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Abstract

A branching process in varying environment with generation-dependent immigration is a
modification of the standard branching process in which immigration is allowed and the
reproduction and immigration laws may vary over the generations. This flexibility makes
the process more appropriate to model real populations due to the fact that the stability
in the reproductive capacity and in the immigration laws are not usually fulfilled. In this
setting, we study the extinction problem, providing a necessary and sufficient condition
for the certain extinction of the population. The asymptotic behaviour of the model
is analysed for those processes with critical offspring distributions, according with the
classification established in [16], and when the immigration means stabilize to a positive
value. More specifically, we establish that the asymptotic distribution of the process
-under a suitable normalization- belongs to the gamma distribution family.

Keywords: branching process; varying environment; inhomogeneous immigration; ex-
tinction; asymptotic distribution.

1 Introduction

Since the appearance of the pioneer branching model, the Bienaymé-Galton-Watson pro-
cess (BGWP), and motivated by the complexity of the problems arisen in diverse fields,
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M. González, G. Kersting, C. Minuesa, I. del Puerto. Branching processes in varying environ-
ment with generation-dependent immigration. Stochastic Models, 35(2): 148- 166, 2019. DOI:
10.1080/15326349.2019.1575754

1

https://doi.org/10.1080/15326349.2019.1575754


new branching processes have been proposed with the aim of giving an answer to them.
In particular, special attention has been paid to the problem of modelling migratory
movements. Within the class of discrete time models, it is worthwhile to mention the
branching process with immigration, the branching process with time-dependent immi-
gration, the branching process with immigration only after empty generation, branching
processes with migration or the branching process with immigration in varying or random
environment (for their description, see the pioneer works [11, 12], [4], [22], [21] and [18],
respectively, or [6] for a review of them) and the age-dependent branching process with
immigration or its generalization, the Sevast’yanov branching process with immigration
(see [15] and [28], respectively, for their description), in continuous time among others.

There are several works where some of those models were considered for modelling in
real situations. For instance, in [9] a multitype continuous-time branching process with
immigration is used to describe a retrial queue, where the birth and death of the individu-
als represent the arrival and departure of a customer, respectively, and the situations when
a customer is immediately served after the arrival into the system are modelled through
the immigration. In the context of cell kinetics, a two-type age-dependent branching pro-
cess with emigration is used to model the emigration of oligodendrocyte cells cultured in
vitro out of the field of observation in [30]; more recently, in [7], a controlled two-type
branching process with binomial control is used to describe its discrete branching structure
as a result of an embedding of the aforesaid model. Another example is the application of
an age-dependent branching process with time-inhomogeneous immigration for modelling
the progression of Leukemia in mice in [13]; indeed, this process models the number of
Leukemia cells in the blood and the immigration process represents the influx of cells
from other tissues of the body.

This work is concerned with the branching process in a varying environment with
generation-dependent immigration (BPVEI). This model represents a twofold generaliza-
tion of the BGWP: on the one hand, we allow the reproductive capacity of the individuals
to change over the generations and on the other hand, an inhomogeneous immigration
is included into the probability model. These features make the process more appealing
from a practical standpoint. Firstly, it is more natural to assume that the probability
distribution governing the reproduction, referred as offspring distribution, may change
over the time because the reproduction capacity of the individuals might be affected by
factors such as, for instance, the resource supply or the weather conditions, which may
vary over seasons. An example of such situations is the genus Bicyclus of butterflies of
the sub-Saharan Africa, whose reproduction capacity changes from the wet season to the
dry-season due to the adaptation to the environment (see [10], p.49, for further details).
Secondly, the interest of considering an inhomogeneous immigration is due to the fact that
in practical situations it is unknown whether the distribution of the influx of individuals
in the population is constant or changes over the generations, and hence, the assumption
of an homogeneous immigration might lead to a misspecification of the model. An ex-
ample of such populations is a renewal process for cell populations of the central nervous
system which comprise stem cells, progenitor cells and terminally differentiated cells. In
such populations, only the stem and progenitor cells have reproductive capacity, whereas
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the terminally differentiated cells arise as a result of the maturation of progenitor cells.
Since any of these types of cells could die at any time, an immigration of stem cells -and
their development into progenitor cells- supplies the amount of cells needed to maintain
the tissues. Moreover, the reproduction and immigration rates of stem cells is believed to
depend on the renewing tissue and on the time according to the experimental evidences,
and hence the need of an inhomogeneous immigration in the model (see [29] for further
details).

While a great number of papers on branching processes in varying environment (BPVE),
or on branching processes with inhomogenous immigration is available (see, for instance,
[3], [2], [16] or [17] for the first model and [4] and [24, 25, 26, 27] for the second one), in
relation to the research on the BPVEI one only can find the works [5] and [14]. The former
concerns a central limit theorem and a law of the iterated logarithm for the BPVEI in
the supercritical case according to the classification in [16], whereas in the second paper
the author obtained a Feller diffusion approximation when assuming certain convergence
of the parameters of both the offspring and immigration laws in the critical case. The
paper [20] also deals with a BPVE, but with homogeneous immigration and considering
a very specific offspring distributions for such a study.

The main goals of this work are to analyse the extinction problem and the asymptotic
behaviour for the general family of BPVEIs. Previously to the study of those questions, we
establish some basic properties on the moments and the probability generating functions
involved in the model. In relation to the extinction, it is important to highlight that
although 0 is not an absorbing state of the process, it is possible to state conditions for
the population size to reach the state 0 and to remain there forever. As we illustrate,
this result also holds true when either the offspring distribution or the immigration laws
are homogeneous. In order to examine the asymptotic behaviour of the process, we focus
our attention on the family of BPVEIs with critical offspring distributions according to
the classification in [16]. For those processes, we prove their convergence in distribution
-once suitably normalized- to a gamma distribution when the immigration means and the
normalized second factorial moments of the offspring distributions converge to positive
values.

Apart from this introduction, this paper consists of three sections and an appendix.
In Section 2, we describe the probability model and some basic properties regarding the
moments and probability generating functions of the process. Section 3 is devoted to the
extinction problem and Section 4 is dedicated to the study of the asymptotic behaviour
of the process. In order to ease the reading, we dedicate an appendix to the proofs of the
results.

2 Probability model and basic properties

In order to define a BPVEI, let us consider two independent families of N0-valued random
variables, {Xnj : n ∈ N0; j ∈ N} and {In : n ∈ N0}, where N0 = N ∪ {0}. Assume that
both of them are made up by independent random variables such that for each n ∈ N0

3



fixed, Xnj, j ∈ N, are identically distributed according to the probability generating
function (p.g.f.) fn(s) =

∑∞
k=0 fn[k]s

k, with fn(0) < 1 and fn[k] = P [Xn1 = k], and
In is distributed according to the p.g.f. hn(s) =

∑∞
k=0 hn[k]s

k, with hn(0) < 1 and
hn[k] = P [Yn = k], for n, k ∈ N0. The process {Zn}n∈N0 defined recursively as

Z0 = 0, Zn+1 =
Zn+In∑
j=1

Xnj, n ∈ N0,

is called branching process in a varying environment v = {f0, f1, f2, . . .} with generation-
dependent immigration and initial value Z0 = 0. The distributions fn = {fn[k]}k∈N0 and
hn = {hn[k]}k∈N0 are called offspring distribution or reproduction law and immigration
law, respectively, of the n-th generation. Notice that we use the same notation for the
probability distributions and the corresponding p.g.f.s.

Intuitively, Zn represents the number of individuals in the n-th generation, In is the
number of immigrants in the n-th generation and Xnj the number of offspring of the j-th
progenitor in the n-th generation. Observe that the assumption Z0 = 0 indicates that the
population starts with the offspring of the immigrants in the initial generation. Moreover,
in the development of this model one distinguishes two phases in each generation: the
immigration phase, when new individuals migrate into the population, and the reproduc-
tion phase, when the progenitors have their offspring. Notice that we define the process
as a controlled branching process in varying environment (see [8]) with an inhomogeneous
control function ϕn(k) = k + In, with k, n ∈ N0.

It is easy to verify that a BPVEI is an inhomogeneous Markov chain. We shall fix
the notation for the remainder of the paper. Let us denote by Fn the p.g.f. of the
variable Zn, n ∈ N0, and fk,n = fk+1 ◦ . . . ◦ fn, for k = −1, 0, . . . , n − 1, with the
convention that fn,n(s) = s, s ∈ [0, 1]. Let us write mn = E[Xn1] and σ2

n = V ar[Xn1]
for the offspring mean and variance in generation n, respectively, and assume that both
of them are positive and finite; analogously, denote by αn = E[In] and β2

n = V ar[In]
the expectation and the variance of the number of immigrants in the n-th generation,
which are assumed to satisfy 0 < αn < ∞ and 0 < β2

n < ∞. For n ∈ N0, we also write
µn =

∏n
i=0mi, and νn = f ′′

n(1)/f
′
n(1)

2, with the convention µ−1 = 1.
Having set the notation, in the following result we establish the relations between the

p.g.f.s and the moments of the BPVEI and the p.g.f.s and moments of the reproduction
and immigration laws, some of which will be useful for the analysis that we develop in
the following sections.

Proposition 1. The following expressions hold true:

(a) Fn+1(s) =
∏n

i=0 hi(fi−1,n(s)), for n ∈ N0 and s ∈ [0, 1].

(b) For n ∈ N0,

(i) E[Zn+1]=
∑n

i=0 αn−i

∏i
j=0mn−j.

(ii) V ar[Zn+1]=
∑n

i=0 β
2
i

∏n
j=i m

2
j+
∑n

i=0

∏n
j=i+1m

2
jσ

2
i

(
αi +

∑i
k=0 αi−k

∏k
l=0mi−l

)
.
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A BPVEI can be also seen in the following way: each immigrant, when incorporating
into the population and independently of the other immigrants, produces a BPVE with
initial value the unity. The next proposition formally describes this idea.

Proposition 2. Let us consider the independent processes {Z̃(j)
k }k∈N0, j ∈ N0, defined as:

Z̃
(j)
0 = Ij, Z̃

(j)
k+1 =

Z̃
(j)
k∑

i=1

X
(j)
ki , k ∈ N0, (1)

where {X(j)
ki : k ∈ N0; i ∈ N; j ∈ N0} is a family of independent random variables such

that for each k ∈ N0 and j ∈ N0 fixed, X
(j)
ki , i ∈ N are distributed according to the p.g.f.

fk+j. Then

Zn
d
=

n−1∑
j=0

Z̃
(j)
n−j, n ∈ N,

where
d
= denotes “equal in distribution”.

Intuitively, the previous proposition can be interpreted as follows: in each generation
j, the immigrants Ij generate a BPVE {Z̃(j)

k }k∈N0 , with environment vj = {fj, fj+1, . . .}
and which starts with those immigrants Ij. Then, the distribution of the number of
individuals of the BPVEI at generation n is equal to the distribution of the sum of the
total number of descendants in generation n−j of the BPVEs produced by the immigrants
in generation j, where j goes from the initial generation to the (n−1)-st generation. This
representation will be useful in Proposition 3, where we establish a necessary and sufficient
condition for the certain extinction of the process.

3 Extinction problem

In this section we address the extinction problem of a BPVEI. It is well known that in the
BGWP the incorporation of immigration independent of the generation into the model
prevents from the extinction of the population. Similarly, for the BPVEI it is easy to see
that 0 is not an absorbing state. Indeed, for each n ∈ N0, since hn(fn(0)) < 1,

P [Zn+1 > 0|Zn = 0] = 1−P

[
In∑
i=0

Xni = 0

]
= 1−

∞∑
k=0

fn(0)
kP [In = k] = 1−hn(fn(0)) > 0.

However, in this case we can establish some conditions under which the process reaches
the state 0 and stays there forever, which can be interpreted as the extinction of the
population. To that end, let us denote the probability of this event by

q = P

[
∞⋃
n=0

∞⋂
j=n

{Zj = 0}

]
.
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Proposition 3. The probability q = 1 if and only if

lim
n→∞

f−1,n(0) = 1 and
∞∑
j=0

(1− hj(fj(0))) < ∞. (2)

Note that f−1,n would be the p.g.f. of Zn if I0 = 1 a.s. and In = 0 a.s. for all n ∈ N, i.e.,
if the population starts with the offspring of a single immigrant in the initial generation
and there is no immigration after that time. Thus, intuitively, this result indicates that the
a.s. extinction of the population happens when the process without immigration becomes
extinct with probability one and from some generation, the probability that there are new
immigrants in the population and they produce any offspring in the following generations
is negligible. This interpretation is illustrated in the examples provided below.

Remark 1. (a) It is worthwhile to mention that Proposition 3 can be applied even when
either the immigration or the offspring distribution are independent of the gener-
ation. Indeed, the second condition can also hold true in those cases as we show
below, but not for the BGWP with homogeneous immigration.

(b) In [16], Theorem 1 provides necessary and sufficient criteria for the first condition
in (2) to hold under a mild assumption on the family {Xnj : n ∈ N0; j ∈ N}. In
the particular case that the offspring distribution is independent of the generation,
it is well known that the aforementioned condition holds if and only if m ≤ 1, where
m is the offspring mean (see [1], p.4).

(c) The second requirement in (2) is not difficult to verify. For example, using the
mean value theorem, one can prove that a sufficient condition is that the sequence
of immigration means is bounded and the series

∑∞
j=0(1− fj(0)) converges.

Examples 1. (a) Let us consider a BPVEI with hn(s) = 2−1(1 + s) for n = 0, 1, and
hn(s) = 1 − n−2 + n−2s, n ≥ 2, whose immigration mean satisfies αn = n−2 → 0.
Observe that for any environment v = {f0, f1, . . .}, this process fulfils the second
condition in Proposition 3. Indeed,

∞∑
n=0

(1− hn(fn(0))) = 1− f0(0) + f1(0)

2
+

∞∑
n=2

1− fn(0)

n2
≤ 1 +

∞∑
n=2

1

n2
< ∞.

Thus, if v is such that f−1,n(0) → 1, as n → ∞, then q = 1 and otherwise, 0 ≤
q < 1. Note that one can even choose an offspring distribution independent of the
generation.

(b) Let us consider a BPVEI with hn(s) = 2−1(1 + s), whose immigration mean is
αn = 2−1, n ∈ N0 and fn(s) = 2−1(s+1), for n = 0, 1, and fn(s) = 1− n−2 + n−2s,
for n ≥ 2. Note that in this case, the immigration is independent of the generation
and the iteration of the offspring p.g.f.s leads to f−1,n(s) = 1−4−1(n!)−2+4−1(n!)−2s,
n ≥ 1, from which one obtains f−1,n(0) → 1, as n → ∞. Moreover, the process
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also satisfies the second condition in Proposition 3, as we show below, and as a
consequence, q = 1.

∞∑
n=0

(1− hn(fn(0))) =
∞∑
n=0

1− fn(0)

2
=

1

2
+

∞∑
n=2

1

2n2
< ∞.

(c) Let us consider a BPVEI with the same immigration laws as in the previous example
but offspring distributions fn(s) = 2−1(s + 1), for n = 0, 1, and fn(s) = 1 − n−1 +
n−1s, for n ≥ 2. With the same arguments as before, one can show that 0 ≤ q < 1
since f−1,n(s) = 1 − 4−1(n!)−1 + 4−1(n!)−1s, n ≥ 1, implying f−1,n(0) → 1, as
n → ∞, and the second condition in Proposition 3 does not hold true due to the fact
that

∞∑
n=0

(1− hn(fn(0))) =
∞∑
n=0

1− fn(0)

2
=

1

2
+

∞∑
n=2

1

2n
= ∞.
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Figure 1: Comparison of the evolution of the probability P [Zn > 0] for the models
described in Examples 1 (b) (left) and 1 (c) (right). The probabilities P [Zn > 0], n ∈ N,
were estimated by Monte Carlo methods at each generation n ∈ N. To that end, the first
1000 generations of 2000 processes following the models in the aforementioned examples
were simulated using the statistical software and programming environment R (see [23]).

4 Asymptotic behaviour

In this section, we analyse the limiting behaviour of BPVEIs focusing our attention on
those with critical offspring distributions according to the classification established in [16]
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for BPVEs, that is, with reproduction laws satisfying

n∑
k=0

νk
µk−1

→ ∞ and
1

µn

= o

(
n∑

k=0

νk
µk−1

)
, as n → ∞. (3)

Remark 2. Note that in (3) the convergence of the sequence {µn}n∈N0 is not required;
the limit may not exist, or it may be 0, infinity, or any positive value. Condition (3) is
rather technical and has been established taking into account the asymptotic behaviour of
the BPVE in comparison with a BGWP. A deeper discussion on it can be found in [16].
A sufficient condition for (3) is that {µn}n∈N0 and {f ′′

n(1)}n∈N0 are bounded sequences
from below and above with lower bounds which are greater than 0. For instance, under the
condition given in [14] for the strong criticality, that is,

∑∞
n=0 |1−mn| < ∞, one obtains

that {µn}n∈N0 converges to a finite and positive limit. As a consequence, if the variances
of the offspring distributions are bounded and its infimum is greater than 0, the previous
sufficient condition for (3) is fulfilled.

Moreover, it is important to remark that in contrast to the BGWP, for BPVEs one
might encounter different growth rates (see [19]). In order to avoid that situation, we
consider the following regularity condition introduced in [16] for the BPVE and which is
satisfied by a wide class of probability distributions: for every ϵ > 0 there is a constant
cϵ < ∞ such that for all n ∈ N0,

E[X2
n1;Xn1 > cϵ(1 + E[Xn1])] ≤ ϵE[X2

n1;Xn1 ≥ 2]. (4)

The following result is a counterpart of Theorem VI.7.4 in [1] for BGWPs with im-
migration independent of the generation and establishes the asymptotic distribution of a
BPVEI suitably normalized when the immigration means stabilize.

Theorem 4. Let {Zn}n∈N0 be a BPVEI satisfying (3) and (4) and denote

an+1 =
µn

2

n∑
k=0

νk
µk−1

, n ∈ N0.

Assume that νn → ν > 0 and αn → α > 0, as n → ∞, 0 < τ = infn∈N0 hn(0) and
supn∈N0

β2
n < ∞. Then, the asymptotic distribution of Zn/an is a gamma distribution

with parameters 2α/ν and 1.

Corollary 5. Let {Zn}n∈N0 be a BPVEI satisfying the conditions of Theorem 4, then

P [Zn > 0] → 1, as n → ∞.

Now, we shall provide a description of the relation between the asymptotic behaviour
of the BPVEI given by Theorem 4 and the asymptotic behaviour of the BPVEs {Z̃(j)

k }n∈N0
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introduced in Proposition 2. First, note that if {Zn}n∈N0 is a BPVEI with critical offspring

distribution, then the processes {Z̃(j)
k }n∈N0 are critical BPVEs. On the other hand, at

each generation j, αj individuals are expected to immigrate to the population. Since
from Theorem 4 in [16] one has that the probability that the BPVE produced by one

immigrant at generation j, {Z̄(j)
n }n∈N0 , is not extinct after n generations is P [Z

(j)

n > 0] ∼
2
(∑j+n

k=j
νk

µk−1

)−1

, as n → ∞, then one obtains that P [Z̃
(j)
n > 0] ∼ 2αj

(∑j+n
k=j

νk
µk−1

)−1

.

Moreover, Theorem 4 in [16] provides the asymptotic distribution of those BPVEs; indeed,
for each j ∈ N0, each one of these BPVEs satisfies that the distribution of the process
Z̄

(j)
n /a

(j)
n conditioned on the event {Z̄(j)

n > 0} converges to an exponential distribution
with mean equal to one, where

a(j)n =
µj+n

2µj−1

j+n∑
k=j

νk
µk−1

, n ≥ j.

We also remark here that Theorem 4 can be applied even in the cases when one of
the distributions of the model -either the offspring distribution or the immigration law-
is inhomogeneous but the other one is homogeneous. However, Theorem 4 cannot be
applied for the model considered in [20] due to the fact that in that situation νn → ∞,
as n → ∞.

Appendix

Proof of Proposition 1

(a) Using the independence of the offspring variables and the independence between the
offspring and immigration phases, one has

Fn+1(s) = E
[
E
[
s
∑Zn+In

i=1 Xni |Zn + In

]]
= E[fn(s)

Zn+In ] = Fn(fn(s))hn(fn(s)), (5)

and by iterating the previous formula one obtains the expression in (a).
(b) (i) It can be easily obtained using a recursion on E[Zn+1] = mn(E[Zn]+αn), which

follows from

E[Zn+1|Zn] = E

[
Zn+In∑
i=1

Xni|Zn

]
= mn(αn + Zn) a.s.

(b) (ii) To that end, similarly to (5) we have

V ar[Zn+1] = E[V ar[Zn+1|Zn + In]] + V ar[E[Zn+1|Zn + In]]

= E[(Zn + In)σ
2
n] + V ar[(Zn + In)mn]

= (E[Zn] + αn)σ
2
n + (V ar[Zn] + β2

n)m
2
n,

and to obtain the desired formula we use a recursion in the following expression

V ar[Zn+1]∏n
j=0 m

2
j

=
V ar[Zn]∏n−1

j=0 m
2
j

+
β2
nm

2
n + σ2

n(E[Zn] + αn)∏n
j=0m

2
j

.
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Proof of Proposition 2

Let F̃
(j)
n be the p.g.f. of Z̃

(j)
n , n, j ∈ N0. Then, for s ∈ [0, 1] and j ∈ N0, F̃

(j)
0 (s) = hj(s)

and for each k ∈ N0,

F̃
(j)
k+1(s) = E

[
E
[
sZ̃

(j)
k+1|Z̃(j)

k

]]
= E

[
(fk+j(s))

Z̃
(j)
k

]
= F̃

(j)
k (fk+j(s)) = hj(fj−1,j+k(s)).

As a consequence, since the processes {Z̃(j)
k }k∈N0 , j ∈ N0, are independent, one has

E
[
s
∑n−1

j=0 Z̃
(j)
n−j

]
=

n−1∏
j=0

E
[
sZ̃

(j)
n−j

]
=

n−1∏
j=0

hj(fj−1,n−1(s)) = Fn(s).

□
Proof of Proposition 3

First, one has q = limn→∞ P
[
∩∞

j=n{Zj = 0}
]
and

P
[
∩∞

j=n{Zj = 0}
]
= P [Zn = 0]

∞∏
j=n

P [Zj+1 = 0|Zj = 0] = Fn(0)
∞∏
j=n

hj(fj(0)).

Thus, a necessary and sufficient condition for q = 1 is that both limits Fn(0) → 1 and∏∞
j=n hj(fj(0)) → 1, as n → ∞. Now, we prove that this condition is equivalent to that

established in Proposition 3.
Note that

∏∞
j=n hj(fj(0)) → 1, as n → ∞ holds if and only if

∑∞
j=n log(hj(fj(0))) → 0,

as n → ∞, which is equivalent to the condition
∑∞

j=0(1− hj(fj(0))) < ∞.
Regarding the first limit, from Proposition 1 (a) one has that if Fn(0) → 1, then

hi(fi−1,n(0)) → 1, for each i = 0, 1, . . . , n, which implies f−1,n(0) → 1, as n → ∞.
Conversely, assume that f−1,n(0) → 1, as n → ∞, and

∑∞
j=0(1 − hj(fj(0))) < ∞.

To obtain that Fn(0) → 1, as n → ∞, taking into account the representation of the

BPVEI described in Proposition 2, it is enough to prove that P
[∑n−1

i=0 Z̃
(i)
n−i > 0 i.o.

]
= 0,

writing “i.o.” to mean infinitely often. To that end, let us define the random variable
L = max{j ∈ N : Z̃

(j)
1 > 0}. Since P [Z̃

(j)
1 > 0] = 1 − hj(fj(0)), j ∈ N0, from Borel-

Cantelli’s lemma,

P
[
Z̃

(j)
1 > 0 f.o.

]
= 1,

where “f.o.” stands for finitely often, and L < ∞ a.s. Consequently,

P

[
n−1∑
i=0

Z̃
(i)
n−i > 0 i.o.

]
= P

[
n−1∑
i=0

Z̃
(i)
n−i > 0 i.o., L < ∞

]

=
∞∑
k=0

P

[
n−1∑
i=0

Z̃
(i)
n−i > 0 i.o., L = k

]

≤
∞∑
k=0

k∑
j=0

P
[
Z̃(j)

n > 0 i.o.
]
.
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and for each j ∈ N0 fixed,

P
[
Z̃(j)

n > 0 i.o.
]
= 1− P

[
Z̃(j)

n = 0 f.o.
]

= 1− lim
n→∞

F̃ (j)
n (0)

= 1− lim
n→∞

hj(fj−1,j+n−1(0)),

where recall that F̃
(j)
n (s) = hj(fj−1,j+n−1(s)) is the p.g.f. of Z̃

(j)
n , n ∈ N. Now, since

f−1,n(0) → 1, as n → ∞, fj,n(0) → 1 and hj(fj−1,n(0)) → 1, for each j ∈ N0, which

implies P
[∑n−1

i=0 Z̃
(i)
n−i > 0 i.o.

]
= 0.

□
Remark 3. An alternative way to prove that f−1,n(0) → 1, as n → ∞, and

∑∞
j=0(1 −

hj(fj(0))) < ∞ imply Fn(0) → 1, as n → ∞, and based on the use of probability generating
functions is provided below.

By applying Proposition 1 (a) and taking into account the monotonicity of probability
generating functions and the fact that 0 ≤ f(s) ≤ 1, for each s ∈ [0, 1], we have that for
any k ∈ {0, . . . , n− 1},

Fn+1(0) =
n∏

i=0

hi(fi−1,n(0)) ≥
k∏

i=0

hi(fi−1,n(0))
∞∏

i=k+1

hi(fi(0)).

Since
∏∞

i=k+1 hi(fi(0)) → 1, as k → ∞, for each ϵ > 0 there exists k0 = k0(ϵ) ∈ N such
that

∏∞
i=k0+1 hi(fi(0)) ≥ 1− ϵ, and consequently, for any n > k0 we obtain

Fn+1(0) ≥ (1− ϵ)

k0∏
i=0

hi(fi−1,k0−1(fk0−1,n(0)))

It is not difficult to see that f−1,n(0) → 1 implies that fk,n(0) → 1, as n → ∞, for
each k ∈ N fixed. Indeed, if there exists a sequence {nj}j∈N such that fk,nj

(0) →
p ∈ [0, 1], as j → ∞, then by the continuity of generating functions f−1,k−1(p) =
limj→∞ f−1,k−1(fk−1,nj

(0)) = 1, which implies p = 1. Thus, we have limn→∞ Fn+1(0) ≥
(1− ϵ), for all ϵ > 0, which proves the assertion.

In order to prove Theorem 4, we make use of the shape functions corresponding to
the p.g.f.s of the reproduction laws. The shape function of the p.g.f. fk, k ∈ N0, is the
function φk : [0, 1) → R satisfying

1

1− fk(s)
=

1

mk(1− s)
+ φk(s), s ∈ [0, 1). (6)

This function satisfies φk(s) ≥ 0, for 0 ≤ s < 1, and can be extended by setting φk(1) =
νk/2. The reader is referred to Section 3 in [16] for further details about the properties
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of these functions. Then, using the fact that fk,n = fk+1 ◦ fk+1,n, for k = 0, . . . , n− 1, by
iterating (6) one obtains:

1

1− fk,n(s)
=

µk

µn(1− s)
+ µk

n∑
l=k+1

φl(fl,n(s))

µl−1

, s ∈ [0, 1). (7)

To prove Theorem 4, we also need the next lemma; its proof is similar to the one of
Lemma 7 in [16] and is omitted.

Lemma 6. Let i = 0, . . . , n be fixed. Let {Zn}n∈N0 be a BPVEI satisfying (3) and (4),
then

sup
s∈[0,1]

∣∣∣∣∣
n∑

k=i

φk(fk,n(s))

µk−1

−
n∑

k=i

φk(1)

µk−1

∣∣∣∣∣ = o

(
n∑

k=i

φk(1)

µk−1

)
, as n → ∞.

Proof of Theorem 4

We shall prove that the Laplace transform of Zn/an converges to the Laplace transform
of a gamma distribution with parameters 2α/ν and 1. Let us fix λ > 0 and for simplicity,
let us denote sn = e−λ/an , n ∈ N. From Proposition 1 (a) and using a Taylor expansion
for the functions log hi at 1, for i = 0, . . . , n, one has

Fn+1(sn+1) = exp

{ n∑
i=0

log(hi(fi−1,n(sn+1)))

}
= exp

{
−

n∑
i=0

αi(1− fi−1,n(sn+1))

+
1

2

n∑
i=0

(
h′′
i (ξin)

hi(ξin)
− h′

i(ξin)
2

hi(ξin)2

)
(1− fi−1,n(sn+1))

2

}
,

with fi−1,n(sn+1) < ξin < 1, i = 0, . . . , n, n ∈ N0. Thus, the result yields by proving the
following convergences, as n → ∞,

n∑
i=0

αi(1− fi−1,n(sn+1)) → log(1 + λ)
2α
ν , (8)

n∑
i=0

(
h′′
i (ξin)

hi(ξin)
− h′

i(ξin)
2

hi(ξin)2

)
(1− fi−1,n(sn+1))

2 → 0. (9)

We shall start with (8). To prove this result, for each N, n ∈ N0, n ≥ N , let us denote

S
(N)
1n =

N−1∑
i=0

αi(1− fi−1,n(sn+1)), and S
(N)
2n =

n∑
i=N

αi(1− fi−1,n(sn+1)).

13



By applying (7),

S
(N)
2n =

n∑
i=N

αi

µi−1

µn(1−sn+1)
+ µi−1

∑n
l=i

φl(fl,n(sn+1))

µl−1

=
n∑

i=N

αi

φi(fi,n(sn+1))
· φi(fi,n(sn+1))

µi−1

· 1
1

µn(1−sn+1)
+
∑n

l=i
φl(fl,n(sn+1))

µl−1

,

where the functions φl(·), l = 0, . . . , n, were introduced in (6). First, we deal with this
latter term.

Let 0 < ε < 2α
ν
. We shall prove that there exist J0 = J0,ε, N0 = N0,ε ∈ N such that

N0 > J0 and for n ≥ N0 and J0 ≤ i ≤ n,∣∣∣∣ αi

φi(fi,n(sn+1))
− 2α

ν

∣∣∣∣ < ε. (10)

From the proof of Lemma 7 in [16], one has that given ϱ > 0, there exists 0 < η =
ηϱ < 1, such that

sup
ti≤t≤1

|φi(1)− φi(t)| < ϱφi(1), (11)

for ti = 1 − η
1+mi

, i ∈ N0. To obtain (10), we prove that given ϱ > 0, there exists
N1 = N1,ϱ, such that fi,n(sn+1) ≥ ti, for 0 ≤ i ≤ n, n ≥ N1, or equivalently,

(1− fi,n(sn+1))(1 +mi) ≤ η, for 0 ≤ i ≤ n, n ≥ N1. (12)

We write sn+1 = 1− λ
an+1

+ yn
an+1

, with yn → 0; using f ′
i,n(1) =

∏n
j=i+1 f

′
j(1) =

µn

µi
and

a Taylor expansion for fi,n(·) at 1, we have

(1− fi,n(sn+1))(1 +mi) ≤ f ′
i,n(1) (1− sn+1) (1 +mi)

≤ µn

µi

(
λ

an+1

− yn
an+1

)
(1 +mi)

≤ µn

an+1

(λ− yn)

(
1

µi

+
1

µi−1

)
≤ (λ− yn)

(
1

ai+1

+
1

ai

)
.

Now, since ai → ∞, as i → ∞, given ϵ > 0, there exists J1 = J1,ϵ such that a−1
i ≤ ϵ(2λ)−1,

for i ≥ J1, and consequently

(1− fi,n(sn+1))(1 +mi) ≤
ϵ

λ
(λ− yn), n ≥ J1, J1 ≤ i ≤ n,

and therefore,
lim
n→∞

sup
J1≤i≤n

(1− fi,n(sn+1))(1 +mi) ≤ ϵ. (13)
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On the other hand,

sup
0≤i≤J1−1

(1− fi,n(sn+1))(1 +mi) ≤
µn

an+1

(λ− yn) max
0≤i≤J1−1

(
1

µi

+
1

µi−1

)
,

and hence,
lim
n→∞

sup
0≤i≤J1−1

(1− fi,n(sn+1))(1 +mi) = 0,

which with (13) and taking into account that ϵ is arbitrary gives us

lim
n→∞

sup
0≤i≤n

(1− fi,n(sn+1))(1 +mi) = 0. (14)

From this, (12) yields. Moreover, since φi(1) → ν/2 > 0, as i → ∞, there exists J2 ∈ N
such that φi(1) > 0, for each i ≥ J2, and we can safely assume that N1 ≥ J2. Taking
these facts into account together with (11) and (12), one obtains

sup
n≥N1

sup
J2≤i≤n

∣∣∣∣φi(fi,n(sn+1))

φi(1)
− 1

∣∣∣∣ ≤ sup
n≥N1

sup
J2≤i≤n

sup
ti≤t≤1

∣∣∣∣φi(t)

φi(1)
− 1

∣∣∣∣ < ϱ. (15)

Now, the claim in (10) yields from (15), the convergences αi → α and φi(1) = νi/2 →
ν/2, as i → ∞, and the inequality∣∣∣∣ αi

φi(fi,n(sn+1))
− 2α

ν

∣∣∣∣ ≤ αi

φi(1)

∣∣∣∣ φi(1)

φi(fi,n(sn+1))
− 1

∣∣∣∣+ ∣∣∣∣2αi

νi
− 2α

ν

∣∣∣∣ .
Let us denote

xj,n =
1

µn(1− sn+1)
+

n∑
l=n−j

φl(fl,n(sn+1))

µl−1

, j = −1, 0, . . . , n;n ∈ N0,

where the empty sum is considered to be 0; then, bn = x−1,n, x0,n, . . . , xn−1,n, xn,n = dn is
a partition of the interval [bn, dn] and

n∑
i=N

φi(fi,n(sn+1))

µi−1

· 1
1

µn(1−sn+1)
+
∑n

l=i
φl(fl,n(sn+1))

µl−1

=
n∑

i=N

x−1
n−i,n(xn−i,n − xn−i−1,n).

Combining this with (10), for N ≥ J0, and n ≥ max{N0, N} one has(
2α

ν
− ε

) n∑
i=N

x−1
n−i,n(xn−i,n − xn−i−1,n) ≤ S

(N)
2n ≤

(
2α

ν
+ ε

) n∑
i=N

x−1
n−i,n(xn−i,n − xn−i−1,n),

(16)
consequently, if one proves

n∑
i=N

x−1
n−i,n(xn−i,n − xn−i−1,n) ∼

∫ xn−N,n

x−1,n

1

x
dx, as n → ∞, (17)
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then, by using Lemma 6, one obtains

n∑
i=N

x−1
n−i,n(xn−i,n − xn−i−1,n) ∼

∫ xn−N,n

x−1,n

1

x
dx

= log

(
1 + µn(1− sn+1)

n∑
l=N

φl(fl,n(sn+1))

µl−1

)

∼ log

(
1 +

µnλ

2an+1

n∑
l=N

νl
µl−1

)
→ log(1 + λ), (18)

as n → ∞. Observe that (17) follows from the integral test for convergence and the fact
that given δ > 0, there exists N2 = N2,δ ∈ N such that

sup
0≤i≤n

∣∣∣∣ xn−i,n

xn−i−1,n

− 1

∣∣∣∣ < δ, for each n ≥ N2. (19)

Indeed, from (15) one has that the sequence {φi(fi,n(sn+1))}0≤i≤n;n∈N0 is bounded and∣∣∣∣ xn−i,n

xn−i−1,n

− 1

∣∣∣∣ = φi(fi,n(sn+1))
µi−1

µn(1−sn+1)
+ µi−1

∑n
l=i+1

φl(fl,n(sn+1))

µl−1

≤ K1µn(1− sn+1)

µi−1

,

where K1 > 0 is an upper bound of the sequence {φi(fi,n(sn+1))}0≤i≤n;n∈N0 . With similar
arguments to those used before to establish (12), (19) yields.

Thus, from (16) and (18),(
2α

ν
− ε

)
log(1 + λ) ≤ lim inf

n→∞
S
(J0)
2n ≤ lim sup

n→∞
S
(J0)
2n ≤

(
2α

ν
+ ε

)
log(1 + λ)

hence, limn→∞ S
(J0)
2n = log(1 + λ)

2α
ν . For S

(J0)
1n , one has S

(J0)
1n = o(1), as n → ∞; indeed,

S
(J0)
1n =

J0−1∑
i=0

αi(1− fi−1,n(sn+1)) ≤ J0 max
0≤i<J0

{
αi

µi−1

}
µn(1− sn+1) → 0,

which together with the previous limit gives us (8).
Finally, to establish (9), we have that

n∑
i=0

∣∣∣∣h′′
i (ξin)

hi(ξin)
− h′

i(ξin)
2

hi(ξin)2

∣∣∣∣ (1− fi−1,n(sn+1))
2 ≤

≤

(
n∑

i=0

αi(1− fi−1,n(sn+1))

)
sup
0≤i≤n

{
1− fi−1,n(sn+1)

αi

∣∣∣∣h′′
i (ξin)

hi(ξin)
− h′

i(ξin)
2

hi(ξin)2

∣∣∣∣} ,
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and

sup
0≤i≤n

{
1− fi−1,n(sn+1)

αi

∣∣∣∣h′′
i (ξin)

hi(ξin)
− h′

i(ξin)
2

hi(ξin)2

∣∣∣∣} ≤

≤
(
K2 supn∈N0

h′′
n(1)

τ
+

K3

τ 2

)
sup
0≤i≤n

{1− fi,n(sn+1)},

with K2 > 0 and K3 > 0 being upper bounds of the sequences {1/αn}n∈N0 and {αn}n∈N0 ,
respectively. Notice that supn∈N0

β2
n < ∞ implies supn∈N0

h′′
n(1) < ∞. Furthermore, from

(14), the convergence sup0≤i≤n{1 − fi−1,n(sn+1)} → 0, as n → ∞, is deduced, and as a
consequence, using (8), (9) is obtained and the proof is finished.
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[14] M. Ispány. Some asymptotic results for strongly critical branching processes with
immigration in varying environment. In I. del Puerto, M. González, C. Gutiérrez,
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