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ABSTRACT
Dirichlet-process-based non-parametric Bayesian inference is developed for a Y-
linked two-sex branching process with blind choice. This stochastic model is suitable
for analysing the evolution of the number of carriers of two alleles of a Y-linked gene
in a two-sex monogamous population where each female chooses her partner from
among the male population without caring about his type (i.e., the allele he carries).
The only data assumed to be available are the total number of females and males
(regardless of their types) up to some generation and the numbers of each type of
male in the last generation. A simulation method which is based on a Dirichlet pro-
cess and a Gibbs sampler is developed to estimate the posterior distributions of the
model’s main parameters, i.e., those which play an important role in the long-term
behaviour of the number of carriers of the alleles. Finally, the computational effi-
ciency of the algorithm is illustrated with non-trivial example simulations and an
application to real data.

KEYWORDS
Y-linked genes, two-sex branching process, blind choice of mates, non-parametric
Bayesian inference, Dirichlet process, Gibbs sampler.

1. Introduction

It is well-known that in some animal populations the sex of the individuals is deter-
mined by a pair of chromosomes X (or Z) and Y (or W). In the X and Y case, a female
has XX chromosomes, while a male has XY chromosomes. Certain characteristics of
the individuals are due to genes carried on the X chromosome (X-linked), others to
genes carried on the Y chromosome (Y-linked), and still others by genes on both chro-
mosomes (XY-linked). Taking this fact into account, females and males with different
genotypes and/or phenotypes are present in any population. Females and males in
a generation form mating units (couples) in order to produce offspring. An offspring
receives its genetic structure as specified by the inheritance rules associated with the
species it belongs to.

A problem with practical relevance is to model and analyse the evolution from gen-
eration to generation of sex-linked genes in a two-sex population (see [1], [2], [3], [4]).
Recent years have seen the development of two new stochastic models corresponding
to the field of branching processes designed to analyse the evolution of characters as-
sociated with Y-linked genes (see [5] and [6] and the references therein for a deeper
explanation of the motivation). These two models describe the evolution of the number
of carriers of two mutually exclusive alleles of a Y-linked gene in a two-sex monogamic
population. In [5], what was called the Y-linked two-sex branching process with pref-
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erence was introduced, in which it was considered that the characters controlled by
the gene may have some influence on the species’ mating process, with females having
preference for males carrying one of the alleles of the gene. In [6] on the other hand,
females were considered to choose their mates without caring about their genotypes
since most Y-linked characters are not decisive at the time of mating, thus introducing
the Y-linked two-sex branching process with blind choice.

The probabilistic theory underlying these two models has been developed in some
depth, determining conditions for the extinction/survival of Y-linked genes and for
their long-term behaviour (asymptotic rate of growth) in the population. It was proved
(see [5], [6], [7] and [8]) that those conditions depend on certain parameters of the
model. In most real situations, however, these parameters are unknown and they need
to be estimated.

In order to address this problem, the sample that can be observed must be carefully
selected. In this sense, it is reasonable to assume that the total numbers of females
and males in each generation can be observed (see [9] for a in-depth discussion of this
issue). Indeed, in many animal populations the study of the evolution or extinction of
the species (see [10]) or the estimation of the effective population size (see [11] or [12])
is based on population censuses which provide information about the total numbers of
females and males over a certain number of generations. The number of generations
and the population sizes observed in these censuses are usually not very large. It is
therefore also reasonable to consider that only a small population might be available
from which to make inferences (see also [13]). Furthermore, it is usually difficult in
a genetic context to distinguish the genotype of the males because the trait is not
expressed in the phenotype, so that it is reasonable to consider that only the total
number of males (regardless of their types) can be observed from the first up to a
certain generation.

Based on these ideas, in [9] we studied parametric Bayesian inference for the Y-
linked two-sex branching process with blind choice, considering as observed sample
the total number of females and males over a number of generations, and adding
the information corresponding to the total number of males of each genotype in the
last generation (in order to know that the two alleles are present at the population).
To solve the problem, we applied a Markov chain Monte Carlo (MCMC) method for
estimation from incomplete data.

In the present communication, we continue the previous study, addressing the in-
ferential problem based on the same sample scheme but in a more general Bayesian
framework. In particular, there are two main ideas underlying the innovative contribu-
tions of this paper. One is that we consider a non-parametric context. This implies a
greater level of uncertainty, but it is more realistic and flexible in practice because it is
usually hard to determine that the laws of reproduction belong to specific parametric
families. While the problem is also taken to be one of incomplete data estimation, the
fact of not knowing the families of the reproduction laws implies that more parame-
ters have to be estimated than in the parametric case. The other is that we assume
complete ignorance of the reproduction laws. We thus impose no kind of restriction
on the cardinality of their supports, introducing a Dirichlet process as the convenient
class of prior distributions. These two ideas together constitute a major improvement
over the framework presented in [9].

The rest of this paper is organized into five sections. In Section 2 that follows, we
present the probabilistic model, and set out the inference problem. In Section 3, we
develop a simulation method based on a Dirichlet process and a Gibbs sampler to
obtain the posterior distributions of the model’s main parameters and the predictive
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distributions for as yet unobserved generations. In Section 4, we apply the algorithm to
simulated data (with the inclusion of a sensitivity analysis), and verify the robustness
of the method by means of a general simulation experiment. In Section 5, we apply the
method to the real data set given in [13] corresponding to a pedigree of Y-linked non-
syndromic hearing impairment in a Chinese family. Finally, in Section 6, we provide
some concluding remarks.

2. The probability model and sample scheme

The branching process considered in this paper was presented in [6] to analyse
generation-by-generation the evolution of the number of carriers of two mutually exclu-
sive alleles, labeled R and r, of a Y-linked gene in a two-sex monogamous population
in which each female chooses her partner from among the male population without
caring about his type. The following is its mathematical definition.

Definition 2.1. Let {(FRni,MRni) : i = 1, 2, . . . ; n = 0, 1, . . .} and {(Frnj , Mrnj) :
j = 1, 2, . . . ;n = 0, 1, . . .} be two independent sequences of independent, identically
distributed, non-negative and integer-valued bivariate random vectors on the same
probability triple (Ω,F , P ). The sequences {(ZRn, Zrn)}n≥0 and {(Fn+1, MRn+1,
Mrn+1)}n≥0 are defined recursively, for each n ≥ 0, as follows:

(ZR0, Zr0) = (a, b) ∈ N2
0,

Fn+1 =

ZRn∑
i=1

FRni +

Zrn∑
j=1

Frnj , MRn+1 =

ZRn∑
i=1

MRni

and

Mrn+1 =

Zrn∑
j=1

Mrnj ,

assuming that
∑0

1 = 0; and

• If Fn+1 ≥ MRn+1 +Mrn+1, then

ZRn+1 = MRn+1 and Zrn+1 = Mrn+1.

• If Fn+1 < MRn+1 +Mrn+1, then

ZRn+1∼H(Fn+1,MRn+1 +Mrn+1,MRn+1)

and

Zrn+1=Fn+1 − ZRn+1,

where H(Fn+1,MRn+1+Mrn+1,MRn+1) denotes the hypergeometric distribu-
tion with parameters Fn+1, MRn+1 +Mrn+1, MRn+1.
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The two-dimensional process {(ZRn, Zrn)}n≥0 is called a Y-linked two-sex branching
process with blind choice.

The process {(ZRn, Zrn)}n≥0 is a homogeneous two-type Markov chain. Intuitively,
for n fixed, the random vector (ZRn, Zrn) represents the total number of couples of
types R and r, respectively, at generation n, where the type of a couple is determined
by the type of its male. To describe the evolution of the population from this generation
onwards, two phases are considered: reproduction and mating.

In the reproduction phase, each couple, independently of the others, generates fe-
males and males of its type according to some probability distribution depending on
its type. Then, (FRni,MRni) and (Frnj ,Mrnj) denote the total number of females
and males produced by the ith R-couple and the jth r-couple, respectively, at genera-
tion n, and Fn+1, and MRn+1 and Mrn+1 denote the total number of females, and R-
and r-males at generation n + 1. Notice that mutation of the gene is not considered.
A more general and complex stochastic process in which that possibility is considered
has been presented in [14].

In the mating phase, the total number of individuals in generation n+ 1 is known
(Fn+1,MRn+1,Mrn+1), and the number of couples of each genotype formed in gen-
eration n + 1 is calculated assuming that generations do not overlap, that there is
perfect fidelity (monogamy), and that females choose their partners from among the
male population without caring about their type. Hence, if the total number of fe-
males is greater than or equal to the total number of males, all males mate so the
total number of couples of each type is equal to the total number of males of that
type. Equivalently, if the total number of females is less than the total number of
males, all females mate. Since females make a blind choice from among the males, the
total number of R-couples is given by a hypergeometric distribution with parameters
(Fn+1,MRn+1 +Mrn+1,MRn+1), i.e., Fn+1 males are selected from all males of gen-
eration n + 1, where MRn+1 males have R genotype. The rest of the couples will be
of type r.

Since, in nature, R- and r-couples may differ in their reproductive abilities, we con-
sider that, in general, (FR01,MR01) and (Fr01,Mr01) may have different probability
distributions. We denote by pR = {pRk }k≥0 and pr = {prl }l≥0 the reproduction laws of
R- and r-couples, respectively. Thus, an R-couple (r-couple) generates k ≥ 0 (l ≥ 0)
individuals with probability pRk = P (FR01 +MR01 = k) (prl = P (Fr01 +Mr01 = l)).
Notice that their supports can have infinite cardinality, or at least they have no known
upper bound. We also consider that these reproduction laws have finite means, denoted
by mR and mr, respectively, representing the average number of offspring generated
by a couple of each genotype.

Furthermore, an offspring will be female with probability α, 0 < α < 1, and male
with probability 1 − α. These sex designations are made independently following a
binomial scheme among the offspring of any couple, and it is assumed that the genotype
has no influence on the sex determination, so that α is the same for both genotypes.
As a consequence of this reproduction scheme, one has that the average number of
females and males generated by an R-couple are αmR and (1 − α)mR, respectively,
while the respective values for an r-couple are αmr and (1− α)mr.

As mentioned in the Introduction, conditions for the extinction/survival of Y-linked
genes and for determining their asymptotic rate of growth were provided in [7] and
[6]. These conditions depend on the parameters of the model α, pR, and pr.

To estimate these parameters, from this point onwards we shall assume that, for
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N > 0, the set of vectors

FMN = {FM0, FM1, . . . , FMN−1, FN ,MRN ,MrN}

is observed, where FMn = (Fn,Mn), n = 0, . . . , N −1, is the vector given by the total
numbers of females and males in generation n. Notice that the total number of R−
and r− males is assumed to be observed only in the last generation. Moreover, FM0

is considered to be fixed as the initial generation.
From the sample FMN , we will draw inferences on (α, pR, pr), and consequently

also on the reproduction means (mR,mr) and on the future population sizes of fe-
males, males, and couples of each type, i.e., for any s ≥ 0, the unobserved vector
(ZRN+s, ZrN+s, FN+s+1,MRN+s+1,MrN+s+1).

To this end, as was indicated in the Introduction, we approach the problem from
a Bayesian perspective in a non-parametric context, determining the posterior dis-
tribution of (α, pR, pr) given FMN , denoted by (α, pR, pr)|FMN , and then deriving
the posterior distribution of (mR,mr) and, for any s ≥ 0, (ZRN+s, ZrN+s, FN+s+1,
MRN+s+1, MrN+s+1) denoted by (mR,mr)|FMN and (ZRN+s, ZrN+s, FN+s+1,
MRN+s+1, MrN+s+1)|FMN , respectively. Since the branching structure is not de-
rived from FMN (i.e., one cannot deduce which individuals are generated by each
type of mating unit), there are no closed forms for these posterior distributions. We
approximate them by posing the problem as one of incomplete data, and applying a
simulation method based on the Gibbs sampler.

3. Implementation of the Gibbs sampling

The posterior distribution (α, pR, pr)|FMN could be determined if one knew the ran-
dom sequences MRrN and ZRrN . The former provides information about the total
number of males of each genotype, i.e.,

MRrN = {MRr0, . . . ,MRrN−1},

with MRrn = (MRn,Mrn), for n = 0, . . . , N − 1. The latter deals with the total
offspring of each couple. In particular,

ZRrN = {ZRr0, . . . , ZRrN−1},

where ZRrn = {ZRn(k), k ≥ 0, Zrn(l), l ≥ 0} for n = 0, . . . , N − 1, with ZRn(k) and
Zrn(l) being the numbers of R- and r-couples in generation n with exactly k and l
offspring, respectively, without knowing whether they are males or females, i.e.,

ZRn(k) =

ZRn∑
i=1

I{FRni+MRni=k} and Zrn(l) =

Zrn∑
j=1

I{Frnj+Mrnj=l},

where IA denotes the indicator function of a set A.
It is easy to verify that FMN , MRrN , and ZRrN are related by the expressions

MRn +Mrn = Mn, ZRn =
∑
k≥0

ZRn(k), Zrn =
∑
l≥0

Zrn(l),
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ZRn + Zrn = min{Fn,MRn +Mrn},

Fn+1 +MRn+1 +Mrn+1 =
∑
k≥0

kZRn(k) +
∑
l≥0

lZrn(l),

∑
k≥0

kZRn(k) ≥ MRn+1 and
∑
l≥0

lZrn(l) ≥ Mrn+1,

for every n = 0, . . . , N − 1. Although MRrN and ZRrN are unobserved, they can be
simulated by considering them to be latent sequences. The posterior distribution

(α, pR, pr,MRrN ,ZRrN )|FMN

can then be derived by applying the Gibbs sampler. To this end, it is only necessary
to determine the conditional posterior distributions

(α, pR, pr)|(FMN ,MRrN ,ZRrN )

and, for n = 0, . . . , N − 1,

(MRrn, ZRrn)|(FMN ,MRrN(−n),ZRrN(−n), α, p
R, pr), (1)

where, for n = 0, . . . , N − 1, MRrN(−n) and ZRrN(−n) denote the sets of random
sequences given by MRrN and ZRrN , respectively, except those variables belonging
to generation n.

3.1. Determining (α, pR, pr)|(FMN ,MRrN ,ZRrN)

The likelihood function of (α, pR, pr) based on the sample and latent sequences,
(FMN , MRrN , ZRrN ), can easily be obtained by

f((FMN ,MRrN ,ZRrN )|(α, pR, pr)) ∝
N−1∏
n=0

αFn+1(1− α)MRn+1+Mrn+1

∏
k≥0

(pRk )
ZRn(k)

∏
l≥0

(prl )
Zrn(l). (2)

Thus, from these multinomial forms and taking into account that no restriction has
been imposed on the reproduction laws’ cardinality (which is considered to be un-
known), the Dirichlet processes (the natural conjugate family) constitute a convenient
class of prior distributions for α, pR, and pr (see [15] for details of the Dirichlet pro-
cesses). Therefore one takes α to follow a Dirichlet (beta) distribution with parameters
β1 and β2, with β1, β2 > 0, i.e.,

α ∼ Be(β1, β2) and π(α) ∝ αβ1−1(1− α)β2−1,
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and

pR ∼ DP(pR(0), βR) and pr ∼ DP(pr(0), βr),

where DP denotes the Dirichlet process, with pR(0) = {pRk (0)}k≥0 and pr(0) =
{prl (0)}l≥0 the base measures, and βR and βr the concentration parameters, βR, βr > 0.

Since mating units reproduce independently and the assignment of sex is also inde-
pendent, one can assume that

(α, pR, pr) ∼ Be(β1, β2)
⊗

DP(pR(0), βR)
⊗

DP(pr(0), βr),

with
⊗

being the product of independent random processes or vectors.
Taking Equation (2) into account, it follows that the distribution of (α, pR, pr) given

(FMN , MRrN , ZRrN ) is

(α, pR, pr)|(FMN ,MRrN ,ZRrN ) ∼

Be

(
β1 +

N∑
n=1

Fn, β2 +

N∑
n=1

Mn

)
⊗

DP

 βR

βR + Y RN
pR(0) +

1

βR + Y RN

∑
k≥0

Y RN (k), βR + Y RN


⊗

DP

 βr

βr + Y rN
pr(0) +

1

βr + Y rN

∑
l≥0

Y rN (l), βr + Y rN

 , (3)

where Y RN =
∑N−1

n=0 ZRn, Y rN =
∑N−1

n=0 Zrn, Y RN (k) =
∑N−1

n=0 ZRn(k)δk, and

Y rN (l) =
∑N−1

n=0 Zrn(l)δl, with δs being a Dirac delta function at s, s ≥ 0. Notice
that the posterior distribution α|(FMN ,MRrN ,ZRrN ) depends only on FMN , and
the posterior distributions for the reproduction laws of both genotypes depend only
on ZRrN .

Therefore, in order to obtain a closed form for the posterior distribution of (α, pR,
pr) such as that given in Equation (3), one needs not only the observation of FMN

but also to know ZRrN . Notice that we have also considered MRrN since ZRrN is
unobserved and is obtained through FMN andMRrN by applying the formulas of the
model (see Definition 2.1). We shall next determine their joint posterior distribution
for each generation n, with n = 0, . . . , N − 1.

3.2. Determining
(MRrn, ZRrn)|(FMN ,MRrN(−n),ZRrN(−n), α, pR, pr)

Let fmn = (fn,mn) and mRrn = (mRn,mrn), for n = 0, ..., N , be non-negative
integer vectors with mN = mRN +mrN , and then define the sets, for n = 0, ..., N ,

Afmn
= {Fn = fn,Mn = mn},

AmRrn = {MRn = mRn,Mrn = mrn},

7
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and

AfmN
= AmRrN ∩

N∩
n=0

Afmn
.

Also, let zR∗
n = (zRn(k), k ≥ 0) and zr∗n = (zrn(l), l ≥ 0), for n = 0, ..., N − 1, be

two sequences of non-negative integer numbers, and define the sets

AzR∗
n

= {ZRn(k) = zRn(k), k ≥ 0},
Azr∗n = {Zrn(l) = zrn(l), l ≥ 0}.

Moreover, for n = 0, ..., N − 1, define the sets

AmRrN(−n)
= AmRr0 ∩ · · · ∩AmRrn−1

∩AmRrn+1
∩ · · · ∩AmRrN−1

AzRrN(−n)
= AzR∗

0
∩ · · · ∩AzR∗

n−1
∩AzR∗

n+1
∩ · · · ∩AzR∗

N−1

∩ Azr∗0 ∩ · · · ∩Azr∗n−1
∩Azr∗n+1

∩ · · · ∩Azr∗N−1
.

Now, we deal with the posterior distributions for n = 0, . . . , N − 1

(MRrn, ZRrn)|(FMN ,MRrN(−n),ZRrN(−n), α, p
R, pr). (4)

We consider first the case n = 0, determining the probability distribution of (MRr0,
ZRr0), assuming that we know (α, pR, pr), the sample FMN , and the future genera-
tions, i.e., (MRrn, ZRrn), for all n = 1, ..., N − 1. To simplify the notation, we shall
write P (·) to denote the conditional probability with parameters (α, pR, pr). One then
has to determine the probability

P (AmRr0 , AzR∗
0
, Azr∗0 |AfmN

, AmRrN(−0)
, AzRrN(−0)

),

which is proportional to

P (AmRr0 |Afm0
)P (AzR∗

0
, Azr∗0 |Afm0

, AmRr0)P (Afm1
, AmRr1 |AzR∗

0
, Azr∗0 ), (5)

by simple recursive application of the multiplication rule and the Markov property.
In order to calculate the first probability,

P (AmRr0 |Afm0
), (6)

we assume that the total numbers of females and of males in the initial generation (i.e.,
F0 and M0) are fixed and there is no information on the initial population frequencies
of each type of male (i.e., considering the unknown (MR0,Mr0) to be nuisance pa-
rameters) subject to the constraint MR0 +Mr0 = M0 and independent of (α, pR, pr).
Then, a reasonable choice for the prior distribution of (MR0,Mr0) is the uniform
distribution on the set {(x, y) ∈ Z2

+ : x + y = M0}, with Z+ denoting the set of
non-negative integers.

Given the definition of the model, it is not hard to obtain that the second probability
in (5),

P (AzR∗
0
, Azr∗0 |Afm0

, AmRr0), (7)
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is equal to the product of the probabilities

P ((ZR0, Zr0) = (zR0, zr0)|Afm0
, AmRr0) (8)

and

P (AzR∗
0
, Azr∗0 |(ZR0, Zr0) = (zR0, zr0)), (9)

where zR0 =
∑

k≥0 zR0(k) and zr0 =
∑

l≥0 zr0(l). The probability in (8) is easily
obtained from the definition of the model. Furthermore, since the mating units of
different types reproduce independently, the expression of Equation (9) is equal to
P (AzR∗

0
|ZR0 = zR0)P (Azr∗0 |Zr0 = zr0). Taking into account that p

R
k is the probability

that an R-couple generates k offspring, k ≥ 0, and that there are zR0 couples, one has
that P (AzR∗

0
|ZR0 = zR0) is equal to zR0!∏

k≥0 zR0(k)!

∏
k≥0(p

R
k )

zR0(k). Note that, in this

multinomial form, although there are infinite products, only a finite number of zRn(k)
are non-null, actually at most zR0. The derivation of P (Azr∗0 |Zr0 = zr0) is similar.

Finally, considering that the sex-designation follows a binomial scheme and de-
noting by tR1 =

∑
k≥0 kzR0(k) (tr1 =

∑
l≥0 lzr0(l)) the total progeny of R-couples

(r-couples), one obtains that the third probability in (5),

P (Afm1
, AmRr1 |AzR∗

0
, Azr∗0 ), (10)

is equal to either(
tR1

mR1

)
αtR1−mR1(1− α)mR1

(
tr1
mr1

)
αtr1−mr1(1− α)mr1 ,

if tR1 + tr1 = f1 +mR1 +mr1, tR1 ≥ mR1 and tr1 ≥ mr1, or 0 otherwise.

For generations n = 1, ..., N − 1, the calculation of the distribution in (4) also takes
into account past generations. Because of this, such counting is slightly different from
the previous case of n = 0.

Then, again applying the multiplication rule and the Markov property recursively,
one has that the probability

P (AmRrn , AzR∗
n
, Azr∗n |AfmN

, AmRrN(−n)
, AzRrN(−n)

)

is proportional to the product

P (Afmn
, AmRrn |AzR∗

n−1
, Azr∗n−1

)P (AzR∗
n
, Azr∗n |Afmn

, AmRrn)

P (Afmn+1
, AmRrn+1

|AzR∗
n
, Azr∗n).

The first and the third probabilities are calculated in the same manner as (10),
while the second probability can be calculated analogously to (7).
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3.3. Implementation of the method

We now develop the Gibbs sampler based method considering the parameters β1, β2,
βR, βr, pR(0), and pr(0) of the Dirichlet processes and the sample FMN .

Initialize t = 0
Generate α(0) ∼ Be(β1, β2); p

R(0) ∼ DP(pR(0), βR); pr(0) ∼ DP(pr(0), βr)

Fix (MRr
(0)
n , ZRr

(0)
n ), for n = 0, . . . , N − 1

Iterate t = t+ 1
Generate, for n = 0, . . . , N − 1, (MRr

(t)
n , ZRr

(t)
n ) from

(MRrn, ZRrn)|(FMN ,MRr
(t)
N(−n),ZRr

(t)
N(−n), α

(t−1), pR(t−1), pr(t−1))
with

MRr
(t)
N(−n) = (MRr

(t)
0 , . . . ,MRr

(t)
n−1,MRr

(t−1)
n+1 , . . . ,MRr

(t−1)
N−1 )

and

ZRr
(t)
N(−n) = (ZRr

(t)
0 , . . . , ZRr

(t)
n−1, ZRr

(t−1)
n+1 , . . . , ZRr

(t−1)
N−1 )

Generate (α(t), pR(t), pr(t)) ∼ (α, pR, pr)|(FMN ,MRr
(t)
N ,ZRr

(t)
N ).

Given the initial observed sample FMN , the algorithm is initialized by simulating

the sequence (MRr
(0)
N ,ZRr

(0)
N ) subject to the constraints provided by FMN . Notice

that, although the cardinality of the supports of the reproduction laws may be infinite,
once FMN is known, only a finite number of the coordinates of ZRrN are non-null.
Indeed, ZRn(s) = 0 and Zrn(s) = 0 for all s > Fn+1+Mn+1, for every n = 0, . . . , N−1.
Then, given the sample FMN , the maximum number of coordinates of pR(t) and
pr(t), for all t ≥ 0, which work in the algorithm is given by max{Fn+1 + Mn+1, n =
0, . . . , N−1}+1. Hence, in the last step of the algorithm, taking into account Equation
(3) and the properties of the Dirichlet process, one obtains these coordinates from the
Dirichlet distribution.

The sequence {(α(t), pR(t), pr(t), MRr
(t)
N , ZRr

(t)
N )}t≥0 constitutes an ergodic Mar-

kov chain, and the stationary distribution of that chain is just the sought-after joint
distribution (α, pR, pr,MRrN ,ZRrN )|FMN .

For a run of the sequence {(α(t), pR(t), pr(t),MRr
(t)
N ,ZRr

(t)
N )}t≥0, from a practical

standpoint, one must choose various elements that can be considered to be independent
sample values of the stationary distribution. To this end, one must first choose a burn-
in period, L, from which the chain can be considered to have converged. To determine
L we will make use of the Gelman-Rubin-Brooks methodological approach (see [16]
and [17]). To guarantee the independence of the observations, we shall consider a batch
size G on the basis of an autocorrelation diagnostic. Hence, one chooses Q+1 vectors
in the form

{(α(L+kG), pR(L+kG), pr(L+kG),MRr
(L+kG)
N ,ZRr

(L+kG)
N )}k=0,...,Q.

When G and L are large enough (determined in practice by the above method-
ological approach), the vectors selected can be considered to be independent samples
drawn from (α, pR, pr) |FMN (see [18]). Since these vectors could be affected by the
initial state (α(0), pR(0), pr(0)), the algorithm is applied T times, yielding a final sam-
ple of length T (Q+1). From this sample, we approximate the distribution function of
(α, pR, pr)|FMN by means of kernel density estimators (see [19]).

Finally, we notice that, from (α, pR, pr)|FMN and taking into account the relation
between (pR, pr) and (mR,mr), one can also obtain a sample from the posterior dis-
tribution (mR,mr)|FMN . Moreover, using a Monte-Carlo method, a sample can be
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obtained from

(ZRN+s, ZrN+s, FN+s+1,MRN+s+1,MrN+s+1)|FMN ,

for any s ≥ 0, simulating s generations of a Y-linked two-sex branching process with
blind choice starting with (FN ,MRN ,MrN ) individuals and parameters of the model
sampled from (α, pR, pr)|FMN .

Remark 1. The algorithm proposed in this paper is readily adaptable to other models
with different mating phases, allowing the method to be applied to a wide range of
specific real situations. Examples are preference in the choice of males (see [5]) and the
situation to be presented in Section 5 to illustrate modeling a Y-linked pedigree. These
modifications in the model only involve changes in the calculation of the probability (8)
in the proposed algorithm. The difficulties in the explicit calculation of that probability
will depend on the distributions considered for each type of couple in the mating phase.

Remark 2. The implementation of the Gibbs sampler given in this section has been
for a sampling scheme in which all the generations up to a fixed one could be observed.
To obtain the joint posterior distribution of the latent vectors given the parameter vec-
tor and the observed sample, i.e., (MRN ,ZRrN )|(α, pR, pR,FMN ), we determined it
generation by generation in a conditional way (see Subsection 3.2). It is worth men-
tioning that, at least when the number of generations is small, that joint posterior
distribution could also be sampled through the forward-backward (FB) algorithm.
This is an inference algorithm for Hidden Markov Models (HMM) which computes
the smoothed conditional state probability densities for updating HMM parameters
according to the Baum-Welch technique (see [20] and [21]). In our case, the FB algo-
rithm could be included in the Gibbs sampler as a block that, given (α, pR, pR,FMN ),
calculates the latent vectors (MRN ,ZRrN ) all at once.

4. Application of the method through a simulated example

We set α = 0.4 since in most populations the sex-ratio is different from 0.5 (although
close to it), and the analysis of the evolution of Y-linked genes is found to be more
interesting when α < 0.5 (see [6] and [7]). Moreover, in order to illustrate the possible
difference between the reproductive abilities of mating units of each type that might
exist in nature, we took different reproduction laws with finite support:

(pR0 , p
R
1 , p

R
2 , p

R
3 , p

R
4 ) = (0.0625, 0.2500, 0.3750, 0.2500, 0.0625)

and

(pr0, p
r
1, p

r
2, p

r
3, p

r
4, p

r
5) = (0.0079, 0.0646, 0.2109, 0.3442, 0.2808, 0.0916).

Hence mR = 2 and mr = 3.1. Since α < 0.5, αmR < 1 and 1 < αmr, using the results
given in [6] and [7], one can deduce that the R genotype becomes extinct almost
surely, and that the r allele has a positive probability of survival over the course of
the generations and that it eventually grows at the asymptotic rate of αmr.

For this model, we fixed the values (F0,MR0,Mr0) = (3, 2, 2) and simulated 7
generations of a Y-linked two-sex branching process with blind choice. Notice that the
initial frequencies (MR0, Mr0) = (2, 2) are considered unknown and balanced for both
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n 0 1 2 3 4 5 6 7
Fn 3 5 3 6 6 4 4 5
Mn 4 5 11 3 6 9 4 8

Table 1. Simulated data.

genotypes. Table 1 presents the total number of females and males obtained over the
course of the generations, with the split of the M7 = 8 males into (MR7,Mr7) = (2, 6)
also being obtained from the simulation process.

Notice also that it would be difficult to determine on the basis of simple observa-
tion anything about the future behaviour of the Y-linked character. Assuming that
there was no prior information available for α, we considered a beta prior distribution
with parameters β1 = 1 and β2 = 1, i.e., a uniform distribution. Also, for pR and
pr we considered prior Dirichlet processes with concentration parameter 1 and Pois-
son distribution base measure, since this type of distribution has been found to be
appropriate as a reproduction law (see for example [22] or [23]) and the supports of
reproduction laws are not known in principle. We assumed that the two base measures
have the same mean, since we consider a priori the same reproductive ability for the
two genotypes as we have no prior information on which to make any other choice.
With this assumption, the total number of couples in each generation would follow a
two-sex branching process (see [6]), and the theory developed in [24] could be applied.
Using the simulated data and the squared-error loss estimate given in the latter of
the aforementioned two papers, our estimate of the prior common mean reproductive
ability was 2.8214.

Finally, the probability in (6) is calculated by means of a uniform distribution on
the set {(x, y) ∈ Z2

+ : x + y = 4;x, y > 0}, as no prior information on the initial
frequencies of M0 is considered.

We then applied the algorithm of the previous section, simulating 20 chains (T = 20)
formed by 20 000 iterations of the method. As a test of the convergence of the result-
ing probabilities to the stationary distribution, Table 2 gives the estimated potential
scale reduction factor together with an upper confidence limit for α, and the first co-
ordinates of pR and pr. Because in all the cases the estimated scale reduction factors
are close to unity, they suggest that further simulations will not improve the values of
the scalar estimators listed. Moreover, Gelman-Rubin-Brooks diagnostic tools indicate
that a burn-in period of 5000 is enough (L = 5000). Table 2 also gives the autocorre-
lation values for iterations 5000− 20 000 at lags 1, 50, and 100. The lag-1 and lag-50
autocorrelation values indicate that a batch procedure is necessary, and the lag-100
values that the batch size G = 100 is sufficient. We thus obtain a sample of size 3020
(Q = 150) from (α, pR, pr)|FM7.

To evaluate the algorithm’s efficiency, Table 3 is an extract of some summary statis-
tics for the posterior distribution of α, the reproduction means mR and mr, and the
unobserved variables ZR7, Zr7, F8, MR8, and Mr8 (which we shall deal with later).
Notice that the number of observations can be considered to be a reasonable choice
since, in all cases, the time-series standard errors (TSSE) and the Monte-Carlo stan-
dard errors (MCSE) are less than 5% of the posterior standard deviation (SD). More-
over, those errors are very close to each other owing to the batch procedure.

Figures 1 and 2 show the estimated posterior density for α,mR, andmr, given FM7,
with 95% high posterior density (HPD) sets. The contour plot of the estimated joint
posterior distribution (mR,mr)|FM7 is also shown in Figure 1. Moreover pR|FM7

and pr|FM7 were also obtained, but are not presented for the sake of simplicity. The
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Potential Scale
Reduction Autocorrelations

Est. 97.5% lag-1 lag-50 lag-100
α 1.00 1.00 -0.00386 0.00086 -0.00237
pR0 1.00 1.00 0.71626 -0.00573 -0.00417
pR1 1.00 1.00 0.81615 0.07985 0.00942
pR2 1.00 1.00 0.86957 0.07170 0.00428
pR3 1.00 1.00 0.88165 0.06646 0.01421
pR4 1.00 1.00 0.81865 0.05702 0.02754
pr0 1.00 1.00 0.75616 0.04110 0.00317
pr1 1.00 1.00 0.81709 0.07472 0.02502
pr2 1.00 1.00 0.87558 0.05526 0.00672
pr3 1.00 1.00 0.92610 0.17157 0.05989
pr4 1.00 1.00 0.87570 0.12401 0.01779

Table 2. Potential scale reduction factors and autocorrelations for α, and the first values of pR and pr.

α mR mr ZR7 Zr7 F8 MR8 Mr8
MEAN 0.4230 2.4959 2.9744 1.2617 3.7382 6.2006 2.0057 6.3898
SD 0.0541 0.4994 0.4240 0.6321 0.6321 2.4707 1.6526 2.6969

MCSE 0.0010 0.0089 0.0075 0.0112 0.0112 0.0439 0.0293 0.0479
TSSE 0.0010 0.0093 0.0088 0.0116 0.0116 0.0474 0.0349 0.0455

Table 3. Summary statistics for the posterior distributions of α, mR, mr, ZR7, Zr7, F8, MR8, and Mr8,
given FM7.
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Figure 1. Estimated density for α|FM7 with 95% HPD set (left), and contour plot of (mR,mr)|FM7 (right).
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Figure 2. Estimated density for mR|FM7 (left) and mr|FM7 (right), with 95% HPD set.
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Figure 3. Evolution of the squared-error loss estimates of α (left), mR (middle), and mr (right), with 95%
HPD sets.
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Figure 4. Estimated predictive distributions ZR7|FM7 (left) and Zr7|FM7 (right).

HPD sets contain the true values of these parameters. Figure 3 shows the consistency
of the squared-error loss estimates of the three parameters. Notice that we obtained a
better result for the r genotype, since the R genotype becomes extinct almost surely.

Figures 4 and 5 illustrate the predictive posterior distributions of the total number
of females, and of males and mating units of each type in the next generation. One
observes from Table 3 that the sample size is sufficient for accurate estimates to be
made. The predicted behaviour in this generation is in keeping with the fact that the
R genotype becomes extinct almost surely and there is a positive probability of the r
genotype’s survival.
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Figure 5. Estimated predictive distributions F8|FM7 (left), MR8|FM7 (middle), and Mr8|FM7 (right).
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Concentration Poisson Geometric
parameter MEAN HPD 95% MEAN HPD 95%

0.50 0.42046 0.31491 0.52405 0.42109 0.31407 0.53500
0.75 0.42087 0.31168 0.52872 0.42023 0.31258 0.53264
1 0.42300 0.31920 0.52487 0.42156 0.31157 0.52776
5 0.42073 0.31392 0.53252 0.42024 0.31228 0.52856
10 0.41694 0.30804 0.52225 0.41891 0.31220 0.52103
20 0.42088 0.32049 0.52820 0.41943 0.31321 0.52349

Table 4. Sensitivity analysis for α|FM7.

Concentration Poisson Geometric
parameter MEAN HPD 95% MEAN HPD 95%

0.50 2.48592 1.68230 3.48328 2.43697 1.46135 3.59668
0.75 2.48394 1.50657 3.54474 2.41127 1.42340 3.55337
1 2.49595 1.60745 3.32928 2.42343 1.36314 3.56445
5 2.52246 1.79568 3.37029 2.48820 1.51501 3.72488
10 2.54912 1.88674 3.27969 2.51921 1.62203 3.69884
20 2.58385 2.02126 3.20585 2.53486 1.64409 3.64686

Table 5. Sensitivity analysis for mR|FM7.

4.1. Sensitivity and robustness analysis

In the previous section, as prior distributions for pR and pr we assumed Dirichlet
processes with concentration parameter 1 and a Poisson distribution base measure.
We now describe a discrete sensitivity analysis carried out to study the influence of
the prior parameters. For that, we considered Poisson and geometric distributions as
base measure, and different values for the concentration parameter. In Tables 4-6 we
present the estimates of α, mR, and mr under squared-error loss as well as their 95%
HPD sets, obtained in the sensitivity analysis. For α, we obtained similar figures in
all cases, since the posterior distribution depends only on FM7 (see Equation (3)).
For mR and mr, the squared-error loss estimates tended to be close to the mean of
the base measures as the concentration parameter increased (as usual). Anyway, one
can conclude that those initial values do not significantly influence the estimation of
the parameters. Moreover, in all cases the HPD sets contained the true values of mR

and mr, although their ranges were slightly greater for the geometric base than for
the Poisson base.

Finally, we performed a robustness analysis by means of a series of simulated ex-
amples taking α = 0.45 and considering different values of mR and mr. In this way,
we analysed all forms of the asymptotic behaviour of the alleles: coexistence, fixation,
and extinction (see [6] and [7] for a detailed description of such behaviour). To run the

Concentration Poisson Geometric
parameter MEAN HPD 95% MEAN HPD 95%

0.50 2.97716 2.18279 3.87841 2.99914 2.03458 4.20865
0.75 2.94969 2.07192 3.83351 2.99217 2.00224 4.00436
1 2.97439 2.19181 3.83126 3.01474 1.94133 4.22338
5 2.92762 2.18572 3.70971 2.97231 1.95779 4.14504
10 2.88905 2.31871 3.51036 2.90738 1.96482 3.94306
20 2.85999 2.29291 3.42091 2.89028 2.03489 3.92406

Table 6. Sensitivity analysis for mr|FM7.
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PARAMETERS MEAN 95% HPD PATH
α mR mr mR mr mR mr TYPE

0.45 2.5 3.5 2.8694 3.1680 2.0054 3.9306 2.2497 4.1054 (1)
2.5 1.5 2.4391 2.5810 1.7398 3.2455 1.9967 3.2252 (2)
1.5 2.5 2.2921 2.3216 1.5568 3.1686 1.7515 3.0627 (3)
2 1.5 2.2664 2.2558 1.3891 3.2645 1.4150 3.2761 (4)

Table 7. Application of the method for different values of mR and mr, with α = 0.45, based on samples
corresponding to paths for which (Type 1) both genotypes have survived, (Type 2) the R genotype has survived
and r has become extinct, (Type 3) the R genotype has become extinct and r has survived, and (Type 4) both

genotypes have become extinct.
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Figure 6. Contour plots of (mR,mr)|FM7 obtained from application of the Gibbs algorithm to samples
with the different values of (α,mR,mr) given in Table 7. First graphic corresponds with sample for which both

genotypes survive; second plot with that for which R genotype survives and r becomes extinct; third one with
that for which R genotype becomes extinct and r survives and fourth plot with that in which both genotypes
become extinct.

experiment, we assumed the observation of the first 7 generations considering there
to be a positive number of males of both genotypes in the last generation. We then
applied the method studied here, observing that the 95% HPD sets contained the true
value of the parameters in all cases except the fixation cases for the genotype that
will become extinct. Table 7 presents a summary of the different parameters used in
the examples together with their squared-error loss estimates and 95% HPD sets. Fig-
ure 6 shows the (mR,mr)|FM7 contour plots for each sample. One observes that the
posterior distributions related to the surviving genotype are very accurate. However,
as is usual in a branching process context (see [25]), the results in some fixation or
extinction cases were less accurate.

5. Application to real data

In [13], an 84-member pedigree (of whom 76 were still alive) of a Chinese family of
Tujia ethnicity with non-syndromic hearing impairment was studied. All the affected
individuals are patrilineal males, indicating that their hearing loss is a hereditary
Y-linked pattern. As females of this family do not present the disorder and mate
with unrelated males (who present normal hearing), two types of Y-linked alleles are
present: one which transmits hearing loss (the allele of interest, termed R) and the
other which transmits normal hearing (allele r). This situation can thus be modeled
using a Y-linked two-sex branching process with blind choice (the data shows that the
hearing impairment does not affect mate selection).

In this section, we apply our proposed method to the real data provided in the
aforementioned study [13] in which only an R family line is observed. This pedigree
can be considered to be part of a branch of an entire population tree. However, since
not all the generation sizes of the process are observed but only those of one branch,
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the mating phase of our model needs to be modified in order to fit the data.
Prior to explaining this modification, we must first indicate that we shall use the

notation (α,mR,mr) for the parameters of interest and (Fn,MRn,Mrn, ZRn, Zrn)
for the variables, although in this latter case they correspond only to the observed
pedigree, not to the whole population (which is unknown). To facilitate reading the
rest of the section, we shall not introduce any new notation.

From analysing the data (see [13]), we were able to conclude that the characteristics
of the evolution of the family tree were:

(1) All males mate, as is usual in patriarchal societies, with perfect fidelity.
(2) Not all females mate, and the proportion of females who do depends on the

ratio between the two types of males at each generation (seeking to balance the
number of couples of each type in that generation). This behaviour has also been
found in other databases (see [26]).

(3) At each generation, females generated in the family tree only form couples with
external r-males (assuming that the possibility of a female mating with an ex-
ternal R-male is negligible).

(4) Mating with relatives is not allowed.

Given these characteristics, our family tree can be considered to lie within an entire
population tree which includes a sufficient number of females at each generation for
all the males in the family to mate with, so that ZRn = MRn, and Zrn = Mrn+Xn,
with Xn being the number of females generated in the family tree who mate. These
females mate with males who do not belong to the pedigree, and, in accordance with
characteristic (3), are always r-males. Considering characteristic (2), it is reasonable to
model Xn by a binomial distribution with size Fn and probability MRn/Mn. Indeed,
when the number of r-couples formed by r-males generated in the family tree is small
in comparison with the number of R-couples, many females will tend to mate with
external r-males in order to balance the population, and then MRn/Mn should be
large (i.e., close to unity). And vice versa, when the number of those r-couples is
large in comparison with the number of R-couples, few females will tend to mate, and
MRn/Mn should be small.

This adaptation of the mating phase of our general model involves only a slight
change in the calculation of the probability in Equation (8) when implementing the
method, using now a binomial instead of a hypergeometric distribution. Before apply-
ing the method, let us first describe the sample. The data given in [13] start with an
R-male and contain the complete family tree generated by this male over 4 generations
(including couples and offspring). Both the number of couples in the third generation
and the offspring forming the last generation can be considered open because in the
first case some couples may give birth to further offspring, and in both cases some
individuals may be too young to mate.

In view of this consideration, although the complete family tree is available, in
order to apply the method we only consider as observed sample the total numbers of
female and male offspring in the first three generations who have a direct patrilineal
relationship with the first couple observed in this family. This information is given in
Table 8. For the males, the type is only distinguished in the last (third) generation,
with M3 = 10 being split into (MR3,Mr3) = (7, 3). These data form the vector FM3.
Since the third generation couples and the fourth generation individuals are still open,
they are not included in the sample, although they will be useful in evaluating the
goodness of the predictions given by the method.
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n 0 1 2 3
Fn 0 1 3 9
Mn 1 4 6 10

Table 8. Real data.

Since the pedigree starts with an R-male, we consider M0 = MR0 = 1, and then
(ZR0, Zr0) = (1, 0), which allows the probabilities of Expressions (6) and (8) to be
obtained trivially. Moreover, since (F1,M1) = (1, 4), that initial couple generates 5
offspring. This information could be useful in estimating the initial prior common
reproductive ability, so that for both offspring reproduction laws we assume a Dirichlet
process with concentration parameter 1 and Poisson distribution base measure of mean
5. This choice will not affect the final estimate since, as was shown in the previous
section, the method is insensitive to the initial values of the base distribution. In
estimating the parameter α, we assume no prior information is available so that we
again consider (as in the simulated example) a beta prior distribution with parameters
β1 = β2 = 1.

Now we apply the algorithm proposed in this paper, and simulate T = 20 chains
formed by 20 000 iterations of the method. The Gelman-Rubin-Brooks diagnostic tools
indicate that a sufficient burn-in period is L = 5000 with a batch size of G = 300. We
thus obtain a sample of size 1020 (Q = 50) from the conditional distribution of the
parameter vector (α, pR, pr)|FM3.

Table 9 presents some summary statistics for the posterior distributions of α and the
reproduction means mR and mr, and predictive posterior distributions of the variables
ZR3, Zr3, F4, MR4, and Mr4.

Since we have considered that all males of type R mate, {ZRn}n≥0 behaves as
a Galton-Watson process with mean growth rate (1 − α)mR. It is therefore impor-
tant to estimate this parameter in order to determine the fate of the R-allele in
the population. The corresponding results are given in Table 9, and Figure 7 (left)
shows the parameter’s estimated posterior density. From this estimated posterior
density, we obtain that the probability of the parameter’s being greater than 1 is
P ((1 − α)mR > 1|FM3) ≃ 0.9775, with a Bayes factor equal to 43.3478, clearly
greater than unity. Hence, one can conclude that the mean growth rate is greater
than 1, and therefore, applying branching process theory, that there exists a positive
probability for hearing impairment not to disappear from this family in the following
generations. This is also reflected in the prediction of ZR3 (notice that this is not
random once MR3 has been observed) and in the predictive posterior distribution of
MR4 shown in Figure 7 (right). The data set has 5 R-males in the fourth generation,
although 2 male offspring were still too young to be diagnosed at the time of exami-
nation and some couples of the third generation may still give birth to new offspring.
Our prediction, with its apparent overestimate of a value of 5 could therefore still be
considered adequate. Besides the study of the fate of the R-allele, the results allow
the reproductive ability of the r-allele to be quantified and compared with that of
the R-allele. Figure 8 (left) shows the contour plot of the estimated joint posterior
distribution of (mR,mr) given FM3. We estimated that P (mR > mr|FM3) ≃ 0.6520
with a Bayes factor equal to 1.8732, also greater than unity. Hence, one can conclude
that the mean number of offspring per R-couple is greater than the mean number
of offspring per r-couple. Nonetheless, we also predict that the r-allele will persist in
the population even though it has a lower reproductive ability than the R allele (see
Figure 8 (right)).
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α mR mr (1− α)mR ZR3 Zr3 F4 MR4 Mr4
MEAN 0.3995 2.7538 2.4230 1.6518 7 9.3216 17.0284 11.5588 13.6324
SD 0.0799 0.5623 0.9296 0.3994 0 1.3556 6.7140 4.4510 7.1394

MCSE 0.0025 0.0176 0.0291 0.0125 0 0.0425 0.2102 0.1394 0.2235

TSSE 0.0025 0.0176 0.0291 0.0125 0 0.0445 0.2102 0.1394 0.2235

Table 9. Summary statistics for the posterior distributions of α, mR, mr, (1 − α)mR,ZR3, Zr3, F4, MR4,
and Mr4, given FM3.
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Figure 7. Estimated density for (1− α)mR|FM3 with 95% HPD set (left) and estimated predictive distri-
bution MR4|FM3 (right).
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Figure 8. Contour plot of (mR,mr)|FM3 (left) and estimated predictive distribution Mr4|FM3 (right).
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Remark 3. The software environment for statistical computing and graphics R
(“GNU S”, see [27]) was used to perform the simulation study by means of paral-
lel computing. We used the CODA package (see [28]) to analyse the convergence of
the method, and the GenKern package (see [29]) for the two-dimensional kernel density
estimation.

6. Concluding remarks

A procedure for drawing inferences on the reproductive abilities of a Y-linked gene has
been developed by using a two-sex branching process with blind choice. This stochastic
model is suitable for analysing the evolution of the number of carriers of two alleles of
a Y-linked gene in a two-sex monogamous population in which each female chooses her
partner from among the male population without caring about his type, since either
it is not expressed in his phenotype or, if it is expressed, it is not decisive at mating
time. This assumption led us to consider a sampling scheme based on real situations in
nature in which the total numbers of females and males (with unrecognized genotypes)
are observed in each generation up to some given generation. Based on this sample,
and adding the information corresponding to the total number of males of each geno-
type in the last generation, we took a Bayesian approach to the inference problem
in a non-parametric framework, without assuming any knowledge of the reproduction
laws. We then used a Dirichlet process to deal with the problem of ignorance of the
cardinality of the reproduction laws’ supports. The problem was considered to be an
incomplete data estimation problem with a latent sequence structure, and solved by
applying the Gibbs sampler (a Markov chain Monte Carlo method). There have been
other approaches to the problem of estimating parameters from incomplete sample
data in the context of branching processes (e.g., [30] and [31] based on a Bayesian per-
spective, and [32],[33], and [34] based on the EM algorithm). An essential difference
with the present case is that in those other studies it was possible to construct the
latent sequences independently generation by generation. Since the sample considered
in the present case does not have a Markovian structure, this was impossible, and
therefore the distribution of latent sequences depends on past and future observations
(see Equation (1)). Applying the proposed method, we approximated the posterior
distributions of the main parameters of the model and the predictive distributions
for as yet unobserved generations. In a simulation study, we confirmed the accuracy,
efficiency, and robustness of the algorithm in making inferences about the main pa-
rameters of the model, in spite of how small an amount of information the sample
represents. This kind of small sample in terms of population size and number of ob-
served generations is usual in many population studies (see the Introduction). In this
sense, it is also important to point out that the results were satisfactory despite the
smallness of the data set (in our simulated example, we observed 7 generations with
fewer than 15 individuals in each generation, and in the real example, there were only
3 generations with 9 individuals at most). Obviously the method is scalable, but the
greater the dimensionality, the more computationally expensive its application will be.
The results are more accurate for both genotypes when they have both survived, or
for the surviving genotype in the case of fixation. The method is readily adaptable
to mating schemes that differ from the one initially considered in the present study.
By way of illustration of this fact, we presented the analysis of a real data set cor-
responding to hereditary Y-linked hearing impairment in a Chinese family of Tujia
ethnicity.
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In conclusion, to obtain informative posterior distributions of the reproduction laws,
it is enough to observe the total numbers of females and males in each generation to-
gether with the number of males of each genotype in just the last generation. Moreover,
note that it is unnecessary either to observe the total number of couples of each type in
any generation or to have any prior information about the reproductive abilities (the
method is robust to the choice of the base distribution of the Dirichlet process). The re-
sults that have been presented show that our procedure provides a useful framework in
which to model real genetic problems, and illustrates the power of our non-parametric
Bayesian approach.
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