Inter-comparison of integrated water vapor from satellite instruments using reference GPS data at the Iberian Peninsula

Javier Vaquero-Martínez¹, Manuel Antón

Departamento de Física, Universidad de Extremadura, Badajoz (Spain)

Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Badajoz (Spain)

José Pablo Ortiz de Galisteo

Agencia Estatal de Meteorologia (AEMET), Valladolid (Spain)

Grupo de Óptica Atmosférica, Universidad de Valladolid, Valladolid (Spain)

Victoria E. Cachorro, Pablo Álvarez Zapatero

Grupo de Óptica Atmosférica, Universidad de Valladolid, Valladolid (Spain)

Roberto Román

Department of Applied Physics, University of Granada, Granada (Spain)

Andalusian Institute for Earth System Research (IISTA-CEAMA), Granada (Spain)

Diego Loyola

German Aerospace Center (DLR), Oberpfaffenhofen (Germany)

Maria João Costa

Departamento de Física, Instituto de Ciências da Terra, Escola de Ciências e Tecnología, Universidade de Évora, Évora, (Portugal

Huiquin Wang, Gonzalo González Abad

Smithsonian Astrophysical Observatory (Cambridge, Massachusetts)

Stefan Noël

Institute of Environmental Physics, University of Bremen, Bremen (Germany)

Abstract

¹ javier_vm@unex.es

 $Preprint\ submitted\ to\ Remote\ Sensing\ of\ Environment$

September 12, 2017

This paper focuses on the inter-comparison of integrated water vapor (IWV) products derived from the following satellite instruments: Global Ozone Monitoring Instrument (GOME-2), Moderate-Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, Ozone Monitoring Instrument (OMI), Spining Enhanced Visible and InfraRed Imager (SEVIRI), Atmospheric Infrared Sounder (AIRS), and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). IWV data from GPS in nine groundbased stations located in the Iberian Peninsula are used as reference. The study period extends from 2007 to 2012. The results show that, in general, OMI has good accuracy (pseudomedian of the relative differences between OMI and GPS IWV of $(-0.7 \pm 1.1)\%$). However, OMI, SCIAMACHY and AIRS show higher inter-quartile range (IQR) (which indicates lower precision) than the rest of satellite instruments. Both MODIS satellite instruments and SEVIRI products tend to slightly underestimate reference IWV data while GOME-2 exhibits a notable overestimation $(16.7 \pm 0.8 \%)$. All satellite instruments showed a tendency to reduce IWV extreme values: low IWV is overestimated while high IWV is underestimated. As for the influence of solar zenith angle (SZA), it can be observed that GOME-2 strongly overestimates the reference for high SZA values (by around 60% for SZA $60 - 80^{\circ}$). OMI shows, however, a high IQR for high SZA values. Both MODIS instruments show an increase in the pseudomedian of relative differences and IQR with SZA at daytime, with more stable values at night. Seasonal dependence is mainly due to the SZA and IWV typical values in each season. In general, in summer the tendency is to underestimate with low IQR (which happens when IWV is high and SZA is low), and in winter the trend is to overestimate with high IQR (which happens when IWV is low and SZA is high). SCIAMACHY shows a high pseudomedian in summer and autumn, and lower in winter and spring. It must be noted that GOME-2 shows a higher overestimation and OMI shows a higher IQR than other satellite instruments in winter and autumn. The influence of clouds was also studied, showing an increase of IQR as cloudiness increases in all satellites. Pseudomedian also worsens as cloudiness increases, generally.

Keywords: water vapor, inter-comparison, IWV, GPS, satellite, MODIS, OMI, GOME-2, SEVIRI, SCIAMACHY, AIRS.

1 1. Introduction

Water vapor plays a crucial role in Earth's radiative balance, since it is the 2 main absorber of the infrared radiation emitted from Earth's surface, and there-3 fore responsible for air heating in the low layers. Regarding energy transport, water vapor's latent heat is a very effective mechanism. Water is evaporated at low latitudes, and water vapor is transported to higher latitudes where con-6 densation releases high amounts of heat (Myhre et al., 2013). Water vapor is the most important natural greenhouse gas, indispensable for life on Earth. Its hydroxyl (H - O) bond allows absorption in the infrared region. Moreover, it involves a positive feedback loop in climate change, according to general circula-10 tion models (Colman, 2003). If the temperature of atmosphere rises, air can hold 11 more water vapor, as the saturation vapor pressure increases with temperature. 12 This further increases the greenhouse effect, warming the atmosphere. 13

Quality data for integrated water vapor (IWV) are critical for improving 14 current understanding of the effect of water vapor in the climate system. Never-15 theless, Monitoring water vapor has some difficulties. First, its high variability, 16 both temporally and spatially. Water vapor exhibits both an annual cycle (Or-17 tiz de Galisteo et al., 2014) and a diurnal one (Ortiz de Galisteo et al., 2011). 18 Second, the challenge to obtain data under a wide range of sky conditions. Ad-19 ditionally, ground-based water vapor data are particularly scarce over polar and 20 oceanic regions. As a result, satellite measurements are necessary to improve 21 the spatial coverage. 22

There are numerous techniques for measuring IWV, both from ground and from space. Among ground-based measurements there are microwave radiometers (Turner et al., 2007), sun-photometers (Ichoku et al., 2002), lunar-photometers

- ²⁶ (Barreto et al., 2013), star-photometers (Pérez-Ramírez et al., 2012), Lidar
- ²⁷ (Turner et al., 2002), GPS system (Ortiz de Galisteo et al., 2011), and radio-

sounding (Torres et al., 2010). Space measurements are performed using satel-28 lites which collect information from different parts of the electromagnetic spec-29 trum: microwave (Jones et al., 2009), visible (Román et al., 2015; Wang et al., 30 2014), near-infra-red (Grossi et al., 2015) and infra-red (Bennouna et al., 2013). 31 Radiosonde and GPS are the most powerful techniques to measure IWV. 32 However, temporal coverage of radiosonde is very limited (generally one or two 33 measurements a day). Because of this, GPS is used in this study as reference 34 to validate satellite IWV data. GPS ground-based retrieval of water vapor has 35 been studied broadly, as in Ortiz de Galisteo et al. (2010), for GPS antenna 36 corrections, and in Pany et al. (2001) and De Haan et al. (2002), where GPS 37 data were compared with a numerical model. One of the key features of GPS 38 IWV retrieval is its independence of meteorological events (Rohm et al., 2014), 39 such as cloudiness or precipitation, along with its high temporal resolution, as 40 mentioned above. 41

Nevertheless, the coverage of GPS stations is currently not sufficient to rep-42 resent the high spatial variability of water vapor. Some applications, such as 43 weather forecasts and climate studies, need global data with higher spatial res-44 olution, and therefore satellite observations are useful in those cases. However, 45 satellite retrievals have two main problems (Diedrich et al., 2016). On the one 46 hand, if they are low Earth orbiting satellites, they do not adequately sample 47 the diurnal cycle (only one or two measurements a day). On the other hand, if 48 visible or NIR spectra are used, the opacity of clouds makes the measurements 49 under cloudy-sky condition unreliable (Diedrich et al., 2016). 50

In this work, a detailed inter-comparison between IWV data from seven 51 satellite instruments against reference GPS measurements is performed. The 52 instruments are: Global Ozone Monitoring Instrument (GOME-2), Moderate-53 Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satel-54 lites, Ozone Monitoring Instrument (OMI), Spining Enhanced Visible and In-55 fraRed Imager (SEVIRI), Atmospheric Infrared Sounder (AIRS), and Scan-56 ning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIA-57 MACHY). GOME-2 IWV data have been widely validated (Noël et al., 2008; 58

Antón et al., 2015; Grossi et al., 2015; Román et al., 2015; Kalakoski et al., 59 2016), as well as MODIS water vapor products (Li et al., 2003; Gao & Li, 2008; 60 Prasad & Singh, 2009; Bennouna et al., 2013; Chang et al., 2015; Ningom-61 bam et al., 2016; Vaquero-Martínez et al., 2017a). However, the validation of 62 OMI IWV product has only been found in Wang et al. (2016a) and Vaquero-63 Martínez et al. (2017b), AIRS IWV products in Hagan et al. (2004); Rama 64 Varma Raja et al. (2008); Milstein & Blackwell (2016), SCIAMACHY IWV 65 products in Bovensmann et al. (1999); Noël et al. (2005); Schrijver et al. (2009); 66 du Piesanie et al. (2013), and SEVIRI IWV products in (Hanssen et al., 2001; 67 Schroedter-Homscheidt et al., 2008). 68

To our knowledge, an intercomparison between seven satellite instruments against a common reference dataset has not been performed before. Therefore, the main goal of this article is to analyze the differences and similarities in the performance of different satellite IWV products in order to improve the understanding of the quality of satellite IWV observations.

74 2. Instruments and Data

75 2.1. Satellite instruments and their IWV products

Some of the main characteristics of the satellite instruments are summarized
in Table 1. A more detailed description of the satellite instruments and their
IWV products can be found in the following subsections.

79 2.1.1. GOME-2

GOME-2 (Callies et al., 2000) is an improved version of the GOME instrument, a medium-resolution UV-VIS-NIR spectrometer. The primary product of the GOME-2 satellite is the total atmospheric content of ozone and the vertical ozone profile. Additionally, it also provides information about other trace gases in the atmosphere, such as the total column amount of water vapor, sulphur dioxide, total and tropospheric nitrogen dioxide, tropospheric ozone and bromine oxide. Currently, there are two operational GOME-2 sensors on-board

Table 1:	Summary	with	main	characteristics	of	the	instruments	used
	•/							

Satellite	Algorithm	Pixel Size	λ range	Period	Passing freq.	Cloud filter?	Cloud info?
OMI	SAO	$13 \rm{km} \times 24 \rm{km}$	$430-480~\rm{nm}$	once a day	2007-2009	Yes	Not available
	OMH2O						
	v. 1.0 Level						
	2						
SEVIRI	SPhR-	$3 \rm km \times 3 \rm km$	around	2008-2012	15-30 min	No	No
	PGE13		$6.7~\mu\mathrm{m}$				
	v2.0						
SCIAMACHY	AMC-DOAS	$30 \rm{km} \times 60 \rm{km}$	around	2007-	around once	Indirectly	No
			700 nm	(April)2012	every 6 days		
GOME-2	GDP v. 4.6	$80 \rm{km} \times 40 \rm{km}$	$614-684~\mathrm{nm}$	2007-2012	twice every	Yes	Yes
					three days		
MODIS		$5 \mathrm{km} \times 5 \mathrm{km}$	NIR(nighttime	e)2007-2012	1-2 per day	Yes	Yes
			IR(daytime)				
AIRS	AIRS/Aqua	13.5km	IR	2007-2012	1-2 times a	Yes	Yes
	L2 St.				day		
	Phys. Ret.						
	(AIRS-only)						

the MetOp-A and MetOp-B satellites. The default scan widths are 960 km and
1920 km, enabling the combined GOME-2 sensors to cover Earth's surface in a
daily basis with a ground pixel of 40 km × 40 km (EUMETSAT, 2011).

The IWV data used in this work, obtained from GOME-2 MetOp-A, were 90 derived from the GOME Data Processor (GDP, version 4.6) generated by the 91 German Aerospace Center, Remote Sensing Technology Institute (DLR-IMF) in 92 the framework of the EUMETSAT satellite Application Facility on Atmospheric 93 Chemistry Monitoring (O3M SAF) (Grossi et al., 2015). The period of study 94 extends from 2007 to 2012. The retrieval method implemented in GDP is based 95 on Differential Optical Absorption Spectrography (DOAS). This algorithm, de-96 scribed in detail in Wagner et al. (2003, 2006), consists of three steps: 97

 $_{98}$ 1. DOAS fitting: water vapor, O_2 and O_4 absorptions are taken into account. $_{99}$ H_2O cross section is based on line-by-line computations using HITRAN $_{100}$ H_2O line parameter for a fixed temperature and pressure. The broadband $_{101}$ filtering is improved by including three types of vegetation spectra, as well $_{102}$ as a correction for the ring effect (see Wagner et al., 2009).

¹⁰³ 2. Non-linearity absorption correction: GOME-2 cannot spectrally resolve

the water vapor (and oxygen) absorption bands, the water vapor slant column density is not linear with IWV, and a correction must be applied. The correction factors are obtained by means of the mathematical convolution of H_2O spectrum with the instrument slit function. Such effect is more important for large H_2O SCDs.

3. Vertical column density calculation: The corrected SCD must be converted 109 to vertical column densities (VCDs) to make them geometry-independent. 110 This is achieved by dividing SCD by a convenient air mass factor (AMF), 111 which is derived from oxygen absorption. AMF is obtained dividing O_2 112 SCD by the O₂ VCD for a standard atmosphere. AMF for water vapor 113 and oxygen is assumed to be similar, which can cause some systematic 114 errors. O_2 AMF is expected to be larger than water vapor's, since O_2 115 scale height is larger than H_2O scale height. In order to correct this, a 116 look-up table with correction factors is applied, which depends on SZA, 117 line of sight angle, relative azimuth and surface albedo. The correction 118 factors are calculated through radiative transfer calculations. 119

The fitting algorithm uses the wavelength region between 614 and 683 nm, where the spectral resolution is about 0.54 nm. The main advantages of IWV products from GOME-2 are their independence of external calibration sources and their accuracy both over land and over ocean, and the lack of assumptions on atmospheric pressure, temperature, radiative transfer, or other a-priori information.

126 2.1.2. MODIS-Terra and MODIS-Aqua

MODIS is on-board Terra and Aqua satellite platforms (King et al., 1992). Terra's orbit around the Earth is scheduled to overpass the equator from north to south in the morning, while Aqua passes from south to north over the equator in the afternoon. They cover the whole planet in 1-2 days. Its swath width is 2330 km.

MODIS has 36 spectral bands, some of which (890 - 920 nm, 931 - 941 nm)and 915 - 965 nm are related to atmospheric water vapor. These bands have a spatial resolution of 1 km, but Level 2 moisture profiles are binned using 5×5 pixels. Thus, the resolution of the IWV product is 5 km \times 5 km. The water vapor product is generated for both daytime (using NIR bands) and night (using IR bands).

For daytime, NIR bands (channels 2, 5, 17, 18, 19) are used (solar radia-138 tion reflected by Earth + atmosphere). The NIR algorithm uses 2-channel and 139 3-channel rationing techniques. Look-up tables are generated with values of 140 these ratios, calculated from radiative transfer programs. The total amount of 141 water vapor can be transformed into IWV by taking into account the solar and 142 observational geometries. If clouds are present, other channels in the range of 143 $0.8-2.5 \ \mu m$ region are used, since they contain information on absorptions due 144 to water vapor above and within clouds. The algorithm is thoroughly explained 145 in Gao & Kaufman (1992); Gao & Li (2008). 146

For nighttime, IR bands are used (radiation emitted by Earth + atmo-147 sphere). The algorithm employs a statistical retrieval with an option for a 148 subsequent nonlinear physical retrieval (Seemann et al., 2003). The algorithm 149 calculates MODIS infrared band radiances from a dataset of radiosonde ob-150 servations, in order to associate computed radiances with atmospheric profiles. 151 The MODIS atmospheric water-vapor product is then estimated from the to-152 tal column water vapor, integrating MODIS infrared retrievals of atmospheric 153 moisture profiles in clear-sky scenes. 154

The data are included in the water vapor product (MOD05_L2 and MYD05_L2) collection 6. It is, however, obtained from the MODIS Atmospheric Profile (MOD07 and MYD07) Collection 6 product, simply added to product MOD05 for convenience.

159 *2.1.3. OMI*

OMI (Levelt et al., 2006) was developed by the Netherland's Agency for Aerospace Programs (NIVR) and the Finnish Meteorological Institute (FMI) to the EOS Aura mission. It is on-board NASA's Earth Observing System (EOS) Aura satellite platform. Aura has a Sun-synchronous polar orbit, which allows ¹⁶⁴ OMI to sample the whole planet daily at 1330 local time (LT). The nominal ¹⁶⁵ OMI pixel size is 13 km \times 24 km at nadir.

The OMI IWV data used in this study are the first version of the Smithso-166 nian Astrophysical Observatory (SAO) OMH2O level 2 retrieval which uses the 167 algorithm presented in (Wang et al., 2014). The algorithm uses a window of 168 430 nm - 480 nm, and it follows three steps: (1) direct fitting of Slant Column 169 Density (SCD), using a semi-empirical model that considers several gases (water 170 vapor, ozone, nitrogen dioxide, liquid water, and more), as well as some effects 171 (the ring effect, wavelength shift, and more); (2) SCD conversion to Vertical Col-172 umn Density (VCD) using the Air Mass factor (AMF), which is calculated using 173 radiative transfer calculations in look-up tables at 442 nm, and (3) conversion 174 of VCD to IWV by a conversion of units. 175

Following the guidelines from Wang et al. (2014), some restrictions have been applied to the OMH2O product to assure its quality. Cloud fraction has to be below 0.1, cloud top pressure over 500 HPa, AMF greater than 0.75, retrieval root mean square (RMS) value for the fitting Slant Column Density lower than 0.005, *maindataqualityflag* flag equal to 0. Pixels affected by the row anomaly (see Wang et al., 2014) have been rejected as well.

182 2.1.4. SEVIRI

Meteosat are a series of geostationary satellites operated by EUMETSAT. 183 Meteosat Satellites are equipped with SEVIRI, which counts with 7 IR bands 184 in the range $6.2 - 13.4 \ \mu m$. The retrieval algorithm uses the bands WV6.2, 185 WV7.3, IR10.8, IR12.0 and IR13.4, where the first two are bands of strong 186 absorption by water vapor. The retrieval process deals with obtaining the profile 187 of temperature and humidity from infrared brightness temperature observations, 188 using an inversion technique, i.e. trying to find an atmospheric profile that 189 would reproduce the observations. The solution to this problem is not generally 190 unique, so a background profile is used as a constraint. This background profile 191 is obtained from a short range forecast model, and it is slowly varied until its 192 radiative properties fit the observations. The algorithm of retrieval is detailed 193

¹⁹⁴ in AEMET & NWC SAF (2013).

One of the limitations of this algorithm is that its products are only available 195 under clear conditions. In some cases, such as cirrus clouds or in the edge of 196 clouds, NWCSAF/MSG Cloud Mask module might not detect clouds and the 197 algorithm would try to estimate IWV over those pixels. However, the retrieval 198 in those cases usually fails or needs a high number of iterations, which is de-199 tected by a quality flag. Moreover, mountain regions can exhibit large errors 200 if there are differences between NWP topography, and the same can happen 201 with temperature over very hot or cold pixels, where NWP first guess and the 202 actual skin temperature can be quite different. Additionally, the effect of emis-203 sivity temporal variation is not handled, and fixed values from IREMIS monthly 204 datasets have been used. 205

As Meteosat is geostationary, data are available with very high temporal resolution. The product temporal resolution is 30 minutes. Only the temporally closer datum to every GPS datum was selected. Its spatial resolution is $3 \text{ km} \times$ 3 km. SEVIRI IWV resolution is around 0.58 mm.

210 2.1.5. SCIAMACHY

SCIAMACHY (Bovensmann et al., 1999) is an instrument on-board the Envisat satellite. It was operational from March 2002 to April 2012. Thus, our study period in this work for SCIAMACHY is from 2007 until April 2012. Envisat orbited the Earth in a sun-synchronous orbit, over-passing the equator at 10.00 h LT every day. It sampled the whole planet in 6 days in nadir mode. SCIAMACHY's ground pixel size is typically 60 km × 30 km.

The retrieval algorithm for SCIAMACHY data is based on the Air Mass Corrected Differential Absorption Spectroscopy (AMC-DOAS) method (Noël et al., 2004). This method allows to obtain the IWV from measurements in the spectral region around 700 nm. The use of visible light makes the method only applicable to daytime and (almost) cloud-free scenes. One of the main advantages of AMC-DOAS is that it provides a completely independent data set, since the IWV products do not depend on external information.

AMC-DOAS algorithm is based on a modification of DOAS approach. In this 224 modification, the saturation effects from highly structured differential spectral 225 features that are not resolved by the instruments are accounted for. Moreover, 226 O₂ absorption features are fitted in combination with H₂O to derive a correction 227 for the Air Mass Factor (AMF). This correction tries to compensate the lack of 228 information on background and topographic characteristics, and represents how 229 similar the atmospheric conditions and the conditions in the model calculations 230 are. For example, if the correction were 1 it would indicate a perfect match (the 231 correction ranges from 0 to 1). Therefore, the correction factor also contains 232 information about the quality of the retrieved IWV. 233

In order to assess the quality of data, SCIAMACHY data are filtered using the following criteria: local SZA below 88° and AMF correction greater than 0.8. There is no specific cloud filter applied, but the AMF correction criterion takes out most of the cloudy scenes.

238 2.1.6. AIRS

AIRS (Aumann et al., 2003) is a high-spectral resolution infrared sounder
aboard NASA's Aqua satellite platform. It surpasses the Iberian Peninsula 1-2
times a day. The IR bands used in the retrieval process have a spatial resolution
of 13 km.

The AIRS products used for this work were AIRS/Aqua L2 Standard Physical Retrieval (AIRS-only) V6. This product has a quality flag for IWV data. The algorithm used in the retrieval (Barnet & Nedis, 2007) has been designed so that all data products simultaneously satisfy the measurements in a leastsquares sense. The Standard Product includes measurements of cloud and surface properties, profiles of retrieved temperature, water vapor, ozone, and a flag for cloud ice or water, as well as the errors associated with these quantities.

Observed radiances are passed through a neural network to obtain the atmospheric state, from which cloud parameters are retrieved and then a cloud clearing is performed to obtain cloud-cleared radiances. This process is done iteratively twice and then a first physical retrieval algorithm is applied, with the cloud-cleared radiances and the atmospheric states as inputs. Then, a new cloud parameter retrieval process is performed and another cloud clearing as well, with new cloud-cleared radiances as output. Then, the type of surface is chosen by the algorithm, obtaining the final state of the whole set of atmospheric variables. For more details, see Olsen et al. (2013b,a).

Data with quality flag 2 are rejected in this work, while data with flag 1 or θ are accepted. Quality flag 2 data are not recommended for use, while data with quality flag 1 may be used for statistical climate studies. Data with quality flag θ , recommended for comparison with in situ measurements, would be more suitable, but the number of data-points was scarce for the purpose of this work. The bands for water vapor retrieval are 938 cm⁻¹, 1310 – 1606 cm⁻¹ and 2607 – 2657 cm⁻¹, respectively.

Data were downloaded from AIRS Science Team/Joao Texeira (2013), AIRS/Aqua
L2 Standard Physical Retrieval (AIRS-only) V006, version 006, Greenbelt, MD,
USA, Goddard Earth Sciences Data and Information Services Center (GES
DISC), Accessed September 2016, 10.5067/AQUA/AIRS/DATA202.

270 2.2. GPS IWV data

The method to obtain IWV from GPS measurements is briefly described in this paper. A more detailed explanation can be found in Bevis et al. (1992).

The satellites that form the constellation of GPS communicate through L-273 band microwave radiation with ground-based receivers. Usually, the time spent 274 by the signal in reaching the receiver is used to calculate the distance between the 275 satellites and the receiver. However, several corrections need to be accounted 276 for. In particular, the troposphere produces a delay in the signal, which is 277 usually called Slant Tropospheric Delay (STD). It can be converted to the Zenith 278 Tropospheric Delay (ZTD) through the so-called mapping functions. In this 279 case, Niell's mapping function (Niell, 2000) was used. 280

$$\text{ZTD} = \frac{\text{STD}}{m(E)} \tag{1}$$

Once the ZTD is obtained, it can be separated in two different contributions: the Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD).

$$ZTD = ZHD + ZWD$$
(2)

The former is due to the tropospheric gases, while water vapor is responsible for the latter. The ZHD can be modeled and removed if surface temperature and atmospheric pressure at the station are known. The quality of these meteorological data is important to minimize errors in the final product (Wang et al., 2016c). IWV is obtained from the remaining ZWD. The relation between ZWD and IWV is linear,

$$IWV = \Pi ZWD \tag{3}$$

The constant Π depends on the water vapor - weighted mean temperature (Wang et al., 2016b), which can be derived from surface temperature.

The GPS IWV data used in this work have been obtained from ground-based 291 GPS measurements of the zenith total delay (ZTD). The tropospheric prod-292 ucts were provided by the Spanish Geographic Institute "Instituto Geográfico 293 Nacional", which is a local analysis center of the European Reference Frame 294 (EUREF). The analysis is performed using Bernese 5.0 software for GNSS data 295 processing. Two steps are required: in a first step, the coordinates of the sta-296 tions are obtained with high precision, and in the second step, ZTD is obtained. 297 The method is based on the resolution of the equation for double differences of 298 phase (Leick, 1995; Rohm et al., 2014), which uses a network of ground-based 299 receiver stations and differences of time in reaching the signal between different 300 stations of the network to calculate the stations positions and other delays and 301 sources of error. 302

As is described above, once we get the ZTD, two variables are needed to model ZHD: temperature and pressure at the location of the GPS stations. This information was provided by the Spanish Meteorological State Agency (AEMet). AEMet stations are not necessarily in the same exact location where

Figure 1: Location of the nine stations selected.

the GPS receiver is located. However, the stations are as close as possible, usually in the same region. In the case of altitude difference, temperature was corrected by assuming a vertical gradient of temperature of 6.5 K. Data are interpolated to the time of the GPS measurements. In the case of temperature, data were interpolated linearly. As for pressure, the barometric tide was taken into account to interpolate.

IWV data at the nine GPS stations were available for this work from 2007
to 2012. These GPS data, which have a temporal resolution of one hour, have
been used to perform other validation exercises on satellite IWV data (Román
et al., 2015; Bennouna et al., 2013; Vaquero-Martínez et al., 2017a,b).

The stations selected for this research were located at the interior of the Iberian Peninsula. Coastal stations were rejected in order to avoid possible influences from error caused by sea or mixed sea-land pixels in satellite observations. Table 2 lists information for the nine stations selected and the map in

Station	Acronym	Latitude	Longitude	
		(0)	(0)	
Córdoba	coba	37.92	-4.72	
León	leon	42.59	-5.65	
Logroño	rioj	42.46	-2.5	
Salamanca	sala	40.95	-5.5	
Sonseca	sons	39.68	-3.96	
Teruel	teru	40.35	-1.12	
Valladolid	vala	41.70	-4.71	
Villafranca	vill	40.44	-3.95	
Cáceres	cace	39.48	-6.34	

³²¹ Figure 1 shows their locations in the Iberian Peninsula.

322 3. Methodology

323 3.1. Collocation and comparison criteria

Two different criteria were followed for spatial collocation. The first criterion was to take the pixel whose center was the closest to the ground-based GPS station. The second criterion was to average the closest pixels (those within $0.25^{\circ} \times 0.25^{\circ}$ distance to the ground-based GPS station). The first criterion was used for the collocation between GOME-2 and GPS, between MODIS-Terra and GPS, and SEVIRI and GPS.

The temporal criterion followed was to match GPS and satellite IWV values whose temporal difference was the closest. In all cases such difference had to be below 30 minutes.

Satellite data under cloudy-sky conditions (cloud fraction given by each satellite algorithm larger than zero) have been rejected for all analyses, except for the study of cloud dependence (see Section 4.5), where all sky conditions were considered for those satellite datasets that provide information on cloudiness
 (i.e. GOME-2, MODIS-Terra and MODIS-Aqua, and AIRS).

338 3.2. Statistical analysis

Once the temporal and spatial match between the satellite and the GPS data is achieved, there is a dataset for each satellite, where every row has a satellite IWV value, a GPS IWV value, the location (station), and other columns with additional information, such as the date and time, SZA or cloud fraction (CF). The relative differences (Equation 4) studied in this work are calculated as:

$$\delta_{i,s} = 100 \cdot \frac{w_{i,s}^{\text{sat}} - w_{i,s}^{\text{GPS}}}{w_{i,s}^{\text{GPS}}}$$

$$\tag{4}$$

where the index s denotes a satellite, the index i represents a fixed location and time and w is the IWV measurement by the satellite (sat) or GPS.

The distribution of the satellite-GPS differences is analyzed for each ground-346 based station using several variables. First, two indices are calculated, the pseu-347 domedian and the interquartile range (IQR). The pseudomedian is obtained us-348 ing the Wilcoxon signed rank test with continuity correction (Wilcoxon, 1946). 349 The pseudomedian is defined as the median of all the midpoints of pairs of ob-350 servations, which agrees with the median if the dataset is symmetric. The pseu-351 domedian of the relative differences provides information about the accuracy 352 of the satellite data, while IQR reports about their precision. Pseudomedian 353 has been chosen over median as index because it is a better estimator when 354 the distribution is assimptive, which is typically the case for δ distribution when 355 applied to binned data. 356

Furthermore, a linear regression analysis between the GPS and the satellite data was performed in order to analyze their proportionality and similarity. Then, in order to study the dependence with certain variables, the two indices are applied to bins of data. The bin widths are 5° for SZA, 5 mm for IWV and 0.10 for CF. Moreover, the seasonal dependence of relative differences was also analyzed in detail. Bins with less than 50 data points have been rejected. The dependence of distance satellite pixel - GPS ground-based station was not ³⁶⁴ considered in this work, since Román et al. (2015) did not show an important
 ³⁶⁵ impact in the satellite IWV data.

4. Results and discussion

367 4.1. Statistical analysis

Table 3 shows the pseudomedian and IQR of the satellite-GPS differences 368 (equation 1) for the seven satellite instruments. The results indicate that 360 GOME-2, SCIAMACHY and AIRS highly overestimate, on average, the ref-370 erence GPS data (positive pseudomedian values), while MODIS-Aqua, MODIS-371 Terra and SEVIRI have a small tendency to underestimate IWV (negative pseu-372 domedian values). OMI pseudomedian, however, shows that there is no signifi-373 cant bias in OMI IWV with respect to reference GPS IWV. IQR is between 30% 374 and 35% for GOME-2, both MODIS, and SEVIRI, while it is higher than 40%375 for OMI, SCIAMACHY and AIRS. The regression analyses performed for each 376 satellite instrument show that the intercept y_0 is always positive and the slope b 371 is always lower than 1. This suggests that satellite instruments tend to overesti-378 mate low IWV data, and underestimate high values. This result is in agreement 379 with other studies (Rama Varma Raja et al., 2008; Bennouna et al., 2013; Antón 380 et al., 2015; Román et al., 2015; Scheepmaker et al., 2015; Vaquero-Martínez 381 et al., 2017b,a). Correlation coefficient R^2 shows a fair agreement. The agree-382 ment is better for GOME-2 and both MODIS instruments, and worse for AIRS. 383 The validation of GOME-2 in Antón et al. (2015) against radiosonde showed a 384 slightly better agreement $(R^2 = 0.95)$. 385

Figure 2 presents a time series of each instrument (columns) and each station (rows). It can be observed that all satellites represent the seasonal variation of water vapor correctly. The lack of available data in some periods at some stations can be identified. For instance, *teru* station time series starts in 2009, because the GPS receiver in that station was not operative until 2009. Moreover, it can be observed that OMI data are only available in the period 2007-2009, as mentioned in Section 2.1. The different density of data-points is related to

Table 3: Statistical analysis of sat-GPS relative differences. The pseudomedian (pMedian) and IQR of the δ distribution, the number of data (N) and the coefficients of the regression analysis are shown. y_0 column shows the intercept, b stands for the slope and R2 is Pearson's coefficient of determination. The numbers after \pm are the 95% confidence interval.

Satellite	pMedian	IQR	Ν	y_0	b	R^2
	(%)	(%)		(mm)		
OMI	-0.7 ± 1.1	40.80	3895	2.65 ± 0.28	0.78 ± 0.02	0.63
SEVIRI	-5.2 ± 0.1	33.31	187375	2.89 ± 0.03	0.690 ± 0.002	0.67
SCIAMACHY	6.6 ± 1.2	45.72	2629	0.92 ± 0.36	0.96 ± 0.02	0.70
GOME-2	16.7 ± 0.8	32.58	4317	3.40 ± 0.18	0.88 ± 0.01	0.83
MODIS-Terra	-0.9 ± 0.5	34.58	13651	1.01 ± 0.14	0.915 ± 0.009	0.74
MODIS-Aqua	-3.4 ± 0.4	33.24	13581	0.99 ± 0.14	0.89 ± 0.01	0.71
AIRS	2.0 ± 1.8	47.84	1832	3.05 ± 0.41	0.73 ± 0.03	0.56

³⁹³ the satellite's passing frequency and the quality filters mentioned in Section 2.1.

The differences between satellite and GPS IWV are also represented, showing that in all satellites these are approximately centered around 0 mm.

396 4.2. IWV dependence

Figure 3 shows the pseudomedian of the sat-GPS differences against refer-397 ence (GPS) IWV data in bins of 5 mm. The error bars are the 95% confidence 398 interval in the Wilcoxon signed rank test with continuity correction. It can be 399 seen that the behavior is similar in all satellite instruments: the pseudomedian 400 is positive for the lowest IWV values in all of them, while satellite data tend 401 to underestimate large IWV values. This is in agreement with the behavior ob-402 served in other studies (Antón et al., 2015; Vaquero-Martínez et al., 2017a,b). 403 AIRS, GOME-2 and SEVIRI have the largest range of variation. Their pe-404 sudomedians reach almost +40% (AIRS and SEVIRI) and +60% (GOME-2) 405 for low IWV values, while they decrease to -30% (AIRS), -25% (SEVIRI) 406 and -10% (GOME-2) in large IWV cases. Both MODIS instruments perform 407 similarly, with Terra being slightly higher than Aqua. It can be noticed that 408 SCIAMACHY and GOME-2 (whose retrieval algorithms use DOAS techniques) 409

50	AIRS	GOME-2	MODIS-Aqua	MODIS-Terra	OMI	SCIAMACHY	SEVIRI
-250 -250 -250 -250 -250 -250 -250 -250	-	Addate 1	444/144	***			Cace
	-	0000c	44444	*****	dide -		coba
50 25 -25	Marcar	MAAC	-	*****	hate	hillinger a	
50 25 0 -25	MAL	1960.4c	****		444		ii the test
um) -25 -25	sach-filicited a	****	-	****	****	anna	sala
MI 505	wahad	MARACES	144444	-	100	MAAA	sons
	- Marth	MAC 1	-4444	-	*	-	ten ten
	MANNO	-	\$4560	****	\$	MAA	
50 25 -25	many	-	مەنلەرلەرلەر	****	North Contraction		
20	07080910111213	07080910111213	07080910111213	07080910111213 Year	07080910111213	07080910111213	07080910111213

colour ----- Sat-GPS IWV ----- Satellite IWV

Figure 2: Time series of every collocated dataset of every satellite instrument in every station. Blue line is the satellite IWV and red line is the difference between satellite measurements and GPS data.

tend to slightly overestimate IWV for intermediate values ($\sim 10 - 25$ mm), while the rest of satellites tend to underestimate IWV in this range of IWV values. The behavior of GOME-2 was also reported in Antón et al. (2015). In that work, GOME-2 showed discrepancies with reference radiosonde IWV data under 20% when data are grouped by similar SZA values. The strongest differences between Antón et al. (2015) and the present work are at low IWV values, suggesting that SZA might play an important role.

Regarding the precision statistical, IQR, Figure 4 shows similar values for all 417 satellite instruments except for OMI, which has much higher IQR for low IWV 418 values (over 100%, being the rest around 50%). IQR decreases with increasing 419 IWV in all cases, reaching values under 25% for high IWV. The satellite instru-420 ment with the lowest IQR in the whole range of IWV is GOME-2. The behavior 421 of SCIAMACHY water vapor product is different. It keeps a high IQR for low 422 and medium IWV (up to 25 mm approximately), only becoming lower than 20% 423 at high IWV (> 30 mm). A similar pattern was reported in Noël et al. (2004) 424

Figure 3: Pseudomedian of sat-GPS relative differences against reference IWV (GPS). Error bars are the 95% confidence interval in the Wilcoxon signed rank test

⁴²⁵ when ECMWF IWV data were used as reference.

Figure 4: IQR of sat-GPS relative differences against reference IWV (GPS).

426 4.3. SZA dependence

The influence of SZA on the pseudomedian is different for each satellite 427 instrument, as seen in Figure 5. OMI and GOME-2, which use visible radiation 428 for IWV retrieval, show an increase of the pseudomedian with SZA. As SZA 429 increases, the amount of IWV that the sunlight encounters increases. This 430 could affect the correction factor used to calculate the air mass factor (AMF). 431 In the case of OMI this change is very smooth, and could be explained by the 432 correlation of SZA and IWV values (high IWV values occur when temperature 433 is higher, which happens when SZA is low, and vice versa), as reported in 434 Vaquero-Martínez et al. (2017b). The increase of the pseudomedian with SZA 435 is specially strong in GOME-2, from very small values (under 5%) for low SZA 436 to very high values (around 80%) for high SZA, as it has already been reported 437 in the literature (Kalakoski et al., 2011; Antón et al., 2015; Román et al., 2015). 438 By contrast, SCIAMACHY, which also uses visible radiation, shows the opposite 439 behavior: a decrease of relative difference with increasing SZA. This can also 440 be related to the quality of AMF correction being influenced by SZA in the 441 retrieval algorithm used for this satellite instrument. 442

In the case of satellites that use IR radiation for IWV retrieval, i.e. the 443 MODIS instruments (Terra and Aqua) and SEVIRI, the influence of SZA at 444 daytime is similar to OMI. This fact suggests that the SZA dependence may 445 be related to other variables that change with SZA (i.e. the amount of water 446 vapor). In the case of AIRS, the pseudomedian seems to slightly decrease with 447 SZA. Furthermore, when using IR radiation it is possible to make measure-448 ments in the nighttime. AIRS has a notably good performance at nighttime, 449 with pseudomedian close to 0 for the whole nighttime range. The rest of the in-450 struments have negative pseudomedian of the error at nighttime, above -20%. 451 A strong discontinuity is observed between daytime and nighttime measure-452 ments of MODIS. This is probably related to the fact that the IWV retrieval 453 is different for daytime and nighttime. SEVIRI and AIRS, which use the same 454 retrieval algorithm for both day and night, have a quite similar response in the 455 whole SZA range. 456

Figure 5: Pseudomedian of sat-GPS relative differences against SZA.

Figure 6: IQR of sat-GPS relative differences against SZA

The variation of IQR with SZA is plotted in Figure 6. Again, OMI and 457 GOME-2 behave similarly, but in this case GOME-2 performs better: its IQR 458 ranges from under 20% for low SZA, to 50% for high SZA. By contrast, OMI IQR 459 changes from 30% to more than 70%, increasing with SZA. SCIAMACHY has a 460 similar behavior as well, with higher values of IQR than OMI up to $SZA = 50^{\circ}$, 461 and between OMI and GOME-2 from that SZA on. Both MODIS instruments 462 have similar IQR compared to GOME-2. SEVIRI has a more stable IQR with 463 SZA, always between 15% and 40%. For nighttime, SEVIRI, MODIS-Aqua 464 and MODIS-Terra have similar IQR, slightly increasing with SZA. AIRS IQR 465 at nighttime is clearly higher than the rest, while at daytime it is above 50%. 466 The increase of IQR with daytime SZA can be explained if we take into con-467 sideration the increasing corrections to obtain the proper AMF of water vapor. 468 These corrections introduce noise in the measurements, which are stronger as 469 the corrections are larger. Moreover, at high SZA IWV is usually lower, so the 470 relative difference is higher for the same absolute difference. 471

472 4.4. Seasonal dependence

Satellite performance displays a dependence on the season of the year, re-473 lated to the annual cycle of water vapor and SZA values. In Figure 7, the 474 pseudomedian of the relative differences is shown in bins of one month. GOME-475 2 shows the strongest seasonal dependence, with pseudomedian values ranging 476 from +5% in summer to over +50% in winter, which is probably connected to 477 the strong dependence on SZA shown above. This is in agreement with Román 478 et al. (2015), and shows higher pseudomedians than in Antón et al. (2015), where 479 the reference instrument was radiosondes. The rest of the satellites have medi-480 ans between -25% and +25%. OMI has a similar behavior to GOME-2, with 481 an overestimation (positive pseudomedian) in winter and a slight underestima-482 tion (negative pseudomedian) in summer, in agreement with Vaquero-Martínez 483 et al. (2017b). However, both MODIS satellite instruments show overestima-484 tion in summer and underestimation almost the rest of the year (except for a 485 slight overestimation in December). MODIS-Terra has slightly higher pseudo-486

Figure 7: Seasonal evolution of the pseudomedian of sat-GPS relative differences. December has been rearranged as the first month in order to make easier to identify the different seasons

median values in summer than MODIS-Aqua. Bennouna et al. (2013) showed 487 that MODIS algorithm performed worse in winter. The reason for the discrep-488 ancy could be related to differences in datasets, such as the years used and the 489 stations selected. If atmospheric conditions change, IWV will change too, and 490 thus performance of the algorithm can be different. Moreover, SEVIRI under-491 estimates from April to November and overestimates from December to March. 492 AIRS is the closest to the zero line throughout the year. SCIAMACHY, how-493 ever, has a special behavior: summer and autumn months are overestimated 494 (up to 25%), while winter and spring are slightly underestimated. 495

The seasonal dependence on the precision index can be seen in Figure 8. All satellite instruments have a similar behavior: IQR is highest in winter than in summer. OMI has the higher IQR in winter and autumn, reaching more than 70% in December, while AIRS has IQR over 40% throughout the year, for almost all months. However, the rest of the satellite instruments have IQR from 20% to 55%. GOME-2 data have the best performance except in winter, where all

Figure 8: Seasonal evolution of the IQR of sat-GPS relative differences. December has been rearranged as the first month in order to make easier to identify the different seasons

satellite instruments except OMI (higher IQR) perform similarly. This behavior
can be related to the fact that in winter, IWV is smaller and thus the relative
difference tends to be higher, as commented in Section 4.2. OMI behavior is in
agreement with Vaquero-Martínez et al. (2017b).

506 4.5. Cloudiness dependence

The influence of cloudiness on the pseudomedian is represented in Figure 9 507 for those satellite instruments that provide information about cloudiness and 508 were not filtered (AIRS, GOME-2, MODIS-Aqua and MODIS-Terra). In gen-509 eral, as CF increases the pseudomedian is further from the zero line: it can 510 be below 0, underestimating the IWV (AIRS, GOME-2 and MODIS-Terra) or 511 over 0, overestimating (MODIS-Aqua). The underestimation can be due to the 512 so called shielding effect (Román et al., 2015; Kokhanovsky & Rozanov, 2008): 513 clouds can "hide" the water vapor under them. The differences between MODIS-514 Aqua and MODIS-Terra could be related to their different passing times and 515 the use of NIR radiation in daylight and IR during nighttime. At nighttime, 516

Figure 9: Pseudomedian of sat-GPS relative differences against CF

the algorithm could confuse the presence of clouds with water vapor, causing the overestimation.

IQR, the precision index, is shown in Figure 10. IQR computed for both MODIS data products increases as cloudiness increases, AIRS seems to have a stable value of IQR and GOME-2 shows a certain decrease of IQR as CF is higher. The reason for this could be that clouds introduce noise in the measurements, but if there are too many clouds, the shielding effect reduces the sensitivity to water vapor, decreasing the variability (IQR).

525 5. Conclusions

The analysis of the relative differences between satellite and GPS measurements has found some similarities and differences among the satellite measurements. In general, AIRS and OMI measurements are accurate (pesudomedian of the differences close to zero), but they are less precise than the rest of the satellites. Regarding precision the rest of the satellites perform similarly, but GOME-2 overestimates IWV while SEVIRI and both MODIS underestimate the

Figure 10: IQR of sat-GPS relative differences against CF

measurements. Regression analysis showed that all satellites tend to homoge-532 nize water vapor: low IWV tends to be overestimated, while high IWV tends to 533 be underestimated. This result was confirmed when studying the dependence of 534 the relative differences on IWV data. The reason for this could be that spatial 535 resolution of satellites is much lower than GPS ground-based stations, and thus 536 IWV measurement is somehow averaged over the whole pixel. The precision in-537 dex (IQR) showed that measurements are more precise as IWV increases. OMI 538 precision is especially low (high IQR) at low IWV. IQR computed for SCIA-539 MACHY data seems to be high up to 20 mm, when IQR starts to decrease as 540 IWV increases. 541

The study on the influence of SZA on the relative differences showed that GOME-2 highly overestimates IWV at high SZA. There is a general tendency to overestimate for SZA between 60° and 80°. OMI performs reasonably well although its precision quickly becomes lower (higher IQR) as SZA increases. SEVIRI has a quite stable IQR over the whole SZA range. Nighttime measurements are underestimated for all IR satellites (SEVIRI and MODIS-Terra and 548 Aqua) except AIRS, which presents a good accuracy in nighttime.

The annual variations of the two indices are studied as well. The performance of all satellites is similar, with the following exceptions. GOME-2 shows a high overestimation during winter and autumn, probably the cause of its high overestimation in the general analysis. SCIAMACHY shows a high pseudomedian in summer and autumn, and lower in winter and spring. OMI shows very high IQR (low precision) in winter.

The influence of clouds is studied for those satellites that provide information about cloudiness. The presence of clouds increases the deviation of satellite IWV data with respect to the reference GPS measurements, whether overestimating (MODIS-Aqua) or underestimating (MODIS-Terra, GOME-2, AIRS). IQR generally increases or remains stable, except for GOME-2, which shows a slight decrease of IQR with CF.

Although satellite retrievals can provide good spatial coverage of IWV values, they still need improvements in order to reduce the notable differences and dependences observed when the satellite IWV products are compared against reference GPS data. This study indicate that more work is needed to increase OMI precision and GOME-2 accuracy for low IWV, and to improve AIRS precision under all conditions.

567 Acknowledgements

This work was supported by the Spanish Ministry of Economy and Compet-568 itiveness through project CGL2014-56255-C2. Manuel Antón thanks Ministerio 569 de Ciencia e Innovación and Fondo Social (RYC-2011-08345) Europeo for the 570 award of a postdoctoral grant (Ramón y Cajal). Support from the Junta de 571 Extremadura (Research Group Grants GR15137) is gratefully acknowledged. 572 The GOME-2/MetOp-A products were generated at DLR under the auspices of 573 the O3MSAF project funded by EUMETSAT and national contributions. The 574 generation of SCIAMACHY data was supported by ESA, DLR Bonn and by the 575 University of Bremen, Germany. Work at Universidad de Valladolid is supported 576

by projects CMT2015-66742-R and MINECO VA100U14. Work at Universidad 577 de Granada was supported by the Andalusia Regional Government (project 578 P12-RNM-2409) and the Spanish Ministry of Economy and Competitiveness 579 and FEDER funds under the projects CGL2013-45410-R, CGL2016-81092-R 580 and "Juan de la Cierva-Formación" program. Work at SAO is supported by 581 NASA's Atmospheric Composition: Aura Science Team program (sponsor con-582 tract number NNX14AF56G). Work at Universidade de Évora is co-funded by 583 the European Union through the European Regional Development Fund, in-584 cluded in the COMPETE 2020 (Operational Program Competitiveness and In-585 ternationalization) through the ICT project (UID / GEO / 04683/2013) with 586 the reference POCI-01-0145-FEDER-007690. 587

588 References

- AEMET, & NWC SAF (2013). Algorithm Theoretical Basis Document for "SE VIRI Physical Retrieval Product" (SPhR-PGE13 v2.0). Technical Report.
- Antón, M., Loyola, D., Román, R., & Vömel, H. (2015). Validation of GOME2/MetOp-A total water vapour column using reference radiosonde data from
 the GRUAN network. Atmospheric Measurement Techniques, 8, 1135–1145.
 doi:10.5194/amt-8-1135-2015.
- Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E.,
 Mcmillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin,
 D. H., Strow, L. L., & Susskind, J. (2003). AIRS / AMSU / HSB on the
 Aqua Mission : Design , Science Objectives , Data Products , and Processing
 Systems. *Processing*, 41, 253–264.
- Barnet, C., & Nedis, N. (2007). Airs-Team Retrieval for Core Products and
 Geophysical. Technical Report March.
- 602 Barreto, A., Cuevas, E., Damiri, B., Romero, P. M., & Almansa, F. (2013).
- 603 Column water vapor determination in night period with a lunar photome-

- ter prototype. Atmospheric Measurement Techniques, 6, 2159–2167. doi:10.
 5194/amt-6-2159-2013.
- Bennouna, Y. S., Torres, B., Cachorro, V. E., Ortiz de Galisteo, J. P., &
 Toledano, C. (2013). The evaluation of the integrated water vapour annual
 cycle over the Iberian Peninsula from EOS-MODIS against different groundbased techniques. *Quarterly Journal of the Royal Meteorological Society*, 139,
 1935–1956. doi:10.1002/qj.2080.
- Bevis, M., Businger, S., Herring, T. a., Rocken, C., Anthes, R. a., & Ware, R. H.
 (1992). GPS Meteorology: Remote Sensing of Atmospheric Water Vapor
 Using the Global Positioning System. *Journal of Geophysical Research*, 97,
 15787–15801. doi:10.1029/92JD01517.
- Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov,
 V. V., Chance, K. V., & Goede, a. P. H. (1999). SCIAMACHY: Mission
 Objectives and Measurement Modes. *Journal of the Atmospheric Sciences*,
 56, 127–150. doi:10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.C0;2.
- Callies, J., Corpaccioli, E., Eisinger, M., Hahne, a., & Lefebvre, a. (2000).
 GOME-2 Metop's second-generation sensor for operational ozone monitor ing. ESA Bulletin-European Space Agency, 102, 28–36.
- Chang, L., Gao, G., Jin, S., He, X., Xiao, R., & Guo, L. (2015). Calibration
 and evaluation of precipitable water vapor from Modis infrared observations
 at night. *IEEE Transactions on Geoscience and Remote Sensing*, 53, 2612–
 2620. doi:10.1109/TGRS.2014.2363089.
- ⁶²⁶ Colman, R. (2003). A comparison of climate feedbacks in general circulation
 ⁶²⁷ models. *Climate Dynamics*, 20, 865–873. doi:10.1007/s00382-003-0310-z.
- De Haan, S., Van Der Marel, H., & Barlag, S. (2002). Comparison of GPS
 slant delay measurements to a numerical model: Case study of a cold front
 passage. *Physics and Chemistry of the Earth*, 27, 317–322. doi:10.1016/
 S1474-7065(02)00006-2.

- ⁶³² Diedrich, H., Wittchen, F., Preusker, R., & Fischer, J. (2016). Representative-
- ness of Total Column Water Vapour Retrievals from Instruments on Polar
- ⁶³⁴ Orbiting Satellites. Atmospheric Chemistry and Physics Discussions, 16,
- 635 8331-8339. doi:10.5194/acp-2016-99.
- EUMETSAT (2011). European Organisation for the Exploitation of Meteoro logical Satellites: GOME-2 Product Guide.
- Y. J. (1992). The MODIS Near-IR Gao. B.-C., & Kaufman, 638 Water Vapor Algorithm Product ID : MOD05 -Total Precip-639 itable Water. Algorithm Technical Background Document, (pp. 1-640 25). URL: \$\delimiter"026E30F\$Biblioteca{_}Digital{_}SPR\$\ 641 delimiter"026E30F\$Gao1992{_}ATBD.pdf. 642
- Gao, B. C., & Li, R. R. (2008). The time series of Terra and Aqua MODIS
 near-IR water vapor products. International Geoscience and Remote Sensing
 Symposium (IGARSS), 3, 186–189. doi:10.1109/IGARSS.2008.4779314.
- Grossi, M., Valks, P., Loyola, D., Aberle, B., Slijkhuis, S., Wagner, T., Beirle, S.,
 & Lang, R. (2015). Total column water vapour measurements from GOME-2
 MetOp-A and MetOp-B. Atmospheric Measurement Techniques, 8, 1111–
 1133. doi:10.5194/amt-8-1111-2015.
- Hagan, D. E., Webster, C. R., Farmer, C. B., May, R. D., Herman, R. L., Weinstock, E. M., Christensen, L. E., Lait, L. R., & Newman, P. A. (2004).
 Validating AIRS upper atmosphere water vapor retrievals using aircraft and
 balloon in situ measurements. *Geophysical Research Letters*, 31, 10–13.
 doi:10.1029/2004GL020302.
- Hanssen, R. F., Feijt, A. J., & Klees, R. (2001). Comparison of precipitable
 water vapor observations by spaceborne radar interferometry and meteosat
 6.7 μmradiometry. Journal of Atmospheric and Oceanic Technology, 18,
 756–764. doi:10.1175/1520-0426(2001)058<0756:COPWV0>2.0.C0;2.

Ichoku, C., Levy, R., Kaufman, Y. J., Remer, L. A., Li, R. R., Martins,
V. J., Holben, B. N., Abuhassan, N., Slutsker, I., Eck, T. F., & Pietras,
C. (2002). Analysis of the performance characteristics of the five-channel
Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor. *Journal of Geophysical Research Atmospheres*, 107.
doi:10.1029/2001JD001302.

- Jones, A., Urban, J., Murtagh, D. P., Eriksson, P., Brohede, S., Haley, C.,
 Degenstein, D., Bourassa, A., Von Savigny, C., Sonkaew, T., Rozanov, A.,
 Bovensmann, H., & Burrows, J. (2009). Evolution of stratospheric ozone and
 water vapour time series studied with satellite measurements. *Atmos. Chem. Phys. Discuss*, 9, 1157–1209. doi:10.5194/acpd-9-1157-2009.
- Kalakoski, N., Kujanpää, J., Sofieva, V., Tamminen, J., Grossi, M., & Valks,
 P. (2016). Validation of GOME-2/Metop total column water vapour with
 ground-based and in situ measurements. *Atmospheric Measurement Tech- niques*, 9, 1533–1544. doi:10.5194/amt-9-1533-2016.
- Kalakoski, N., Wagner, T., Mies, K., Beirle, S., Slijkhuis, S., & Loyola, D.
 (2011). O3M Saf Validation Report. Technical Report 2/2011. URL: http:
- 676 //o3msaf.fmi.fi/docs/vr/Validation_Report_OTO_H20_Mar_2011.pdf.
- King, M. D., Kaufman, Y. J., Menzel, W. P., & Tanré, D. (1992). Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from the Moderate Resolution Imaging Spectrometer (MODIS). *IEEE Transactions on Geoscience and Remote Sensing*, 30, 2–27. doi:10.1109/36.124212.
- Kokhanovsky, A. A., & Rozanov, V. V. (2008). The uncertainties of satellite
 DOAS total ozone retrieval for a cloudy sky. *Atmospheric Research*, 87,
 27-36. doi:10.1016/j.atmosres.2007.04.006.
- ⁶⁸⁴ Leick, A. (1995). GPS Satellite Surveying. Wiley.
- Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Visser,
- 686 H., de Vries, J., Stammes, P., Lundell, J. O. V., & Saari, H. (2006). The

- Ozone Monitoring Instrument. Ieee Transactions on Geoscience and Remote
 Sensing, 44, 1093–1101.
- Li, Z., Muller, J. P., & Cross, P. (2003). Comparison of precipitable water vapor
 derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectrora diometer measurements. *Journal of Geophysical Research Atmospheres*, 108.
 doi:10.1029/2003JD003372.
- Milstein, A. B., & Blackwell, W. J. (2016). Neural network temperature and
 moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS.
 Journal of Geophysical Research: Atmospheres, 121, 1414–1430. doi:10.
 1002/2015JD024008.
- Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J.,
 Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A.,
 Stephens, G., Takemura, T., & Zhang, H. (2013). *Anthropogenic and Natural Radiative Forcing*. Technical Report. doi:10.1017/CB09781107415324.018.
- Niell, A. E. (2000). Improved atmospheric mapping functions for VLBI and
 GPS. Earth, Planets and Space, 52, 699–702. doi:10.1186/BF03352267.
- 703 Ningombam, S. S., Jade, S., Shrungeshwara, T. S., & Song, H. J. (2016). Val-
- ⁷⁰⁴ idation of water vapor retrieval from Moderate Resolution Imaging Spectro-
- ⁷⁰⁵ radiometer (MODIS) in near infrared channels using GPS data over IAO-
- ⁷⁰⁶ Hanle, in the trans-Himalayan region. Journal of Atmospheric and Solar-
- 707 Terrestrial Physics, 137, 76-85. doi:10.1016/j.jastp.2015.11.019.
- Noël, S., Buchwitz, M., Bovensmann, H., & Burrows, J. P. (2005). Validation of
 SCIAMACHY AMC-DOAS water vapour columns. *Atmospheric Chemistry* and Physics, 5, 1835–1841. doi:10.5194/acp-5-1835-2005.
- Noël, S., Buchwitz, M., & Burrows, J. P. (2004). First retrieval of global water
 vapour column amounts from SCIAMACHY measurements. *Atmos. Chem. Phys. J.* 111, 125, doi:10.5194/pcp-4-111-2004
- ⁷¹³ Phys., 4, 111–125. doi:10.5194/acp-4-111-2004.

- Noël, S., Mieruch, S., Bovensmann, H., & Burrows, J. P. (2008). Preliminary
 results of GOME-2 water vapour retrievals and first applications in polar
- regions. Atmospheric Chemistry and Physics, 8, 1519–1529. doi:10.5194/
- ⁷¹⁷ acp-8-1519-2008.
- Olsen, E. T., Blaisdell, J., Iredell, L., & Susskind, J. (2013a). AIRS/AMSU/HSB
 Version 6 Retrieval Flow. Technical Report Jet Propulsion Laboratory.
- ⁷²⁰ Olsen, E. T., Fetzer, E., Hulley, G., Manning, E., Blaisdell, J., Iredell, L.,
 ⁷²¹ Susskind, J., Warner, J., Wei, Z., Blackwell, W., & Maddy, E. (2013b). AIRS
 ⁷²² / AMSU / HSB Version 6 Level 2 Product User Guide. Technical Report.
- Ortiz de Galisteo, J. P., Bennouna, Y., Toledano, C., Cachorro, V., Romero,
 P., Andrés, M. I., & Torres, B. (2014). Analysis of the annual cycle of the
 precipitable water vapour over Spain from 10-year homogenized series of GPS
 data. Quarterly Journal of the Royal Meteorological Society, 140, 397–406.
 doi:10.1002/qj.2146.
- Ortiz de Galisteo, J. P., Cachorro, V., Toledano, C., Torres, B., Laulainen, N.,
 Bennouna, Y., & de Frutos, A. (2011). Diurnal cycle of precipitable water
 vapor over Spain. *Quarterly Journal of the Royal Meteorological Society*, 137,
 948–958. doi:10.1002/qj.811.
- Ortiz de Galisteo, J. P., Toledano, C., Cachorro, V., & Torres, B. (2010).
 Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations. *GPS Solutions*, 14, 389–395.
 doi:10.1007/s10291-010-0163-y.
- Pany, T., Pesec, P., & Stangl, G. (2001). Atmospheric GPS slant path delays
 and rays tracing through numerical wheather models, a comparison. *Physics*and Chemistry of the Earth. Part A: Solid Earth and Geodesy, 26, 183–188.
- ⁷³⁹ doi:10.1016/S1464-1895(01)00044-8.
- Pérez-Ramírez, D., Navas-Guzmán, F., Lyamani, H., Fernández-Gálvez, J.,
 Olmo, F. J., & Alados-Arboledas, L. (2012). Retrievals of precipitable wa-

ter vapor using star photometry: Assessment with Raman lidar and link to
sun photometry. *Journal of Geophysical Research Atmospheres*, 117, 1–10.
doi:10.1029/2011JD016450.

- ⁷⁴⁵ du Piesanie, A., Piters, A. J. M., Aben, I., Schrijver, H., Wang, P., & Noël,
 ⁷⁴⁶ S. (2013). Validation of two independent retrievals of sciamachy water
 ⁷⁴⁷ vapour columns using radiosonde data. *Atmospheric Measurement Tech-*⁷⁴⁸ niques, 6, 2925–2940. URL: http://www.atmos-meas-tech.net/6/2925/
 ⁷⁴⁹ 2013/. doi:10.5194/amt-6-2925-2013.
- Prasad, A. K., & Singh, R. P. (2009). Validation of MODIS Terra, AIRS,
 NCEP/DOE AMIP-II Reanalysis-2, and AERONET Sun photometer derived
 integrated precipitable water vapor using ground-based GPS receivers over
 India. Journal of Geophysical Research Atmospheres, 114, 1–20. doi:10.1029/
 2008JD011230.
- Rama Varma Raja, M. K., Gutman, S. I., Yoe, J. G., McMillin, L. M., & Zhao,
 J. (2008). The validation of AIRS retrievals of integrated precipitable water
 vapor using measurements from a network of ground-based GPS receivers over
 contiguous United States. *Journal of Atmospheric and Oceanic Technology*,
 25, 416–428. doi:10.1175/2007JTECHA889.1.
- Rohm, W., Yuan, Y., Biadeglgne, B., Zhang, K., & Marshall, J. L.
 (2014). Ground-based GNSS ZTD/IWV estimation system for numerical weather prediction in challenging weather conditions. *Atmospheric Re- search*, 138, 414–426. URL: http://linkinghub.elsevier.com/retrieve/
 pii/S0169809513003499. doi:10.1016/j.atmosres.2013.11.026.
- Román, R., Antón, M., Cachorro, V. E., Loyola, D., Ortiz de Galisteo, J. P.,
 de Frutos, A., & Romero-Campos, P. M. (2015). Comparison of total water
 vapor column from GOME-2 on MetOp-A against ground-based GPS measurements at the Iberian Peninsula. *Science of the Total Environment*, 533,
 317–328. doi:10.1016/j.scitotenv.2015.06.124.

Scheepmaker, R. A., Frankenberg, C., Deutscher, N. M., Schneider, M.,
Barthlott, S., Blumenstock, T., Garcia, O. E., Hase, F., Jones, N., Mahieu,
E., Notholt, J., Velazco, V., Landgraf, J., & Aben, I. (2015). Validation
of sciamachy HDO/H2O measurements using the TCCON and NDACCMUSICA networks. *Atmospheric Measurement Techniques*, *8*, 1799–1818.
doi:10.5194/amt-8-1799-2015.

- Schrijver, H., Gloudemans, A. M. S., & Aben, I. (2009). Water vapour total
 columns from SCIAMACHY spectra in the 2.36 mu m window. Atmospheric
 Measurement Techniques, 2, 561–571. doi:10.5194/amt-2-561-2009.
- Schroedter-Homscheidt, M., Drews, A., & Heise, S. (2008). Total water vapor
 column retrieval from MSG-SEVIRI split window measurements exploiting
 the daily cycle of land surface temperatures. *Remote Sensing of Environment*,
 112, 249–258. doi:10.1016/j.rse.2007.05.006.

Seemann, S. W., J. Li, W. P. M., & L. E. Gumley, (2003). Operational retrieval
of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42, 1072–1091.

Torres, B., Cachorro, V. E., Toledano, C., Ortiz De Galisteo, J. P., Berjón,
A., De Frutos, A. M., Bennouna, Y., & Laulainen, N. (2010). Precipitable
water vapor characterization in the Gulf of cadiz region (southwestern Spain)
based on Sun photometer, GPS, and radiosonde data. *Journal of Geophysical Research Atmospheres*, 115, 1–11. doi:10.1029/2009JD012724.

Turner, D. D., Clough, S. A., Liljegren, J. C., Clothiaux, E. E., Cady-Pereira,
K. E., & Gaustad, K. L. (2007). Retrieving liquid water path and precipitable
water vapor from the atmospheric radiation measurement (ARM) microwave
radiometers. In *IEEE Transactions on Geoscience and Remote Sensing* (pp.
3680–3689). volume 45. doi:10.1109/TGRS.2007.903703.

Turner, D. D., Ferrare, R. A., Heilman Brasseur, L. A., Feltz, W. F., & Tooman,
T. P. (2002). Automated retrievals of water vapor and aerosol profiles from

an operational raman lidar. Journal of Atmospheric and Oceanic Technology,
 19, 37–50. doi:10.1175/1520-0426(2002)019<0037:AROWVA>2.0.C0;2.

Vaquero-Martínez, J., Antón, M., Ortiz de Galisteo, J. P., Cachorro, V. E.,
Costa, M. J., Román, R., & Bennouna, Y. S. (2017a). Validation of MODIS
integrated water vapor product against reference GPS data at the Iberian
Peninsula. International Journal of Applied Earth Observation and Geoinformation, 63, 214–221. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0048969716327176. doi:10.1016/j.jag.2017.07.008.

Vaquero-Martínez, J., Antón, M., Ortiz de Galisteo, J. P., Cachorro, V. E.,
Wang, H., González Abad, G., Román, R., & Costa, M. J. (2017b). Validation of integrated water vapor from OMI satellite instrument against reference GPS data at the Iberian Peninsula. *Science of The Total Environ- ment*, 580, 857–864. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0048969716327176. doi:10.1016/j.scitotenv.2016.12.032.

Wagner, T., Beirle, S., & Deutschmann, T. (2009). Three-dimensional simulation of the Ring effect in observations of scattered sun light using Monte Carlo
radiative transfer models. Atmospheric Measurement Techniques, 2, 113–
124. URL: http://www.atmos-meas-tech.net/2/113/2009/. doi:10.5194/
amt-2-113-2009.

Wagner, T., Beirle, S., Grzegorski, M., & Platt, U. (2006). Global trends (1996-2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and their relation to near-surface
temperature. *Journal of Geophysical Research Atmospheres*, 111, 1–15. doi:10.1029/2005JD006523.

Wagner, T., Heland, J., Zöger, M., & Platt, U. (2003). A fast
H₂O total column density product from GOME – validation with in-situ aircraft measurements. Atmospheric Chemistry and
Physics Discussions, 3, 323–353. doi:10.5194/acpd-3-323-2003.

- Wang, H., Gonzalez Abad, G., Liu, X., & Chance, K. (2016a). Validation
- of OMI Total Column Water Vapor Product. Atmospheric Chemistry and Physics Discussions, 181, 1–23. doi:10.5194/acp-2016-181.
- Wang, H., Liu, X., Chance, K., González Abad, G., & Chan Miller, C. (2014).
- Water vapor retrieval from OMI visible spectra. Atmospheric Measurement
 Techniques, 7, 1901–1913. doi:10.5194/amt-7-1901-2014.
- Wang, X., Zhang, K., Wu, S., Fan, S., & Cheng, Y. (2016b). Water
 vapor-weighted mean temperature and its impact on the determination
 of precipitable water vapor and its linear trend. *Journal of Geophysical Research: Atmospheres*, 121, 833-852. URL: http://doi.wiley.com/10.
 1002/2015JD024181. doi:10.1002/2015JD024181.
- Wang, Х., Zhang, K., Wu, S., He, C., Cheng, Y., & Li, Х. 837 Determination of zenith hydrostatic delays and the (2016c). de-838 velopment of new global long-term GNSS-derived precipitable wa-839 ter vapor. Atmospheric Measurement Techniques Discussions, 10. 840 1-17. URL: http://www.atmos-meas-tech-discuss.net/amt-2016-264/. 841 doi:10.5194/amt-2016-264. 842

Wilcoxon, F. (1946). Individual comparisons of grouped data by ranking methods. Journal of economic entomology, 39, 269. doi:10.2307/3001968.

⁸⁴⁵ List of Figures

846	1	Location of the nine stations selected	14
847	2	Time series of every collocated dataset of every satellite instru-	
848		ment in every station. Blue line is the satellite IWV and red line	
849		is the difference between satellite measurements and GPS data	19
850	3	Pseudomedian of sat-GPS relative differences against reference	
851		IWV (GPS). Error bars are the 95% confidence interval in the	
852		Wilcoxon signed rank test	20
853	4	IQR of sat-GPS relative differences against reference IWV (GPS).	21

854	5	Pseudomedian of sat-GPS relative differences against SZA. $\ . \ . \ .$	23
855	6	IQR of sat-GPS relative differences against SZA $\hfill \ldots \ldots \ldots$.	23
856	7	Seasonal evolution of the pseudomedian of sat-GPS relative dif-	
857		ferences. December has been rearranged as the first month in	
858		order to make easier to identify the different seasons $\ . \ . \ . \ .$	25
859	8	Seasonal evolution of the IQR of sat-GPS relative differences.	
860		December has been rearranged as the first month in order to	
861		make easier to identify the different seasons $\hdots \hdots \hd$	26
862	9	Pseudomedian of sat-GPS relative differences against CF $\ . \ . \ .$	27
863	10	IQR of sat-GPS relative differences against CF	28