"This is the peer reviewed version of the following article: [López-Piñeiro, A.; Albarrán, A.; Rato Nunes, J. M.; Peña, D.; Cabrera, D. (2010). Cumulative and Residual Effects of Two-Phase Olive Mill Waste on Olive Grove Production and Soil Properties. Soil Science Society of America Journal, 75, 3, 1061-1069. ISSN 0361-5995], which has been published in final form at [https://doi.org/10.2136/sssaj2010.0230]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited."

"Esta es la versión revisada por pares del siguiente artículo: [López-Piñeiro, A.; Albarrán, A.; Rato Nunes, J. M.; Peña, D.; Cabrera, D. (2010). Cumulative and Residual Effects of Two-Phase Olive Mill Waste on Olive Grove Production and Soil Properties. Soil Science Society of America Journal, 75, 3, 1061-1069. ISSN 0361-5995. https://doi.org/10.2136/sssaj2010.0230], que ha sido publicado en su forma final en [https://doi.org/10.2136/sssaj2010.0230]. Este artículo puede ser utilizado con fines no comerciales de acuerdo con los Términos y Condiciones de Wiley para el Uso de Versiones Autoarchivadas. Este artículo no puede ser mejorado, enriquecido o transformado de otra manera en un trabajo derivado, sin el permiso expreso de Wiley o por derechos estatutarios bajo la legislación aplicable. Los avisos de copyright no deben ser eliminados, oscurecidos o modificados. El artículo debe estar vinculado a la versión registrada de Wiley en Wiley Online Library y debe prohibirse cualquier incrustación, enmarcado o puesta a disposición del artículo o páginas del mismo por parte de terceros desde plataformas, servicios y sitios web distintos de Wiley Online Library".

Accepted Version, doi:10.2136/sssaj2010.0230

1	Cumulative and residual effects of two-phase olive mill waste on olive
2	grove production and soil properties
3	
4	A. López-Piñeiro ^{1,*} , A. Albarrán ² , J. M. Rato Nunes ³ , D. Peña ¹ , D.
5	Cabrera ¹
6 7	¹ Área de Edafología y Química Agrícola, Facultad de Ciencias, Universidad
8	de Extremadura, Avda de Elvas S/N 06071 Badajoz, Spain.
9	² Área de Producción Vegetal, Escuela de Ingenierías Agrarias, Universidad de
10	Extremadura, Ctra. de Cáceres, 06071 Badajoz, Spain.
11	³ Escola Superior Agraria de Elvas, Apartado 254, 7350 Elvas, Portugal.
12	*Corresponding author:
13	Antonio López Piñeiro
14	Área de Edafología y Química Agrícola.
15	Facultad de Ciencias.
16	Universidad de Extremadura.
17	Avda de Elvas S/N, 06071 Badajoz, Spain.
18	Phone: +34 924289355
19	Fax: +34 924289355
20	E-mail: <u>pineiro@unex.es</u>
21	Acknowledgments
22	This research was supported by the Spanish Ministries of Science and
23	Technology (Project AGL2004-0518-C02-02) and Education and Science
24	(Project AGL2007-655771-C02-02).

25	Cumulative and residual effects of two-phase olive mill waste on olive
26	grove production and soil properties
27 28 29	ABSTRACT
30	Modern olive mill extraction techniques generate a large amount of
31	two-phase olive mill waste (OMW) containing up to 90% organic matter.
32	Recycling OMW as a soil amendment may represent a solution for its
33	disposal, especially in Mediterranean areas, where many soils are
34	characterized by very low organic matter levels. A ten-year field study was
35	conducted to evaluate the long-term sustainability of raw OMW disposal as a
36	soil amendment on an olive grove in Elvas, Portugal. The soil was amended
37	with OMW at rates of 0, 30, and 60 Mg ha ⁻¹ , dry weight equivalent, for eight
38	years, with cumulative and residual effects being assessed in the last year and
39	two years after the last application. Long-term applications of OMW to soil
40	led to cumulative and residual effects on soil physical (aggregate stability and
41	bulk density), chemical (total organic carbon and its humified fractions, total
42	N, available P, and K), and biochemical (dehydrogenase, urease, β -
43	glucosidase, alkaline phosphatase, and arylsulfatase activities) properties, and
44	contributed to an increase in olive yields compared to the control (> 17%;
45	> 1.47 Mg ha ⁻¹). However, electrical conductivity rose significantly with
46	OMW application, especially in the residual year, ranging from 0.513 dS m^{-1}
47	for the unamended soil to 2.29 dS m^{-1} at the 60 Mg ha ⁻¹ application rate.
48	Repeated addition of OMW to olive grove soils may be a useful strategy for
49	recycling this organic amendment to improve soil fertility and increase yields.

50	However, long-term use of OMW increases the risk of soil salinity, especially
51	if application rates are greater than 30 Mg ha ⁻¹ .
52	
53	Abbreviations: ARS, arylsulfatase; CHA; total organic carbon associated
54	with FA; CHA, total organic carbon associated with HA; DH, dehydrogenase;
55	EC, electrical conductivity; FA, fulvic acids; GLU, β -glucosidase; HA,
56	humic acids; PG, polymerization grade; PHO, phosphatase; TOC, total organic
57	carbon content; OMW, two-phase olive mill waste; UR, urease; WSOC,
58	water-soluble organic carbon; WSPH, water soluble phenol.
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	

INTRODUCTION

, -	
74	In most Mediterranean countries olive oil extraction is one of the
75	foremost agricultural industries, with estimated economic impacts of more
76	than \notin 6102 million yr ⁻¹ (FAO, 2008). However, disposal of olive mill waste
77	represents a major environmental problem in those countries. In Spain, the
78	largest olive oil producer in the world, more than 4,000,000 Mg of organic
79	slurry is generated annually from continuous centrifuge two-phase processing
80	(two-phase olive mill waste, OMW), which has to be properly managed to
81	avoid negative environmental impacts. The utilization of most proposed OMW
82	treatments remains uncertain for economic and technical reasons (Hanifi and
83	Hadrami, 2009). Therefore, with the continued generation of OMW, both the
84	proper disposal and the OMW viable management strategies are imperative.
85	Soils in many Mediterranean areas are generally characterized by low
86	organic matter content, which contributes to their limited fertility and
87	productivity (Albaladejo et al., 1994). Therefore, agricultural practices based
88	on periodic inputs of organic amendments are strongly recommended for
89	Mediterranean agro-ecosystems. Since traditional organic soil amendments
90	(i.e., manures) are often scarce, a wide variety of organic wastes from different
91	sources have become useful inputs for the potential improvement and
92	restoration of soil organic matter and nutrients (Fernández et al., 2009). As
93	OMW contains a large amount of organic matter, it might be useful as an
94	amendment for agricultural soils, thereby potentially lowering inputs of N, P,
95	and K fertilizer (López-Piñeiro et al., 2008). Moreover, the slow degradation

96	rate of OMW after application to soil can make the use of this waste an
97	attractive strategy for soil C sequestration (Sánchez-Monedero et al., 2008).
98	Several studies have focused on the use of composted OMW as a soil
99	amendment, although most were carried out under short-term and/or
100	greenhouse conditions (e.g., Madejón et al., 2001; Altieri and Exposito, 2008;
101	Fornes et al., 2009). Direct application of OMW has been found to increase
102	organic C content, improve both nutrient levels (N, P and K) and aggregate
103	stability, and increase wheat yield up to 198% relative to controls (López
104	Piñeiro et al., 2006). In a short-term field experiment, also conducted with a
105	wheat crop, soil amended with raw OMW improved physico-chemical
106	characteristics and increased wheat yield (Brunetti et al., 2005). Nevertheless,
107	other studies have reported that application of OMW may lead to
108	immobilization of the soil's mineral N and P, thereby creating nutrient
109	deficiencies and reducing crop yield (Thompson and Nogales, 1999; Tejada
110	and González, 2004; López-Piñeiro et al., 2006).
111	In recent studies, short (2 yr) and medium-term (5 yr) positive effects
112	of applying fresh OMW onto an olive grove soil have been observed (López-
113	Piñeiro et al., 2008). However, successive long-term OMW applications to soil
114	could result in an accumulation of toxic compounds such as salts and phenolic
115	substances such that negative effects might be detectable in olive trees and/or
116	soil. Though olive groves are suitable for OMW application, there is little
117	information available on the agronomic and environmental sustainability of
118	this practice. Moreover, to the best of our knowledge, there are no published
119	studies comparing the cumulative and residual effects of repeated applications

120	of raw OMW on soil properties, nutrient status, and olive yield under long-
121	term field conditions. Such information is needed to ensure sustainable use of
122	this abundant resource.
123	The objectives of this field study were to: (1) evaluate the cumulative
124	effects (8 yr) of repeated applications of OMW on olive tree nutritional status
125	and production; (2) assess the influence of repeated applications of OMW on
126	soil physical, chemical, and biochemical properties; and (3) determine residual
127	effects of OMW application on olive yield and soil properties. We
128	hypothesized long-term application of fresh OMW to olive groves would be
129	an attractive strategy both for its disposal and for the restoration of degraded
130	soils.
131	
131 132	MATERIALS AND METHODS
	MATERIALS AND METHODS Experimental Design
132	
132 133	Experimental Design
132 133 134	Experimental Design A field experiment was conducted in Elvas, Portugal (38°53' N; 7°9'
 132 133 134 135 	Experimental Design A field experiment was conducted in Elvas, Portugal (38°53' N; 7°9' W; 290 m a.s.l.) on an olive grove (<i>Olea europaea</i> L.) amended or unamended
 132 133 134 135 136 	Experimental Design A field experiment was conducted in Elvas, Portugal (38°53' N; 7°9' W; 290 m a.s.l.) on an olive grove (<i>Olea europaea</i> L.) amended or unamended with OMW for eight successive years (from 1999 to 2006). The slope gradient
 132 133 134 135 136 137 	Experimental Design A field experiment was conducted in Elvas, Portugal (38°53' N; 7°9' W; 290 m a.s.l.) on an olive grove (<i>Olea europaea</i> L.) amended or unamended with OMW for eight successive years (from 1999 to 2006). The slope gradient at the field site was < 1%. The sandy loam soil, classified as a Typic

- 140 clay, 19.7% silt, and 60.6% sand in the 25 cm depth. Climate at the site is
- 141 semiarid Mediterranean (Papadakis, 1966) with a mean annual precipitation of
- 142 500 mm occurring mostly in autumn and spring, and a mean annual
- 143 temperature of 16.7 °C. The grove was established in 1970 with 1-year old

144 cuttings. Trees are clean cultivated and trained using the central leader system145 (Fontanazza, 2004).

Fresh OMW was obtained from an oil industry located near the town
of Portalegre, Portugal which employs a two-phase decanter centrifugation
system. Characteristics of the soil and two-phase olive mill waste are given in
Table 1.

150 The experimental design consisted of nine contiguous plots established 151 in the olive grove, with amendments made in a complete randomized design. 152 Each plot consisted of 12 trees in a 4 x 3 orientation, from which only the 153 central two trees were used for sampling. The three amendment treatments 154 consisted of 30 (T30) and 60 (T60) Mg OMW ha⁻¹ (dry weight equivalent) and a control (T0) (unamended soil). Each treatment was repeated in triplicate. 155 156 Amendments were applied annually in February (from 1999 to 2006) by 157 spreading the waste manually on the surface, and then incorporating to a depth 158 of about 15 cm with mouldboard plowing. 159

Every olive grove plot was divided into four quadrants. Soil samples 160 (0-25 cm depth) from each plot were obtained by mixing four randomly 161 collected subsamples (one per quadrant) from each plot in December 2006 and 162 December 2008. Soil samples were taken using a hand auger. Field-moist and 163 air-dried samples passed through a 2-mm sieve and were stored at 4 °C until 164 analysis. Since no OMW amendments were added after 2006, measurements 165 made in 2006 and 2008 represented the "cumulative" (T0C, T30C, and T60C 166 samples) and "residual" (TOR, T30R, and T60R samples) effects, respectively. 167

169	Physical and Chemical Analyses of the Soil and OMW
170	Soil texture was determined by sedimentation using the pipette method
171	(Gee and Bauder, 1998). Aggregate stability of 1- to 2-mm soil aggregates was
172	determined according to Sun et al. (1995), a method which uses a single 0.250
173	mm sieve and an apparatus with a stroke length of 1.3 cm and a frequency of
174	35 cycles min ⁻¹ . Soil bulk density was determined using undisturbed soil cores
175	(Blake and Hartge, 1998). The soil was sampled at four locations (one per
176	quadrant) in each plot and at 5 depths (5, 10, 15, 20, and 25 cm) in each
177	location, taking the average of these five depth cores. The pH was measured in
178	1:1 (w/v) soil/water and 1:5 (w/v) OMW/water suspensions using a pH-meter
179	with a combination electrode. Electrical conductivity (EC) was measured in
180	saturated soil samples (USDA, 1954). Total organic C content (TOC) was
181	determined by dichromate oxidation (Nelson and Sommers, 1996). Water-
182	soluble organic C (WSOC) was extracted with de-ionized water at 3:1 (water
183	to soil) and 100:1 (water to OMW) ratios. Humic and fulvic acids (HA and
184	FA) were extracted using a solution of 0.1 M $Na_4P_2O_7 + NaOH$ and a ratio of
185	extractant to soil sample of 10:1. The supernatant was acidified to pH 2 with
186	$\mathrm{H}_2\mathrm{SO}_4$ to precipitate humic acids. The WSOC and the TOC associated with
187	each fraction of HA (CHA) and FA (CFA) were determined by dichromate
188	oxidation at an absorbance of 590 nm (Sims and Haby, 1971). The
189	polymerization grade (PG) was calculated as (CHA/CFA). Total N content
190	was determined by the Kjeldahl method (Bremner and Mulvaney 1982).
191	Mineral N as N-NO3 was extracted using 2M KCl solution (Keeney and

192	Nelson 1982) and measured by steam distillation with MgO and Devarda's
193	alloy. Available P was determined according to the method of Olsen et al.
194	(1954) using the ammonium molybdate-ascorbic acid method described by
195	Murphy and Riley (1962). Available K was extracted by $1M NH_4OAc$ at pH 7
196	and was assayed by atomic absorption spectrophotometry.
197	Water content of the OMW was calculated from weight loss after oven
198	drying to a constant weight at 105°C. Total P and K in OMW were extracted
199	by $Na_2S_2O_7$ fusion (Hossner, 1996). Water soluble phenolic substances were
200	determined by the Folin-Ciocalteu colorimetric method (Box, 1983).
201	Cellulose, hemicellulose, and lignin were determined using the acid and
202	neutral fiber detergent method (Goering and Van Shoest, 1970).
•••	
203	
203 204	Enzyme Activities
	Enzyme Activities Dehydrogenase (DH) activity was determined by the method of
204	·
204 205	Dehydrogenase (DH) activity was determined by the method of
204 205 206	Dehydrogenase (DH) activity was determined by the method of Trevors (1984) modified by García et al. (1993). One gram of soil was
204 205 206 207	Dehydrogenase (DH) activity was determined by the method of Trevors (1984) modified by García et al. (1993). One gram of soil was incubated for 20 h at 20°C in the dark with 0.2 ml of 0.4% 2- <i>p</i> -iodophenyl-3
204 205 206 207 208	Dehydrogenase (DH) activity was determined by the method of Trevors (1984) modified by García et al. (1993). One gram of soil was incubated for 20 h at 20°C in the dark with 0.2 ml of 0.4% 2- <i>p</i> -iodophenyl-3 <i>p</i> -nitrophenyl-5 tetrazolium chloride (INT) as substrate. At the end of the
204 205 206 207 208 209	Dehydrogenase (DH) activity was determined by the method of Trevors (1984) modified by García et al. (1993). One gram of soil was incubated for 20 h at 20°C in the dark with 0.2 ml of 0.4% 2- <i>p</i> -iodophenyl-3 <i>p</i> -nitrophenyl-5 tetrazolium chloride (INT) as substrate. At the end of the incubation iodonitrotetrazolium formazan was extracted with 10 ml of
204 205 206 207 208 209 210	Dehydrogenase (DH) activity was determined by the method of Trevors (1984) modified by García et al. (1993). One gram of soil was incubated for 20 h at 20°C in the dark with 0.2 ml of 0.4% 2- <i>p</i> -iodophenyl-3 <i>p</i> -nitrophenyl-5 tetrazolium chloride (INT) as substrate. At the end of the incubation iodonitrotetrazolium formazan was extracted with 10 ml of methanol and the absorbance measured at 490 nm. The DH and other activities
204 205 206 207 208 209 210 211	Dehydrogenase (DH) activity was determined by the method of Trevors (1984) modified by García et al. (1993). One gram of soil was incubated for 20 h at 20°C in the dark with 0.2 ml of 0.4% 2- <i>p</i> -iodophenyl-3 <i>p</i> -nitrophenyl-5 tetrazolium chloride (INT) as substrate. At the end of the incubation iodonitrotetrazolium formazan was extracted with 10 ml of methanol and the absorbance measured at 490 nm. The DH and other activities were determined in triplicate.

spectrophotometrically at 636 nm (Nanniperei et al., 1980; Kandeler andGerber, 1988).

217	The activity of β -glucosidase (GLU) was determined by incubating 1 g
218	of soil with 4 ml of 25 mM 4-nitrophenyl- β -d-glucanopyranoside in 0.1 M
219	modified universal buffer (MUB) pH 6.0 (Tabatabai, 1982). For the
220	determination of phosphatase (PHO) activity, 4 ml of 25 mM 4-nitrophenyl
221	phosphate MUB pH 11 was added to 1 g of soil (Tabatabai and Bremmer,
222	1969). For the determination of arylsulfatase (ARS) activity, 4 ml of 5 mM 4-
223	nitrophenyl sulfate in 0.5 M acetate buffer pH 5.8 was added to 1 g of soil
224	(Tabatabai and Bremmer, 1970). The soils were incubated for 1h at 37°C. The
225	samples were then cooled to 2 °C for 15 min to stop the reaction, and the p -
226	nitrophenol produced in the enzymatic reactions was determined at 400 nm,
227	398 nm, and 410 nm for GLU, PHO, and ARS, respectively. Blank assays
228	without soil and without substrate were performed at the same time as
229	controls.
230	Crop Measurements
231	Treatment effects on the nutritional status of olive trees was
232	determined by leaf analysis of a composite sample of 100 leaves per plot
233	(Beutel et al., 1983) collected in July of 2006 and 2008 during the
234	phenological stage of lignification of the stone (Sanz-Cortés et al., 2002). In
235	the laboratory, leaves were washed with 0.03% triton X-100 (Sigma-Aldrich),

- rinsed with de-ionized water, and oven dried for 72 h at 65 °C. Dried leaf
- samples were ground and wet-ashed in a block digester using an $H_2SO_4-H_2O_2$
- 238 mixture for N, P, and K determination (Lowther, 1980). Nitrogen content was

239	determined by the Kjeldahl method, P was determined colorimetrically using
240	the method described by Murphy and Riley (1962), and K was determined by
241	atomic absorption spectrophotometry. Tree crops were harvested manually
242	(Ravetti, 2008), and olive production was evaluated by weighing the crop
243	(total fresh weight of fruits) from the central two trees for each replicate plot.
244	
245	Statistical Analyses
246	Statistical analyses were carried out using SPSS 11.5 for Windows
247	(SPSS Inc., 2002). The experimental design was a completely randomized
248	design with three replicates. A repeated measure ANOVA was conducted for
249	selected soil and crop parameters to assess the effects of treatment. The data
250	were analyzed differently by separating out effects following eight yr of
251	OMW application from those observed two yr after the last application. All
252	pairwise multiple comparisons were performed using the Tukey test.
253	Differences between treatment means were considered statistically significant
254	at P≤0.05.
255	
256	RESULTS AND DISCUSSION
257	Olive Tree Yields and Leaf Nutrient Concentrations
258	In 2006, following eight yr of annual OMW application, olive
259	production was greater in the amended soils despite high concentrations of
260	potentially toxic organic compounds (e.g., phenolic substances) in soil (Table
261	2; Fig. 1). However, this increase (17% compared to the control) was
262	statistically significant only for the lower OMW rate (T30C) (Table 2). In the

263	residual year (2008), yields were significantly greater (>23%) at both OMW
264	rates compared to the control, but were not different between the T30R and
265	T60R treatments. The present results are similar to those reported previously
266	regarding residual effects of OMW application in two Mediterranean soils,
267	although obtained in a greenhouse experiment using wheat as a response crop
268	(López-Piñeiro et al., 2006). Similar results were also obtained by Brunetti et
269	al. (2005 and 2007) using residues from a three-phase decanter centrifugation
270	processing for oil extraction. Those authors concluded that the increased total
271	content of acidic functional groups in the amended soil's humic acids affected
272	wheat grain yield positively in a short-term (1 yr) field experiment. However,
273	in another field study (Altieri and Esposito, 2008), olive yield was not
274	significantly different between amended and unamended plots, though that
275	study was conducted over a shorter time frame (5 yr) with lower OMW
276	application rate (> 3 times less than in our experiment).
277	The sufficient range for N, P, and K concentration in olive trees leaves
278	of have been estimated at 15 g kg ⁻¹ , 1 g kg ⁻¹ , and 8 g kg ⁻¹ , respectively (Marín
279	and Fernández-Escobar, 1997). The nutritional olive tree status in the
280	unamended soil was characterized by leaf N and K contents below the
281	threshold values for the sufficiency range in both cumulative and residual
282	years (Table 2). This result was to be expected since these soils were
283	unfertilized for ten years. In contrast, the leaf N, P, and K concentration for the
284	amended soils were above the sufficiency threshold values in both the
285	cumulative and residual years, indicating OMW may have compensated for
286	the lack of mineral nutrition in soil. After eight years of repeated OMW

application, leaf N contents significantly increased (P<0.05) with increasing
rates of OMW, indicating that N immobilization did not occur at rates
impacting plant availability in our study. This positive effect was even more
evident in the residual year (Table 2), despite there not being a significant
difference in leaf N concentration between the T30R and T60R treatments
(Table 2).

293 A significant ($P \le 0.05$) positive effect on leaf P and K concentration 294 was also observed after repeated raw OMW applications. At the 60 Mg OMW ha⁻¹ rate, relative increases in leaf P were 14% and 12% for the cumulative and 295 296 residual years, respectively, compared with the control. This suggests not all P 297 was immobilized during the experiment, despite OMW possessing a high C/P 298 ratio. Leaf K content also increased after repeated applications of OMW, 299 although this increase was significant (P≤0.05) only for the residual year 300 (Table 2). A simple correlation analysis was used to identify relationships 301 between olive yields and leaf nutrient status. This relationship was only 302 significant for leaf N content (r=0.676, P \leq 0.05), thereby confirming N as a 303 major nutritional factor affecting olive growth in our study. 304 **Physical and Chemical Soil Properties** In comparison with the control, repeated 30 and 60 Mg ha⁻¹ OMW 305 306 application rates significantly increased soil TOC by factors of 2.3 and 3.3, 307 respectively (Table 3). Two years after the last OMW application, TOC 308 remained relatively constant in OMW-amended plots (T30R and T60R, 309 treatments), suggesting moderate to high amounts of OMW were capable of 310 building stable organic matter pools resistant to decomposition. Similarly,

311	repeated raw OMW applications led to significant positive effects on HA, FA,
312	and WSOC (Table 3). Compared to the control, amended soils had greater
313	HA, FA, and WSOC, with higher percentages attained at the 60 Mg ha ⁻¹
314	application rate (74%, 94%, and 244% greater for HA, FA, and WSOC,
315	respectively). Two years after the last OMW application HA content
316	significantly increased, while FA and WSOC contents decreased (Table 3).
317	Compared with the control, HA increased by factors of 1.7 and 3.2 for the
318	cumulative and residual years, respectively, at the higher rate of OMW
319	application. Conversely, FA content was much lower in the residual year at
320	both rates of OMW, and may have been attributed to its higher degradability
321	and/or to its transformation into more complex molecules such as HAs (De
322	Nobili and Petrussi, 1988; Fernandez et al., 2007). Moreover, the
323	polymerization grade (PG) of OMW-amended soils increased significantly in
324	the residual year. These results suggest repeated raw OMW amendments can
325	lead to an increase in the native soil organic matter stability by increasing the
326	humified organic matter fraction, which represents a positive outcome in the
327	context of beneficial recycling of OMW. For that reason, it is possible OMW
328	amendments would contribute to improving soil properties and controlling
329	degradation processes. Indeed, many authors argue that erosion is the principal
330	problem associated with olive production (Fleskens and Stroosnijder, 2007),
331	thereby emphasizing the importance of increasing organic matter and
332	improving soil properties.
333	In the residual year, a sharp decrease in WSOC was observed in the
334	OMW treated soils. The T60R treatment maintained WSOC values

335 significantly higher than the control. Therefore, OMW could result in an 336 increased risk of aquifer contamination, even two years after the last 337 application. Consequently, safe OMW application should be restricted to areas 338 not directly connected to drinking water aquifers. 339 Eight years of continued application of OMW (Table 3) led to a 340 significant linear increase in total N (r=0.914, P≤0.001). Similarly, inorganic 341 N concentrations increased with increasing OMW rates compared to the 342 control. This result is in agreement with that reported following OMW 343 addition to the same soil in a short-term greenhouse and field experiment 344 (López-Piñeiro et al., 2006 and 2008). Indeed, similar trends were detected in 345 the residual year, supporting observations of increased N concentration in the 346 leaves following OMW treatment. Furthermore, the increase in inorganic N 347 suggests immobilization of mineral N did not occur during labile C 348 degradation of OMW compounds. Nevertheless, while increased inorganic N

can result in improved yields, it can negatively affect the quality of both olive
oil (Fernández-Escobar et al., 2006) and groundwater (Fernández-Escobar et
al., 2004).

Application of OMW led to a significant linear increase in available P in the cumulative (r=0.925, P \leq 0.001) and residual (r=0.939, P \leq 0.001) years. The available P content increased more in the residual year than in the cumulative year. In particular, the increase for the 30 Mg ha⁻¹ treatment was from 14.0 (T0C) to 37.6 mg kg⁻¹ in the cumulative year, but from 10.7 (T0R) to 52.9 mg kg⁻¹ in the residual year. For the 60 Mg ha⁻¹ treatment, the increase was from 14.0 (T0C) to 60.3 mg kg⁻¹ in the cumulative year, but from 10.7

359	(T0R) to 75.8 mg kg ⁻¹ in the residual year (Table 3). The trend in available P
360	was consistent with the increase in leaf P concentration following the OMW
361	application. The increase in soil available P content with OMW application
362	may not only provide agronomic benefits but also help resolve problems
363	related to the P fixation frequently observed on calcareous soils (Sharpley et
364	al., 1989). However, accumulation of labile P in soil may increase the
365	concentration of dissolved P in surface run-off (Ajiboye et al., 2004).
366	Compared to the control, increases of available K in the cumulative
367	year were 2.2 and 4.0 times greater at the 30 and 60 Mg ha ⁻¹ OMW rates,
368	respectively (Table 3). The increases in available K are consistent with results
369	of short-term studies using treated and untreated residues from three-phase
370	(Madejón et al. 2003; Montemurro et al. 2004) and two-phase decanter
371	processes (Tejada and González, 2004; López-Piñeiro et al., 2006 and 2008).
372	Increased available K was also detectable two years after the last OMW
373	application, confirming that this residue could act as an alternative for K
374	fertilizer. Moreover, the observed increase in available K could improve the
375	tolerance of the olive trees to various stress situations, including drought
376	(Tisdale et al., 1999).
377	Soil pH was only significantly affected by OMW at the higher

application rate, decreasing from 8.0 to 7.5 after eight years of repeated
applications (Table 3). In the residual year, unamended and OMW-amended
soils showed similar pH values, reflecting the strong buffering capacity of the
soil under study (Tisdale et al., 1999). These results are consistent with those
obtained in previous short-term studies (López-Piñeiro et al., 2006), where a

significant (P≤0.05) relationship between the application rate of OMW and pH
was only found in acidic soils.

385 Application of OMW significantly increased water soluble phenol 386 (WSPH) content (Fig. 1). In the cumulative year, WSPH was 1.8 and 3.5 times 387 greater for the T30C and T60C treatments, respectively, relative to the control. 388 Two years following the last OMW application, WSPH content decreased in 389 the amended soils, a result likely caused by microbial degradation and/or 390 organic matter incorporation (Sierra et al., 2007). This finding was consistent 391 with data reported by Mekki et al. (2007), where phenol compounds decreased 392 rapidly in soils amended with OMW. Despite the decrease in WSPH in the 393 residual year, WSPH content was greater in the T60R treatment compared to 394 the T30R or non-amended control. 395 Plots amended with the higher OMW rate possessed electrical 396 conductivity (EC) values significantly greater than control plots (Fig. 2).

However, differences in EC between the amended soils and the control
increased significantly in the residual year. The increase in the residual year
could be attributable to the release of soluble organic and inorganic species
during the humification of OMW (Table 3). The EC increases with OMW
application may affect yields of salt-sensitive crops, and therefore may be a
cause for concern.

The application of raw OMW significantly increased the percentage of water stable aggregates (WSA) (Table 3). Similar improvements in WSA were also observed after addition of fresh OMW in greenhouse and short-term field experiments (Tejada and González, 2004; López-Piñeiro et al., 2006). This

407	effect was maintained in the field as it was still evident two years after the last
408	OMW application. For both cumulative and residual treatments, WSA was
409	greater at the higher OMW application rate. Good soil structure is important
410	for sustaining long-term crop production because it influences water status,
411	nutrient availability, crop growth and development, and resistance to erosion
412	(Piccolo and Mbagwu, 1999). The increased aggregate stability may be
413	attributed to organic matter input from OMW application (Tejada and
414	González, 2004; García-Orenes et al. (2004).
415	The effectiveness of OMW in enhancing WSA was significantly
416	greater in the residual than the cumulative year. Average increases in WSA
417	over the unamended plots were 64% and 99%, for the T60C and T60R
418	treatments, respectively. Water stable aggregates were correlated positively
419	with HA (r=0.964, P \leq 0.001) and TOC (r=0.873, P \leq 0.01), suggesting humic
420	substances may be involved in soil structural stability. This finding was
421	consistent with previous reports indicating that humic acids play a significant
422	role in soil aggregate stability through the formation of clay-organic
423	complexes (Piccolo et al., 1997; Pikul et al., 2009; Tejada et al., 2009).
424	Compared with the control, soil bulk density (BD) decreased by 27%
425	and 31% at the higher OMW rate in the cumulative (T60C) and residual
426	(T60R) years, respectively (Table 3). A significant (P≤0.001) negative
427	relationship was observed between BD and TOC (r=0.914) and WSA
428	(r=0.941), suggesting the observed decrease in BD was associated with higher
429	organic matter content and better aggregation due to OMW application.

430 Several authors have also reported a decrease in BD with the addition of

431 organic amendments (e.g., Celik et al., 2004; Hati et al., 2007).

432

Enzyme Activities

433 Dehydrogenase (DH) is involved in redox soil reactions and is 434 considered to be a measure of the soil's microbiological activity (Nannipieri et 435 al., 2003; Moreno et al., 2009). The DH activity increased significantly 436 following application of OMW (Fig. 3A). Compared to the control, DH 437 activity increased by about 70% and 115% in the cumulative year and by about 29% and 49% in the residual year, at the 30 and 60 Mg ha⁻¹ OMW rates, 438 439 respectively. The addition of a readily-available C source from OMW could 440 promote the growth of indigenous microorganisms, and therefore result in 441 increased synthesis of DH. Similar responses in enzyme activities have been 442 observed upon addition of other organic amendments (Herrero et al., 1998; 443 Kotsou et al., 2004). Although DH activity was always greater in amended 444 than in unamended soils, it decreased significantly at the higher application 445 rate two years after the last OMW application. The decrease in DH activity 446 may have been due to a lack of labile organic matter, which had most likely 447 been decomposed by the residual year.

Beta-glucosidase (GLU) plays an important role in hydrolytic
processes during organic matter decomposition (Acosta-Martínez et al., 2008;
Stott et al., 2010). Beta-glucosidase activity increased with increasing OMW
application rate (Fig. 3B). Furthermore, as GLU is mainly produced by fungi
(Perucci, 1992), its increased activity suggests the presence of OMW caused a
shift in the relative proportions of fungi and bacteria. These results are in

agreement with those reported by Mechri et al. (2007), who found a significantincrease in fungi after OMW water application.

456 Olive mill waste application significantly increased urease (UR) 457 activity compared with the control (Fig. 3C), although residual effects were 458 less pronounced than cumulative effects. In particular, UR activity was greater than the unamended soil by factors of 4.8 and 3.4 at 60 Mg ha⁻¹ for the 459 460 cumulative and residual years, respectively. The high concentration of 461 available substrate coupled with the demand for nutrients by vegetation or 462 microorganisms could lead to a high activity of these enzymes during OMW 463 mineralization (García-Gil et al., 2000; Fernández et al., 2009). Indeed, UR 464 activity was significantly correlated with total N (r=0.943, P≤0.001), TOC 465 (r=0.969, P≤0.001), and leaf N content (r=0.908, P≤0.001). The UR increases 466 were similar to those reported by Fernández et al. (2009) in a short-term study 467 where a Mediterranean soil was amended with two types of sewage sludge. 468 However, in a laboratory study using OMW water amended soils (Piotrowska 469 et al., 2006), UR activity increased much less than in our study due to less 470 total N applied. 471 Similarly to UR, phosphatase (PHO) activity increased by factors of 2.7 and 2.8 at 60 Mg ha⁻¹ compared to the control for the cumulative and 472 473 residual years, respectively (Fig. 3D). Likewise, PHO activity was 474 significantly correlated with available P (r=0.886, P≤0.001), and TOC (r=0.977, P≤0.001). 475 476

A significant increase in arylsulfatase (ARS) activity was observed in
OMW amended soils in the cumulative and residual years, independent of

478	application rate (Fig. 3E). The residual effect of OMW application on ARS
479	activity was more pronounced than the cumulative effect. Compared with the
480	control, ARS activity increased by about 120% and 254% in the cumulative
481	and the residual years, respectively. Arylsulfatase activity was positively
482	correlated with HA (r=0.891, P≤0.001), PG (0.790, P≤0.001), and TOC
483	(r=0.760, P \leq 0.01). Significant correlations between enzyme activities and
484	humic substances have been previously reported (Nannipieri et al., 1996;
485	Cayuela et al., 2008), suggesting that the relationship between ARS activity
486	and humified organic matter could be attributed to the protection of enzymes
487	by humic-like substances.
488	According to Verstraete and Voest (1977), positive relationships
489	between soil enzyme activities and crop yields are to be expected. In our study
490	olive yields were significantly correlated with DH ($r=0.513$, P<0.05), GLU
491	(r=0.587, P<0.05), PHO (r=0.712, P<0.01), and UR (r=0.753, P<0.01),
492	confirming that a measurable association existed between crop yield and soil
493	microbial activity (Antolín et al., 2005). These relationships may be
494	considered indicative of improved soil conditions for crop growth (Madejón et
495	al., 2003).
496	
497	CONCLUSIONS
498	Long-term application of raw OMW to soil had positive effects on
499	olive yields and soil physical, chemical, and biochemical properties. In
500	particular, OMW led to an increase of total organic carbon and humic

501 fractions, which may contribute to improved soil quality and fertility.

502	Therefore, use of OMW on olive groves as an organic amendment may be
503	considered a sound management strategy for its disposal and for restoration of
504	degraded olive grove soils. However, results from this study suggest OMW
505	application should not exceed 30 Mg ha ⁻¹ in order to mitigate concerns
506	associated with soil salinity.
507	
508	REFERENCES
509	
510	Acosta-Martínez, V., D. Acosta-Mercado, D. Sotomayor-Ramírez, and L.
511	Cruz-Rodriíguez. 2008. Microbial communities and enzymatic
512	activities under different management in semiarid soils. Appl. Soil.
513	Ecol. 38:249-260.
514	
515	Ajiboye, B., O. Akinremi, and G.J. Raez. 2004. Laboratory characterization of
516	phosphorus in fresh and oven-dried organic amendments. J. Environ.
517	Qual. 33:1062-1069.
518	
519	Albaladejo, J., M. Martinez Mena, and V. Castillo. 1994. Changes in soil
520	physical properties induced by soil degradation. p.250-252. In:
521	Transaction of the 15th World Congress of Soil Science. Acapulco,
522	Mexico vol. 2b, ISSS Publisher.
523	
524	Altieri, R., and A. Esposito. 2008. Olive orchard amended with two
525	experimental olive mill wastes mixtures: Effects on soil organic
526	carbon, plant growth and yield. Bioresour. Technol. 99:8390-8393.
527	
528	Antolín, M.C., I. Pascual, C. García, A. Polo, and M. Sánchez-Díaz. 2005.
529	Growth, yield and solute content of barley in soils treated with sewage
530	sludge under semiarid Mediterranean conditions. Field Crop. Res.
531	94:224-237.
532	

533	Beutel, J., K. Uriu, and O. Lilleland. 1983. Leaf analysis for California
534	deciduous fruits. In: Soil and plant tissue testing in California.
535	University of California, Bull.,1879.
536	
537	Blake, G.R., and K.H. Hartge. 1998. Bulk density. p.363-382. In A. Klute
538	(ed.) Methods of soil analysis. Part 1. SSSA Book Ser.5 SSSA,
539	Madison, WI.
540	
541	Box, J.D. 1983. Investigation of the Folin-Ciocalteu phenol reagent for the
542	determination of polyphenolic substances in natural waters. Water Res.
543	17:511–525.
544	
545	Bremner, J.M., and C.S. Mulvaney. 1982. Nitrogen-Total. p. 595-624. In A.L.
546	Page, R.H. Miller, and D.R. Keeney (eds.) Methods of soil analysis,
547	Part 2. Agronomy Monog. 9 ASA and SSSA, Madison, WI.
548	
549	Brunetti, G., C. Plaza, and N. Senesi. 2005. Olive pomace amendment in
550	Mediterranean conditions: Effect on soil and humic acid properties and
551	wheat (Tritiucm turgidum L.) yield. J. Agric. Food Chem. 53:6730-
552	6736.
553	
554	Brunetti, G., N. Senesi, and C. Plaza. 2007. Effects of amendment with treated
555	and untreated olive oil mill wastewaters on soil properties, soil humic
556	substances and wheat yield. Geoderma, 138:144-152.
557	
558	Cayuela, M.L., C. Mondini, M.A. Sánchez-Monedero, and A. Roig. 2008.
559	Chemical properties and hydrolytic enzyme activities for the
560	characterisation of two-phase olive mill wastes composting. Bioresour.
561	Technol. 99:4255-4262.
562	
563	Celik, I., I. Ortas, and S. Kilic. 2004. Effects of compost, mycorrhiza, manure
564	and fertilizer on some physical properties of a Chromoxerert soil. Soil
565	Till. Res. 78:59-67.
566	

567	De Nobili, M., and F. Petrussi. 1988. Humification index (HI) as evaluation of
568	the stabilization degree during composting. J. Ferment. Technol.
569	66:577–583.
570 571	FAO. 2008. FAO statistical databases 2008. FAO, Rome.
572	
573	Fernández-Escobar, R., G. Beltrán, M.A. Sánchez-Zamora, J. García-Novelo,
574	M.P. Aguilera, and M. Uceda. 2006. Olive oil quality decreases with
575	nitrogen over-fertilization. HortScience 41:215-219.
576	
577	Fernández-Escobar, R., M. Benlloch, E. Herrera, and J.M. García-Novelo.
578	2004. Effect of traditional and slow-release N fertilizers on growth of
579	olive nursery plants and N losses by leaching. Sci. Hortic. 101:39-49.
580	
581	Fernández, J.M., D. Hernández, C. Plaza, and A. Polo. 2007. Organic matter
582	in degraded agricultural soils amended with composted and thermally-
583	dried sewage sludges. Sci. Total Environ. 378:75-80.
584	
585	Fernández, J.M., C. Plaza, J.C. García-Gil, and A. Polo. 2009. Biochemical
586	properties and barley yield in a semiarid Mediterranean soil amended
587	with two kinds of sewage sludge. Appl. soil ecol. 42:18-24.
588	
589	Fleskens, L., and L. Stroosnijder. 2007. Is soil erosion in olive groves as bad
590	as often claimed? Geoderma 141:260-271.
591	
592	Fontanazza, G. 1994. Olive farming systems developments. California Grower
593	18:10-11.
594	
595	Fornes, F., R. García de la Fuente, R.M. Belda, and M. Abad. 2009. 'Alperujo'
596	compost amendment of contaminated calcareous and acidic soils:
597	Effects on growth and trace element uptake by five Brassica species.
598	Bioresour. Technol. 100:3982-3990.
599	

600	García, C., T. Hernandez, C. Costa, B. Ceccanti, G. Masciandaro, and C.
601	Ciardi. 1993. A study of biochemical parameters of composted and
602	fresh municipal wastes. Bioresour. Technol. 44:17-23.
603	
604	García-Gil, J.C., C. Plaza, P. Soler-Rovira, and A. Polo. 2000. Long-term
605	effects of municipal solid waste compost application on soil enzyme
606	activities and microbial biomass. Soil Biol. Biochem. 32:1907-1913.
607	
608	García-Orenes, F., C. Guerrero, J. Mataix-Solera, J. Navarro-Pedreño, I.
609	Gómez, and J. Mataix-Beneyto. 2004. Factors controlling the
610	aggregate stability and bulk density in two different degraded soils
611	amended with biosolids. Soil Till. Res. 82:65-76.
612	
613	Gee, G.W., and J.W. Bauder. 1998. Particle-size analysis. p. 383-411. In A.
614	Klute (ed.) Methods of soil analysis. Part 1. SSSA Book Ser.5 SSSA,
615	Madison, WI.
616	
617	Goering, H.K., and P.J. Van Soest. 1970. Forage fiber analysis: Apparatus,
618	reagents, procedures, and some applications. Agric. Handbook 379.
619	USDA-ARS, Washington, DC.
620	
621	Hanifi, S., and I. El Hadrami. 2009. Olive mill wastewaters: Diversity of the
622	fatal product in olive oil industry and its valorisation as agronomical
623	amendment of poor soils: A review. J. Agron. 8:1-13.
624	
625	Hati, K.M., A. Swarup, A.K. Dwivedi, A.K. Misra, and K.K. Bandyopadhyay.
626	2007. Changes in soil physical properties and organic carbon status at
627	the topsoil horizon of a Vertisol of central India after 28 years of
628	continuous cropping, fertilization and manuring. Agr. Ecosyst.
629	Environ. 119:127-134.
630	
631	Herrero, O., R. Canet, R. Albiach, and F. Pomares. 1998. Enzymatic activities
632	and content of mineral nitrogen in soil after the application of two rates
633	of different organic products. Agrochimica 42:296-303

634 635	Hossner, L.R. 1996. Dissolution for total elemental analysis. p.49-64. In D.L.
636	Sparks (ed.) Methods of soil analysis. Part 3. SSSA Book Ser.5 SSSA,
637	Madison, WI.
638	
639	ISSS-ISRIC-FAO, 1994. World reference base for soil resources. Draft.
640	Wageningen, Roma.
641	
642	Kandeler, E., and H. Gerber. 1988. Short-term assay of soil urease activity
643	using colorimetric determination of ammonium. Biol. Fert. Soils 6:68-
644	72.
645	
646	Keeney, D.R., and D.W. Nelson. 1982. Nitrogen - inorganic forms. p. 643-
647	698. In A.L. Page, R.H. Miller, and D.R. Keeney (eds.) Methods of
648	soil analysis. Part 2. Agron. 9. Am. Soc. Agron. Inc. Madison, WI.
649	
650	Kotsou, M., I. Mari, K. Lasaridi, I. Chatzipavlidis, C. Balis, and A. Kyriacou.
651	2004. The effect of olive oil mill wastewater (OMW) on soil microbial
652	communities and suppressiveness against Rhizoctonia solani. Appl.
653	Soil Ecol. 26:113-121.
654	
655	López-Piñeiro, A., J. Fernández, J.M. Rato Nunes, and A. García. 2006.
656	Response of soil and wheat crop to the application of two-phase olive
657	mill waste to Mediterranean agricultural soils. Soil Sci. 171:728-736.
658	
659	López-Piñeiro, A., A. Albarrán, J.M.R. Nunes, and C. Barreto. 2008. Short
660	and medium-term effects of two-phase olive mill waste application on
661	olive grove production and soil properties under semiarid
662	Mediterranean conditions. Bioresour. Technol. 99:7982-7987.
663	
664	Lowther, J.R. 1980. Use of a single sulphuric-hydrogen peroxide digest for the
665	analysis of <i>pinus radiate</i> needles. Commun. Soil Sci. Plant Anal.
666	11:175-188.
667	

668	Madejón, E., P. Burgos, R. López, and F. Cabrera. 2003. Agricultural use of
669	three organic residues: Effect on orange production and on properties
670	of a soil of the 'Comarca Costa de Huelva' (SW Spain). Nutr. Cycl.
671	Agroecosys. 65:81-288.
672	
673	Madejón, E., R. López, J.M. Murillo, and F. Cabrera. 2001. Agricultural use
674	of three (sugarbeet) vinasse composts: effect on crops and chemical
675	properties of a Cambisol soil in the Guadalquivir river valley (SW
676	Spain). Agri. Ecosyst. Environ. 84:55-65.
677	
678	Marín, L., and R. Fernández-Escobar. 1997. Optimization of nitrogen
679	fertilization in olive orchards. p. 411-414. In: Val, J., Montañés, L.,
680	Monge, E. (Eds.) Proceedings of the Third International Symposium
681	on Mineral Nutrition of Deciduous Fruit Trees, Zaragoza, Spain.
682	
683	Mechri, B., A. Echbili, M. Issaoui, M. Braham, S.B. Elhadj, and M.
684	Hammami. 2007. Short-term effects in soil microbial community
685	following agronomic application of olive mill wastewaters in a field of
686	olive trees. Appl. Soil Ecol. 36:216-223
687	
688	Mekki, A., A. Dhouib, and S. Sayadi. 2007. Polyphenols dynamics and
689	phytotoxicity in a soil amended by olive mill wastewaters. J. Environ.
690	Manage. 84:134-140.
691	
692	Montemurro, F., G. Convertini, and D. Ferri. 2004. Mill wastewater and olive
693	pomace compost as amendments for rye-grass. Agronomie 24:481-486.
694	
695	Moreno, B., A. Vivas, R. Nogales, C. MacCi, G. Masciandaro, and E. Benitez.
696	2009. Restoring biochemical activity and bacterial diversity in a
697	trichloroethylene-contaminated soil: The reclamation effect of
698	vermicomposted olive wastes. Environ. Sci. Pollut. Res. 16:253-264.
699	
700	Müller U., and P. Wegener. 1988. Interaction of humic substances with biota.
701	p. 179-192. In: Frimmel F.H. and Christman R.F. (eds) Humic

702	substances and their role in the environment. John Wiley & Massey
703	University (Palmerston North, New Zealand), Sons, New York.
704	
705	Murphy, J., and J.P. Riley. 1962. A modified single solution method for
706	determination of phosphate in natural waters. Anal. Chim. Acta 27:31-
707	36.
708	
709	Nannipieri, P., J. Ascher, M.T. Ceccherini, L. Landi, G. Pietramellara, and G.
710	Renella. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci.
711	54:655-670.
712	
713	Nannipieri P., B. Ceccanti, S. Cervelli, and E. Matarese. 1980. Extraction of
714	phosphatase, urease, protease, organic carbon and nitrogen from soil.
715	Soil Sci. Soc. Am. J. 44:1011-1016.
716	
717	Nannipieri, P., P. Sequi, and P. Fusi. 1996. Humus and enzyme activity. p.
718	293-328. In: A. Piccolo (Ed.) Humic substances in terrestrial
719	ecosystems. Elsevier Science, Amsterdam.
720	
721	Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon and
722	organic matter. p. 961-1010. In D.L. Sparks (ed.) Methods of soil
723	analysis. Part 3. SSSA Boock Ser.5 SSSA, Madison, WI.
724	
725	Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of
726	available phosphorus in soils by extraction with sodium bicarbonate.
727	USDA Circular 939, U. S. Gov. Print, Office, Washington, DC.
728	
729	Papadakis, J. 1966. Climates of the world and their agricultural potentialities.
730	In: J. Papadakis (ed.). Buenos Aires, 173 pp.
731	
732	Perucci, P. 1992. Enzyme activity and microbial biomass in a field soil
733	amended with municipal refuse. Biol. Fert. Soils 14:54-60.
734	

735	Piccolo, A., and J.S.C. Mbagwu. 1999. Role of hydrophobic components of
736	soil organic matter in soil aggregate stability. Soil Sci. Soc. Am. J.
737	63:1801-1810.
738	
739	Piccolo, A., G. Pietramellara, and J.S.C. Mbagwu. 1997. Use of humic
740	substances as soil conditioners to increase aggregate stability.
741	Geoderma 75:267-277.
742	
743	Pikul Jr., J.L., G. Chilom, J. Rice, A. Eynard, T.E. Schumacher, K. Nichols,
744	J.M.F. Johnson, S. Wright, T. Caesar, and M. Ellsbury. 2009. Organic
745	matter and water stability of field aggregates affected by tillage in
746	South Dakota. Soil Sci. Soc. Am. J. 73:197-206.
747	
748	Piotrowska, A., G. Iamarino, M.A. Rao, and L.Gianfreda. 2006. Short-term
749	effects of olive mill waste water (OMW) on chemical and biochemical
750	properties of a semiarid Mediterranean soil. Soil Biol. Biochem.
751	38:600-610.
752	
753	Ravetti, L. 2008. Guide to efficient olive harvesting. Rural Industries Research
754	and Development, Pub. No. 08/157, Camberra, Australia.
755	
756	Sánchez-Monedero, M.A., M.L. Cayuela, C. Mondini, N. Serrramiá, and A.
757	Roig. 2008. Potential of olive mill wastes for soil C sequestration.
758	Waste Manage. 28:767-773.
759	
760	Sanz-Cortés, J., J. Martínez-Calvo, M.L. Badenes, H. Bleiholder, H. Hack, G.
761	LLacer, and U. Meier. 2002. Phenological growth stages of olive tress
762	(Olea europea). Ann. Appl. Biol. 140:151-157.
763	
764	Sharpley, A.N., U. Singh, G. Uehara, and J. Kimble. 1989. Modeling soil and
765	plant phosphorus dynamics in calcareous and highly weathered soils.
766	Soil Sci. Soc. Am. J. 53:153-158.
767	

768	Sierra, J., E. Martí, M.A. Garau, and R. Cruañas. 2007. Effects of the
769	agronomic use of olive oil mill wastewater: Field experiment. Sci.
770	Total Environ. 378:90-94.
771	
772	Sims, J.R., and V.A. Haby. 1971. Simplified colorimetric determination of soil
773	organic matter. Soil Sci. 112, 137-141.
774	
775	SPSS Inc., 2002. Guía Breve SPSS 11. 5, SPSS Inc., Ireland.
776	
777	Stott, D.E., S.S. Andrews, M.A. Liebig, B.J. Wienhold, and D.L. Karlen.
778	2010. Evaluation of β -Glucosidase activity as a soil quality indicator
779	for the soil management. Soil Sci. Soc. Am. J. 74:107-119.
780	
781	Sun, H., F.J. Larney, and M.S. Bullock. 1995. Soil amendments and water-
782	stable aggregation of a desurfaced dark brown chernozem. Can. J. Soil
783	Sci. 75:319-325.
784	
785	Tabatabai, M.A. 1982. Soil enzymes. p. 903-947. In: A.L. Page, E.M. Miller,
786	and D.R. Keeney (Eds.) Methods of soil analyses. Part 2. Chemical and
787	microbiological properties. ASA, Madison, Wisconsin.
788	
789	Tabatabai, M.A., and J.M. Bremner. 1969. Use of p-nitrophenyl phosphate for
790	assay of soil phosphatase activity. Soil Biol. Biochem. 1:301-307.
791	
792	Tabatabai, M.A., and J.M. Bremner. 1970. Arylsulfatase activity of soils. Soil
793	Sci. Soc. Am. Pro. 34:225-229.
794	
795	Tejada, M., M.T. Hernandez, and C. García. 2009. Soil restoration using
796	composted plant residues: Effects on soil properties. Soil Till. Res.
797	102:109-117.
798	
799	Tejada, M., and J.L. González. 2004. Effects of application of a by-product of
800	the two-step olive oil mill process on maize yield. Agron. J. 96:692-
801	699.

802	
803	Tisdale, S., W. Nelson, J. Havlin, and J. Beaton. 1999. Soil fertility and
804	fertilizers. An introduction to nutrient management. 503 p. 6th ed.
805	Prentice-Hall, Upper Saddle River, New Jersey, USA.
806	
807	Thompson, R.B., and R. Nogales. 1999. Nitrogen and carbon mineralization in
808	soil of vermi-composted and unprocessed dry olive cake ('orujo seco')
809	produced from two-stage centrifugation for olive oil extraction. J.
810	Environ. Sci. Heal. B. 34:917-928.
811	
812	Trevors, J.T. 1984. Dehydrogenase activity in soil: A comparison between the
813	INT and TTC assay. Soil Biol. Biochem. 16:673-674.
814	
815	USDA. 1954 Diagnosis and improvement of saline and alkali soils. Agric.
816	Handbook 60. United States Salinity Laboratory, Riverside, CA.
817	
818	USDA. 1999. Soil taxonomy: A basic system of soil classification for making
819	and interpreting soil surveys. 2nd ed. U.S. Gov. Print. Office,
820	Washington, DC.
821	
822	Verstraete W., and J.P. Voest. 1977. Soil microbial and biochemical
823	characteristics in relation to soil management and fertility. Soil Biol.
824	Biochem. 9:253–258.
825	
826	
827	
828	
829	
830	
831	
832	
833	
834	
835	

837	Table 1. Initial characteristics of the	e soil and t	wo-phase	e olive
838	mill waste (OMW). [†]			
839	Properties	Unit	Soil	OMW
	Gravimetric water content (w/w)	$(g kg^{-1})$		480.20
	Water stable aggregates (1-2 mm)	(%)	26.2	
	Organic carbon	$(g kg^{-1})$	13.3	535
	pH		8.10	5.70
	Total N	$(g kg^{-1})$	1.49	16.0
	Electrical conductivity	$(dS m^{-1})$	0.513	5.02
	Р	$(g kg^{-1})$	0.013 [‡]	2.75^{\P}
	Κ	$(g kg^{-1})$	0.200 [§]	$15.0^{\#}$
	Water-soluble phenols	$(g kg^{-1})$	0.016	7.3
	Lignin	$(g kg^{-1})$		19.6
	Hemicellulose	$(g kg^{-1})$		19.1
	Cellulose	$(g kg^{-1})$		22.8
840	[†] All concentrations are on an air-dr	ried basis e	except gra	vimetric
841	water content which is on an oven	-dried basi	s.	
842	[‡] Available P.			
843	[§] Available K.			
844	Total P.			
845	[#] Total K.			
846				

836	
837	Table 1. Initial characteristics of the soil and two-phase olive

		· `	Year 2006			Year 2008			Analysis of variance		
	Units	$T0C^{\dagger}$	T30C [‡]	T60C§	TOR [¶]	$T30R^{\#}$	$T60R^{\dagger\dagger}$	T ^{‡‡}	$S^{\S\S}$	$T \times S$	
Yield	$(Mg ha^{-1})$	8.55a [™]	10.2b	9.11ab	7.13a	8.60b	8.83b	**	**	NS	
		(1.00)##	(0.69)	(0.15)	(0.88)	(0.40)	(0.32)				
N concentration	$(g kg^{-1})$	12.3a	15.2b	15.9c	12.0a	15.3b	16.2b	***	*	NS	
		(0.41)	(0.21)	(0.60)	(1.12)	(0.55)	(0.87)				
P concentration	$(g kg^{-1})$	1.24a	1.36ab	1.42b	1.75a	1.93b	1.97b	**	***	*	
		(0.27)	(0.05)	(0.02)	(0.18)	(0.07)	(0.04)				
K concentration	$(g kg^{-1})$	7.83a	8.21a	8.19a	7.58a	9.23b	9.54b	*	*	NS	
		(0.35)	(0.95)	(1.04)	(0.44)	(0.64)	(0.77)				

847 Table 2. Cumulative and residual effects of repeated applications of two-phase olive mill waste (OMW) on 848 yield and leaf N, P, and K concentrations.

849 $^{\dagger}TOC$ = unamended soil, year 2006.

 10 10

852 ¶T0R= unamended soil, year 2008.

*T30R= amended soil at rate of 30 Mg (dry weight) ha^{-1} yr⁻¹, two years after the last application. 854 ^{††}T60R= amended soil at rate of 60 Mg (dry weight) ha^{-1} yr⁻¹, two years after the last application.

855 ^{$\ddagger\ddagger}T = treatment.$ </sup>

856 ^{§§}S= sampling time.

857 [¶]Values with the same letter within a row, for a given sampling date, are not significantly different at

858 P≤0.05 level of probability.

859 ^{##}Standard deviation of the mean.

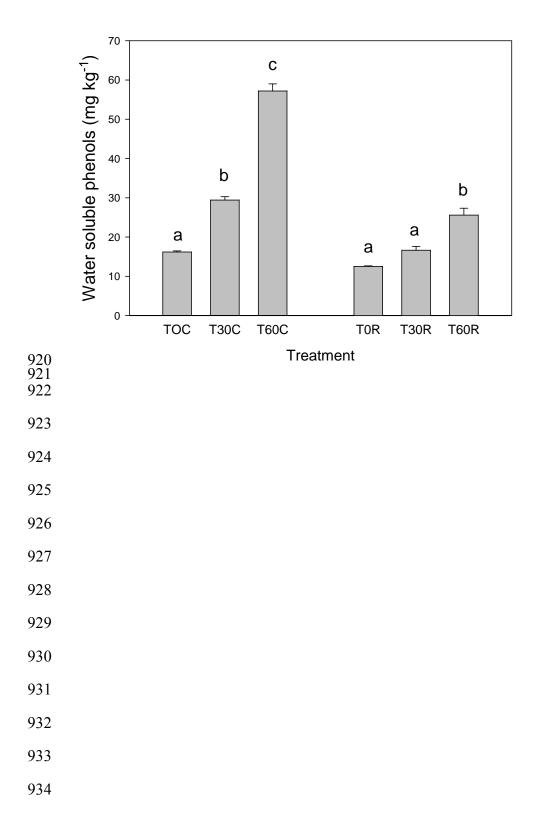
860 *, **, *** significant at 0.05, 0.01, and 0.001 probability levels, respectively; NS is not significant.

		Year 2006			Year 2008			Analysis of variance		
Properties	Units	$T0C^{\dagger}$	T30C [‡]	T60C§	TOR¶	T30R [#]	T60R ^{††}	T ^{‡‡}	$S^{\S\S}$	TxS
Organic carbon	$(g kg^{-1})$	11.07a ^{¶¶}	26.16b	36.42c	10.26a	23.93b	33.83c	***	*	NS
		(0.55) ##	(1.51)	(2.45)	(0.30)	(3.46)	(2.00)			
Total N	$(g kg^{-1})$	1.53a	2.77b	3.33b	1.12a	2.57b	3.39b	**	NS	NS
		(0.07)	(0.10)	(0.42)	(0.20)	(0.51)	(0.36)			
NO ₃ -N	$(mg kg^{-1})$	6.79a	16.8b	21.2c	5.91a	17.3b	20.7c	***	**	***
		(0.34)	(0.57)	(0.59)	(0.32)	(0.37)	(0.60)			
$WSOC^{\dagger\dagger\dagger}$	$(mg kg^{-1})$	142a	224b	489c	122a	152a	189a	***	**	**
		(5.3)	(31.5)	(39.7)	(12.6)	(11.7)	(22.8)			
Humic acid	$(g kg^{-1})$	1.35a	1.89b	2.35c	1.27a	2.53b	4.03c	***	***	***
		(0.14)	(0.15)	(0.09)	(0.10)	(0.17)	(0.20)			
Polymerization grade		1.54b	1.24a	1.37a	1.52a	3.06b	3.71b	*	**	*
		(0.12)	(0.06)	(0.04)	(0.07)	(0.19)	(0.40)			
pН		8.00a	7.80a	7.51b	8.03a	8.01a	7.91a	*	***	*
		(0.03)	(0.08)	(0.19)	(0.10)	(0.10)	(0.11)			
Available P	$(mg kg^{-1})$	14.0a	37.6ab	60.3b	10.7a	52.9b	75.8c	**	*	*
		(1.1)	(1.6)	(2.3)	(1.5)	(2.3)	(2.5)			
Available K	$(mg kg^{-1})$	351a	780b	1404c	376a	858b	1386c	**	NS	NS
		(22.5)	(32.1)	(156)	35.4)	(82.5)	(101.4)			
Bulk density	$(Mg m^{-3})$	1.45c	1.25b	1.06 ^a	1.47b	1.06a	1.01a	***	**	**
		(0.05)	(0.05)	(0.06)	(0.10)	(0.01)	(0.02)			
WSA ^{‡‡‡}	(%)	31.6a	45.4ab	51.9b	32.7a	50.1b	65.2b	*	*	*
		(3.8)	(6.9)	(1.97)	(5.70)	(1.70)	(3.20)			

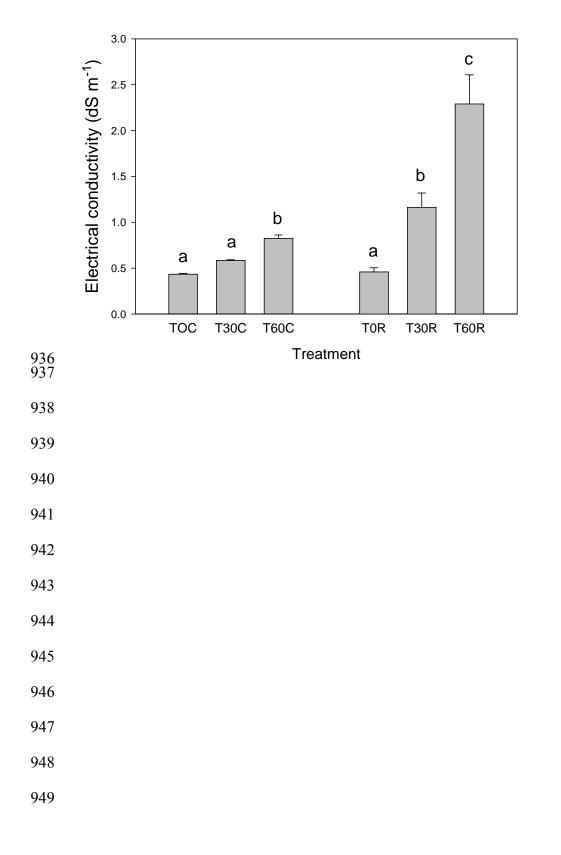
86Table 3. Cumulative and residual effects of repeated applications of two-phase olive mill waste (OMW) on 863 elected soil properties (0-25 cm depth). 864

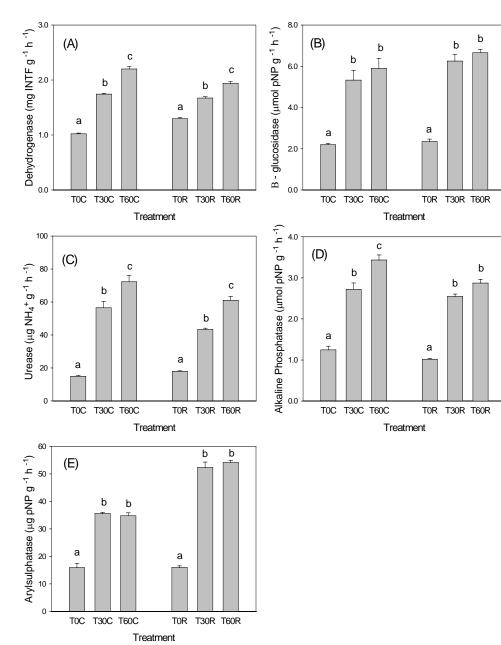
865 [†]T0C= unamended soil, year 2006. 866 [‡]T30C= amended soil at rate of 30 Mg (dry weight) ha⁻¹ yr⁻¹ for eight years. 867 [§]T60C= amended soil at rate of 60 Mg (dry weight) ha⁻¹ yr⁻¹ for eight years.

868 [¶]T0R= unamended soil, year 2008.


872 ^{§§}S= sampling time.

873 [¶]Values with the same letter within a row, for a given sampling date, are not significantly different


- 875 ** values with the same letter within a row, for a given sampling date, are not significantly different 874 at P≤0.05 level of probability.
 875 ^{##} Standard deviation of the mean.
 876 ^{†††}WSOC= water soluble organic carbon.
 877 ^{‡‡‡}WSA= water stable aggregates.
 878 *, **, *** significant at 0.05, 0.01, and 0.001 probability levels, respectively; NS is not significant.


885 886 887	List of Figures
888	Fig. 1. Cumulative and residual effects of repeated applications of two-phase olive mill waste
889	on water soluble phenols. (T0C) unamended soil year 2006; (T30C) and (T60C) amended
890	soils at rates of 30 and 60 Mg ha^{-1} yr ⁻¹ for eight years, respectively; (T0R) unamended soil,
891	year 2008; (T30R) and (T60C) amended soils at rates of 30 and 60 Mg ha^{-1} yr ⁻¹ , respectively,
892	two years after the last application. Bars with the same letter are not significantly different at
893	P≤0.05 level of probability. Error bars represent one standard error of the mean.
894	
895	
896	Fig. 2. Cumulative and residual effects of repeated applications of two-phase olive mill waste
897	on electrical conductivity. (T0C) unamended soil year 2006; (T30C) and (T60C) amended
898	soils at rates of 30 and 60 Mg ha ⁻¹ yr ⁻¹ for eight years, respectively; (T0R) unamended soil,
899	year 2008; (T30R) and (T60C) amended soils at rates of 30 and 60 Mg ha^{-1} yr ⁻¹ , respectively,
900	two years after the last application. Bars with the same letter are not significantly different at
901	$P \le 0.05$ level of probability. Error bars represent one standard error of the mean.
902	
903	
904	Fig 3. Cumulative and residual effects of repeated applications of two-phase olive mill waste
905	on dehydrogenase (A), β -glucosidase (B), urease (C), alkaline phosphatase (D), and
906	arylsulfatase (E). (T0C) unamended soil year 2006; (T30C) and (T60C) amended soils at rates
907	of 30 and 60 Mg ha ⁻¹ yr ⁻¹ for eight years, respectively; (T30R) unamended soil, year 2008;
908	(T30R) and (T60R) amended soils at rates of 30 and 60 Mg ha ⁻¹ yr ⁻¹ , respectively, two years
909	after the last application. Bars with the same letter are not significantly different at $P \le 0.05$
910	level of probability. Error bars represent one standard error of the mean.
911	
912	
913	
914	
915	
916	
917	

935 Fig. 2.

950 Fig. 3.