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This paper compares two imperfect repair models for a degrading system, with deterioration level mod- 

eled by a non homogeneous gamma process. Both models consider instantaneous and periodic repairs. 

The first model assumes that a repair reduces the degradation of the system accumulated from the last 

maintenance action. The second model considers a virtual age model and assumes that a repair reduces 

the age accumulated by the system since the last maintenance action. Stochastic comparison results be- 

tween the two resulting processes are obtained. Furthermore, a specific case is analyzed, where the two 

repair models provide identical expected deterioration levels at maintenance times. Finally, two optimal 

maintenance strategies are explored, considering the two models of repair. 
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. Introduction 

Safety and dependability are crucial issues in many industries,

hich have led to the development of a huge literature devoted

o the so-called reliability theory. In the oldest literature, the life-

imes of industrial systems or components were usually directly

odeled through random variables, see, e.g., Barlow and Proschan

1996) for a pioneer work on the subject. In case of repairable sys-

ems, successive lifetimes of a system then appear as the points

f a counting process leading to so-called recurrent events. Based

n the development of on-line monitoring which allows the ef-

ective measurement of a system deterioration (length of a crack,

hickness of a cable, intensity of vibrations, temperature, ...), nu-

erous papers nowadays model the degradation in itself, which is

ften considered to be (mostly) monotonous with respect to the

ime. This is done through the use of stochastic processes such as

iener processes with trend ( Hu, Lee, & Tang, 2015; Liu, Wu, Xie,

 Kuo, 2017; Zhang, Gaudoin, & Xie, 2015 ), inverse gaussian mod-

ls ( Chen, Ye, Xiang, & Zhang, 2015 ), transformed Beta degradation

rocesses ( Giorgio & Pulcini, 2018 ) or gamma processes ( Huynh,

astro, Barros, & Bérenguer, 2014 ), among others (see also Mercier

 Pham, 2012 in case of a bivariate deterioration indicator). This

aper focuses on gamma processes, which seem the most popu-

ar, see Van Noortwijk (2009) with a large number of references

herein. 
∗ Corresponding author. 

E-mail addresses: sophie.mercier@univ-pau.fr (S. MERCIER), inmatorres@unex.es 
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To mitigate the effect of the system degradation and to extend

he system lifetime, a large volume of maintenance models have

een proposed in the literature. Most of these models are lim-

ted to perfect repairs ( Caballé, Castro, Pérez, & Lanza-Gutiérrez,

015; Hong, Zhou, Zhang, & Ye, 2014 ). However, imperfect main-

enance actions describe more realistic situations than perfect re-

airs. Some advances have been made to include imperfect repairs

n a degrading system ( Alaswad & Xiang, 2017; Giorgio & Pulcini,

018 ). However, as Zhang et al. (2015) claimed, the issue of treat-

ng imperfect maintenance in the context of degrading systems re-

ains widely open nowadays. 

Stochastic orders and related inequalities play an important role

n reliability theory and maintenance policies, as they allow to,

.g., obtain bounds for system reliability or availability, or to com-

are different maintenance strategies ( Barlow & Proschan, 1964;

hnishi, 2002 ). There is a huge reliability literature on the use of

tochastic orders which compare locations of the lifetime, residual

ifetime or inactivity time of the systems ( Khaledi & Shaked, 1991 ).

owever, there exist other types of stochastic orders which mea-

ure variability and spread. Though their use has become classical

n insurance literature ( Denuit & Lefévre, 1997; Denuit & Verman-

ele, 1999 amongst others), they are not so common in the reli-

bility literature apart from a few exceptions ( Fang & Tang, 2014;

ochar & Xu, 2009 ). 

Following the spirit showed in Mercier and Castro (2013) and

astro and Mercier (2016) (see also Giorgio & Pulcini, 2018 ), two

odels of imperfect repair are analyzed in this paper for a gamma

eteriorating system. The first model, called Arithmetic Reduction

f of Deterioration of order 1 (ARD1), assumes that the repair

https://doi.org/10.1016/j.ejor.2018.06.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.06.020&domain=pdf
mailto:sophie.mercier@univ-pau.fr
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removes the ρ1 % of the degradation accumulated by the system

from the last maintenance action. The second model is based on

the notion of virtual age as introduced by Kijima (1989) in the

context of recurrent events (where only lifetime data are avail-

able). The idea is that an imperfect repair rejuvenates the system,

namely puts it back to a similar state as it was before the repair

(details further). Following Doyen and Gaudoin (2004) in the con-

text of recurrent events, an Arithmetic Reduction of Age of order 1

(ARA1) is here considered, which assumes that the repair removes

the ρ2 % of the (virtual) age accumulated by the system since the

last maintenance action. An ARD1 repair hence lowers the dete-

rioration level, without rejuvenating the system. On the contrary,

by an ARA1 repair, the system is put back to the exact situation

where it was some time before, which entails the lowering of both

its deterioration level and (virtual) age. The two models may hence

correspond to different maintenance actions in an application con-

text. As an example, Sadeghi, Najar, Mollazadeh, Yousefi, and Zakeri

(2018) show that the tamping or cleaning of the ballast of a rail-

way track may have different consequences: The tamping mainly

improves the track geometry conditions (short term impact) but

has mostly no impact on the ballast mechanical conditions (long

term impact), whereas the cleaning also improves the latter. Then,

one could think that the tamping corresponds to some reduction

of the track deterioration level (such as an ARD1 repair) whereas

the cleaning also acts on its potential of future degradation, which

could be represented by some reduction of age model (such as an

ARA1 repair). 

The choice between the two models may however not always

be so clear in an applied context. For a better understanding of

their differences, this paper focuses on their comparison, from

a probabilistic point of view. Assuming that the degradation of

the system is modeled by a non homogeneous gamma process,

stochastic comparisons of both location and spread of the two re-

sulting processes are given. Moreover, a specific case is analyzed,

where the two models provide identical expected deterioration

levels at repair times (“equivalent” case). 

Going back to the general setup, two maintenance strate-

gies are next proposed. Both strategies consider periodic imper-

fect repairs (period T ) based on either one of the two mod-

els (ARD1 or ARA1). In the first strategy (( n , T ) policy), the sys-

tem is replaced at the time of the n -th repair. The second strat-

egy (( M , T ) policy) considers a control limit rule, with replace-

ment when the degradation level exceeds a preventive thresh-

old M . For both maintenance strategies, the objective function

is the expected profit rate, which takes into account some re-

ward produced by the system, with unitary reward (or cost) per

unit time depending on the degradation level of the system. (The

lower the deterioration level, the higher the unitary reward per

unit time.) This reward function is based on classical utility func-

tions used in insurance literature ( Rolski, Schmidli, Schmidt, &

Teugels, 1998 ). The use of this reward function represents an ad-

vance in the reliability literature where the cost objective func-

tion is usually developed considering that the system state is bi-

nary (up or down), with some fixed unavailability cost per unit

time, independent on the deterioration level. Theoretical results

are obtained for the comparison of the objective functions of the

( n , T ) policy under the two types of imperfect repairs (ARD1 or

ARA1). 

The paper is organized as follows: Section 2 provides some

technical reminders. The two imperfect repair models are de-

scribed in Section 3 . The corresponding moments are compared

in Section 4 whereas Section 5 is devoted to stochastic com-

parison results. The “equivalent” case is studied in Section 6 .

Section 7 deals with the reward function and the two maintenance

strategies. Concluding remarks are provided in Section 8 , together

with possible extensions. 
. Technical reminders 

The definition of two stochastic orders is first recalled, which

llows to compare the location of random variables. 

efinition 1. Let X and Y be two non negative random variables

ith probability density functions (p.d.f.) f X and f Y with respect to

he Lebesgue measure, cumulative distribution functions (c.d.f.) F X 
nd F Y and survival functions F̄ X and F̄ Y , respectively. Then: 

1. X is said to be smaller than Y in the usual stochastic order ( X

≺sto Y ) if F̄ X ≤ F̄ Y (or F X ≥ F Y , equivalently). 

2. X is said to be smaller than Y in the likelihood ratio order ( X

≺lr Y ) if 
f Y 
f X 

is non-decreasing on the union of the supports of X

and Y . 

We recall that the likelihood ratio order implies the usual

tochastic order. The definition of other stochastic orders is next

rovided, which allows to compare the variability of two random

ariables. 

efinition 2. Let X and Y be two non negative random variables

here the support of X is assumed to be included in the support

f Y and the support of Y to be an interval (for the log-concavity).

hen: 

1. X is said to be smaller than Y in the log-concave order ( X ≺lc Y )

if the ratio 
f X 
f Y 

is log-concave over the support of Y . 

2. X is said to be smaller than Y in the convex (concave) order

( X ≺cx ( cv ) Y ) if E ( ϕ ( X ) ) ≤ E ( ϕ ( Y ) ) for all convex functions ϕ
(provided the expectations exist). 

3. X is said to be smaller than Y in the increasing convex (concave)

order ( X ≺icx ( icv ) Y ) if E ( ϕ ( X ) ) ≤ E ( ϕ ( Y ) ) for all increasing con-

vex (concave) functions ϕ (provided the expectations exist). 

Following Shaked and Shanthikumar (2007) , X ≺icx (≺icv ) Y 

oughly means that E (X ) ≤ E (Y ) (location condition) plus the fact

hat X is less (more) “variable” than Y , in a stochastic sense. Also,

 ≺cx (≺cv ) Y is equivalent to X ≺icx (≺icv ) Y plus E (X ) = E (Y ) . 

Setting X and Y to be two non negative random variables, we

ecall ( Shaked & Shanthikumar, 2007 , p. 182) that X ≺icx Y if and

nly if 
 + ∞ 

x 

F̄ X ( u ) du ≤
∫ + ∞ 

x 

F̄ Y ( u ) du for all x ≥ 0 (1)

nd that X ≺icv Y if and only if 
 x 

0 

F X ( u ) du ≥
∫ x 

0 

F Y ( u ) du for all x ≥ 0 . (2)

Finally, the usual stochastic order (and hence the likelihood ra-

io order as well) implies both increasing convex and concave or-

ers ( Müller & Stoyan, 2002 , p. 61). 

We next come to reminder on gamma distribution. Let a , b > 0.

e recall that the gamma distribution �( a , b ) with parameters ( a ,

 ) admits 

f a,b ( x ) = 

b a 

�( a ) 
x a −1 e −bx 1 R + ( x ) 

s p.d.f. (with respect to Lebesgue measure) and that the corre-

ponding mean and variance are a 
b 

and 

a 
b 2 

, respectively. We shall

lso make use of the following well-known facts repeatedly, with-

ut further notification: if X is gamma distributed �( a , b ), then c X

s gamma distributed �( a , b / c ) for all c > 0. If X 1 , . . . , X n are inde-

endent gamma distributed random variables with respective dis-

ributions �( a 1 , b ) , . . . , �( a n , b ) , then 

∑ n 
i =1 X i is gamma distributed(∑ n 

i =1 a i , b 
)
. 

Finally, the following technical result may be found in Müller

nd Stoyan (2002 , p. 62). 



S. MERCIER, I.T. CASTRO / European Journal of Operational Research 273 (2019) 237–248 239 

L  

p  

1

3

 

(  

(  

e  

d  

p  

s  

t

 

T  

i  

d  

t  

i

3

(

 

t  

m  

t  

d

 

s  

t

Y

B  

a

Y

f

Y

M

Y

Y

w  

a

Y

i

 

i  

d  

p

E

f

R  

w

 

m  

r  

e  

T  

r

P

 

 

 

P  

I  

p

Y

Y

s

Y

b  

S  

f

R  

e  

w  

l  

p  

e  

l

3

(

 

d  

w  

U  

1  

s  

v  

t  

V

P  

f  

a  

t  

s  

w  

t  

p  

s  

s  

t  
emma 1. Let X and Y be gamma distributed random variables with

arameters ( a 1 , b 1 ) and ( a 2 , b 2 ), respectively, where a i , b i > 0 for i =
 , 2 . Then: 

1. If a 1 ≤ a 2 and b 1 ≥ b 2 , then X ≺lr Y; 

2. If a 1 ≥ a 2 and a 1 / b 1 ≤ a 2 / b 2 , then X ≺icx Y; 

3. If a 1 ≤ a 2 , b 1 ≤ b 2 and a 1 / b 1 ≤ a 2 / b 2 , then X ≺icv Y . 

. The two models of imperfect repairs 

In the sequel of this work, we set ( X t ) t ≥ 0 to be the intrinsic

out of repair) degradation process of the system. We assume that

 X t ) t ≥ 0 follows a non homogeneous gamma process with param-

ters A ( · ) and b , where A (·) : R + −→ R + is continuous and non-

ecreasing with A ( 0 ) = 0 , and b > 0. We recall that ( X t ) t ≥ 0 is a

rocess with independent increments such that X 0 = 0 almost

urely (a.s.) and such that each increment X t+ s − X t is gamma dis-

ributed �(A (t + s ) − A (t) , b) for all s , t > 0. 

The system is periodically and instantaneously maintained each

 units of time. For modeling purpose, we set X ( i ) , i ∈ N 

∗ to be

.i.d. copies of X = ( X t ) t≥0 , where X 

( i ) describes the evolution of the

eterioration level between the i th and (i + 1) th maintenance ac-

ions. For each imperfect repair model, the maintenance efficiency

s measured by an Euclidian parameter ρ ∈ (0, 1). 

.1. First model: Arithmetic Reduction of Deterioration of order 1 

ARD1) 

In this model, the maintenance action instantaneously removes

he ρ% of the degradation accumulated by the system from the last

aintenance action (or from the origin). Let ( Y t ) t ≥ 0 be the process

hat describes the degradation level of the maintained system un-

er this model of repair. 

The ARD1 model is developed as follows: At the beginning, the

ystem deteriorates according to X 

(1) and it is first maintained at

ime T . This provides: 

 t = X 

( 1 ) 
t t < T , Y T = ( 1 − ρ) X 

( 1 ) 
T 

. 

etween T and 2 T , the system deteriorates according to X 

(2) . The

ge of the system is unchanged at time T and we simply have 

 t = Y T + 

(
X 

( 2 ) 
t − X 

( 2 ) 
T 

)
or all T ≤ t < 2 T , and at the second maintenance time 2 T : 

 2 T = Y T + ( 1 − ρ) 
(
X 

( 2 ) 
2 T 

− X 

( 2 ) 
T 

)
. 

ore generally, we get: 

 t = Y nT + 

(
X 

( n +1 ) 
t − X 

( n +1 ) 
nT 

)
for all nT ≤ t < ( n + 1 ) T , (3) 

 ( n +1 ) T = Y nT + ( 1 − ρ) 
(
X 

( n +1 ) 
( n +1 ) T 

− X 

( n +1 ) 
nT 

)
(4) 

here X ( 
n +1 ) 

t − X ( 
n +1 ) 

nT 
is gamma distributed �(A ( t ) − A ( nT ) , b) for

ll t ∈ [ nT , ( n + 1 ) T ] . Hence 

 nT = ( 1 − ρ) 

n ∑ 

i =1 

(
X 

( i ) 
iT 

− X 

( i ) 
( i −1 ) T 

)
(5) 

s gamma distributed �
(
A ( nT ) , b 

1 −ρ

)
. 

Except for the case ρ → 0 + , if t mod T 	 = 0 , Y t is the sum of two

ndependent and gamma distributed random variables (r.v.s) with

ifferent scale parameters, and it is not gamma distributed. Its ex-

ectation and variance are given by: 

 ( Y t ) = 

A ( t ) − ρ A ( nT ) 

b 
, v ar ( Y t ) = 

A ( t ) − ρ( 2 − ρ) A ( nT ) 

b 2 
, (6) 

or nT ≤ t < ( n + 1 ) T . 
emark 1. It is easy to check that E ( Y t ) and v ar ( Y t ) are decreasing

ith respect to ρ . 

Next result provides some more insight than the previous re-

ark into the impact of the maintenance efficiency ρ on the dete-

ioration level of the maintained system. To state it, two different

fficiency parameters ρ1 and ρ2 ( ρ1 , ρ2 ∈ (0, 1)) are envisioned.

he resulting ARD1 processes are denoted by 

(
Y ( 

i ) 
t 

)
t≥0 

for i = 1 , 2 ,

espectively. 

roposition 1. We have: 

(1) Y nT decreases with respect to ρ in the sense of the likelihood

order: If ρ1 < ρ2 , then Y ( 
2 ) 

nT 
≺lr Y 

( 1 ) 
nT 

; 

(2) Y t decreases with respect to ρ in the sense of both increasing

convex and concave orders: If ρ1 < ρ2 , then Y ( 
2 ) 

t ≺icx Y 
( 1 ) 

t and

Y ( 
2 ) 

t ≺icv Y 
( 1 ) 

t . 

roof. From (5) , we know that Y ( 
i ) 

nT 
∼ �

(
A ( nT ) , b 

1 −ρi 

)
for i = 1 , 2 .

f ρ1 < ρ2 , we have b 
1 −ρ1 

≤ b 
1 −ρ2 

and the first result follows from

oint 1 of Lemma 1 , which entails that Y ( 
2 ) 

nT 
≺icx Y 

( 1 ) 
nT 

and Y ( 
2 ) 

nT 
≺icv 

 

( 1 ) 
nT 

. 

Let nT ≤ t < ( n + 1 ) T . Based on (3) , we have 

 

( 2 ) 
t − Y ( 

2 ) 
nT 

= Y ( 
1 ) 

t − Y ( 
1 ) 

nT 
= X 

(n +1) 
t − X 

(n +1) 
nT 

o that Y ( 
2 ) 

t − Y ( 
2 ) 

nT 
≺icx Y 

( 1 ) 
t − Y ( 

1 ) 
nT 

. We derive that 

 

( 2 ) 
t = Y ( 

2 ) 
nT 

+ 

(
Y ( 

2 ) 
t − Y ( 

2 ) 
nT 

)
≺icx Y 

( 1 ) 
t = Y ( 

1 ) 
nT 

+ 

(
Y ( 

1 ) 
t − Y ( 

1 ) 
nT 

)
ecause the icx order is stable through convolution ( Shaked &

hanthikumar, 2007, Theorem 4.A.8 (d) p. 186). The proof is similar

or ≺icv . �

emark 2. Note that ≺lr is not stable under convolution in a gen-

ral setting so that the second point of the previous proposition

ould not be valid for this order (except if X (n +1) 
t − X (n +1) 

nT 
has a

og-concave density ( Shaked & Shanthikumar, 2007, Theorem 1.C.9.

. 46), namely if A ( t ) − A ( nT ) ≥ 1 for t ∈ [ nT , (n + 1) T ) ). A counter-

xample showing that the second point does not hold for the like-

ihood order is provided in Remark 4 later on. 

.2. Second model: Arithmetic Reduction of (virtual) Age of order 1 

ARA1) 

The ARA1 model is based on the notion of virtual age as intro-

uced by Kijima (1989) in the context of recurrent events, which

e first recall. Let us consider a system with successive lifetimes

 1 , U 2 , ..., U n , ...and instantaneous repairs at times T n = 

∑ n 
i =1 U i , n =

 , 2 , . . . (with T 0 = 0 ). Let F̄ be the survival function of U 1 . As-

ume that there exists a sequence ( V n ) n ≥ 1 of non negative random

ariables such that after the n th maintenance action at time T n ,

he next lifetime U n +1 has the same conditional distribution given

 n = y as the remaining lifetime of a new system at time y : 

 (U n +1 > t| V n = y ) = P (U 1 − y > t| U 1 > y ) = 

F̄ (t + y ) 

F̄ (y ) 
(7)

or all t , y > 0. Then, V n is called the virtual age of the system

t time T n . After a maintenance action at time T n , the next life-

ime U n +1 has the same distribution as if the calendar age of the

ystem were equal to V n . Between repairs, the virtual age evolves

ith speed 1, just as the calendar time, so that for T n ≤ t < T n +1 ,

he virtual age is V (t) = V n + (t − T n ) . In the context of the present

aper, we use a similar notion of virtual age for deteriorating

ystems. To be more specific, considering a system with intrin-

ic deterioration modeled by ( X t ) t ≥ 0 and instantaneous repairs at

imes T n , n = 1 , 2 , . . . (with T = 0 ), we say that V (t) = V n + (t − T n )
0 
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stands for the virtual age of the system at time t ∈ [ T n , T n +1 ) if,

given V n , the deterioration level of the maintained system is con-

ditionally identically distributed as (X V n + t−T n ) T n ≤t<T n +1 
(with inde-

pendence between the deterioration and the virtual age, details

further). The idea is just the same as for recurrent events: After a

maintenance action at time T n , the system behaves just as if its cal-

endar age were equal to V n at time T n and between maintenance

actions, the virtual age evolves with speed 1. 

We now come to the specific virtual age model developed in

this paper, which is called Arithmetic Reduction of Age of order 1

(ARA1) model after ( Doyen & Gaudoin, 2004 ). It is based on the

Kijima II imperfect repair model ( Kijima, 1989 ) and each (periodic)

repair removes the ρ% of the age accumulated by the system since

the last maintenance action (or from the origin). 

Let ( Z t ) t ≥ 0 be the process that describes the degradation level

of the maintained system under this model of repair. At the first

maintenance time T , the virtual age of the system is reduced by

ρT units and it becomes V (T ) = (1 − ρ) T . Recalling that (X (i ) 
t ) t≥0

models the deterioration between the i -th and i + 1 -th repairs, the

degradation level on [0, T ] is given by 

Z t = X 

( 1 ) 
t for t < T , Z T = X 

( 1 ) 
( 1 −ρ) T 

. 

It means that, at time T , the system goes back into its past: the

system is rejuvenated (from the age T to the age (1 − ρ) T ) and

the deterioration level is reduced (from X (1) 
T 

to X (1) 
(1 −ρ) T 

). In case of

A ( · ) convex, the deterioration rate is also reduced (from A 

′ ( T ) to

A 

′ ((1 − ρ) T ) ). 

For T ≤ t < 2 T , the system age is V (t) = V (T ) + (t − T ) = t − ρT .

The corresponding deterioration level is identically distributed as

X t−ρT . It is equal to the deterioration level at time T plus the in-

crement of deterioration on ( T , t ], which leads to 

Z t = Z T + 

(
X 

( 2 ) 
t−ρT 

− X 

( 2 ) 
( 1 −ρ) T 

)
, 

where X ( 
2 ) 

t−ρT 
− X ( 

2 ) 
( 1 −ρ) T 

is independent on Z T = X ( 
1 ) 

( 1 −ρ) T 
. At time 2 T −

(just before the repair), the age of the system is V (2 T −) = 2 T − ρT 

which is reduced by ρT at time 2 T . The age hence is V (2 T ) = 2(1 −
ρ) T at time 2 T . The corresponding deterioration level is given by: 

Z 2 T = Z T + 

(
X 

( 2 ) 
2 ( 1 −ρ) T 

− X 

( 2 ) 
( 1 −ρ) T 

)
. 

More generally, for nT ≤ t < ( n + 1 ) T , the virtual age at time t is

 (t) = t − ρnT (just as for an ARA1 model for recurrent events, see

Doyen & Gaudoin, 2004 ) and the system degradation is given by 

Z t = Z nT + 

(
X 

( n +1 ) 
t−ρnT 

− X 

( n +1 ) 
( 1 −ρ) nT 

)
, (8)

Z (n +1) T = Z nT + 

(
X 

(n +1) 

( 1 −ρ) (n +1) T 
− X 

(n +1) 
( 1 −ρ) nT 

)
(9)

where X ( 
n +1 ) 

t−ρnT 
− X ( 

n +1 ) 
( 1 −ρ) nT 

is gamma distributed �(A ( t − ρnT )

− A ( ( 1 − ρ) nT ) , b) for all t ∈ [ nT , ( n + 1 ) T ] . 

Hence 

Z nT = 

n ∑ 

i =1 

(
X 

( i ) 
( 1 −ρ) iT 

− X 

( i ) 
( 1 −ρ) ( i −1 ) T 

)
(10)

and it is gamma distributed �(A ( (1 − ρ) nT ) , b) . Here, Z t is the sum

of two independent gamma distributed r.v.s which share the same

scale parameter b and it is gamma distributed �(A (t − ρnT ) , b) . 

Also: 

E ( Z t ) = 

A ( t − ρnT ) 

b 
, v ar ( Z t ) = 

A ( t − ρnT ) 

b 2 
(11)

for all nT ≤ t < (n + 1) T . 

Remark 3. Here again, E ( Z t ) and v ar ( Z t ) are decreasing with re-

spect to ρ . 
Just as for the ARD1 model, we next set 

(
Z ( 

i ) 
t 

)
t≥0 

to be the

RA1 process with repair efficiency ρ i for i = 1 , 2 . 

roposition 2. Z t decreases with respect to ρ for the likelihood ratio

rder (and hence also for both increasing convex and concave orders):

f ρ1 < ρ2 , then Z ( 
2 ) 

t ≺lr Z 
( 1 ) 
t . 

roof. Let ρ1 < ρ2 and nT ≤ t < ( n + 1 ) T . For i = 1 , 2 , from (8) , we

ave: 

 

( i ) 
t ∼ �( A ( t − ρi nT ) , b ) , 

ith A ( t − ρ2 nT ) ≤ A ( t − ρ1 nT ) . We hence derive from

emma 1 that Z ( 
2 ) 

t ≺lr Z 
( 1 ) 
t . �

emark 4. We can see from Propositions 1 and 2 that as expected,

he more efficient the maintenance action is (namely the larger ρ
s), the smaller the deterioration level is for both ARD1 and ARA1

odels. Based on Shaked and Shanthikumar (2007 , Theorem 1.C.5.

. 44), the previous result implies for instance that, for an ARA1

odel, we have 

 Z (2) 
t | Z (2) 

t > h ] ≤sto [ Z 
(1) 
t | Z (1) 

t > h ] (12)

or all h > 0. Imagine that h is an alert threshold in an application

ontext and that the crossing of h triggers a signal, then, the pre-

ious relation means that, given that the signal has already been

riggered, the deterioration level is stochastically all the smaller

s the efficiency of the maintenance action is higher. Now con-

idering A (t) = t 2 , b = 1 , h = 0 . 5 , t = 1 . 9 , ρ1 = 0 . 9 < ρ2 = 0 . 95 , we

et that E (Y (2) 
t | Y (2) 

t > h ) � 1 . 16 > E (Y (1) 
t | Y (1) 

t > h ) � 1 . 08 , which

hows that (12) is not valid any more for the ARD1 model, in

oncordance with Remark 2 . The stronger likelihood ratio result

btained for the ARA1 model may hence lead to different conse-

uences from those for the ARD1 model in an application con-

ext (and in particular, conditional expectations are not necessarily

anked in an intuitive way). 

. Comparison of the moments 

We now come to the main object of the paper, which is the

omparison between the two models of imperfect repairs. Note

hat, in an application context, there is no reason why the esti-

ated repair efficiency should be the same when the impact of

he maintenance is modeled by an ARD1 or ARA1 model. Our point

ence is to compare Y (1) 
t and Z (2) 

t , with efficiency ρ1 and ρ2 , re-

pectively. In this section, we focus on the comparison of their re-

pective means and variances. 

roposition 3. Let us consider the two following assertions: 

 

(
Z (2) 

t 

)
≥ E 

(
Y (1) 

t 

)
for all t, T > 0 (13)

nd A ( (1 − ρ2 ) t ) ≥ (1 − ρ1 ) A (t) for all t > 0 . (14)

hen: 

1. Assertion (13) implies assertion (14) . 

2. If A ( · ) is concave, then the converse is also true (namely

(14) 
⇒ (13) ). 

3. As a special case, if A ( · ) is concave and ρ2 ≤ρ1 , then (13) is true.

All the previous results are valid with reversed inequalities and

oncave substituted by convex. 

roof. Based on (6) and (11), assertion (13) is equivalent to 

 (t − ρ2 nT ) ≥ A (t) − ρ1 A (nT ) (15)

or all T > 0, all n ∈ N and all nT ≤ t < ( n + 1 ) T . Taking t = nT in

15) , it implies (14) for all t = nN with T > 0 and n ∈ N , and hence

or all t > 0. This shows the first point. 
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Fig. 1. Expectations of Y (1) 
t and Z (2) 

t with b = 1 , T = 1 . 
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V ar Z ≥ (≤) V ar Y ∀ t ⇔ (1 − ρ2 ) ≥ ( ≤) ( 1 − ρ1 ) . 
For the second point, assume A ( · ) to be concave. Then

 ( t − ρ2 nT ) − A (t) is non decreasing with respect to t and for

T ≤ t < (n + 1) T , we get that 

 (t − ρ2 nT ) − A (t) ≥ A ((1 − ρ2 ) nT ) − A (nT ) . (16)

Assuming (14) to be true, we easily derive that 

 (t − ρ2 nT ) − A (t) ≥ (1 − ρ1 ) A (nT ) − A (nT ) = −ρ1 A ( nT ) 

o that (15) is true. This implies (13) and the second point is

roved. 

In the specific case where A ( · ) is concave and ρ2 ≤ρ1 , we

ave 

 ((1 − ρ2 ) nT ) = A ( (1 − ρ2 ) nT + ρ2 0 ) ≥ (1 − ρ2 ) A (nT ) 

≥ (1 − ρ1 ) A (nT ) (17) 

or all n and T (using A (0) = 0 in the first line). This implies that

14) is true. Point three now is a direct consequence of point two. 

The reasoning is similar for reversed inequalities and it is

mitted. �

emark 5. Note that Condition (14) is less restrictive than ρ2 ≤ρ1 

n the concave case. (The same with a reverse inequality in the

onvex case). For instance, consider A ( t ) = t β with 0 < β < 1. Then

ondition (14) means that ( 1 − ρ2 ) 
β ≥ 1 − ρ1 , which is less re-

trictive than ρ1 ≥ρ2 . 

In the following example, we look at the comparison of the ex-

ectations when the conditions in Proposition 3 are not fulfilled. 

xample 1. As a first case, we take A ( t ) = e t − 1 (convex function),

 = 1 , T = 1 ρ1 = 0 . 95 , ρ2 = 0 . 5 . As a second case, we take A ( t ) =
 − e −t (concave function), b = 1 , T = 1 ρ1 = 0 . 5 , ρ2 = 0 . 95 . Nei-

her condition (14) nor the reversed inequality is true on the whole

eal line. The corresponding expectations are plotted in Fig. 1 (a)

first case) and (b) (second case). We can see that the respective

eans of Y (1) 
t and Z (2) 

t are not ordered in the same way on the

hole real line. 

roposition 4. Let us consider the two following assertions: 

 ar 
(
Z (2) 

t 

)
≥ V ar 

(
Y (1) 

t 

)
for all t, T > 0 (18) 

nd A ( (1 − ρ2 ) t ) ≥ (1 − ρ1 ) 
2 A (t) for all t > 0 . (19) 

hen: 

1. Assertion (18) implies assertion (19) . 

2. If A ( · ) is concave, then the converse is also true (namely

(19) 
⇒ (18) ). 
3. As a special case, if A ( · ) is concave and 1 − ρ2 ≥ ( 1 − ρ1 ) 
2 
, then

(18) is true. 

All the previous results are valid with reversed inequalities, and

oncave substituted by convex. 

roof. Based on (6) and (11), inequality (18) is equivalent to 

 (t − ρ2 nT ) ≥ A (t) − ρ1 ( 2 − ρ1 ) A (nT ) (20)

or all T > 0, all n ∈ N , all nT ≤ t < ( n + 1 ) T . Considering t = nT , it

mplies (19), so that point one is true. 

Now assume A ( · ) to be concave. Based on (16), we have: 

 (t − ρ2 nT ) − A (t) + ρ1 (2 − ρ1 ) A (nT ) 

≥ A ((1 − ρ2 ) nT ) − ( 1 − ρ1 ) 
2 A (nT ) . 

If (19) is true, then (20) is consequently true and (18) too. This

hows the second point. 

In the specific case where A ( · ) is concave and (1 − ρ2 ) ≥
( 1 − ρ1 ) 

2 
, we have 

 ((1 − ρ2 ) nT ) ≥ (1 − ρ2 ) A (nT ) ≥ (1 − ρ1 ) 
2 A (nT ) 

based on (17) for the first inequality). Hence (20) is true, so that

18) is true too. This provides point three. 

The reasoning is similar for reversed inequalities and it is

mitted. �

xample 2. We now consider the same data as for Example 1 ,

here neither condition (19) nor the reversed inequality is true

n the whole real line. The corresponding variances are plotted in

ig. 2 (a) (first case) and (b) (second case). We can see that the re-

pective variances of Y (1) 
t and Z (2) 

t are not ordered in the same way

n the whole real line. 

Finally, we easily derive from Propositions 3 and 4 the following

orollary, where the expectation and variance of the two processes

re compared assuming a power law shape function for the gamma

rocess. 

orollary 1. We consider A (t) = αt β with α, β > 0 . Then we get 

1. If β ≤ ( ≥ )1, then 

E 

(
Z (2) 

t 

)
≥ ( ≤) E 

(
Y (1) 

t 

)∀ t ⇔ (1 − ρ2 ) 
β ≥ ( ≤) ( 1 − ρ1 ) . 

2. If β ≤ ( ≥ )1, then (
(2) 

) (
(1) 

)
β 2 
t t 
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Fig. 2. Variances of Y (1) 
t and Z (2) 

t with b = 1 , T = 1 . 
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5. Stochastic comparison between Y 
(1) 

t and Z 

(2) 
t 

We now come to the stochastic comparison between Y (1) 
t and

Z (2) 
t , as given by (4) and (9) , with ρ substituted by ρi , i = 1 , 2 , re-

spectively. 

Proposition 5. If 

A ( (1 − ρ2 ) nT ) ≥ ( ≤) (1 − ρ1 ) A (nT ) , (21)

then Y (1) 
nT 

≺icx ( �icv ) Z 
(2) 
nT 

. 

Proof. From (5) and (10) , we know that Y (1) 
nT 

and Z (2) 
nT 

are

gamma distributed, with distributions �(A ( nT ) , b 
1 −ρ1 

) and

�(A ( (1 − ρ2 ) nT ) , b) , respectively. The results can hence be

obtained by application of Lemma 1 . �

We next focus on the comparison between Y (1) 
t − Y (1) 

nT 
and

Z (2) 
t − Z (2) 

nT 
. 

Proposition 6. If A ( t ) is convex (concave), then for all nT ≤ t <

( n + 1 ) T : 

• Z (2) 
t − Z (2) 

nT 
≺lr ( �lr ) Y 

(1) 
t − Y (1) 

nT 
, 

• Y (1) 
t − Y (1) 

nT 
≺lc ( �lc ) Z 

(2) 
t − Z (2) 

nT 
. 

Proof. For nt ≤ t < ( n + 1 ) T , let us set 

 = Y (1) 
t − Y (1) 

nT 
= X 

( n +1 ) 
t − X 

( n +1 ) 
nT 

(see (4) ) and 

Z = Z (2) 
t − Z (2) 

nT 
= X 

( n +1 ) 
t−ρ2 nT 

− X 

( n +1 ) 
( 1 −ρ2 ) nT 

(see (9) ). Then Y and Z are gamma distributed, with distributions

�(A (t) − A (nT )) and �(A ( t − ρ2 nT ) − A ( ( 1 − ρ2 ) nT ) ) , respectively.

Now, the likelihood ratio comparison result is a direct consequence

of Lemma 1 , because the convexity (concavity) of A ( · ) entails that 

A (t) − A (nT ) ≥ (≤) A ( t − ρ2 nT ) − A ( ( 1 − ρ2 ) nT ) . 

As for the log-concave order, using the notations of Definition 2 ,

we have (
log 

(
f Y 
f Z 

))′ 
( y ) = 

[ A ( t ) −A ( nT ) ] −[ A ( t −ρ2 nT ) −A ( ( 1 − ρ2 ) nT ) ] 

y 
.

This function decreases (increases) when A ( t ) is convex (concave),

which provides the result. �

Hence, if A ( t ) is convex (concave), the increment between times

nT and t (with nT ≤ t < ( n + 1 ) T ) is smaller (larger) for the ARA1

model than for the ARD1 model in the sense of the likelihood ratio
rder (and consequently also for the usual stochastic and increas-

ng convex/concave orders), but it has a larger (smaller) variability

or the ARA1 model than for the ARD1 model in the sense of the

og-concave order. 

Based on the previous results, if A ( · ) is concave, we have Z (2) 
t −

 

(2) 
nT 

≺lc Y 
(1) 

t − Y (1) 
nT 

but Y (1) 
nT 

≺lc Z 
(2) 
nT 

(for nT ≤ t < ( n + 1 ) T ). There

onsequently is no real hope that Y (1) 
t ≺lc Z 

(2) 
t . When A ( · ) is con-

ex, we have both Y (1) 
t − Y (1) 

nT 
≺lc Z 

(2) 
t − Z (2) 

nT 
and Y (1) 

nT 
≺lc Z 

(2) 
nT 

, and

 

(1) 
t ≺lc Z 

(2) 
t might be valid. However, remembering that the log-

oncave order is not closed under convolution, see Whitt (1985) ,

he question deserves to be further studied, which is done in the

ollowing example. 

xample 3. The function log ( f 
Y 

(1) 
t 

/ f 
Z 
(2) 
t 

) is plotted in Fig. 3 (a) and

b) for ρ1 = 0 . 5 , ρ2 = 0 . 4 , T = 1 , A ( t ) = t α, n = 10 , b = 1 at time

 = 10 . 2 , with α = 0 . 75 and α = 1 . 25 , respectively. We observe

hat we do not have Y (1) 
t ≺lc Z 

(2) 
t neither for α = 0 . 75 (as expected)

or for α = 1 . 25 for which the question was open. As a conclusion,

n a general setting, Y (1) 
t and Z (2) 

t are not comparable with respect

o the log-concave order. 

Next result provides some conditions under which Y (1) 
t and Z (2) 

t 

re comparable with respect to either the increasing convex or

oncave order. 

heorem 1. If A ( · ) is concave and 

 ( (1 − ρ2 ) t ) ≥ (1 − ρ1 ) A (t) for all t > 0 (22)

condition of Proposition 3 , known to be true if ρ1 ≥ρ2 ), then

 

(1) 
t ≺icx Z 

(2) 
t for all t ≥ 0 (and all T ≥ 0 ). 

If A ( t ) is convex with a reversed inequality in (22), then Z (2) 
t ≺icv 

 

(1) 
t for all t ≥ 0 (and all T ≥ 0 ). 

roof. Writing Y ( 
1 ) 

t = (Y ( 
1 ) 

t − Y ( 
1 ) 

nT 
) + Y ( 

1 ) 
nT 

(the same for Z ( 
2 ) 

t ), the

esults are direct consequences from Propositions 5 and 6 , based

n the fact that both increasing convex and concave orders are

table under convolution ( Shaked & Shanthikumar, 2007, Theo-

em 4.A.8 (d) p. 186). �

xample 4 (Increasing convex order) . We consider t = 10 . 5 , T = 1 ,

 = 1 , ρ1 = ρ2 = 0.75 with A (t ) = t 0 . 7 as a first case (concave case

ith condition (22) fulfilled) and A (t) = t 1 . 1 as a second case (con-

ex case with reversed condition (22) fulfilled). The difference 
 + ∞ 

x 

F̄ 
Z (2) 

t 
( u ) du −

∫ + ∞ 

x 

F̄ 
Y (1) 

t 
( u ) du 

s plotted in Fig. 4 (a) (first case) and (b) (second case). As expected,

he difference remains positive in the first case, which means that
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Fig. 3. Plots of log( f 
Y (1) 

t 
/ f 

Z (2) 
t 

) for A (t) = t α . 

Fig. 4. Plots of 
∫ ∞ 

x F̄ 
Z (2) 

t 
(u ) du − ∫ ∞ 

x F̄ 
Y (1) 

t 
(u ) du for A (t) = t α . 

Fig. 5. Plots of 
∫ x 

0 F Z (2) 
t 

(u ) du − ∫ x 
0 F Y (1) 

t 
(u ) du for A (t) = t α . 
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w  

c

 

g

 

(1) 
t ≺icx Z 

(2) 
t (see (1) ). We observe that it changes sign in the con-

ex case, which shows that Z (2) 
t and Y (1) 

t are not comparable with

espect to the increasing convex order. 

xample 5 (Increasing concave order) . We consider t = 10 . 5 , T =
 , ρ1 = 0 . 8 , ρ2 = 0 . 78 , b = 1 with A (t ) = t 0 . 9 (concave case with

ondition (22) fulfilled) and A (t) = t 1 . 1 (convex case with reversed

ondition (22) true). The difference 
∫ x 

0 F Z (2) (u ) du − ∫ x 
0 F Y (1) (u ) du is
t t 
lotted in Fig. 5 (a) (first case) and (b) (second case). We ob-

erve that, as expected, Z (2) 
t ≺icv Y 

(1) 
t (see (2) ) in the second case

hereas Z (2) 
t and Y (1) 

t are not comparable with respect to the in-

reasing concave order in the first case. 

Finally, we end this section by considering the case of a homo-

eneous gamma process ( A (t) = at). 
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[ nT , ( n + 1 ) T ) (and will remain negative for larger n ). 
Corollary 2. Assume that A (t) = at for all t ≥ 0, where a > 0 . We have

the following results: 

(1) If ρ1 ≥ρ2 , then Y (1) 
t ≺icx Z 

(2) 
t and hence E (Y (1) 

t ) ≤ E (Z (2) 
t ) for

all t ≥ 0 ; 

(2) If ρ1 ≤ρ2 , then Z (2) 
t ≺icv Y 

(1) 
t and hence E (Z (2) 

t ) ≤ E (Y (1) 
t ) for

all t ≥ 0 ; 

(3) If ρ1 = ρ2 , then Y (1) 
t ≺cx Z 

(2) 
t and Z (2) 

t ≺cv Y 
(1) 

t and hence

E (Z (2) 
t ) = E (Y (1) 

t ) for all t ≥ 0 ; 

(4) V ar(Z (2) 
t ) ≥ V ar(Y (1) 

t ) for all t > 0 if and only if 1 − ρ2 ≥ (1 −
ρ1 ) 

2 . 

Proof. Points 1, 2 and 4 are direct consequences of Theorem 1 and

Corollary 1 . As for point 3, assume that ρ1 = ρ2 . This entails that

E (Y (1) 
t ) = E (Z (2) 

t ) . Based on the first two points, the result follows

from Shaked and Shanthikumar (2007 , Theorem 4.A.35 p. 197). �

6. Mostly equivalent imperfect repair models 

In an applied context, parameters ρ1 and ρ2 for ARD1 and

ARA1 models, respectively, will be estimated from feedback data,

which will be typically gathered at maintenance times iT , i ≥ 1. As

a consequence, we can expect that the estimated parameters ˆ ρ1 

and ˆ ρ2 should be such that the corresponding expected deterio-

ration levels should be very similar at maintenance times, namely

such that 

E 

(
Y ( 

1 ) 
iT 

)
= 

(
1 − ˆ ρ1 

)
A ( iT ) 

b 
� E 

(
Z ( 

2 ) 
iT 

)
= 

A 

((
1 − ˆ ρ2 

)
iT 

)
b 

. 

There hence is a specific interest for the applications to compare

the ARD1 and ARA1 models under the condition 

( 1 − ρ1 ) A ( iT ) = A ( ( 1 − ρ2 ) iT ) for i ≥ 1 , (23)

on ( ρ1 , ρ2 ), which will lead to mostly equivalent deterioration lev-

els (at least at maintenance times). However, the previous require-

ment (23) does not seem to have a solution for a general shape

function A ( · ). We hence restrict the study to the power law case

A ( t ) = αt β (with α, β > 0), for which (23) is just equivalent to 

1 − ρ1 = ( 1 − ρ2 ) 
β
. (24)

This section is hence devoted to this specific power law case

with the previous relationship between ρ1 and ρ2 , which ensures

that 

E 

(
Y ( 

1 ) 
iT 

)
= E 

(
Z ( 

2 ) 
iT 

)
for all i ≥ 1 . 

Remark 6. This specific “equivalent” case has a similar spirit to

that detailed in Doyen and Gaudoin (2004 , Property 4), where the

authors match the minimal wear intensities of two imperfect re-

pair models for recurrent events, based on the reduction of either

virtual age or failure intensity. 

In case of a homogeneous gamma process ( β = 1 ), the equiva-

lent case corresponds to identical repair efficiencies for both ARD1

and ARA1 models ( ρ1 = ρ2 ), which has already been studied in

Corollary 2 (point 3). We now investigate the case of a general β . 

In the equivalent case, there is equality in (14), (21) and (22).

Based on the fact that A ( · ) is concave (convex) when β ≤ ( ≥ )1,

we directly get the following results from Proposition 5, Theo-

rem 1 and Corollary 1 . 

Corollary 3. Assume that A ( t ) = αt β (with α, β > 0 ) and that ( ρ1 ,

ρ2 ) fulfills (24) (equivalent case). Then: 

(1) Z (2) 
nT 

≺cv Y 
(1) 

nT 
and Y (1) 

nT 
≺cx Z 

(2) 
nT 

(which both entail that

v ar(Z ( 
2 ) 

nT 
) ≥ v ar(Y ( 

1 ) 
nT 

) , see Shaked & Shanthikumar, 2007 ,

(3.A.4) p. 110) for all n ≥ 1 . 

(2) If β ≤ ( ≥ )1, then Y (1) 
t ≺icx ( �icv ) Z 

(2) 
t (which entails that

E (Y ( 
1 ) ) ≤ (≥) E (Z ( 

2 ) ) ) for all t ≥ 0 . 
t t 
(3) If β ≤ 1, then V ar(Z (2) 
t ) ≥ V ar(Y (1) 

t ) for all t ≥ 0 . 

emark 7. Based on the previous result, we can see that even

f the two imperfect repair models provide similar expected de-

erioration levels at maintenance times, there are differences in

oth their location and spread between the repairs. For instance,

onsidering β ≤ 1, a possible by-product of Y (1) 
t ≺icx Z 

(2) 
t is that

 ((Y (1) 
t − h ) + ) ≤ E ((Z (2) 

t − h ) + ) for any h > 0, see, e.g., Shaked and

hanthikumar (2007 , (4) p. 182). If h is a critical deterioration level

n an application context, (Y (1) 
t − h ) + and (Z (2) 

t − h ) + correspond

o the hazardous part of deterioration (beyond the critical level)

nd this means that the expected “risk” is lower for the ARD1

odel than for the ARA1 one. 

Note that Corollary 3 does not provide any insight for the com-

arison of the variances at time t when β > 1, which hence de-

erves a different analysis on which we now focus. 

roposition 7. Let β > 1 and let 

 ( x ) = x β − ( x − ρ2 ) 
β −

(
1 − (1 − ρ2 ) 

2 β
)

(25)

or x ∈ [1 , 2) . 

• If g ( 2 −) ≤ 0 , then 

V ar 
(
Y (1) 

t 

)
≤ V ar 

(
Z (2) 

t 

)
(26)

for all t ≥ 0 . 
• If g ( 2 −) > 0 , there exists one single x ∗ ∈ (1, 2) such that g ( x ∗) = 0 .

Also: 

– Inequality (26) is true for all t ≥ t ∗ = 

⌈
1 

x ∗−1 

⌉
T , where � · �

stands for the ceiling function; 

– For each n < 

1 
x ∗−1 , inequality (26) is true for all t ∈ [ nT , x ∗nT ) ,

with a reversed inequality for t ∈ [ x ∗nT , ( n + 1 ) T ) . 

roof. For nT ≤ t < (n + 1) T , it is easy to check that (26) is equiv-

lent to 

 

β −
(
1 − (1 − ρ2 ) 

2 β
)
(nT ) β ≤ ( t − ρ2 nT ) 

β
, 

hich can also be written as g 
(

t 
nT 

)
≤ 0 where 1 ≤ t 

nT ≤ 1 + 

1 
n and

here g is defined by (25) for x ∈ 

⋃ 

n ≥1 [1 , 1 + 

1 
n ) = [1 , 2) . 

As β > 1, the function g increases from g (1) to g ( 2 −) and based

n the fact that v ar(Z ( 
2 ) 

nT 
) ≥ v ar(Y ( 

1 ) 
nT 

) (first point of Corollary 3 ),

e have g (1) ≤ 0. As for the sign of 

 

(
2 

−)
= 2 

β − ( 2 − ρ2 ) 
β −

(
1 − (1 − ρ2 ) 

2 β
)
, 

here are two possibilities, which lead to the following cases: 

• If g ( 2 −) ≤ 0 , then g ( x ) ≤ 0 for all x ∈ [1 , 2) and (26) is true for

all t ≥ 0. 
• If g ( 2 −) > 0 , there exists one single x ∗ ∈ (1, 2) such that g ( x ∗) =

0 , with g ( x ) < 0 for all x ∈ [1 , x ∗) and g ( x ) > 0 for all x ∈ ( x ∗, 2). 

– If 1 + 

1 
n ≤ x ∗ (namely n ≥ 1 

x ∗−1 ), then g ( x ) < 0 for all x ∈ [1 , 1 +
1 
n ) and (26) is true for all t ∈ [ nT , ( n + 1 ) T ) . This inequality is

hence true for all t ≥ n ∗T with n ∗ = 

⌈
1 

x ∗−1 

⌉
. 

– If 1 + 

1 
n > x ∗ (namely n < 

1 
x ∗−1 ), then g ( x ) < 0 for all x ∈ [1 , x ∗)

and (26) is true for all t ∈ [ nT , x ∗nT ) , with a reversed inequality

for t ∈ [ x ∗nT , ( n + 1 ) T ) . 

�

emark 8. In the case where g ( 2 −) > 0 , note that the inequality

 < 

1 
x ∗−1 is always valid for n = 1 so that for small n , the differ-

nce V ar(Y (1) 
t ) − V ar(Z (2) 

t ) will always cross 0 (from − to +) on
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Fig. 6. Reward function for α1 = 0 . 1 , b 1 = 11 , α2 = 0 . 25 , k 1 = 1 , k 2 = 1 , c = 4 . 
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. Maintenance strategies 

.1. The reward function 

This section is devoted to the analysis of maintenance strategies

onsidering the two types of repair. In all the section, the system

s assumed to provide a reward which decreases when the deteri-

ration level of the system increases. Based on classical functions

sed in the insurance literature ( Rolski et al., 1998 ), we assume

hat the reward function is given by 

(x ) = ( b 1 − k 1 e 
α1 x ) 1 { 0 ≤x ≤c } + ( b 2 − k 2 e 

α2 x ) 1 { c<x } , (27)

ith b 1 , b 2 , α1 , α2 , k 1 , k 2 , c > 0 and x ≥ 0, where g ( x ) stands for

he unitary reward per unit time when the degradation level of

he system is x . The function g is supposed to be continuous and

ositive on [0, c ), which implies that 

 2 − k 2 e 
α2 c = b 1 − k 1 e 

α1 c > 0 . (28)

lso, we assume that α1 ≤α2 and k 1 ≤ k 2 so that level c appears as

 critical level, from which the system becomes less performing. 

With the previous assumptions, it is easy to check that g is a

oncave function and that g ( x ) > 0 if and only if x < L = 

ln (b 2 /k 2 ) 
α2 

.

evel L hence appears as a critical threshold. 

An example of reward function is plotted in Fig. 6 with pa-

ameters α1 = 0 . 1 , b 1 = 11 monetary units per time unit (m.t.u.),

2 = 0 . 25 , k 1 = 1 m.t.u., k 2 = 1 m.t.u., c = 4 time units (t.u.), and

 2 is obtained through (28) . With this dataset L � 10.0144. 

Two different maintenance strategies are envisioned in the two

ollowing subsections. In each case, the system is put into opera-

ion at time t = 0 and it degrades according to a non-homogeneous

amma process with parameters A ( t ) and β . For each maintenance

trategy, the two imperfect repair models are envisioned (ARA1 or

RD1) and the comparison between the two types of repair is per-

ormed through their corresponding expected reward (profit) rates

er unit time on a long time run. 

.2. ( n , T ) policy 

Starting from n ∈ N 

∗ and T > 0, the ( n , T ) maintenance scheme

s developed as follows: 

• Imperfect repairs based on either one of the two models (ARD1

or ARA1) are performed at times T , 2 T , 3 T , . . . 
• Each imperfect repair costs C r monetary units (m.u.). 
• The profit per unit time is given by the reward function g from

(27) . 
• The system is replaced by a new one at the time of the n th

imperfect repair ( nT ) with a cost of C m.u. 

Based on the renewal reward theorem, see, e.g., Tijms (2003) ,

he long time reward rate per unit time for this policy is given by:
 ARD (n, T ) = 

∫ nT 

0 E 

(
g(Y (1) 

s ) 
)
ds − (n − 1) C r − C 

nT 
(29)

hen ARD1 repairs are considered and 

 ARA (n, T ) = 

∫ nT 

0 E 

(
g(Z (2) 

s ) 
)
ds − (n − 1) C r − C 

nT 
(30)

or ARA1 repairs, where Y (1) 
s and Z (2) 

s are is given by (3) and (8) ,

espectively, with ρ substituted by ρi , i = 1 , 2 . 

emark 9. Based on the fact that the function −g(·) is increasing

nd convex, the previously obtained theoretical results allow to de-

ive several observations on the reward rates: 

• From Propositions 1 and 2 , we get that E (−g(Y (1) 
t )) and

E (−g(Z (2) 
t )) decrease with ρ1 and ρ2 for all t > 0, respectively.

This entails that the objective profit rates R ARD ( n , T ) and R ARA ( n ,

T ) increase with the effectiveness of the repair ( ρ1 and ρ2 , re-

spectively) for both ARD1 and ARA1 models. 
• If the shape function A ( · ) is concave and A ((1 − ρ2 ) t) ≥ (1 −

ρ1 ) A (t) for all t > 0 (Condition (22)), then Theorem 1 entails

that 

E 

(
g(Z (2) 

t ) 
)

≤ E 

(
g(Y (1) 

t ) 
)
, ∀ t > 0 , 

from which we derive that the objective profit functions for the

two repair models are comparable: 

R ARA ( n, T ) ≤ R ARD ( n, T ) for all n, T . 

We now come to some numerical illustrations. 

xample 6. The parameters of the gamma process are A (t) = t 0 . 5 +
 

0 . 75 (concave function) and b = 1 ; those for the reward reward

unction g are α1 = 0 . 1 , α2 = 0 . 25 , k 1 = 1 , k 2 = 1 , b 1 = 11 , c = 4 ,

hich implies that b 2 = 12 . 2265 . The ( n , T ) policy is considered

ith C r = 2 m.u. as cost of imperfect repair and C = 25 m.u. as re-

lacement cost. 

Fig. 7 shows the operating profit rate given in (29) for both

RD1 and ARA1 models using ρ1 = ρ2 = 0 . 5 (for which inequal-

ty (22) is true). The computations have been made using 8 points

or T from 1 to 6 and 10 points for n from 1 to 10 with 50 0 0

imulations in each point. The Simpson method is applied for the

ntegrals in (29) , with 20 points from 0 to nT . Under an ARD1

odel, the optimal profit rate is obtained for (n, T ) = (7 , 2 . 43)

ith a profit rate of R ARD (7 , 2 . 43) = 6 . 85 m.u. per unit time. Un-

er an ARA1 model, the optimal profit rate is obtained for (n, T ) =
(4 , 3 . 14) with a profit rate of R ARA (4 , 3 . 14) = 5 . 29 m.u. per unit

ime. Fig. 8 (a) shows the difference of the profit rates under

he two repair models, that is, R ARD (n, T ) − R ARA (n, T ) for all n

nd T . As expected from the previous theoretical results, R ARA ( n ,

 ) ≤ R ARD ( n , T ). Also, we can observe that the difference between

he two rates increases as n and T increases. 

xample 7. Keeping the same parameters as in the previous exam-

le except from the repair efficiency for the ARD1 model which be-

omes ρ1 = 0 . 31 , Fig. 8 (b) shows the difference between the profit

ates under the two repair models. Here A (t) = t 0 . 5 + t 0 . 75 is con-

ave but condition (22) of Theorem 1 is not valid any more. We

bserve that there is no dominance of the profit rate of one model

ver the other. 

Although the ( n , T ) policy allows us to compare the two mod-

ls of repair, under this maintenance policy, the system is (im-

erfectly) repaired even when the system is so degraded that the

eward has become negative. We now suggest a more realistic

ondition-based maintenance strategy, where the maintenance ac-

ion depends on the degradation level of the system. 
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Fig. 7. Operational profit rate, ( n , T ) policy. 

Fig. 8. Differences between the operational profit rates, ( n , T ) policy. 
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7.3. (M,T) policy 

Let T > 0 and let M ∈ [0, L ) be a preventive maintenance

threshold. (We recall that L is the critical threshold defined in

Section 7.1 from where the reward becomes negative). The ( M , T )

condition-based maintenance scheme is developed as follows: 

• The system is inspected at times T , 2 T , 3 T , . . . and the system

degradation level is checked. 
• By an inspection: 

– if the degradation level does not exceed the threshold M ,

an imperfect repair based on either one of the two models

(ARD1 or ARA1) is performed with a cost of C r m.u.; 

– if the degradation level is between levels M and L , a pre-

ventive replacement is performed and the system is instan-

taneously replaced by a new one with a cost of C p m.u.; 

– if the degradation level exceeds L , a instantaneous corrective

replacement takes place with a cost of C c m.u. 
• The profit per unit time is given by the reward function g from

(27) . 

The successive (corrective or preventive) replacements of the

system appear as the points of a renewal process, and the long
ime profit rate per unit time is given by 

 ARD (T , M) 

= 

E 

(∫ R 
0 g 

(
Y (1) 

s 

)
ds −C r ( [ R/T ] −1 ) −C p 1 { M≤Y (1) 

R 
<L } −C c 1 { L ≤Y (1) 

R } 
)

E (R ) 
(31)

or the ARD1 model, with a similar expression for the ARA1 model

 C ARA ( T , M )), where R stands for the time to a system replacement

nd g denotes the reward function given by (6) . Due to the com-

lexity of the ( M , T ) policy, there is no hope here to find analytical

onditions that could ensure the dominance of one function C ARD ( T ,

 ) or C ARA ( T , M ) over the other. Their comparison is hence made

n a numerical example. 

xample 8. The parameters of the gamma process are A (t) = 1 . 3 t

nd b = 0 . 8 . For the reward function g , they are α1 = 0 . 4 , α2 = 0 . 5 ,

 1 = 800 , k 1 = 1 . 05 , k 2 = 1 . 07 , c = 8 , which implies b 2 = 832 . 6609

nd L = 13 . 3139 . The repair efficiencies of the ARD1/ARA1 repairs

re ρ1 = ρ2 = 0 . 9 . Their common cost is C r = 200 m.u.. The cost of

 preventive replacement is C p = 10 0 0 m.u. whereas it is C c = 130 0

.u. for a corrective one. Fig. 9 (a) shows the profit rate for the

aintained system under an ARD1 repair. The optimal mainte-

ance strategy is obtained for (M, T ) = (9 . 21 , 3 . 05) with a profit

ate of C ARD (3 . 05 , 9 . 21) = 673 . 94 m.u. per unit time. Fig. 9 (a) shows

he profit rate for the ARA1 repairs. The optimal maintenance

trategy is obtained for (M, T ) = (10 . 24 , 3 . 05) with a profit rate of
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Fig. 9. Operational profit rates, ( M , T ) policy. 

Fig. 10. Difference of operational profit rates, ρ1 = ρ2 = 0 . 9 . 
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 ARA (3 . 05 , 10 . 24) = 684 . 34 m.u. per unit time. These figures have

een computed considering a grid of 10 points for T from 1.14 to 4

nd a grid of 13 points for M from 1 to L and 10,0 0 0 simulations

or each pair of points. 

Fig. 10 shows the difference between the profit rates

 ARD (T , M) − C ARA (T , M) for this dataset. Although conditions of

heorem 1 are fulfilled, we can see that the sign of the difference

hanges, so that there is no dominance of the profit rate of one

odel on the other. 

. Conclusions and perspective 

Two imperfect repair models for a degrading system are com-

ared in this paper. The comparison is performed in terms of loca-

ion and spread of the two resulting stochastic processes. Results

re provided in terms of moments and likelihood ratio ordering,

s well as in terms of (increasing) convex/concave ordering, which

s not so common in the reliability literature. Two maintenance

trategies are also developed, which are assessed through a reward

unction, which takes into account the effective deterioration level

f the system (the lower the deterioration level, the higher the re-

ard), contrary to classical objective functions from the literature. 

The paper is developed under a periodic imperfect repair

cheme, for sake of simplification. It is however easy to check that

ll the results of the paper would remain valid under a determinis-

ic non periodic repair scheme (with the same maintenance times

or both imperfect repair models), with very slight modifications.

ven more, considering random maintenance times (independent
n the deterioration level and identically distributed for both im-

erfect repair models), most results would also remain valid, such

s the likelihood ratio and (increasing) convex/concave compari-

on results, based on the closure under mixture property of these

tochastic orders (Shaked & Shanthikumar, 2007, Theorem 1.C.15.

. 48, Theorem 4.A.8. p. 185). 

Note also that if the paper focuses on some specific stochastic

rders, other ones could also be considered such as Laplace trans-

orm or Excess Wealth orders for instance. Other questions of inter-

st concern the comparison of remaining lifetimes, considering the

ystem as failed (or too degraded) when its deterioration level is

eyond a fixed failure (critical) threshold. From a theoretical point

f view, this seems a difficult issue in a general setting. One could

hen look at partial results in specific situations. 

Another point of interest would be to try and compare the two

ypes of imperfect repairs dropping the gamma-process assump-

ion. Based on the fact that, under technical conditions, normal

andom variables are comparable with respect to several stochastic

rders (see, e.g., Müller & Stoyan, 2002 ), one can wonder whether

t could be possible to get some similar results as in the paper for

iener processes with drift. (Not all however, because comparison

esults between normal random variables in the likelihood ratio

rdering sense require that the random variables share the same

ariance, which cannot be the case in our context. The same for

he log-concave order, which requires that the two normal random

ariables share the same mean, see Whitt, 1985 ). Other deteriora-

ions processes might also be envisioned, such as inverse Gaussian

r inverse Gamma processes. 

Finally, other maintenance strategies could be envisioned, based

n either one of the two types of imperfect repair. 
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