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Pseudo-two-dimensional dynamics in a system of macroscopic rolling spheres
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We study in this work the dynamics of a collection of identical hollow spheres (ping-pong balls) that rest
on a horizontal metallic grid. Fluidization is achieved by means of a turbulent air current coming from below.
The upflow is adjusted so that the particles do not levitate over the grid, resulting in quasi-two-dimensional
dynamics. We show that the behavior of diffusion and correlations in this system is particularly rich. Noticeably
as well (and related to the complex dynamical behavior), a variety of phases appear, with important peculiarities
with respect to analogous setups. We observe gas, liquid, glass, and hexagonal crystal phases. Most notably, we
show that the melting of the hexagonal crystal occurs in coexistence with a liquid phase. This strikingly differs
from the corresponding transition in a purely two-dimensional systems of air-fluidized disks, for which no phase
coexistence has been reported in the literature.
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I. INTRODUCTION

The dynamics of macroscopic particle systems has at-
tracted the interest of physicists and engineers since long
ago [1–3]. Its significance is partly due to the potential analo-
gies with microscopic particle systems, and partly because the
manipulation of granular materials finds widespread applica-
tion in industry [4]. Therefore, the understanding of what has
been termed “granular dynamics” is important both from the
point of view of theory and applications. More specifically,
there has been an increasing interest in two-dimensional (2D)
granular systems over the last decades [5,6].

Granular media share important similarities with molecular
matter (as already outlined by Reynolds in 1885 [7]), but there
are also significant differences and peculiarities. Convection
and turbulence [8,9], jamming [10], Brownian motion [11],
crystallization [5,12,13], and other phenomena well known in
molecular matter have also been observed in granular matter,
but they are usually more complex and they often exhibit pe-
culiarities. Furthermore, some of the phenomenology reported
in previous works is exclusive to granular matter, such as
inelastic collapse [5] and clustering instabilities [14].

In particular, the attention drawn by crystallization and
ordering phenomena in 2D granular systems is partly due
to the impact of 2D equilibrium theories in the field of
condensed matter [15,16]. The seminal work by Kosterlitz,
Thouless, Halperin, Nelson, and Young [15,17,18] (subse-
quently extended by others [19]) highlights the role of spatial
dimension, as it predicts fundamental differences in the be-
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havior of two-dimensional (2D) systems with respect to that of
their three-dimensional counterparts. For instance, theoretical
findings and experimental observations [15,17,18] show that
the crystal melting transition in 2D equilibrium systems is in
general continuous and defect mediated [20]. The explanation
of this 2D transition is usually referred to as the Kosterlitz-
Thouless-Halperin-Nelson-Young (KTHNY) theory [19,21].
This emphasizes the interest of studying 2D granular systems.
An additional advantage of such systems is that both the
experimental measurements and the characterization of many
properties of interest are often more straightforward than in
3D systems [22].

In order to induce granular matter thermalization, some
kind of energy input is necessary, since energy is lost in
macroscopic particle collisions [23]. Depending on the type
of driving, experimental work in 2D systems has relied mostly
on air fluidization [11,24,25] or shaking, either tangent [26] or
perpendicular to the plane to which the motion is constrained.
With some exceptions [27,28], in most works the plane in
which the particle motion takes place coincides with the hor-
izontal plane; hence, tangent and perpendicular shaking are
equivalent to horizontal and vertical shaking, respectively.
Additionally, there are some interesting shaking experiments
with no gravity [29] (for which the horizontal direction is of
course not defined). However, more recent work makes use of
alternative methods of thermalization with the advantage that
friction at the boundaries are not present, such as an AC elec-
tric field on charged particles [30] or acoustic levitators [31].

For the purpose of studying phase transitions, horizon-
tal shaking experiments differ in that, since field gradients
are generated from the boundaries, particles located near the
walls will experience a net injection of energy while particles
in the bulk will suffer mainly dissipative collisions, thereby
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giving rise to inherently inhomogeneous systems [32]; this
renders the analysis of order transitions more difficult. In
vertical shaking (quasi) 2D experiments, however, homoge-
neous dynamics can more easily be achieved. A variety of
very interesting results have been obtained in vertical shaking
experiments with spheres [5,6,12,13,33–37]. In particular the
existence of a liquid-to-crystal continuous transition mediated
by the hexatic phase has been confirmed, in agreement with
the predictions of the KTHNY theory for equilibrium sys-
tems [21,38].

In air tables, an appropriately adjusted air current flowing
from below prevents levitation of the particles (the dynam-
ics is thus restrained to a single plane), and also generates
thermal-like motion via the stochastically fluctuating turbu-
lent wakes that are caused by the interstitial air upflow [11].
Moreover, the dynamics is found to be homogeneous if the
upflow is homogeneous as well [25]. In this way, horizontal
dynamics is effectively achieved (i.e., no translational kinetic
energy is stored in the vertical degree of freedom) for both
plane (disks [24,25]) and nonplane particles (spheres [11]).

At this stage, a comment on a subtle yet important dif-
ference between air table experiments and vertical shaking
experiments [6] is in order. In the latter, there is an intrinsic
(nonmeasurable) fraction of the translational kinetic energy
directly input in the vertical direction via mechanical colli-
sions between the particles and the shaking boundaries [6].
However, in air tables the motion of spheres outside the
horizontal plane is limited to sphere rolling, implying that
there are no vertical displacements of the center of mass of
the particles. For the sake of precision, we will make use of
the term quasi-2D or pseudo-2D to refer to the dynamics of
rolling spheres described in this work (as already explained,
for an analogous but slightly different reason, vibrated thin
layers [6] are also referred to as quasi-2D systems) [35].

It is also important to note that, according to the type
of particles in air tables, we can distinguish between works
dealing with flat particles (disks, usually [24,29]), to which
we will refer as two-dimensional (2D) systems and works
dealing with non-plane particles, most notably, spheres [11]
(as we said, we will refer to these systems as being quasi-2D).
Thus, in our work, we are specifically interested in pseudo-2D
dynamics, and not in strictly 2D dynamics.

As a lead-in to relevant results found throughout this work,
we carried out a preliminary description of phase behavior
(most notably, crystallization processes) of rolling spheres.
We will see that a set of spheres on a horizontal air table
may undergo a variety of different phases, ranging from the
low density granular gas to highly packed crystals; unlike
in quasi-2D vertical shaking experiments, where low density
phases are not observable in wide regions of the parame-
ter space [39]. Additionally, we find that repulsion forces
between the spheres (of hydrodynamic origin [40]) are at
play in our system, and this will have a crucial impact on
the phase behavior. We have included a brief quantitative
description of these phases through the computation of the
appropriate bond-orientational order parameter and Voronoi
diagrams. We also report results on the velocity distribu-
tion function (investigating the causes of deviations from a
purely Maxwellian behavior), velocity autocorrelation, and
radial distribution function; these are important to describe

the mechanisms by which particles interact with each other
and to characterize the observed phases. Besides that, we have
also studied the diffusive nature of our system, which is an
aspect often overlooked in previous works on similar systems.
An interesting takeaway is the finding of some regions (in the
density-temperature parameter space) where the observed be-
havior is markedly subdiffusive (this being associated in some
cases with a glass-like phase). We also encourage the reader to
take a look at theSupplemental Material [41], where we have
included a result regarding the nonmonotonic behavior of the
granular temperature and some illustrative movies.

This paper is organized as follows. In the next section,
we describe the experimental system and the particle track-
ing methods [42] we have used. In Sec. III we analyze the
behavior of dynamical properties (distribution function, ve-
locity autocorrelation and diffusion). Section IV discusses the
ordering properties of the system and the emergence of phase
transitions. In Sec. V we discuss the results and outline some
open problems that could be studied with similar experimental
setups.

II. DESCRIPTION OF THE SYSTEM

We perform experiments with a variable number N of iden-
tical spherical particles. Specifically, our particles are ping-
pong balls with diameter σ = 4 cm (ARTENGOTM brand
balls, made of ABS plastic with mass density 0.08g cm−3).
The spheres rest on a metallic mesh (circular holes of 3 mm
diameter arranged in a triangular lattice) and are enclosed by
a circular wall made of polylactic acid (PLA). The diameter
of this circular boundary is D = 72.5 cm and its height is h �
4.5 cm > σ . Thus, the total area of the system available to the
spheres is A = 0.413 m2 = 328.65 × π (σ/2)2, which means
that up to Nmax = (π/

√
12) × 328.65 � 298 balls can fit in

our system neglecting boundary effects (the π/
√

12 � 0.9069
factor corresponds to the maximum packing fraction for disks
in an infinite system [43]).

A state of the particulate system with stationary statisti-
cal properties is achieved by means of a vertical air flow in
upward direction, as depicted in Fig. 1. This upflow through
the metallic grid generated with a fan, SODECATM HCT-
71-6T-0.75/PL, and has stream velocities in the range uair =
[2–5.5] m/s. We have observed an approximately linear re-
lationship between uair and fan power. An intermediate foam
(∼2 cm thick) homogenizes the air current from the fan.

In order to assess the homogeneity of the flow throughout
all the interstitial regions of the system, the air flow dis-
tribution over the grid was measured with a turbine digital
anemometer plugged into a computer for the sake of data
collection. We took measurements over a square grid of reg-
ularly spaced points on the table, and found local deviations
of the air current of less than 10% with respect to the average
uair. The air current coming from the fan produces turbulent
wakes as it flows past the spheres [44]. We thus achieve a
pseudo-two-dimensional particle dynamics, since the relevant
particle motion is restrained to the grid plane (for more details
on our particle fluidization mediated by turbulent air flow, see
the Supplemental Material [41]).

Summarizing, our experimental system has the follow-
ing properties: (1) It is a many-particle system; (2) energy
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(a)

(b)

FIG. 1. (a) Sketch of the experimental setup. (b) Sample image
showing the relative size of balls and grid holes.

input (in absence of particles) can be measured and is found
to be homogeneous; (3) motion is contained in a horizon-
tal plane (the grid), and as a consequence gravity does
not single out a predominant direction for in-plane particle
movement.

A series of experiments have been carried out by mod-
ifying the values of air flow intensity (2 � uair � 5.5 m/s)
and packing fraction φ ≡ N (σ/D)2, (0.03 � φ � 0.79). We
recorded a 99.92 s clip of each experiment with a high-speed
camera (PhantomTM VEO 410L) at 250 frames/s, or fps, (well
below the maximum operational speed of our camera); i.e., the
camera records a new image every �tfps = 1/250 s. Particle
positions are detected and tracked throughout the movies by
means of a particle-tracking algorithm [42,45] that, after ad-
justing for our particles and illumination conditions, is applied
to the digital images taken by the camera. Images are recorded
at the camera maximum working resolution (1200 × 800 pix-
els). In order to obtain high resolution images of the spheres
(with 80 pixels per particle diameter), the camera was zoomed
on the central region of the system; i.e.„ highly accurate par-
ticle position and velocity measurements were taken. More
details on particle-tracking and experimental methods and as
well as the measurement accuracy we achieved can be found
in the Supplemental Material [41].

III. DYNAMICAL PROPERTIES

Air-fluidized granular 2D or pseudo-2D systems have al-
ready been studied by other researchers. The closest analogs
to our system may be found in the works involving air table
experiments with disks (2D dynamics) [24,46–48] and with
spheres (pseudo-2D dynamics) [11,40,49] In the system with
spheres, several series of experiments were initially performed
with a single ping-pong ball [11] and a small number of
them [40,49], in order to characterize microscopic fluctuations
and particle-particle and wall-particle forces. It was only later
that experiments were performed with larger sets of spheres
in order to study jamming conditions [50].

Inspired by these previous works, in what follows we
will extend previous studies by providing a comprehensive
description of the different dynamic properties displayed by
a system with a relatively large number of spheres. A full
exploration of the parameter space defined by the packing
fraction φ and the granular temperature T can be achieved
by controlling the number of particles N and the air upflow
velocity uair. We must also note that some aspects of our sys-
tem dynamics differ from those of previous works for closely
related systems; in particular, in our experiments particles do
not appear to be trapped in a harmonic potential, as opposed
to previous results [11]. Furthermore, in contrast with some
previous results [24,51], we find that granular temperature
does not decrease monotonically with particle density. These
differences will be further discussed in the remainder of this
paper.

A. Distribution function and velocity autocorrelation

In Fig. 2(a) we show the distribution function f (c) of the
rescaled velocity c ≡ v/v0 [with v0 ≡ (2T/m)1/2 being the
thermal velocity and T ≡ (m/2)〈v2〉 the granular temperature,
and 〈· · · 〉 denotes ensemble average]. Except when specified
otherwise, magnitudes are dimensionless. We use particle di-
ameter σ , seconds s, and particle mass m as units for length,
time, and mass respectively.

The results show a clear tendency to deviate from the
Maxwellian distribution function (represented here by a solid
line), this trend being stronger the denser the system. As
observed in previous experimental works on quasi-2D gran-
ular dynamics, as the tails deviate from the Maxwellian, they
become exponential-like [52–54].

Moreover, it is interesting to note that this behavior was
previously reported for constant particle density series with
increasing granular temperature, but not for (approximately)
constant temperature series, as displayed in Fig. 2(a). We
chose to compare systems with similar temperature in order to
isolate the effects of modifying φ from the effects of changing
the energy input-dissipation balance. There is a certain diffi-
culty in creating these constant temperature series, since the
range of attainable granular temperatures can be very narrow
depending on particle density.

Figure 2(b) shows the kurtosis K = 〈v4〉/〈v2〉2 of the distri-
bution function, which can be used to quantify the deviations
from the Maxwellian distribution. As we can see, there is
also a strong overall tendency to deviate significantly from
the Maxwellian at low temperatures and low densities [see
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FIG. 2. (a) Velocity distribution functions in logarithmic scale
for a series taken at approximately constant granular temperature.
The experimental data reveal that high density systems will exhibit
more pronounced non-Maxwellian high-energy tails at T = 0.76.
(b) Here we represent the kurtosis for constant density series vs T .

Fig. 2(b)]. This probably signals the prevalence in this regime
of friction effects due to the interaction between the irregular
mesh surface and the balls, and, as we will see later, can also
be an indication of ordering processes.

The velocity autocorrelation function (VAF) reflects the
memory effects in the fluid and is related to key transport
properties. Within our experimental accuracy, it has been ver-
ified to depend only on time differences. We thus define this
quantity as follows:

A(t ) = 〈�v(τ ) · �v(t + τ )〉
〈�v(τ )〉2

, (1)

where 〈· · · 〉 indicate averaging over particles i and time t , with
a time step τ .

Results are shown in Fig. 3, where it can be readily noticed
that there is a significant time interval during which autocor-
relations are negative. We interpret this as a clear indication of
particle effects due to noncontact distance interactions medi-
ated by the circulating air, as opposed to the behavior for hard
particles [55]. Moreover, the decay time to negative autocor-
relations can be regarded as a measure of the typical collision

time (in this context, “collision” should be understood as a
particle entering a region where it can feel the repulsive forces
as it approaches other neighboring particles). This collision
time has been found to decrease with increasing density.

In order to characterize this effect, Fig. 3(d) presents mea-
surements of the velocity autocorrelation for a wide range of
densities at nearly constant temperature. The displayed results
clearly indicate that noncontact interactions are in general
more important at both ends of the density spectrum. At
very low densities the negative dip in the time behavior can
be due to a single-particle effect (e.g., vortex shedding). At
lower densities the negative values extend even up to t ∼ 2 s,
indicating that the particles are caged by their neighbors.
Interestingly, the behavior is not monotonic, and, in the very
dense regime, the dip becomes more pronounced again. This
indicates that the interstitial hydrodynamic effects are more
complex than expected, this having an impact in the phase
behavior of the system, as results reveal later. Notice for
instance that the curve for φ = 0.365, with only negative
values at short times, presents behavior analogous to that of
a gas, whereas for both lower and higher densities stronger
negative autocorrelations at longer times show up, which is
the behavior that can be expected for a liquid. However, as
diffusive properties will reveal, it is at the lowest density
(φ = 0.183, purple symbols curve) where we can actually
detect the strongest negative autocorrelations, indicating that
what we are detecting is actually a glass phase. Finally, at very
high densities, negative correlations become stronger than in
the liquid, this being precursor evidence of a symmetry break
(crystals developing). Thus, velocity autocorrelations seem to
suggest the following phase sequence for increasing density:
glass, gas, liquid, crystal.

B. Diffusion

An important characteristic of the experimental particles’
random motion is the mean square displacement (MSD) 〈r2〉.
Most frequently, systems exhibit a power-law long-time be-
havior of the MSD, i.e., 〈r2〉 ∼ Dαtα , where α is the diffusion
exponent, whereas Dα is the diffusion coefficient. If α 	= 1,
the diffusion process is anomalous; in particular, it is called
subdiffusive when α < 1.

The drawback of only having at our disposal a limited
number of trajectories can be alleviated through the standard
procedure [56,57] of constructing the time average of the
mean square displacement (TAMSD) for each trajectory,

r2(t ) = 1

tm − t

∫ tm−t

0
dτ |�r(τ + t ) − �r(τ )|2 (2)

(tm is the measurement time), and subsequently taking the
mean over the ensemble of time averages for the individual
trajectories. This yields the ensemble average of the time
averaged mean square displacement (ETAMSD) 〈r2(t )〉.

In this procedure it is assumed that both the MSD 〈r2〉 and
the TAMSD r2(t ) follow the same power-law dependence tα ,
so that α can be accurately computed from a limited num-
ber of trajectories. However, this is not always the case. A
well-known counterexample exhibiting nonequivalence be-
tween the TAMSD and the MSD as a result of weak
ergodicity breaking is transport generated by the so-called
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FIG. 3. Velocity autocorrelations. Panels (a), (b), and (c) display data series taken at constant packing fraction (φ = 0.18, φ = 0.365, and
φ = 0.749 respectively); (d) shows a data series taken at approximately constant granular temperature.

continuous-time random walk (CTRW) model [56]. Fortu-
nately, in our experimental system, there are no indications
of such a behavior (for example, our VAFs are qualitatively
different from those obtained from the CTRW model [58]).

In Fig. 4 we show some representative ETAMSD curves
obtained from three experiments with N = 60 (φ = 0.183,
T = 0.422), 120 (φ = 0.365, T = 0.618) and 233 balls (φ =
0.709, T = 0.632). Only data corresponding to trajectories
longer than 40 s are considered. We have carried out fits of
the EATMSD in the time interval 2 < t < 16 s (gray region in
Fig. 4). This choice is a tradeoff ensuring that such an interval
starts well after the end time of the ballistic regime, but is at
the same time short enough to yield a sufficiently long time
window tm − t , so that statistical problems in the computation
of the time average can be largely avoided.

In a further effort to obtain an improved estimate of
α, we have also plotted curves displaying the time depen-
dence of the so-called mean logarithmic square displacement
(MLSD) [57], which is the ensemble average of the logarithm
of the TAMSD, log r2(t ). A fit of this quantity as a function of
log t leads, in general, to better estimates for α, provided that
the localization error in the particles position remains small
(as is the case in our experiments) [57].

All curves clearly exhibit an initial ballistic regime dur-
ing which 〈r2(t )〉 ∼ t2. This holds up to times � 0.1 s. The
ballistic regime is always followed by a subdiffusive regime
(α < 1.0). For φ = 0.183 and φ = 0.365 one can spot an
increase in the slope of the final part of the experimental
curves, which could indicate the eventual onset of normal
diffusion at even longer times, not covered by our experi-
ment. This terminal increase in the slope has indeed been
found to be a typical feature in granular dynamics ex-
periments (e.g., in Ref. [50], both a transient subdiffusive
regime and a final normal diffusion regime were identified
for a proper parameter choice). Nevertheless, one should
bear in mind that the quality of the TAMSD deteriorates
for larger values of t , since for such values the size tm − t
of the time window over which the average is performed
decreases. The offset of the MLSD and ETAMSD lines,
quite noticeable for φ = 0.183, is not completely unex-
pected [57]. In this case the fit of the MLSD and ETAMSD
curves between t = 2 s and t = 16 s leads to α = 0.53 and
α = 0.70, respectively. However, the case with φ = 0.365
leads to α = 0.8 and α = 0.9, respectively, whereas the case
with φ = 0.709 leads to α = 0.1 for the two curves. The
noteworthy difference in the values of α for φ = 0.183
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FIG. 4. MLSD (large symbols) and ETAMSD (small symbols)
vs time for three experiments with φ = 0.183 and T = 0.422 (tri-
angles), φ = 0.365 and T = 0.618 (circles), and φ = 0.709 and
T = 0.632 (squares). The dashed line has a slope equal to 2, char-
acteristic of ballistic behavior. In the diffusive regime (gray region,
corresponding to times between t = 2 s and t = 16 s) one has dif-
ferent slopes for different parameter sets. Star symbols correspond
to a glassy transition, that typically displays a short plateau forming
between ballistic and diffusive regimes.

turns out to be a persistent feature in our experiments; see
Fig. 5.

In Fig. 5, we plot the values of α obtained by using the time
interval 2 < t < 16 s to fit the MLSD. As a reference, we also
provide the values of α obtained from the ETAMSD computed
for a number of experiments. As in Kepten et al. [57], we
have found that these α values are generally higher than those
yielded by the MLSD (the difference is around 0.1 or, at most,
0.2); yet they follow the same qualitative behavior.

The results in Fig. 5 reveal a large variability of α, due
statistical limitations inherent to our experiments (number of
trajectories and limited movie clip duration due to camera
memory limitations).

For example, for φ = 0.365 and T = 0.618, the MLSD
value of α shown in Fig. 5 is 0.81 (as already mentioned,
this value follows from a fit in the interval 2 < t < 16 s for
trajectories longer than 40 s). However, if ones uses trajec-
tories longer than 30 s, one gets α = 0.82, and if one uses
the interval 1 < t < 20 s, one finds α = 0.80. These three
different values of α respectively become equal to 0.90, 0.83,
and 0.92 if one chooses T = 1.461, and for T = 1.651 they
are 0.80, 0.89, and 0.77. These cases illustrate the kind of
variability in the value of α that we observe. In any case, if
one changes the minimal length of the trajectories and/or the
fitting interval in a sensible way, one finds that the correspond-
ing values of α are compatible with the general qualitative
behavior shown in Fig. 5, and in this sense the latter is robust.
We note two main regimes, according to the behavior with
respect to granular temperature, separated by a small region
around T = 0.7 (where the values of α are close to 1, the
normal diffusion exponent). At low temperatures (T � 0.7), α
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FIG. 5. Diffusion exponent α vs temperature for several den-
sities. As in Fig. 4, the values of α were obtained by fitting the
ETAMSD and MLSD curves between t = 2 s and t = 16 s. To
generate such curves, only trajectories with a minimum length of
40 s have been taken into account. The thick solid gray line is a
guide describing the general trend (a smoothing of the MLSD data
points was carried out with a third-order Savitzky-Golay moving
polynomial).

is clearly increasing with T . We see that α remains fairly small
for the lowest measured granular temperatures. In particular,
we see that there are cases with strong subdiffusive behavior
with α values well below α = 0.5. Interestingly, these are
precisely the cases where the velocity distribution function
deviates to a greater extent from a Maxwellian form (see
Fig. 2). At higher temperatures, we find a second diffusive
regime for which α displays a plateau vs T (or at least, is not
clearly decreasing or increasing) and for which the values are
still subdiffusive but noticeably larger (α ∼ 0.8) than at very
low temperatures.

We think that the strong subdiffusive behavior (α � 0.5)
observed for sufficiently low temperatures is likely due to
cage effects [59]. In fact, as density increases, one observes
the onset of a crystallization process; see Figs. 7(g) and 7(h)
in Sec. IV B (crystals are typically colder than granular fluids
under the same forcing conditions [60]). According to [59],
the cage size is identified as the value of 〈r2〉1/2 for which
its logarithmic derivative d ln (〈r2〉1/2)/d (ln t ) attains a min-
imum. It is interesting to note that in those cases where the
ballistic behavior changes to strong subdiffusion (small α), the
cage effect is so strong that the MSD is even seen to decrease
during a short crossover regime. This effect can be clearly
observed in the curves corresponding to φ = 0.709. We as-
cribe this behavior to the same transient viscoelastic forces
that are responsible for the first dip exhibited by the VAF when
φ = 0.183 and φ = 0.709 [cf. Figs. 3(a) and 3(c)]. In fact,
we conjecture that the anomalous subdiffusive behavior found
in noncrystalline phases is due to transient viscoelastic forces
characteristic of complex interacting systems with correlated
components [56].
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In contrast, the high temperature diffusive regime should
correspond to regions of the phase space where the dynamics
is dominated by a fluid phase [11]. In summary, strong indica-
tions of a rich phase behavior in this system emerge out of its
diffusive properties. We will address this issue in more detail
in the next section.

IV. STRUCTURAL PROPERTIES

Phase transitions and crystallization processes were an-
alyzed in the 2D system [24,47,48] with disks but, to our
knowledge, not in the pseudo-2D system with spheres. Since
interactions between spheres are mediated by strong long-
ranged hydrodynamic forces, the phase behavior can be
expected to differ importantly from that of the system with
disks, where long-ranged forces have not been detected.

Thus, we devote this section to structural properties and
phase transitions. Motivated by the lack of previous data on
phase transitions in this system, we perform here a compre-
hensive analysis based on the pair correlation function g(r)
and the Voronoi tessellation with the aim of uncovering as
thoroughly as possible the phase transition landscape [61]. As
we will see, g(r) already yields clear indications of different
ordering transitions in the system. Voronoi tessellation is a
graphical representation that partitions space in cells enclos-
ing only one particle, so that all the points inside a given
cell are closer to the associated particle than to any other
particle in the system [61]. This representation will confirm
the expectations arising from the behavior of g(r). More-
over, Voronoi tessellation also conveys additional structural
information, thereby providing clear evidence for the onset of
hexagonal order at high densities [21,47].

A. Radial distribution function

Following a standard procedure, we have computed the
radial distribution function from our experimental data; taking
into account that the system is 2D and has constant particle
density φ0, we employ the following formula:

g(r) =
N∑

i, j>i

1

2φ0πri jdr
�(ri j − r − dr/2), (3)

where �(ri j − r − dr/2) ≡ 	(r − ri j )	(r + dr − ri j ) is the
rectangular pulse function [62] (	 being the Heaviside func-
tion [63]).

Measurements of the radial distribution function reveal in-
teresting structural changes in the system, as already advanced
in the previous sections. Results are displayed in Fig. 6. As
we can see, for φ = 0.183 [panel (a)] there is a liquid-like
structure that is highly dependent on temperature. Notice that,
in this case, the main peak appears at a distance clearly larger
than r = σ (recall σ is the particle diameter). At a higher den-
sity [φ = 0.365, panel (b)] an analogous liquid-like structure
emerges, but in this case it is very robust against temperature
variations. At even higher densities [φ = 0.749, panel (c)],
we can clearly see a series of sharp peaks, denoting posi-
tional ordering. These peaks have been observed in previous
studies [46], and their positions are related to the reticular
parameter in hexagonal packing. For instance, the secondary

peak at r � 2σ for instance corresponds to particles in two
nonconsecutive vertexes in a hexagonal cell, with one vertex
in between, while the secondary peak at r � 2σ corresponds
to particles in a hexagonal cell located at two non-consecutive
vertexes and with two intermediate vertexes. This pattern ac-
tually repeats around r ∼ 3σ , out of neighbor hexagonal cells,
thus indicating long-ranged spatial correlations, inherent to a
crystal.

Finally, in Fig. 6(d), the behavior of g(r) for different
densities is displayed in a series of curves at nearly constant
temperature, where we can clearly see the transition from
fluid-like to crystal-like g(r) curves as the density is increased.
It is worth pointing out that sharp secondary peaks already
appear at densities as low (as compared to disks [46,47]) as
φ ∼ 0.6, which is an indication of a lattice parameter that is
larger than the particle diameter. Furthermore, the first sec-
ondary peak develops around r = 2σ , this being a feature that
appears in a crystallization process. Note that this behavior
is reminiscent of that observed in early subcooled molecular
liquids close to the glass transition [64]. The pair correlation
function reveals the emergence of some kind of spatial cor-
relations and translational symmetry, but it does not provide
information on the geometrical properties of this symmetry.
For that purpose, the Voronoi diagrams, complemented with
2D histograms of particle positions, we present in the next
subsection are more adequate.

B. Phase changes

In order to detect emerging structural changes, we explored
large regions of the parameter space (see Supplemental Mate-
rial [41] for a list of experimental data). Results below clarify
that performing an exhaustive set of experiments at different
densities (and granular temperatures) was necessary since the
phase behavior is very rich and complex, which otherwise
would have remained unnoticed. For instance, the series with
varying particle density at constant temperature shows a very
rich and peculiar phase behavior. In order to visualize the
varying degree of symmetry and the qualitative changes in
related properties, we use both 2D spatial histograms and
Voronoi tessellation diagrams [61]; see Figs. 7 and 8.

As already anticipated in Sec. II, each of the 2D histograms
depicted in Fig. 7 visualizes the positions of each particle
(represented by white pixels) averaged over the time duration
of each movie (∼100 s), as usual in previous studies on phase
transitions [5,33]. In contrast, Fig. 8 represents Voronoi dia-
grams [61] of instantaneous states of the same system. Both
figures complement each other, i.e., the 2D spatial histograms
tell us about the persistence in time of a given geometrical
structure, whereas the Voronoi tessellation diagrams inform
us about the specific geometry of that structure.

The evidence provided by Figs. 7 and 8 is rather com-
pelling in spite of the fact that the diagrams correspond to very
low densities (φ < 0.1), for which the dynamics is primarily
driven by individual particles (particle-particle interactions
are not frequent, and the dynamics is expected to be very
similar to what has been previously reported for analogous
single-particle systems [11]). In contrast, it is interesting to
note, that for somewhat larger densities 0.15 � φ � 0.25,
we observe glass-like states at sufficiently low temperatures.
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FIG. 6. Pair correlation function as processed from experimental xy particle positions. Panels (a), (b), and (c) display data series taken at
constant packing fraction (φ = 0.18, φ = 0.365, and φ = 0.749 respectively); (d) shows an data series taken at approximately constant granular
temperature. A crystallization process is evident from the (a)–(c) panel series; clearly, complete crystallization is attained for φ = 0.749
[cf. panel (c)].

These glassy phases are characterized by particles staying
trapped by their neighbors (cage effect) for a sufficiently long
time until they can escape to another cage in which they again
remain for a long time, and so on. This is reflected in the
diffusive behavior shown in Fig. 4 in the star-symbol series
(φ = 0.183, T = 0.16), displaying a characteristic plateau
(i.e., there is an intermediate region, here at t ∼ 1, for which
the curve is horizontal) in the MSD [64]. Indeed, Fig. 7(a)
reveals significant inhomogeneities in particle dynamics, with
sections of the system (bottom left and top right) where parti-
cle positions are more persistent in time; on the other hand, the
corresponding Voronoi tessellation [Fig. 8(a)] shows a variety
of cells with different coordination numbers, which signals the
absence of a clearly dominant symmetry structure. At higher
densities (0.25 � φ � 0.5), only a single phase is observed,
which is seemingly disordered and isotropic, and can therefore
be regarded as liquid-like [see panels (c)–(e)]. In panel (f), we
have noted an even higher degree of disorder, with particles
distributed in a more uniform fashion. Interestingly enough,
upon further increase of the density (φ � 0.5), we see the
development of areas of hexagonal ordering in coexistence

with the fluid phase [see panels (g) and (h)]. The hexagonally
ordered phase grows with increasing density, panel (h), even-
tually occupying the entire system; see panel (i).

It is interesting to note also that hexagonal ordering ap-
pears at much lower densities (φ � 0.5 and higher) than in
systems of hard particles [21], in experimental assemblies of
disks [46], or in soft disk models used in molecular dynamics
to mimic active or passive particles; see, e.g., [65]. We think
this signals strong effects of long-ranged hydrodynamic forces
between the rolling spheres over the phase behavior. Further-
more, we clearly detected phase coexistence of the hexagonal
crystal with the liquid phase [Fig. 7(g)]. This notably dif-
fers from the observations of hexagonal crystallization or
melting in a confined monolayer of vertically vibrated and
quasielastic spheres [21] and in air-fluidized disks [47]. In
fact, in these two latter systems the hexagonal crystal un-
dergoes a melting transition of KTHNY [15,17,18,66] type
(i.e., the melting transition for the vibrated layer is continuous
and mediated by the successive unbinding of dislocation and
disclination pairs, and it does not involve phase coexistence).
Finally, it is also remarkable that for very cold systems there
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(a) φ = 0.183, T = 0.16 (b) φ = 0.183, T = 0.59 (c) φ = 0.183, T = 0.74

(d) φ = 0.274, T = 0.67 (e) φ = 0.365, T = 0.62 (f) φ = 0.457, T = 0.70

(g) φ = 0.548, T = 0.70 (h) φ = 0.639, T = 0.68 (i) φ = 0.709, T = 0.63

FIG. 7. Set of 2D histograms for different system configurations. These histograms were generated from the complete set of images in the
movie clips, each grey dot representing a particle’s instantaneous position. First row: each figure corresponds, from left to right, to increasing
granular temperature at constant density; as the system heats up, first glassy behavior and then transition to liquid are observed. Second and
third rows: each figure corresponds, from left to right, to increasing density at constant temperature; a transition from liquid to crystal takes
place, with phase coexistence.

is no collective ordered collapse, as happens in a vibrated
monolayer of hard spheres [5]. Instead, the particles in the
gas phase gradually undergo unstructured strong freezing,
which results in the collective formation of disordered lattices
[Fig. 7(a)].

In addition to Figs. 7 and 8, movie clips and experimental
data of the different phases observed are available in the Sup-
plemental Material [41]. The complexity and richness of the
phase transitions that we have observed is worth being studied
in more detail. Such a study will be carried out in subsequent
works.

Finally, in Fig. 9(a) we present in a more quantitative man-
ner geometrical configurations for glass, liquid, and hexagonal
crystal, by means of Voronoi histograms (averaged over all
frames) according to the particle coordination number (or,
equivalently, type of polygon for each Voronoi tile). As we
can see, hexagonal cells become predominant only when the
hexagonal crystal is fully developed (for φ � 0.6), whereas
in both glass and liquid the cell distribution is more uni-
form. In order to quantify the liquid-hexagonal transition
more specifically, we represent in Fig. 9(b) the absolute value
of the average of the six-bond order parameter 
6 for an
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(a) φ = 0.183, T = 0.16 (b) φ = 0.183, T = 0.59 (c) φ = 0.183, T = 0.74

(d) φ = 0.274, T = 0.67 (e) φ = 0.365, T = 0.62 (f) φ = 0.457, T = 0.70

(g) φ = 0.548, T = 0.70 (h) φ = 0.64, T = 0.68 (i) φ = 0.709, T = 0.63

FIG. 8. Voronoi diagrams corresponding to the systems depicted in Fig. 7. These diagrams confirm the glassy behavior in panels (a) and
(b), the lack of order in the liquid-like systems, see panels (d), (e), (f), and the emergence (initially in coexistence with a liquid phase) of
hexagonal ordering, see panels (g), (h), (i). (Irregular) polygons have been marked according to the following color code: blue for squares,
green for pentagons, yellow for hexagons, dark red for heptagons, and light red for octagons.

increasing density series, at constant temperature, and its den-
sity distribution functions for three different densities. This
order parameter average is defined, for each frame, as 
6 =
(1/N )

∑N
k (1/Nk )

∑
j e6θik ı, where θ jk is the bond angle for the

k- j particle pair and the j sum runs over the Nk neighbors of
particle k (the sum over the k particle index is the magnitude
averaging, assuming the system has N particles in total). After
this, we average for all frames, which we denote as 〈
6〉.
A steep increase in |〈
6〉| is noticeable for packing fraction
φ > 0.548, which is the density corresponding to the system
in Fig. 7(g), for which we first find a developing hexagonal
crystallite. Also notice here that glass and liquid present rather
similar behavior; i.e., cell histograms and six-bond order pa-
rameter do not display ordering, which is what we expected

since these phases are indistinguishable by their structural
properties.

V. CONCLUSIONS

We have studied in this work the pseudo-2D dynamics of a
set of air-driven identical spheres which, excited by turbulent
air, roll under Brownian movement on a horizontal metallic
grid.

To the best of our knowledge, we have obtained the first ex-
perimental series showing the influence of particle density on
the behavior of the distribution function [Fig. 2(d)] at nearly
constant temperature. The distribution function exhibits non-
Maxwellian high energy tails, a feature also reported in
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FIG. 9. (a) Voronoi tile histograms, displaying time averaged
distributions for different densities. (b) Average of six-bond order
parameter, |〈
6〉|, for constant temperature series (T � 0.76). Its
density distribution function is also represented in the inset, for the
cases φ = 0.183 (glass, dotted line), φ = 0.457 (liquid, dashed line)
and φ = 0.639 (hexagonal crystal, continuous line).

previous works on granular dynamics [5,67]. However, in con-
trast with the behavior of a monolayer of vertically vibrated
particles [53], these non-Maxwellian tails seem to be more
prominent at higher temperatures [Figs 2(a)–2(c)].

Velocity autocorrelations illustrate the relevance of hydro-
dynamic forces due to airflow-mediated particle interactions.
Our analysis unveils an important difference with respect to
analogous experimental setups, like thin layers of vertically
vibrated spheres [21] or air-fluidized disks [47]. In partic-
ular, we show that hydrodynamic forces result in the onset
large negative autocorrelations at comparatively short times
(Fig. 3). Direct observation confirms that particles initially
approaching each other then experience an effective repulsion
at shorter distances. This yields a very peculiar phase map, as
shown in Sec. IV B. In particular, it prevents the formation of
gas-like states at very low densities (φ � 0.15); contrary to the
case of air-fluidized disks, we observe independent Brownian-
like behavior for each particle, which rarely collides (see
Supplemental Material experiment clips [41]). Clearly, the
effect of repulsive forces in the dynamics of the system is
more important at low densities, which is consistent with
the observation that negative autocorrelations at short times
are more pronounced in dilute systems [Fig. 3(d)]; see also
movies in the Supplemental Material [41]).

Two distinct diffusive regimes have been observed. In con-
trast with previous works, the system can remain subdiffusive
even in disordered low density phases (Fig. 5), which is
another consequence of the existence of long-ranged hydro-
dynamic interactions. We thus see no strong dependence of
the diffusion exponent α on the particle density. In contrast,
α turns out to be very sensitive to changes in the granular
temperature. At very low temperatures, α takes very small
values, and the system is strongly subdiffusive. At some-
what higher temperatures, the system still remains strongly
subdiffusive despite the steady growth of α with increasing
temperature. Finally, at temperatures T ≈ 0.7 and higher, α

stabilizes around values that are weakly subdiffusive and a
plateau is observed.

The phase transitions observed in our system display a
surprisingly rich and peculiar behavior, not reported previ-
ously in similar systems and ranging from a collection of
independent Brownian-like particles at low densities to glassy
or liquid states at moderate densities, and to the onset of
regular hexagonal lattices at higher densities. Most notably,
the hexagonal crystal melting occurs here in coexistence with
a liquid phase. This finding differs strikingly from previous
results reported for 2D systems of air-fluidized disks [47] and
quasi-2D systems of quasielastic spheres [21], where phase
coexistence of liquid and hexagonal crystals in the melting
transition was not found. In our system, the behavior of the
liquid to hexagonal crystal transition appears to be more sim-
ilar to what has been reported for highly inelastic spheres in a
quasi-2D system [38], where phase coexistence has also been
reported. However, in our system the phase coexistence seems
to be mediated by long-ranged hydrodynamic forces rather
than by the inelasticity of particle collisions, and thus occurs
at noticeably lower densities. Thus, further study on the evolu-
tion of the bond-orientational correlation function [68] or the
pn parameter distribution [69,70] will be needed to cast light
on the precise mechanism of this phase transition in future
work.

While there is an extensive bibliography referring to en-
gineering applications of air table systems [25], here we
have used one such system for a more fundamental purpose,
namely, to describe a variety of nonequilibrium quasi-2D
phase transitions and to identify the analogies with and
departures from equilibrium theories and previous observa-
tions in granular dynamics experiments with air-fluidized
disks [46,47] and thin vibrated layers [6,38].

Summarizing, our results unveil a very rich and original
behavior of our quasi-2D system at various levels (distribution
function, diffusion, velocity and spatial correlations, phase
transition diagrams, etc.) with respect to its closest analogs.
Furthermore, contrary to first observations in quasi-2D granu-
lar systems [21], our results suggest that the hexagonal crystal
melting transition in granular systems may in general not
follow the KTHNY scenario.
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