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examine the sequential Monte Carlo Approximate Bayesian Computation method
and to propose appropriate summary statistics in the context of these processes.
We show that the success of this methodology lies on this latter issue. The accu-
racy of the proposed method is illustrated and compared with a “likelihood free”
Markov chain Monte Carlo technique by means of a simulated example. Moreover
we illustrate how to extend this methodology to a controlled multitype branching
process that has been applied to modelize real data belonging to the field of cell
kinetics. Both examples are developed using the statistical software R.

Keywords Controlled branching process · Bayesian inference · Approximate
Bayesian computation · Summary statistics.

1 Introduction

Controlled branching processes (CBPs) are a family of discrete-time stochastic
processes which are appropriate to describe population dynamics. This model gen-
eralizes the standard branching process - the so-called Bienaymé-Galton-Watson
process. As in this latter process, each individual reproduces independently of the
others and following the same distribution, referred as the offspring law. The nov-
elty of the CBP lies in the presence of a mechanism establishing the number of
individuals with reproductive capacity (progenitors) in each generation. Thus, the
evolution of populations suffering from the existence of predators, populations of
invasive species or different migratory movements can be modelled by using this
branching process (see [11] for further details). The nature of this control mecha-
nism can be either deterministic or random - described in this latter case by what
are referred to as the control laws - and it gives rise to the models introduced by
[26] and [30], respectively.

The recent monograph [13] provides an extensive description of the proba-
bilistic theory and inferential issues of CBPs. The great interest of the research
on statistical procedures is due to the fact that the behaviour of these processes
are determined by the parameters of the model associated with the offspring and
control laws and in real situations those values are unknown. Focusing mainly on
a Bayesian outlook, approximate Bayesian computation (ABC) methodology has
been used widely and successfully in many fields. A detailed summary on the fun-
damentals of ABC methods, the classical algorithms and recent developments can
be found in [18] or [25]. In particular, in the field of CBPs, the precursor paper [9]
tackled the estimation of the offspring distribution of a CBP with a deterministic
control function by comparing the rejection ABC algorithm with a Markov chain
Monte Carlo (MCMC) method. The first one was showed to be a good alterna-
tive to the MCMC estimation, due to the reduction of the computational time
while providing accurate enough estimates. More recently, connected with ABC
methodology, [5] uses a particle MCMC method for solving inference problems for
a Bienaymé-Galton-Watson process which, recall, is a particular case of CBP with
deterministic control function.

The purpose of this work is to elaborate further on ABC inference on the class
of CBPs with random control functions. For the first time, ABC methodologies
are considered not only to estimate the posterior distribution which governs the
reproduction law but also the ones that determine the random control on the pop-
ulation sizes. While the presence of the random mechanism enables us to model a
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greater variety of practical situations, its incorporation into the probability model
makes more challenging to perform inference, as is shown in [8] in which we dealt
with MCMC methods based on the observation of generation sizes. Consequently,
the implementation of algorithms that improve the output of the general rejec-
tion scheme is required. We propose the application of the sequential Monte Carlo
(SMC) ABC algorithm to estimate the posterior distribution of the parameters of
interest. Moreover, in order to be successful a new sample scheme respect to the
one in [8] is needed. This must include information about the random control. The
performance of this approach is appropriate under a minimal set of assumptions
and provided that it is feasible to sample from the model. The paper [1] estab-
lishes that the SMC ABC method can substantially outperform the rejection one
when it is applied to a population genetics example. Finally, the output of SMC
ABC algorithm is adjusted to account for the discrepancy between simulated and
observed data by a local linear regression.

Another important innovative feature of our current approach with respect to
[9] is the inclusion and determination of an appropriate summary statistic in the
development of ABC methodology in the framework of a more complex branching
model. This allows us to reduce the impact of the problem known as “the curse
of dimensionality”. This issue arises when comparing large dimensional simulated
and observed data (the dimension is associated with the number of simulated gen-
erations); in those cases the discrepancy between the observed and simulated data
increases as a result of a large number of comparisons between the components
of the data. Therefore, it is better to find low dimensional summary statistics to
be used in the comparison and which are informative enough about the param-
eters of interest. Whilst the ideal summary statistic should be a sufficient one,
in the branching process setting it is complicated to determine it. Alternatively,
drawn from the knowledge about the asymptotic properties of the model, we de-
duce a three-dimensional statistic that contains enough information to identify the
parameters of interest. To evaluate the performance of the aforementioned algo-
rithms we compare them with the output of a “likelihood free” MCMC technique
through a simulated example. It is highlighted that this methodology can be easily
adaptable to more complicated branching families. In this sense, we illustrate how
to extend it to a controlled multitype branching process that has been applied to
modelize real data belonging to the field of cell kinetics.

The rest of the paper is organized as follows. The probability model and no-
tation, as well as some working assumptions, are described in Section 2. Section
3 is devoted to the development of the ABC approach. Section 4 presents the
simulated and the real data examples to evaluate and illustrate the performance
of the mentioned ABC algorithm. Some concluding remarks are provided in Sec-
tion 5. Finally, additional information about the examples are presented in the
Supplementary Material.
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2 Probability model

A controlled branching process with random control functions is a process
{Zn}n∈N0

defined as:

Z0 = N0, Zn+1 =

ϕn(Zn)∑
j=1

Xnj , n ∈ N0, (1)

where N0 = N ∪ {0}, N0 ∈ N, {Xnj : n ∈ N0; j ∈ N} and {ϕn(k) : n, k ∈ N0}
are independent families of non-negative integer valued random variables and the
empty sum in (1) is considered to be 0. The random variables Xnj , n ∈ N0,
j ∈ N, are assumed to be independent and identically distributed (i.i.d.) and in
terms of population dynamics they represent the number of offspring given by
the j-th progenitor of the n-th generation. Intuitively, the assumption on these
variables means that each individual reproduces independently of the others and
according to the same probability distribution. Moreover, {ϕn(k)}k∈N0

, n ∈ N0, are
independent stochastic processes with equal one-dimensional probability distribu-
tions. This property means that the control mechanism works in an independent
manner in each generation, and once the population size at certain generation n,
Zn, is known, the probability distribution of the number of progenitors, denoted
by ϕn(Zn), is independent of the generation.

The common probability distribution of the random variables Xnj is called
the offspring distribution or reproduction law and is denoted by p = {pk}k∈N0

, i.e.,
pk = P [Xnj = k], k ∈ N0. Furthermore, the probability distributions of the random
variables ϕn(k), k ∈ N0, called the control laws, are denoted by {qj(k)}j∈N0

, where
qj(k) = P [ϕn(k) = j], k, j ∈ N0.

At this point we have to fix the parameters of interest and the observable sam-
ple with the aim that these can be identifiable. We consider a CBP with both
the offspring and control laws belonging to each one-dimensional parametric fam-
ilies and denote the offspring and control parameters by θ and γ, respectively.
Regarding the offspring law, it is usual to consider a parametric framework (see
[3], [11], [12], [15], and [19]) since from previous observations or experiments, some
information that suggests a family of distributions for the offspring law might be
available (see [16] for further details). For instance, prokaryotic cells usually repro-
duce by binary fission and hence, one can parametrise the offspring distribution
by considering the parameter θ defined as the probability that a cell splits off,
and consequently, 1 − θ is the probability that a cell dies with no offspring. An-
other practical example is to consider a plant with a large number of seeds, where
the survival of each of them (and consequently, its appearance as a plant in the
following generation) is independent of the other ones and the probability that
a seed grows and becomes a new plant is equal for all of them and has a small
value. In this case, the Poisson distribution seems to be the appropriate distribu-
tion for the offspring distribution. The choice of parametric control distributions is
warranted given that one has different control laws for different population sizes.
Then, the problem of estimating the control parameters would seem intractable
based on samples with a finite dimension unless the control process is assumed
to have a stable structure over time. In practice, this information can come from
the knowledge of how the population evolves. For example, if there are predators
in the environment, a binomial distribution for the number of progenitors, where
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the probability parameter represents the probability of survival of an individual,
would be clearly justified.

Respect to the observed sample, for the identifiability of the model, it is nec-
essary to get information about the reproduction and control processes. Several
preliminary simulation studies led us to the conclusion that to approximate reason-
ably well the posterior distributions of the offspring and control parameter making
use of ABC methodology, we have to assume that at least the population sizes at
each generation and the number of progenitors in (at least) the last generation
are observable. The introduction in the sample of the number of progenitors in
(at least) the last generation is crucial to identify the control parameter, and to
define an appropriate summary statistic which enables us to avoid “the curse of
dimensionality”. Actually, this data is not so difficult to be observed because of
recent advances in technology. For instance, within the cell kinetics setting in [12]
a controlled two-type branching process is proposed for modelling a real data set
where not only the number of individuals and progenitors are known in all the
generations, but also the entire family tree. These data set is considered in Section
4. Another example arises with internet protocol data modelized in a time serie
context by a full observation of an INAR(1) process. These processes can be seen
as a particular case of CBPs as discussed in [28]. Two real data sets of such sit-
uations are presented in the aforementioned paper. Consequently, let us consider
the sample Z̃n = {Z0, . . . , Zn, ϕn−1(Zn−1)}.

3 ABC methodology

One of the main keys to be successful in approximating the posterior distributions
of the parameters of interest by applying the ABC methodology is to be able to
sample from the model without being computationally costly and under not very
restrictive hypotheses. This approach can be specially useful when the likelihood
function is intractable. Our aim is to estimate the posterior distribution of (θ, γ)
upon the sample Z̃n, whose density is denoted by π(θ, γ|Z̃n), by assuming, as
pointed out above, that both the offspring distribution and control laws belong to
some known one-dimensional parametric families with unknown parameters, that
is,

pk = pk(θ), k ∈ N0, for some θ ∈ Θ and Θ ⊆ R,
and

qj(k) = qj(k, γ), j, k ∈ N0, for some γ ∈ Γ and Γ ⊆ R.
Under the previous assumptions, the expression for the likelihood function

f(Z̃n | θ, γ) upon the sample Z̃n is complex and practically intractable. Indeed,
since individuals reproduce independently and the control laws are independent
of the offspring distribution, for any z0, . . . , zn, ϕ

∗
n−1 ∈ N0, one obtains

P [Z0 = z0, . . . , Zn = zn, ϕn−1(Zn−1) = ϕ∗n−1] = P [Zn = zn|ϕn−1(zn−1) = ϕ∗n−1]

· P [ϕn−1(zn−1) = ϕ∗n−1] ·
n−1∏
l=1

P [Zl = zl|Zl−1 = zl−1] · P [Z0 = z0]

=

(
δ0(ϕ

∗
n−1)δ0(zn) + (1− δ0(ϕ

∗
n−1))

∑
i1+...+iϕ∗

n−1
=zn

pi1(θ) · . . . · piϕ∗
n−1

(θ)

)
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· qϕ∗
n−1

(zn−1, γ) ·
n−1∏
l=1

( ∞∑
j=1

( ∑
i1+...+ij=zl

pi1(θ) · . . . · pij (θ)

)
· qj(zl−1, γ)

+ δ0(zl)q0(zl−1, γ)

)
P [Z0 = z0], (2)

where δ0(·) denotes the Dirac delta function at 0.
Therefore, we describe an algorithm to obtain samples from probability laws

which are “similar” to our target distribution and consequently, which can be
used to approximate it. For this purpose, let us denote the observed sample by
Z̃obs
n = {Zobs

0 , . . . , Zobs
n , ϕn−1(Zn−1)

obs}. ABC algorithms consist in sampling a
large number of data from a model depending on some parameters which are
generated from a prior distribution. The key idea is to identify the parameter
configurations that might lead to data which are close enough to the observed
sample in the sense that we specify below, and those parameters can be considered
as an approximate sample from the posterior distribution π(θ, γ|Z̃obs

n ).
In this section, built on the algorithm proposed in [1], we present the sequen-

tial Monte Carlo (SMC) ABC algorithm. This method consists of a number of
sequential stages. At each iteration, the distribution from which the parameters
are sampled is updated using the information about the parameters that were ac-
cepted at the previous step. The simulation of the data in the branching process
setting is simple. Given θ and γ, first we generate the family tree of a CBP assum-
ing that the parametric families of the offspring and control laws are known. This
latter is feasible under the knowledge of the evolution of the population consid-
ered, as was pointed out in the introduction. From the simulated data, we obtain
the population size in each generation and number of progenitors in the last one.
Those data, denoted as Z̃sim

n = {Zsim
0 , . . . , Zsim

n , ϕn−1(Zn−1)
sim}, are compared

with the observed data Z̃obs
n making use of a measure ρ(·, ·) after reducing their

dimension with an appropriate summary statistic S(·). Moreover, we assume that
Zsim
0 = Zobs

0 , that is, we start all the simulated processes with Zobs
0 individuals.

The first stage involves running the ABC rejection algorithm, and in the fol-
lowing steps, the basic idea is to sample the parameters from a proposal distribu-
tion ψ(θ, γ) instead of from the prior distribution π(θ, γ) and then, to weight the
accepted parameters (θ(i), γ(i)) with ω(i) ∝ π(θ(i), γ(i))/ψ(θ(i), γ(i)). To develop
the SMC ABC method, it is also needed to fix a collection of tolerance levels
ϵ1 ≥ . . . ≥ ϵM > 0, where M is the number of iterations. The proposal distribution
ψt(·, ·) at the t-th iteration is defined by using the weighted parameters selected in

the previous iteration, (θ
(i)
t−1, γ

(i)
t−1), i = 1, . . . , N , and an auxiliary function qt(·|·),

t = 2, . . . ,M . To that end, as usual, we consider a mixture distribution of the
weights and multivariate normal distributions as follows:

ψt(θ, γ) =
1

N

N∑
i=1

ω
(i)
t−1qt(θ, γ|θ

(i)
t−1, γ

(i)
t−1),

with qt(θ, γ|θ(i)t−1, γ
(i)
t−1) denoting the density function of N

(
(θ

(i)
t−1, γ

(i)
t−1),

∑
t−1

)
,

that is, a multivariate normal distribution with vector mean equal to (θ
(i)
t−1, γ

(i)
t−1)

and covariance matrix,
∑

t−1. That covariance matrix is defined as twice the
weighted empirical covariance matrix of the sample obtained at the previous it-
eration. The selection of that covariance matrix is justified by the fact that it is
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the optimal choice for the scale of the proposal distribution (see [1] and [6] for

further details). Let us also write θt = (θ
(1)
t , . . . , θ

(N)
t ), γt = (γ

(1)
t , . . . , γ

(N)
t ), and

ωt = (ω
(1)
t , . . . , ω

(N)
t ), for t = 1, . . . ,M .

More precisely, the SMC ABC algorithm for a summary statistic S(·) and the
multivariate normal distribution described above as the function qt(·|·) consists in:

SMC ABC algorithm with summary statistic S(·) and the multivariate

Gaussian distribution as qt(·|·)

Specify a decreasing sequence of tolerance levels ϵ1 ≥ . . . ≥ ϵM > 0 for

M iterations.

For i = 1 to N, do

Repeat

Sample (θ′, γ′) from the prior π(θ, γ).
Sample Z̃sim

n from the underlying model with offspring parameter

θ′ and control parameter γ′.
Until ρ(S(Z̃sim

n ),S(Z̃obs
n )) ≤ ϵ1.

Set (θ
(i)
1 , γ

(i)
1 ) = (θ′, γ′).

Set ω
(i)
1 = 1/N.

End for∑
1 = 2 Cov[θ1, γ1] (twice the sample covariance matrix).

For t = 2 to M, do

For i = 1 to N, do

Repeat

Sample (θ∗, γ∗) from among (θt−1, γt−1) with probabilities

ωt−1.

Sample (θ′, γ′) from N
(
(θ∗, γ∗),

∑
t−1

)
.

Sample Z̃sim
n from the underlying model with offspring

parameter θ′ and control parameter γ′.
Until ρ(S(Z̃sim

n ),S(Z̃obs
n )) ≤ ϵt.

Set (θ
(i)
t , γ

(i)
t ) = (θ′, γ′).

Set ω
(i)
t ∝ π(θ

(i)
t , γ

(i)
t )/

(∑N
k=1 ω

(k)
t−1qt(θ

(i)
t , γ

(i)
t |θ(k)t−1, γ

(k)
t−1)

)
.

End for∑
t = 2 Cov[θt, γt] (twice the weighted empirical covariance matrix).

End for

Several functions can be proposed to measure the discrepancies between the
simulated and the observed data. For such a purpose, we suggest the following
three “metrics”, defined for x = (x1, . . . , xL), and y = (y1, . . . , yL) ∈ RL

+, with
R+ = (0,∞), as:

ρ1(x,y) = d1

(
x

y
,
y

x

)
, ρe(x,y) = de

(
x

y
,
y

x

)
, and ρH(x,y) = dH

(
x

y
,
y

x

)
,

where x
y = (x1

y1
, . . . , xL

yL
), y

x = ( y1

x1
, . . . , yL

xL
), d1 is the ℓ1 distance, de is the Euclidean

distance and dH is the Hellinger distance. Note that the metrics ρ1, ρe and ρH may
not be distances in a mathematical sense, however, they keep important proper-
ties such as the non-negativity, the identity of indiscernibles and the symmetry
(see [9] for further metrics in the context of branching processes). It is important
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to highlight that any of the proposed metrics measures the discrepancy between
the components of the simulated and observed data in relative terms to avoid the
influence of the different magnitudes of the coordinates. Several authors have con-
cluded that the choice of the distance on which the proposed metric of the ABC
algorithm is based has little influence on the results, in particular in epidemic and
genetic models (see [20], [21] or [23]). This finding is also supported in the context
of CBPs, as we illustrate in Section 4.

While the presence of a summary statistic reduces the number of comparisons
in the algorithm, it also entails a lack of information from the data, unless the
statistic is sufficient (or close to sufficient), in which case π(θ, γ|ρ(Z̃n, Z̃obs

n ) ≤ ϵ) =
π(θ, γ|ρ(S(Z̃n),S(Z̃obs

n )) ≤ ϵ). It is important to note that it is a difficult task to
determine a sufficient statistic for (θ, γ). Now, in order to construct an appropriate
summary statistic which contains relevant information about the parameters to
estimate, we take advantage of the knowledge about the asymptotic properties of
the model. Let m and σ2 denote, respectively, the mean and variance (assumed
finite) of the reproduction law, referred as offspring mean and variance. Let us
write ε(k) = E[ϕ0(k)], and σ

2(k) = V ar[ϕ0(k)] (assumed finite too) to refer to the
mean and variance of the control laws. Under some regularity conditions (see [10])
one has that, on {Zn → ∞},∑n

i=1 Zi∑n−1
i=0 Zi

→ τm a.s., and
ϕn−1(Zn−1)

Zn−1
→ τ a.s., as n→ ∞, (3)

where τ = limk→∞ ε(k)k−1, whenever the limit exists. Consequently, the following
summary statistic can be appropriate for our data:

S(Z̃n) =

(
n∑

i=1

Zi,

∑n
i=1 Zi∑n−1
i=0 Zi

,
ϕn−1(Zn−1)

Zn−1

)
. (4)

The first component in (4) is the total progeny of the process and somehow, it
represents the total magnitude of the process; thus, if ρ(·, ·) denotes any of the
metrics defined above, then the first term in ρ(S(Z̃sim

n ),S(Z̃obs
n )) measures the

difference between the total progeny of the observed data and of the simulated
data. Observe that since m = m(θ) and τ = τ(γ), the second and the third compo-
nents of S(Z̃n) provide information on the offspring distribution and the control
laws. These arguments explain the crucial role of the number of progenitors in (at
least) the last generation in the observed sample for our approach. Through the
simulated example we show the necessity of each one of the three components in
the proposed summary statistic. These features are of special interest in the cases
when the functions θ 7→ m(θ) and γ 7→ τ(γ) are homeomorphisms.

Remark 1 In [10] some conditions for the convergence stated in (3) are established.
Indeed, if the CBP {Zn}n∈N0

satisfies that:

(a) There exists τ = limk→∞ ε(k)k−1 < ∞, and the sequence {σ2(k)k−1}k∈N is
bounded,

(b) τm = τm > 1 and Z0 is large enough such that P [Zn → ∞] > 0,
(c) {Znτ

−n
m }n∈N0

converges a.s. to a finite random variable W such that
P [W > 0] > 0,

(d) {W > 0} = {Zn → ∞} a.s.,
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then (3) holds (see Proposition 3.5 in [10]).

Finally, with the aim of improving the approximations without additional sam-
pling, a local regression adjustment can be applied following the ideas in [2]. The
reader is referred to [9] for details in the context of CBPs with deterministic con-
trol function. A straightforward adjustment leads to the algorithm in the case of
random control functions.

4 Examples

4.1 Simulated example
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Fig. 1 Temporal evolution of the
number of individuals (solid line)
and progenitors (dashed line).

In this subsection, we present an example to
illustrate the methodology proposed. We con-
sidered a CBP starting with Z0 = 1 individual
with a geometric distribution with parameter
q = 0.4 as the offspring distribution and con-
trol variables ϕn(k) following a binomial dis-
tribution with parameters ξ(k) and γ = 0.75,
where ξ(k) = k + ⌊log(k)⌋, for each k ∈ N,
ξ(0) = 0, and ⌊x⌋ denoting the integer part of
a number x. Note that the geometric distri-
bution arises naturally as an offspring distri-
bution in the context of branching processes,
for example, when modelling data from yeast
cells (see [14], p.158), or in other fields as, for
example, Physics (e.g. [4]).

Observe that the control laws combine a deterministic control which is followed
by a random control. In particular, these distributions enable us to model animal
populations where new individuals are incorporated into the population according
to the function ξ(·), whereas the binomial distribution may describe the presence
of predators, in such a way that γ represents the probability that a progenitor
survives and participates in the posterior evolution of the population. Under the
above considerations, the offspring distribution and control laws belong to the
power series family of distributions. The natural parameter of the geometric dis-
tribution as an element of the power series family of distributions is θ = 1−q = 0.6.
Regarding the offspring mean and variance, one has m = θ(1 − θ)−1 = 1.5 and
σ2 = θ(1−θ)−2 = 3.75, the control means are ε(k) = γξ(k) = 0.75ξ(k), k ∈ N0, and
the asymptotic mean growth rate, referred as τm = τm, is γθ(1−θ)−1 = 1.125 (see
Remark 1, and notice that τ = γ). We simulated the first 30 generations of such a
CBP, whose temporal evolution is plotted in Figure 1 (see Table 6 in Supplemen-
tary M aterial for further details). In this context, the results obtained by using
the ABC methodology developed in Section 3 are compared with the output of
a “likelihood free” MCMC method, namely, the Gibbs sampler algorithm. In [8],
the Gibbs sampler algorithm for the sample made up by the population sizes was
implemented in the context on CBPs by considering a non-parametric framework
for the offspring distribution and that the control laws belong to the family of
power series distributions. Without too much difficulty one can also develop and



10 M. González et al.

implement the Gibbs sampler for a CBP by assuming a parametric framework for
the offspring law and by considering the sample given by the population sizes in
each generation and the number of progenitors in the last generation.

We implemented the SMC ABC algorithm with M = 3 stages, that is, we
updated the proposal distribution twice. We simulated pools of 9·104, 9·105, and 9·
106 of non-extinct CBPs at the corresponding iterations and fixed as the thresholds
ϵ1, ϵ2 and ϵ3 the quantiles of orders 0.025, 0.0025, and 0.00025, respectively, of the
sample of the distances of the simulated processes, obtained therefore a sample
of length 2250 at each iteration. Thus, as suggested in [2], the tolerance level ϵ
at the last step of the algorithm is the quantile qδ of the sample of the distances
for the simulated processes, taking δ = 0.025%, that is, the sample quantile of
order 2.5 · 10−4. Regarding the choice of the prior distribution we assumed that
no information on the plausible values of the offspring and control parameters is
available. Due to that, beta distributions with both parameters equal to 0.5, were
used as prior distributions for the offspring and control parameters in the ABC
methodology and in the Gibbs sampler.

Based on these samples, we estimated the posterior density of the parameters
θ and γ by means of kernel density estimation. With the aim of presenting the
graphs in a clearer way, we only plotted the estimates with the metric ρ1 of each
the posterior density in dashdotted lines in Figure 2. Numerical results with the
other metrics are showed in Tables 1, 2 and 3 for the parameters θ, γ, and τm,
respectively. In all cases, we have obtained that the estimates given by using ρ1, ρe
and ρH , are very similar. The estimated posterior densities differ slightly from the
posteriors estimated by the Gibbs sampler. To obtain a more accurate estimation of
the posterior density, we ran a post-processing algorithm by using linear regression
on the output of the SMC ABC algorithm; the results are presented in Figure 2
as well and they indicate the goodness of the local linear regression adjustment.
The joint posterior densities π(θ, γ | Z̃30) and π(m, γ | Z̃30) estimated by using the
post-processing correction method on the output of the SMC ABC algorithm are
plotted in Figure 3 again only for the metric ρ1.
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Fig. 3 Contour plots of the joint posterior densities estimated by the SMC ABC algorithm
with the local linear regression adjustment for the metric ρ1, together with the true value of
the parameters. Left: posterior density of (θ, γ). Right: posterior density of (m, γ) together
with the curve γm = 1.125.

Some summary statistics to evaluate and compare the results obtained by the
MCMC methodology and the ABC methods are presented in Tables 1, 2 and
3 for the parameters θ, γ and τm, respectively. We provide an estimate for the
mean, variance and 95% HPD intervals of the posterior densities based on the
samples obtained by SMC ABC method and by Gibbs sampler. Moreover, we
present three measures to evaluate the accuracy of the different methodologies:
the relative mean square error (RMSE), the integrated squared error (ISE) and
the Kullback-Leibler divergence between the posterior densities (KL). The RMSE
was introduced in [2] and it enables us to compare the mean squared error with



12 M. González et al.

Table 1 Summary of the estimates of the posterior density π(θ|Z̃30) by the different methods.

π(θ|Z̃30)

Method Mean Variance 95% HPD RMSE ISE KL

MCMC 0.6009 0.0002 [0.5724, 0.6301] 0.0006 · ·

W
it
h
S
(·
)

SMC ABC ρ1 0.5926 0.0002 [0.5647, 0.6203] 0.0007 3.1528 0.1566

SMC ABC ρe 0.5933 0.0002 [0.5669, 0.6221] 0.0007 2.7994 0.1380

SMC ABC ρH 0.5926 0.0002 [0.5634, 0.6207] 0.0008 2.9238 0.1527

SMC ABC Regression ρ1 0.5966 0.0002 [0.5718, 0.6225] 0.0005 1.1456 0.0595

SMC ABC Regression ρe 0.5965 0.0002 [0.5718, 0.6229] 0.0005 1.2573 0.0630

SMC ABC Regression ρH 0.5962 0.0002 [0.5705, 0.6229] 0.0005 1.1171 0.0623

W
it
h
S 1

(·
)

SMC ABC ρ1 0.6049 0.00001 [0.5985, 0.6118] 0.0001 57.2624 0.4455

SMC ABC ρe 0.6050 0.00001 [0.5989, 0.6118] 0.0001 60.5465 0.5804

SMC ABC ρH 0.6051 0.00001 [0.5989, 0.6118] 0.0001 60.0393 0.4972

SMC ABC Regression ρ1 0.6049 0.00001 [0.5980, 0.6118] 0.0001 57.1825 0.4524

SMC ABC Regression ρe 0.6050 0.00001 [0.5989, 0.6118] 0.0001 60.6781 0.5739

SMC ABC Regression ρH 0.6051 0.00001 [0.5989, 0.6118] 0.0001 60.0351 0.4980

W
it
h
S 2

(·
)

SMC ABC ρ1 0.5746 0.0003 [0.5402, 0.6083] 0.0027 17.2930 1.0968

SMC ABC ρe 0.5744 0.0003 [0.5402, 0.6096] 0.0027 17.1637 1.0769

SMC ABC ρH 0.5745 0.0003 [0.5391, 0.6089] 0.0027 16.8155 1.0757

SMC ABC Regression ρ1 0.5746 0.0003 [0.5398, 0.6078] 0.0027 17.3233 1.1028

SMC ABC Regression ρe 0.5744 0.0003 [0.5402, 0.6096] 0.0027 17.1740 1.0774

SMC ABC Regression ρH 0.5745 0.0003 [0.5396, 0.6089] 0.0027 16.7786 1.0766

W
it
h
S 3

(·
)

SMC ABC ρ1 0.6160 0.0033 [0.5164, 0.7324] 0.0098 11.3148 0.9253

SMC ABC ρe 0.6184 0.0033 [0.5189, 0.7341] 0.0102 11.4357 0.9422

SMC ABC ρH 0.6140 0.0032 [0.5171, 0.7274] 0.0094 11.0885 0.9021

SMC ABC Regression ρ1 0.6182 0.0032 [0.5194, 0.7347] 0.0099 11.1805 0.9121

SMC ABC Regression ρe 0.6218 0.0033 [0.5220, 0.7359] 0.0104 11.2876 0.9282

SMC ABC Regression ρH 0.6180 0.0031 [0.5221, 0.7307] 0.0096 10.8141 0.8767

the square of the corresponding parameter. For the ISE and the KL, the posterior
density given by the Gibbs sampler algorithm was taken as the reference one. In
view of these comparisons, one infers that the SMC ABC algorithm followed by the
local-linear regression adjustment provides the best estimate of the true posterior
density functions. In addition, note that there is no significant difference among
the results obtained with the different metrics.

In order to highlight the importance of the choice of the summary statistic in
the output of ABC algorithms, we also implemented them removing one coordinate
in the proposed one, that is, we consider the summary statistics:

S1(Z̃n) =

(∑n
i=1 Zi∑n−1
i=0 Zi

,
ϕn−1(Zn−1)

Zn−1

)
,

S2(Z̃n) =

(
n∑

i=1

Zi,
ϕn−1(Zn−1)

Zn−1

)
,
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Table 2 Summary of the estimates of the posterior density π(γ|Z̃30) by the different methods.

π(γ|Z̃30)

Method Mean Variance 95% HPD RMSE ISE KL

MCMC 0.7539 0.0009 [0.6922, 0.8115] 0.0017 · ·

W
it
h
S
(·
)

SMC ABC ρ1 0.7589 0.0012 [0.6896, 0.8248] 0.0022 0.2182 0.0279

SMC ABC ρe 0.7593 0.0012 [0.6928, 0.8239] 0.0023 0.2451 0.0318

SMC ABC ρH 0.7600 0.0012 [0.6923, 0.8270] 0.0023 0.2536 0.0353

SMC ABC Regression ρ1 0.7577 0.0010 [0.6945, 0.8164] 0.0018 0.0988 0.0099

SMC ABC Regression ρe 0.7584 0.0010 [0.6976, 0.8204] 0.0019 0.1056 0.0140

SMC ABC Regression ρH 0.7587 0.0010 [0.6954, 0.8199] 0.0019 0.1542 0.0176

W
it
h
S 1

(·
)

SMC ABC ρ1 0.7870 0.0001 [0.7715, 0.8012] 0.0025 32.7316 0.4832

SMC ABC ρe 0.7867 0.0001 [0.7710, 0.8012] 0.0025 33.6205 0.3896

SMC ABC ρH 0.7868 0.0001 [0.7719, 0.8008] 0.0025 34.7825 0.5141

SMC ABC Regression ρ1 0.7870 0.0001 [0.7715, 0.8012] 0.0025 32.7434 0.4812

SMC ABC Regression ρe 0.7867 0.0001 [0.7710, 0.8012] 0.0025 33.6132 0.3890

SMC ABC Regression ρH 0.7868 0.0001 [0.7723, 0.8008] 0.0025 34.7769 0.5142

W
it
h
S 2

(·
)

SMC ABC ρ1 0.7483 0.0019 [0.6576, 0.8346] 0.0034 0.5341 0.0932

SMC ABC ρe 0.7502 0.0020 [0.6585, 0.8359] 0.0035 0.5467 0.0980

SMC ABC ρH 0.7498 0.0020 [0.6582, 0.8360] 0.0036 0.5259 0.0958

SMC ABC Regression ρ1 0.7484 0.0019 [0.6590, 0.8337] 0.0034 0.5198 0.0918

SMC ABC Regression ρe 0.7503 0.0020 [0.6585, 0.8355] 0.0035 0.5494 0.0970

SMC ABC Regression ρH 0.7497 0.0020 [0.6569, 0.8356] 0.0036 0.5248 0.0942

W
it
h
S 3

(·
)

SMC ABC ρ1 0.7116 0.0251 [0.4044, 1] 0.0472 6.1637 1.2377

SMC ABC ρe 0.7059 0.0255 [0.4064, 0.9951] 0.0488 6.3199 1.2788

SMC ABC ρH 0.7171 0.0245 [0.4108, 1] 0.0455 6.0280 1.2004

SMC ABC Regression ρ1 0.7089 0.0249 [0.4039, 0.9991] 0.0472 6.1404 1.2301

SMC ABC Regression ρe 0.7001 0.0253 [0.3969, 0.9898] 0.0494 6.2901 1.2697

SMC ABC Regression ρH 0.7094 0.0243 [0.4057, 0.9920] 0.0460 5.9933 1.1895

S3(Z̃n) =

(
n∑

i=1

Zi,

∑n
i=1 Zi∑n−1
i=0 Zi

)
.

The results for the parameters θ, γ and τm are presented in Tables 1, 2 and 3,
respectively. The tables mainly reveal that removing the number of progenitors
in (at least) the last generation from the observed sample and consequently from
the summary statistic, that is S3, provides similar accuracy measures for τm -it
is a consequence of the first convergence in (3). However, the estimation of its
factors separately, that is, m (dependent on θ) and γ get worse. It is highlighted
the less accurate estimate of the control parameter, γ, with a very wide 95% HPD
interval. If the component of total progeny is removed, that is S1, the ISE and KL
for three parameters, θ, γ, and τm increase significatively. For the latter parameter,
the 95% HPD intervals do not contain the true value. Finally, removing the second
coordinate in S, that is S2, results in an increment of the three accuracy measures
for the three considered parameters.
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Table 3 Summary of the estimates of the posterior density π(τm|Z̃30) by the different meth-
ods.

π(τm|Z̃30)

Method Mean Variance 95% HPD RMSE ISE KL

MCMC 1.1358 0.0032 [1.0188, 1.2418] 0.0026 · ·

W
it
h
S
(·
)

SMC ABC ρ1 1.1045 0.0026 [1.0004, 1.2050] 0.0024 0.0048 0.1760

SMC ABC ρe 1.1078 0.0024 [1.0093, 1.2050] 0.0022 0.0010 0.1476

SMC ABC ρH 1.1060 0.0026 [1.0093, 1.2139] 0.0023 0.0039 0.1576

SMC ABC Regression ρ1 1.1209 0.0023 [1.0182, 1.2139] 0.0019 0.0001 0.0588

SMC ABC Regression ρe 1.1212 0.0022 [1.0271, 1.2139] 0.0018 0.0002 0.0651

SMC ABC Regression ρH 1.1208 0.0024 [1.0271, 1.2228] 0.0019 0.00004 0.0613

W
it
h
S 1

(·
)

SMC ABC ρ1 1.2049 0.0002 [1.1783, 1.2361] 0.0052 0.0014 0.9778

SMC ABC ρe 1.2052 0.0002 [1.1783, 1.2361] 0.0053 0.0014 1.0833

SMC ABC ρH 1.2055 0.0002 [1.1739, 1.2361] 0.0053 0.0014 1.1072

SMC ABC Regression ρ1 1.2049 0.0002 [1.1783, 1.2361] 0.0052 0.0014 0.9798

SMC ABC Regression ρe 1.2052 0.0002 [1.1783, 1.2361] 0.0053 0.0014 1.0859

SMC ABC Regression ρH 1.2055 0.0002 [1.1739, 1.2361] 0.0053 0.0014 1.1059

W
it
h
S 2

(·
)

SMC ABC ρ1 1.0108 0.0029 [0.9071, 1.1205] 0.0126 2.1586 1.9624

SMC ABC ρe 1.0126 0.0028 [0.9115, 1.1161] 0.0122 2.1129 1.9290

SMC ABC ρH 1.0122 0.0029 [0.9111, 1.1200] 0.0123 2.1583 1.9917

SMC ABC Regression ρ1 1.0108 0.0029 [0.9071, 1.1205] 0.0126 2.1489 1.9611

SMC ABC Regression ρe 1.0126 0.0028 [0.9115, 1.1161] 0.0122 2.1085 1.9298

SMC ABC Regression ρH 1.0122 0.0029 [0.9067, 1.1200] 0.0123 2.1514 1.9920

W
it
h
S 3

(·
)

SMC ABC ρ1 1.1202 0.0029 [1.0089, 1.2222] 0.0023 0.0004 0.0428

SMC ABC ρe 1.1221 0.0030 [1.0182, 1.2361] 0.0024 0.0007 0.0360

SMC ABC ρH 1.1199 0.0029 [1.0138, 1.2228] 0.0023 0.0005 0.0449

SMC ABC Regression ρ1 1.1264 0.0028 [1.0165, 1.2305] 0.0022 0.0001 0.0198

SMC ABC Regression ρe 1.1287 0.0029 [1.0245, 1.2383] 0.0023 0.0001 0.0168

SMC ABC Regression ρH 1.1263 0.0028 [1.0299, 1.2305] 0.0022 0.0001 0.0218

To complete the study of this simulated example, we developed a sensitivity
analysis on the choices of the prior distributions. Recall that both the offspring
and control parameters are probabilities, and hence, beta distributions seem to
be reasonable options as prior distributions for both parameters. Thus, the afore-
mentioned analysis was performed by considering different values for the shape
parameters of beta distributions. The results of this analysis for the Gibbs sampler
algorithm and the SMC ABC algorithm together with the local lineal regression
adjustment using the metric ρ1 are summarized in Tables 7 and 8 for the posterior
densities π(θ|Z̃30) and π(γ|Z̃30), respectively, in Supplementary Material. These
results indicate that the estimation of the posterior densities is not sensitive to
the choices of the prior distributions.

Finally, it is worth mentioning again that ABC methodology relies on having
ease of sampling from the model. In our implementation, this implies the knowledge
of the parametric families. An interesting issue is to study the performance of the
algorithms when one knows that those distributions can be parametrized with a
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one-dimensional parameter, but the kind of parametric distribution one should use
to that end is unknown. This issue is considered in the Supplementary Material.

4.2 Real example: oligondrocyte cell population

In the present example, we extend the algorithm proposed in a more complex
model by considering a real data set belonging to the field of cell kinetics. The
considered model is a controlled two–type branching model. In addition to illus-
trate that the methodology can be extended without too much difficulty, the aim
of this example is to illustrate the ABC methodology in a situation in which the
true posterior densities can be calculated. The population considered is a real
population of oligodendrocyte cells already studied in [12], [17], and [29]. In these
populations, one distinguishes two type of cells: the oligodendrocyte precursor cells
-referred as T1- and the terminally differentiated oligodendrocytes -referred as T2.
Regarding the reproduction, only the T1 cells have reproductive capacity and they
can produce two daughter cells of the same type, with probability p1, they can
transform into a daughter cell of type T2, with probability p2, or they can even die
without any offspring, with probability p0. There is also an emigration component
as a consequence of the migration of cells out of the field of observation. Let denote
by 1− γ the probability of emigration of T1-cells, therefore γ represents the prob-
ability that a cell of type T1 completes successfully its mitotic cycles regardless of
its outcome. The parameters of interest are {p0, p1, p2} and γ.

With the aim of describing the proliferation of cells in these populations a con-
tinuous time branching process with emigration and a controlled two-type process
for the embedded discrete structure were considered (see [12] and [29] for fur-
ther details). Briefly, focussing on the embedded discrete structure, the controlled
two-type branching process, denoted as {Zn}n∈N0

, is defined as follows:

Z0 = (N0, 0), Zn+1 =

ϕn(Zn)∑
j=1

(X
(1)
n,j , X

(2)
n,j), n ∈ N0, (5)

with Zn = (Z
(1)
n , Z

(2)
n ), N0 ∈ N, and {(X(1)

n,j , X
(2)
n,j) : j ∈ N, n ∈ N0} and {ϕn(z) : n ∈

N0, z ∈ N2
0} being two independent families of non-negative integer valued random

variables. Moreover, they are assumed to satisfy the next conditions:

(i) For each z = (z(1), z(2)) ∈ N2
0, the random variables {ϕn(z) : n ∈ N0} are i.i.d.

following a binomial distribution with parameters z(1) and γ ∈ (0, 1).

(ii) The stochastic processes {(X(1)
n,j , X

(2)
n,j) : j ∈ N}, n ∈ N0 are i.i.d. with probabil-

ity distribution

p0 = P
[
X

(1)
n,j = 0, X

(2)
n,j = 0

]
,

p1 = P
[
X

(1)
n,j = 2, X

(2)
n,j = 0

]
,

p2 = P
[
X

(1)
n,j = 0, X

(2)
n,j = 1

]
.

(iii) If n1, n2 ∈ N0 are such that n1 ̸= n2, then, the sequences {(X(1)
n1,j

, X
(2)
n1,j

) : j ∈
N} and {(X(1)

n2,j
, X

(2)
n2,j

) : j ∈ N} are independent.
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As we mentioned above, given the nature of the data, the sample constituted by

the entire family tree is available, that is, the sample Z∗
n = {Z(1)

l (0), Z
(1)
l (2), Λl :

l = 0, . . . , n− 1}, with for j = 0, 2, and l = 0, . . . , n− 1,

Z
(1)
l (j) =

ϕl(Zl)∑
i=1

I{
X

(1)

l,i =j, X
(2)

l,i =0
} and Λl =

ϕl(Zl)∑
i=1

I{
X

(1)

l,i =0, X
(2)

l,i =1
}.

For n ∈ N and j = 0, 2, we introduce the variables:

Y
(1)
n−1(j) =

n−1∑
l=0

Z
(1)
l (j), Ψn−1 =

n−1∑
l=0

Λl, ∆n−1 =
n−1∑
l=0

ϕl(Zl), and Y
(1)
n−1 =

n−1∑
l=0

Z
(1)
l ,

where Y
(1)
n−1(j) is the total number of cells of type T1 producing exactly j cells of

type T1, j = 0, 2, in the first n − 1 generations, Ψn−1 is the total number of cells
of type T1 producing one cell of type T2 in the first n− 1 generations, ∆n−1 is the

total number of progenitor cells of type T1 in the first n−1 generations, and Y
(1)
n−1

is the total number of cells of type T1 in the first n − 1 generations. We propose
as the summary statistic

S(Z∗
n) =

(
Y

(1)
n−1,

Y
(1)
n−1(0)

∆n−1
,
Y

(1)
n−1(2)

∆n−1
,
∆n−1

Y
(1)
n−1

)
.

This summary statistic is the equivalent in the present setting to the proposed
summary statistic in Section 3. The first component is the total progeny of the
process in the first n−1 generations. The second and the third one are the relative
proportion of cells of type T1 having no offspring and two offspring of type T1,
respectively. The forth component is the proportion of cells of type T1 that do not
emigrate. Thus, we expect the second and third component to be informative on
p0 and p1, respectively, and consequently on p2, and the forth one to be helpful to
identify γ. We also incorporate the first component to introduce the information
about the total magnitude of the process. Notice that it is not required the incor-
poration of data from T2 cells in the summary statistic due their dependence with
T1 cells and the fact that these do not generate offspring.

The data sets that we study in this example resulted from one experiment
started with 30 cells of type T1 in a solution treated with a substance that boosts
the production of T2 cells, and whose family tree was observed until the generation
n = 5. These data are provided in Table 4 and were provided in [17].

Table 4 Data of the observed tree

n N Y
(1)
n−1 ∆n−1 Y

(1)
n−1(0) Y

(1)
n−1(2) Ψn−1

5 30 276 269 37 133 99

We ran the SMC ABC algorithm with the summary statistic proposed above
and M = 3 stages with a final local–regression adjustment. We considered ρ1−
distance in view of the comments of the simulated example. Thus, to obtain sam-
ples of size 2500 at each step, we generated pools of 105, 106, and 107 non-extinct
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branching processes following the model in (5), initiated with 30 cells of type T1
and generated until the 5th generation and we took the quantiles of order 0.025,
0.0025, and 0.00025 of the sample of the distances of the simulated processes as the
thresholds ϵ1, ϵ2 and ϵ3 at each step, respectively. In particular, given the nature of
our parameters we took a Dirichlet distribution with parameter α = (1/2, 1/2, 1/2)
for the offspring distribution {p0, p1, p2} and a beta distribution with parameters
1/2 and 1/2 as the prior distribution for γ. Note that in this case we can evaluate
the accuracy of the estimates obtained using the ABC methodology by compar-
ing them with the true ones obtained by using the theory of conjugate families.
Indeed, by making use of Markov’s property and the independence between the
emigration and reproduction phases, one can prove that the likelihood function
f(Z∗

n|p0, p1, γ) is given by

f(Z∗
n|p0, p1, γ) ∝ p

Y
(1)
n−1(0)

0 p
Y

(1)
n−1(2)

1 (1− p0 − p1)
Ψn−1γ∆n−1(1− γ)Y

(1)
n−1−∆n−1 ,

and as a result, as indicated above, if we take as the prior distribution π(p0, p1, γ) =
π(p0, p1)π(γ), with

π(p0, p1) ∝ pα0−1
0 pα1−1

1 (1− p0 − p1)
α2−1, and π(γ) ∝ γβ1−1(1− γ)β2−1,

then, the posterior distribution is given by

π(p0, p1, γ|Z∗
n) ∝ p

Y
(1)
n−1(0)+α0−1

0 p
Y

(1)
n−1(2)+α1−1

1 (1− p0 − p1)
Ψn−1+α2−1 ·

·γ∆n−1+β1−1(1− γ)Y
(1)
n−1−∆n−1+β2−1. (6)

Figure 4 shows the contour plot of the offspring posterior density estimated by
using the SMC ABC algorithm together local regression adjustment and one of
the true density provided by (6). Moreover, it shows the estimated density and
the true one of the parameter γ. The estimated densities are centered around
the parameters of interest with small dispersion, therefore the ABC methodology
provides in this situation quite accurate estimates. This latter fact is also concluded
by comparing the posterior means and posterior variances of p0, p1, p2 and γ

obtained by the ABC methodology with the one obtained by using the theory of
conjugate families (see Table 5).

p0

p
1

 50 

 100 

 150 

 200 

 250 

 300 

 350 

0.10 0.12 0.14 0.16 0.18

0
.4

6
0

.4
8

0
.5

0
0

.5
2

0
.5

4
0

.5
6

●

p0

p
1

 80 

 100 

 120 

 140 

 160 

 180 

 200 

 220 

 240 

 260 

0.10 0.12 0.14 0.16 0.18

0
.4

6
0

.4
8

0
.5

0
0

.5
2

0
.5

4
0

.5
6

●

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

0
1

0
2

0
3

0
4

0

γ

P
o

s
te

ri
o

r 
d

e
n

s
it
y

Fig. 4 Contour plot of the posterior density functions for the offspring distribution (solid
lines) and posterior means (dotted lines) obtained by using the SMC ABC algorithm together
local regression adjustment (left) and the true posterior density (centre). Posterior density
functions of γ (solid line) and posterior mean (dotted line) obtained by using the SMC ABC
algorithm together local regression adjustment and dashed line represents the posterior density
obtained using the theory of conjugate distributions.
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Table 5 Comparison of the posterior means and variances

p0 p1 p2 γ
SMC ABC
algorithm

Mean 0.139296 0.503495 0.357209 0.974284
Variance 0.000324 0.000752 0.000616 0.000055

True posterior
Mean 0.138697 0.494012 0.367291 0.972987

Variance 0.000427 0.000931 0.000828 0.000095

Remark 2 The simulations were performed by using the statistical software R (see
[24]). For the convergence diagnostics of the Gibbs sampler algorithm we used the
coda package (see [22]). Regarding the multivariate normal distribution of algo-
rithm SMC ABC, we made use of the function dmvnorm() of the mvtnorm package
for the density function (see [7]) and the function mvrnorm() from the MASS package
to draw pairs of numbers of such distributions (see [27]).

5 Concluding remarks

Motivated by the interest of making inference on the context of CBPs with random
control functions, we have explored ABC methodology and proposed an appropri-
ate summary statistic for such a purpose in this setting. Thus, this work constitutes
a twofold generalization of [9]: on the one hand, we considered a more complex
model, CBPs with random control functions, with the added difficulties that this
implies, and on the other hand, we introduced a suitable summary statistic to
minimize the influence of the dimension of the data that usually arises when com-
paring data of large dimension. To that end, we considered parametric frameworks
for the offspring and control distributions and assumed that one can observe all the
population sizes and the number of progenitors in (at least) the last generation.
It is worthwhile to highlight that the knowledge of the number of progenitors in
the last generation, ϕn−1(Zn−1), and its inclusion in the summary statistic, plays
an important role when identifying the true parameters of the model. This means
a clear progress with respect to the aforesaid paper.

We have described an ABC algorithm to sample from the posterior distribu-
tions of the offspring and control parameters and approximated the corresponding
ones by making use of kernel density estimators. In particular, we have considered a
SMC ABC algorithm followed by a local linear regression with a three-dimensional
summary statistic. This methodology can be extended without too much difficulty
to more complicated branching family processes, being adequate to draw samples
from posterior densities which are closer to the true posterior densities. Indeed,
through an extensive analysis of a simulated example, the accuracy of the ABC
procedure has been compared with the output of the Gibbs sampler. We showed
a visual comparison of the posterior density estimated by each algorithm and a
comparison based on summary statistics such as the posterior mean and variance,
95% HPD intervals, RMSE, ISE and KL. The results of this example show that the
SMC ABC algorithm with together with the local-linear regression post-processing
provides estimates of the posterior densities which are as accurate as the ones ob-
tained with the Gibbs sampler and having the advantage of being computationally
simpler. Moreover, a study of the influence of the choice of the distance, the prior
distributions, and the offspring and control distribution considered in the model
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was carried out. It shows that this methodology is not sensible to such choices.
Secondly, the adaptation of this methodology for a controlled two–type branching
process is applied by considering a real data set, showing again that it suites quite
well. We implemented these methodologies by using the statistical software and
programming environment R.
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R. Mart́ınez, C. Minuesa, M. Molina, M. Mota, A. Ramos (eds.) Branching Processes and
Their Applications, Lecture Notes in Statistics, vol. 219, pp. 185–205. Springer (2016)
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Supplementary Material

Simulated data

The data for the simulated example in Subsection 4 are provided in Table 6. Recall
that for the simulated CBP, which starts with Z0 = 1 individual, the reproduction
law is a geometric distribution with parameter q = 0.4, and for each k ∈ N0, the
probability distribution of the control variable ϕn(k) is a binomial distribution
with parameters ξ(k) and γ = 0.75, with ξ(k) = k + ⌊log(k)⌋, for each k ∈ N and
ξ(0) = 0.

http://www.R-project.org/
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Table 6 Simulated data, Z̃obs
30

n Zn ϕn(Zn)
0 1 1
1 4 3
2 6 5
3 4 3
4 11 10
5 6 7
6 9 7
7 19 13
8 26 19
9 14 9
10 10 9
11 11 9
12 9 7
13 12 8
14 14 12
15 15 12
16 9 5
17 3 3
18 6 7
19 13 13
20 17 15
21 23 18
22 35 32
23 58 46
24 75 61
25 73 51
26 103 78
27 107 83
28 141 100
29 166 131
30 216 ·

Sensitivity analysis

A summary of the sensitivity analysis on the choice of the parameters of the prior
distribution is presented in Tables 7 and 8 for the posterior distribution of θ and
γ, respectively. The results are provided for the Gibbs sampler algorithm and the
SMC ABC algorithm followed by the post-processing correction method using the
metric ρ1.

Finally, we present a summary of the results obtained from the sensitivity
analysis on the choice of the parametric families for the offspring and control
distributions for three different CBPs. Apart from the previous example, we simu-
lated 30 generations of two additional CBPs starting with one individual: the first
of them has a geometric distribution with parameter θ = 0.918 as the offspring
distribution and the control variables ϕn(k) follow binomial distributions with pa-
rameters ξ(k) and γ = 0.1, and in the second CBP, the offspring distribution is a
geometric distribution with parameter θ = 0.556 and it has control variables ϕn(k)
following binomial distribution with parameters ξ(k) and γ = 0.9. We proposed
two offspring laws (geometric and Poisson distributions) and three control laws
(binomial, Poisson and negative binomial distribution) and ran the SMC ABC al-
gorithm for the posterior densities π(m|Z̃30), π(τ |Z̃30) and π(τm|Z̃30) in each one
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of these six situations for the three examples considered. We opted for these three
parameters since it is more reasonable to compare the results based on different
distributions in terms of the offspring mean, the parameter τ and the asymptotic
mean growth rate of the process, which are the stable parameters of the process.

The results in Table 9 show that the method for the different models used for
simulating usually identify the offspring mean, the parameter τ and the asymptotic
mean growth rate relatively well, which also indicates the goodness of our summary
statistic. A noteworthy result is the case of considering a Poisson distribution for
the control laws. While the algorithm provides a good estimation for the posterior
density of the parameter τ , the posterior density for m (and consequently, for τm)
does not seem to fit so well to the one obtained for the second simulated model
when assuming a binomial or negative binomial distribution for the control laws.
This is related to the magnitude of the parameter θ = 0.918. Indeed, when we used
the geometric distribution for simulating the model we also estimated the posterior
density of θ, resulting a mean value of 0.9079 and variance of 2.0629 ·10−05, which
seems to be a good estimation of that posterior density. However, the small bias
observed in this estimation was enlarged when we estimated m due to the fact
that m = θ(1− θ)−1.

Similar results are obtained when one is unaware of the existence of the func-
tion ξ(·). To examine that problem in this example, we considered the three models
described above and we repeated the study by applying same ABC method for the
posterior distributions π(m|Z̃30), π(τ |Z̃30) and π(τm|Z̃30). Again, we used geomet-
ric and Poisson offspring distributions and binomial, Poisson and negative binomial
distributions as control laws. The results are presented in Table 10, where one ob-
serves no significant difference with those in Table 9, except a slight increase in the
RMSE in most of the cases. This similitude is caused by the fact that our model
satisfies the condition (a) in Remark 1.
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Table 7 Summary of the sensitivity analysis on the choice of the prior distribution for the

posterior density π(θ|Z̃30)

π(θ) π(γ) π(θ|Z̃30)

Beta distribution Beta distribution Mean Variance 95% HPD RMSE

G
ib
b
s
sa
m
p
le
r

β(0.5, 3) β(0.5, 3) 0.6007 0.0002 [0.5728, 0.6275] 0.0006

β(0.5, 3) β(0.5, 0.5) 0.5996 0.0002 [0.5724, 0.6283] 0.0005

β(0.5, 3) β(3, 0.5) 0.5993 0.0002 [0.5715, 0.6257] 0.0005

β(0.5, 0.5) β(0.5, 3) 0.6035 0.0002 [0.5763, 0.6305] 0.0006

β(0.5, 0.5) β(0.5, 0.5) 0.6007 0.0002 [0.5737, 0.6275] 0.0005

β(0.5, 0.5) β(3, 0.5) 0.5997 0.0002 [0.5724, 0.6270] 0.0006

β(3, 0.5) β(0.5, 3) 0.6040 0.0002 [0.5780, 0.6318] 0.0006

β(3, 0.5) β(0.5, 0.5) 0.6016 0.0002 [0.5737, 0.6279] 0.0005

β(3, 0.5) β(3, 0.5) 0.6008 0.0002 [0.5732, 0.6292] 0.0006

S
M
C

A
B
C

R
eg

re
ss
io
n
ρ
1

β(0.5, 3) β(0.5, 3) 0.5956 0.0002 [0.5691, 0.6212] 0.0005

β(0.5, 3) β(0.5, 0.5) 0.5952 0.0002 [0.5696, 0.6212] 0.0006

β(0.5, 3) β(3, 0.5) 0.5938 0.0002 [0.5687, 0.6194] 0.0006

β(0.5, 0.5) β(1, 3) 0.5976 0.0002 [0.5718, 0.6247] 0.0005

β(0.5, 0.5) β(0.5, 0.5) 0.5958 0.0002 [0.5705, 0.6225] 0.0005

β(0.5, 0.5) β(3, 0.5) 0.5963 0.0002 [0.5705, 0.6229] 0.0005

β(3, 0.5) β(0.5, 3) 0.5979 0.0002 [0.5714, 0.6261] 0.0005

β(3, 0.5) β(0.5, 0.5) 0.5962 0.0002 [0.5705, 0.6234] 0.0005

β(3, 0.5) β(3, 0.5) 0.5956 0.0002 [0.5691, 0.6203] 0.0005

Table 8 Summary of the sensitivity analysis on the choice of the prior distribution for the

posterior density π(γ|Z̃30)

π(θ) π(γ) π(γ|Z̃30)

Beta distribution Beta distribution Mean Variance 95% HPD RMSE

G
ib
b
s
sa
m
p
le
r

β(0.5, 3) β(0.5, 3) 0.7526 0.0010 [0.6913, 0.8142] 0.0018

β(0.5, 3) β(0.5, 0.5) 0.7560 0.0010 [0.6961, 0.8181] 0.0018

β(0.5, 3) β(3, 0.5) 0.7582 0.0009 [0.6996, 0.8172] 0.0017

β(0.5, 0.5) β(0.5, 3) 0.7442 0.0009 [0.6834, 0.8032] 0.0017

β(0.5, 0.5) β(0.5, 0.5) 0.7548 0.0009 [0.6957, 0.8133] 0.0017

β(0.5, 0.5) β(3, 0.5) 0.7577 0.0010 [0.6974, 0.8199] 0.0018

β(3, 0.5) β(0.5, 3) 0.7431 0.0009 [0.6856, 0.8028] 0.0017

β(3, 0.5) β(0.5, 0.5) 0.7532 0.0010 [0.6909, 0.8146] 0.0018

β(3, 0.5) β(3, 0.5) 0.7563 0.0010 [0.6957, 0.8177] 0.0018

S
M
C

A
B
C

R
eg

re
ss
io
n
ρ
1

β(0.5, 3) β(0.5, 3) 0.7592 0.0009 [0.6994, 0.8213] 0.0018

β(0.5, 3) β(0.5, 0.5) 0.7618 0.0010 [0.7025, 0.8213] 0.0019

β(0.5, 3) β(3, 0.5) 0.7656 0.0009 [0.7039, 0.8239] 0.0021

β(0.5, 0.5) β(0.5, 3) 0.7542 0.0011 [0.6896, 0.8177] 0.0019

β(0.5, 0.5) β(0.5, 0.5) 0.7613 0.0010 [0.6990, 0.8253] 0.0020

β(0.5, 0.5) β(3, 0.5) 0.7596 0.0009 [0.6999, 0.8181] 0.0018

β(3, 0.5) β(0.5, 3) 0.7545 0.0010 [0.6888, 0.8181] 0.0019

β(3, 0.5) β(0.5, 0.5) 0.7615 0.0010 [0.7008, 0.8217] 0.0020

β(3, 0.5) β(3, 0.5) 0.7627 0.0010 [0.7016, 0.8239] 0.0020
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Table 9 Summary of the sensitivity analysis on the choice of the offspring and control dis-
tributions in the SMC ABC algorithm with the summary statistic and the post-processing
method. A geometric distribution and a Poisson distribution were fitted for the reproduction
law, while a binomial distribution, a Poisson distribution and a negative binomial distribution
were considered for the control laws

Geometric offspring distribution Poisson offspring distribution

Model Parameter Summary B(ξ(k), ρ) P(ξ(k)λ) NB(ξ(k), ϱ) B(ξ(k), ρ) P(ξ(k)λ) NB(ξ(k), ϱ)

X
n
i
∼

G
(0
.6
),

ϕ
n
(k
)
∼

B
(ξ
(k
),
0
.7
5
) m = 1.5

Mean 1.4814 1.4627 1.5429 1.4973 1.5151 1.5867

Variance 0.0067 0.0190 0.0342 0.0044 0.0127 0.0303

RMSE 0.0031 0.0091 0.0160 0.0020 0.0057 0.0168

τ = 0.75

Mean 0.7577 0.7627 0.7297 0.7591 0.7472 0.7170

Variance 0.0010 0.0051 0.0072 0.0010 0.0035 0.0065

RMSE 0.0018 0.0093 0.0134 0.0019 0.0063 0.0135

τm = 1.125

Mean 1.1209 1.1073 1.1123 1.1351 1.1264 1.1251

Variance 0.0023 0.0035 0.0041 0.0013 0.0022 0.0031

RMSE 0.0019 0.0030 0.0033 0.0011 0.0017 0.0025

X
n
i
∼

G
(0
.9
1
8
),

ϕ
n
(k
)
∼

B
(ξ
(k
),
0
.1
) m = 11.25

Mean 11.1465 9.9684 11.1538 11.1516 7.4936 10.9934

Variance 0.2964 0.2929 0.3813 0.2546 0.0171 0.3343

RMSE 0.0024 0.0143 0.0031 0.0020 0.1095 0.0030

τ = 0.1

Mean 0.0979 0.0987 0.0981 0.0981 0.1033 0.0996

Variance 0.00002 0.0001 0.00003 0.00002 0.00005 0.00003

RMSE 0.0028 0.0052 0.0032 0.0025 0.0059 0.0028

τm = 1.125

Mean 1.0885 0.9813 1.0912 1.0919 0.7734 1.0926

Variance 0.0006 0.0017 0.0007 0.0004 0.0017 0.0004

RMSE 0.0013 0.0166 0.0012 0.0009 0.0969 0.0009

X
n
i
∼

G
(0
.5
5
6
),

ϕ
n
(k
)
∼

B
(ξ
(k
),
0
.9
) m = 1.25

Mean 1.2574 1.2511 1.2562 1.2571 1.2570 1.2628

Variance 0.0006 0.0021 0.0033 0.0004 0.0017 0.0033

RMSE 0.0004 0.0013 0.0021 0.0002 0.0011 0.0022

τ = 0.9

Mean 0.9098 0.9136 0.9098 0.9097 0.9100 0.9065

Variance 0.0001 0.0010 0.0017 0.0001 0.0009 0.0018

RMSE 0.0002 0.0015 0.0022 0.0002 0.0012 0.0022

τm = 1.125

Mean 1.1439 1.1419 1.1409 1.1434 1.1428 1.1425

Variance 0.0004 0.0006 0.0007 0.0002 0.0004 0.0006

RMSE 0.0005 0.0006 0.0007 0.0004 0.0005 0.0006
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Table 10 Summary of the sensitivity analysis on the choice of the offspring and control
distributions in the SMC ABC algorithm with the summary statistic and the post-processing
method without the knowledge of the function ξ(·). A geometric distribution and a Poisson
distribution were fitted for the reproduction law, while a binomial distribution, a Poisson
distribution and a negative binomial distribution were considered for the control laws

Geometric offspring distribution Poisson offspring distribution

Model Parameter Summary B(k, ρ) P(kλ) NB(k, ϱ) B(k, ρ) P(kλ) NB(k, ϱ)

X
n
i
∼

G
(0
.6
),

ϕ
n
(k
)
∼

B
(ξ
(k
),
0
.7
5
) m = 1.5

Mean 1.5315 1.4884 1.5659 1.5439 1.5428 1.6178

Variance 0.0067 0.0183 0.0336 0.0047 0.0132 0.0302

RMSE 0.0034 0.0082 0.0169 0.0029 0.0067 0.0196

τ = 0.75

Mean 1.2054 1.1926 1.1942 1.2109 1.2069 1.2072

Variance 0.0027 0.0041 0.0050 0.0014 0.0027 0.0038

RMSE 0.0073 0.0069 0.0077 0.0069 0.0074 0.0084

τm = 1.125

Mean 1.2064 1.1912 1.1928 1.2121 1.2111 1.2081

Variance 0.0027 0.0040 0.0048 0.0014 0.0026 0.0038

RMSE 0.0073 0.0066 0.0074 0.0071 0.0079 0.0085

X
n
i
∼

G
(0
.9
1
8
),

ϕ
n
(k
)
∼

B
(ξ
(k
),
0
.1
) m = 11.25

Mean 11.1775 9.7894 11.2174 11.1970 7.0385 11.0671

Variance 0.3018 0.2564 0.3879 0.2373 0.0138 0.3241

RMSE 0.0024 0.0178 0.0031 0.0019 0.1380 0.0027

τ = 0.1

Mean 0.0981 0.1007 0.0979 0.0980 0.1110 0.0995

Variance 0.00002 0.00005 0.00003 0.00002 0.00005 0.00003

RMSE 0.0027 0.0048 0.0033 0.0023 0.0170 0.0027

τm = 1.125

Mean 1.0943 0.9833 1.0955 1.0949 0.7809 1.0980

Variance 0.0007 0.0018 0.0007 0.0004 0.0014 0.0004

RMSE 0.0011 0.0162 0.0010 0.0008 0.0926 0.0007

X
n
i
∼

G
(0
.5
5
6
),

ϕ
n
(k
)
∼

B
(ξ
(k
),
0
.9
) m = 1.25

Mean 1.2723 1.2657 1.2692 1.2724 1.2672 1.2737

Variance 0.0006 0.0021 0.0035 0.0004 0.0018 0.0035

RMSE 0.0006 0.0015 0.0024 0.0005 0.0013 0.0025

τ = 0.9

Mean 0.9159 0.9211 0.9195 0.9166 0.9221 0.9168

Variance 0.0001 0.0011 0.0018 0.0001 0.0010 0.0020

RMSE 0.0004 0.0019 0.0027 0.0004 0.0018 0.0028

τm = 1.125

Mean 1.1652 1.1646 1.1649 1.1662 1.1674 1.1654

Variance 0.0004 0.0006 0.0008 0.0002 0.0004 0.0006

RMSE 0.0014 0.0016 0.0018 0.0014 0.0016 0.0017
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