

Winter 68.2 (35.3, 142.1) 178.1 (91.0, 308.9) 192.1 (99.2, 328.7) 
Autumn 84.9 (40.9, 186.4) 188.8 (98.1, 323.7) 200.5 (107.4, 342.0) 
Spring 68.3 (33.8, 150.9) 178.6 (92.1, 311.3) 200.8 (108.1, 339.5) 

 
 

4.2 Non-stationary models 
 

Next, a temporal trend was included in the location parameter of each chosen stationary 

model (S2 for winter and autumn and S3 for spring). Two temporal trend models were 

fitted, one without a spatial trend in the time coefficient (labeled T1) and one with it 

(labeled T2). i.e., in T1, the covariate matrix Y  in equation (6) reduces to a vector 

column with unit entries, while, in T2, the covariate matrix is a two-column matrix, the 

first column with unit entries and the second with the observatory altitudes 

(previously normalized by equation (10)), specifically 

 
T1: 𝜇(𝐬, 𝑡) = 𝑋(𝐬) ⋅ 𝛂 + Ψ(𝐬) + (𝛾0 + Φ(𝐬))𝑡 + 𝜖(𝐬, 𝑡)

= 𝜇0(𝐬) + 𝜇1(𝐬) ⋅ 𝑡 + 𝜖(𝐬, 𝑡),
T2: 𝜇(𝐬, 𝑡) = 𝑋(𝐬) ⋅ 𝛂 + Ψ(𝐬) + (𝛾0 + ℎ𝛾1 + Φ(𝐬))𝑡 + 𝜖(𝐬, 𝑡)

= 𝜇0(𝐬) + 𝜇1(𝐬) ⋅ 𝑡 + 𝜖(𝐬, 𝑡).

 

 
Previous to its use in the temporal trend models, the time axis was normalized to the 
interval (−1, 1). 
 

 

Table 3 lists the results using DIC. The DIC values are noticeably lower than the 

values that appear in Table 1, meaning that the temporal trend models are better suited 

to explaining the data than the stationary ones. The preferred model for winter and 

autumn is T2, while that for spring is T1. 
 

 

Model 𝐷 𝐷(𝜃) 𝑝𝐷 DIC Season 

T1 26254.82 25096.80 1158.02 27412.84 Winter 

T2 25957.06 24740.16 1216.90 27173.97 Winter 

T1 26926.20 25851.92 1074.28 28000.49 Autumn 

T2 26828.26 25749.79 1078.47 27906.73 Autumn 

T1 25893.59 25127.49 766.09 26659.69 Spring 

T2 25929.98 25181.07 748.91 26678.90 Spring 
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The estimated posterior distributions of the γ coefficients are shown in Figure 5 for 

the chosen models. For winter, the γ0 coefficient, which measures the temporal trend of 

the location parameter at an overall level, is clearly negative. This would indicate that in 

winter there exists a decrease in extreme rainfall over the Extremadura Region. The γ1 

coefficient for this season is slightly positive, but the value zero is clearly within the 

95% confidence interval around the mean, so that, although the use of the DIC seems to 

indicate that altitude has an influence on the temporal trend of the location parameter, 

this influence can be considered as statistically non-significant. For autumn, the 

distribution of the γ0 coefficient is preponderantly positive but not too far from zero, so 

that one can not say that there is any increase in extreme precipitation in this season for 

the region under study. In spring, as in winter, the distribution of the γ0 coefficient is 

clearly negative, so that the results would indicate a decrease in extreme rainfall at an 

overall level in this region. 

In order to evaluate the temporal trend in the location parameter at a local level, we 

analysed the temporal trend coefficient µ1(s). Figure 6 shows the means and standard 

deviations, expressed in mm/decade, for the three seasons considered. For the winter, 

there is a negative temporal trend in the location parameter over the region except for 

the more mountainous part in the north. The strongest values correspond to the 

southeast. The positive values in the more mountainous zone are smaller than those 

reached in the southeastern zone. For the spring the trend is negative over the whole 

region but with lower values than those reached in winter. However, in autumn it 

appears that the location parameter increases with time. The statistical significance of 

the results were checked by evaluating the p-values for each observatory (see equation 

(9)) of a zero temporal trend within the distribution of µ1(si) for the i-th observatory. 

The results are shown in Figure 7. The maps show that in autumn (spring), the 

statistical significance of a positive (negative) temporal trend in the location parameter 

spans the entire region. In winter, however, only the southeastern negative region 

appears as statistically significant. 

In addition to the regional model for the temporal trend in the extreme rainfall, a 

local model was fitted for each observatory individually using the Bayesian 

formulation. In this case the GEV model for each observatory is taken to be 

 
𝐏(𝑌 ≤ 𝑦|𝜇0, 𝜇1, 𝜎, 𝜉) = 𝐺𝐸𝑉(𝑦|𝜇0 + 𝜇1𝑡, 𝜎, 𝜉). 

 
 

Figure 8 shows for the winter the 2.5 (blue) and 97.5 (red) quantiles of the temporal 

trend coefficients µ1 for each local model together with the corresponding quantiles of 

the regional temporal trend coefficient µ1(s). Notice that most of the local temporal 

trends and the regional one are negative. However, the dispersion of the regional 

temporal trend coefficient is noticeably less than the individual values, so that the use 

of a regional model has allowed the uncertainty in the evaluation of the temporal trend 

to be reduced considerably. In this way, the regional model allows the overall 

tendency of the extreme rainfall over time to be described. This reduction in the 

uncertainty of the temporal trend was one of the reasons for using a hierarchical 

spatial model. 
 
 

5 Assesment of the models 
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As mentioned above, the Mann-Kendall trend test was used to assess the models’ 

suitability in describing the observed data. To this end, a thousand values of the 

Markov chain of the fitted model were chosen at random, and from these a thousand 

simulated extreme rainfall samples at each observatory were obtained. Figure 9 shows 

the histograms of the Mann-Kendall statistics of the simulated data together with the 

Mann-Kendall statistics obtained of the observed data (red line) for four observatories 

in winter. These examples were selected to show one case with a positive Mann-

Kendall statistic (observatory #10), one that was negative (observatory #29), one 

nearly zero (observatory #16), and one with a p-value less than 0.025 (observatory # 

3) which could be considered to be a case in which the model fails to fit the data (or at 

least this feature of the data by using the Mann-Kendall statistic). Note that the fit 

could be considered quite good because there is a preponderance of positive values in 

the histograms when the observed statistic is positive (observatory #10), a 

preponderance of negative values when the observed statistic is negative (observatory 

# 29), and a symmetric histogram around the value zero when the observed statistic is 

close to zero (observatory #16). In winter, the model fails to fit the data for 8 out of 72 

observatories, while in autumn and spring this number falls to only 2 cases. 
 

 
 
6 Dependence on the North Atlantic Oscillations 

 
The results obtained in the previous section support the idea that, during the last 50 

years, there has been a decrease in extreme precipitation in Extremadura in the winter 

and spring seasons and an increase in autumn. A possible cause of this temporal trend 

is a change in the NAO pattern during that period. The NAO is the most important 

mode of variability in the climate of the North Atlantic region and has a major 

influence on Europe’s climate (Greatbatch 2000). In particular, its influence on 

precipitation in the Iberian Peninsula has been demonstrated (Rodríguez-Puebla et al. 

1998, Goodess and Jones 2002, Trigo et al. 2004, Gallego et al. 2005, Queralt et al. 

2009, Casanueva et al. 2014). Within the Iberian Peninsula, the most strongly 

influenced region is the southwest which includes the Extremadura Region 

(Rodríguez- Puebla et al. 1998, Goodess and Jones 2002). The canonical view of the 

NAO is that when it is in its positive state there is reinforcement of the Azores 

anticyclone, so that many of the storms follow a path to the north of the Iberian 

Peninsula, with hardly any of the frontal systems passing over the Peninsula, and there 

therefore being a decrease in rainfall. When it is in its negative phase however, the 

weakness of the Azores anticyclone allows more frontal systems to pass over the 

Iberian Peninsula, thus increasing rainfall over that area. In sum, one expects an 

increase in precipitation when the NAO is in its negative phase and a decrease when it 

is in its positive phase. The aforementioned references respecting the Iberian 

Peninsula support this conclusion. 

In order to explore the influence of the NAO on extreme rainfall, we posited a 

hierarchical Bayesian model with a GEV distribution, similar to the temporal trend 

model proposed above, in which the time variable t is replaced by the NAO index. The 

location parameter is then 

 
𝜇(𝐬, 𝑡) = 𝑋(𝐬) ⋅ 𝛂 + Ψ(𝐬) + (𝑌(𝐬) ⋅ 𝛄 + Φ(𝐬)) ⋅ NAO(𝑡) + 𝜖(𝐬, 𝑡)

= 𝜇0(𝐬) + 𝜇1(𝐬) ⋅ NAO(𝑡) + 𝜖(𝐬, 𝑡),
          (11) 
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where NAO(t) is the value of the NAO index at time t. This model is analogous to 

model T2 in the previous sections, but now the time t is replaced by the NAO index at 

time t, NAO(t). This NAO(t) index is constructed by averaging the daily NAO index 

observed at the times the rainfall in the observatories reaches an extreme value in year 

t. The NAO index is obtained from the Climate Prediction Center (CPC) of the NOAA 

(USA, http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml). It is 

based on the first EOF (empirical orthogonal function) of the monthly mean 1000-hPa 

altitude anomalies poleward of 20 latitude for the northern hemisphere (see the 

aforementioned Web page for more information on the procedure used by the CPC to 

obtain the index). 

As before, we fitted two NAO models, one (labeled NAO1) with the γ coefficients 

in the expression (11) taken as zero (i.e., the extreme rainfall’s NAO dependence is 

assumed not to involve the altitude), and the other (labeled NAO2) with the γ 

coefficients taken to be different from zero (i.e., in which that dependence is assumed 

to be a function of altitude). Prior to its use in the model, the NAO index was 

normalized by subtracting its mean for the period under study and dividing by the 

standard deviation. 

The results using the DIC are presented in Table 4. One observes that NAO1 is the 

preferred model for winter, and NAO2 for autumn and spring. The means and 

standard deviations of the trend coefficients µ1(s) are displayed in Figure 10, and the 

Bayesian p-values of the zero value in Figure 11. In Figure 10, one observes that, for 

autumn, there is a negative mean NAO-trend coefficient for most of the Extremadura 

Region, but this could be considered as having “little” statistical significance because 

the p- value of the zero value (see Figure 11) is less than 95% for the entire region. 

For spring, except for the southeastern part of the region, the negative NAO-trend 

coefficient is statistically significant. For winter, most of the region has negative mean 

NAO-trend values that are statistically significant. There is, however, a singular 

region in the northeast that has large positive values of both the mean and the standard 

deviation, but these turn out to not be statistically significant. Given the orders of 

magnitude difference in the scales in Figure 10, it is clear that the influence of the 

NAO is quite stronger in winter than in the other two seasons. These results are 

therefore consistent with the expectation that a positive NAO index will lead to a 

decrease in rainfall in southwestern Spain, especially for winter and to a lesser degree 

for spring and autumn, probably because the NAO signal is stronger in winter. 

 
 

Model 𝐷 𝐷(𝜃) 𝑝𝐷 DIC Season 

NAO1 26197.48 25310.53 886.94 27084.42 Winter 

NAO2 26278.39 25317.67 960.71 27239.11 Winter 

NAO1 26826.80 25751.14 1075.66 27902.46 Autumn 

NAO2 26814.36 25732.44 1081.91 27896.28 Autumn 

NAO1 25849.06 25075.79 773.26 26622.33 Spring 

NAO2 25789.67 24993.46 796.20 26585.88 Spring 
 

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.
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Since the existence of a relationship between the NAO index and the extreme rainfall 

does not by itself explain the trend observed in the extreme rainfall, it is necessary to see 

whether there exists a trend in the NAO, specifically, it is necessary to examine the 

relationship between the NAO and the extreme rainfall, and therefore to examine 

whether the uncertainty in predicting NAO results in a significant increase of the 

uncertainty of the predictive ability of the model. Figure 12 shows the distributions of 

the temporal coefficients 𝛽 of a simple linear Bayesian regression model 𝑁𝐴𝑂(𝑡) = 𝛼 +
𝛽(𝑡 − 𝑡0) + 𝜖(𝐬, 𝑡), where 𝜖(𝐬, 𝑡) is a Gaussian noise, and the time 𝑡 is normalized to 

(0,1). The results show positive trends for the NAO index in the study period for winter 

and spring, with mean (standard deviation) of the β coefficient of 0.019 yr−1 (0.007 yr−1) 

and 0.008 yr−1 (0.006 yr−1), respectively. Autumn, however, has a negative temporal 

trend with a mean (standard deviation) of -0.006 yr−1 (0.006 yr−1). The temporal trend is 

thus more marked in winter than in spring or autumn. 

One may conclude from these results that the increase in the NAO index for winter 

and spring could have led to the decrease observed in extreme rainfall events over 

Extremadura during the study period (1960-2009). Nonetheless, the lack of any clear 

relationship between the NAO and extreme rainfall in autumn together with the weak 

trend observed for the NAO in this season preclude us from attributing the observed 

increase in extreme rainfall in autumn to the variation of the NAO during that season 

for the period under study. 

 
 

7 Summary and conclusions 

 
In this work, we have presented a statistical study of extreme rainfall in the region of 

Extremadura during the second half of the twentieth century. For this purpose, we 

used a hierarchical spatio-temporal Bayesian model with a GEV parametrization of 

the extreme event data. This uses of a hierarchical model allowed us to pool the spatial 

information straightforwardly and consistently. Due to the seasonal character of 

precipitation in this geographical region, the study was carried out independently for 

each of three seasons: winter, autumn, and spring. Summer was ignored due to the 

lack of precipitations in that season. The study was performed in two steps. In the first 

step, spatial models were selected for the location, scale, and shape parameters. In the 

second, a temporal trend term was introduced in the location parameter as a way to 

take into account the influence of climate change on the region’s extreme rainfall. The 

deviance information criterion was used to select the best model. 

The results showed that, for the Extremadura Region over the period 1961-2009, 

there had been a decrease in extreme rainfall in winter and spring and a slight increase 

in autumn. These findings are consistent with other studies of extreme rainfall over the 

Iberian Peninsula (García et al. 2007, Acero et al. 2011). Comparison of the 

hierarchical model results with those obtained by fitting a GEV distribution locally 

showed the former to have led to markedly lower uncertainties in the trend 

parameters. 

We found a negative relationship between the NAO index and Extremadura’s ex- 

treme rainfall in winter. In spring and autumn, however, the results were less conclu- 

sive, probably because the NAO index is weaker in those two seasons. We also found 

an increase in the NAO index’s intensity in winter and spring, and a slight decrease in 

autumn. The increase in winter could help explain this season’s reduction in extreme 
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rainfall in our region. 
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Table captions: 

 

Table 1.   Results of using the DIC for the stationary models. 

 

Table 2.   Median (2.5%, 97.5%) of the range parameters βi1  for 

location, scale, and shape parameters. 

 

Table 3.   Results of using the DIC for the temporal trend models. 

 

Table 4.  Results of using the DIC for the NAO-trend models. 
 

 
 

Figure captions: 
 

Figure 1. Location of the Extremadura region within the Iberian Peninsula (left). Topographic map of 

Extremadura together with the locations of the meteorological observatories used in this study (right). 

The scale is in metres above sea level. 

 
 

Figure 2. Estimated posterior distributions of the spatial-trend coefficients α1 for location (left), scale (mid- 

dle), and form (right) parameters for the chosen models S2 in winter (upper row), S2 in autumn (middle row), 

and S3 in spring (bottom row). The red horizontal line shows the 0.025 to 0.975 quantile. 
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Figure 3. Contour plots of the median (top row) and variance (bottom row) of the seasonal extreme rainfall 

for winter (left), autumn (middle), and spring (right). 

 
Figure 4. Plot of the means of the term X(s) · α in equation (3) versus the altitude of the observatories 

(in red) and the term X(s) · α + W (s) (black dots), for the location (top row), scale (middle row), and shape 

(bottom row) parameters, and for winter (left), autumn (middle), and spring (right). The vertical scales are in 

units of km, and the horizontal scales in m a.s.l. 
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Figure 5. Estimated posterior distributions of the temporal trend coefficients γ0 (left) and γ1 (right) for the 

chosen models T2 in winter (top two), T2 in autumn (middle two), and T1 in spring (bottom). The horizontal 

red line shows the 0.025 to 0.975 quantiles. 
 
 

Figure 6.   Spatial distributions of the means (top row) and standard deviations (bottom row) of the temporal 

trend coefficients µ1(s) for winter (left), autumn (middle), and spring (right). The scale is in mm/decade. 

 
 

Figure 7.  Spatial distributions of the Bayesian p-values of the zero value in the temporal trend coefficients 

µ1(s) for winter (left), autumn (middle), and spring (right). The isolines 0.025 and 0.05 (autumn) and 0.95 
and 0.975 (winter and spring) are shown. 

 

 

Figure 8. Diagram of the quantiles 2.5 (blue) and 97.5 (red) of the temporal trend coefficients µ1 for each 
local model together with the corresponding quantiles of the regional temporal trend coefficient µ1(s) for winter 

joined by vertical lines. 
 

 
 

Figure 9.   Histograms of the Mann-Kendall test statistics of the simulated data together with the Mann- 

Kendall test statistics of the observed data (red line) for four observatories in winter. 

Figure 10.  Spatial distributions of the means (top row) and standard deviations (bottom row) of the NAO- 

trend coefficients µ1(s) for winter (left), autumn (middle), and spring (right). 

 
 
 

Figure 11.  Spatial distributions of the Bayesian p-values of the zero value in the NAO-trend coefficients 

µ1(s) for winter (left), autumn (middle), and spring (right). The 0.95 and 0.975 isolines (winter and spring) 

are shown. 

 
 
 

Figure 12.  Estimated posterior distributions for the temporal trend coefficients β of a linear temporal re- 

gression model of the seasonal NAO index for winter (left), autumn (middle), and spring (right). 
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