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To cite this article: Lopez JJ, Salido GM, Pariente JA, Rosado JA. Thrombin induces activation and translocation of Bid, Bax and Bak to the

mitochondria in human platelets. J Thromb Haemost 2008; 6: 1780–8.

Summary. Background: Thrombin is a physiological platelet

agonist that activates apoptotic events, including cytochrome c

release and phosphatidylserine exposure; however, the mecha-

nisms underlying these events remain unclear. Objectives: The

present study is aimed to investigate whether thrombin induces

activation and mitochondrial translocation of Bid, Bax and

Bak. Methods: Changes in the mitochondrial membrane

potential were registered using the dye JC-1; Bid, Bax and

Bak translocation to the mitochondria was detected by

immunoprecipitation and Western blotting in samples from

mitochondrial and cytosolic fractions. Results: Treatment of

platelets with thrombin or ADP induces activation and

mitochondrial association of active Bid, Bax and Bak. Trans-

location of Bid and Bax to the mitochondria was reduced by

cytochalasin D, latrunculin A or jasplakinolide. Platelet

exposure to exogenous H2O2 (10 lM) results in activation of

Bid and Bax, which was found to be similar to the effect of

thrombin. Thrombin evokes mitochondrial membrane depo-

larization, which is attenuated by catalase. Conclusion: Our

results indicate that thrombin induces activation and mito-

chondrial translocation of Bid, Bax and Bak, which is likely to

be one of the apoptotic events in human platelets.

Keywords: apoptosis, Bax, Bid, hydrogen peroxide, mitochon-

dria, platelets, thrombin.

Introduction

Apoptosis or programmed cell death is a well-conserved

physiological pathway. A number of cellular agonists induce

apoptotic events in platelets both in vivo and in vitro models

[1–4]. Thrombin stimulates mitochondrial membrane potential

depolarization, cytochrome c release and caspases-3 and -9

activation [4–6]. Platelet activation and apoptosis are activated

by different concentrations of thrombin: low concentrations

result in platelet activation but no apoptosis, while high

concentrations induce apoptosis in a number of platelets [7].

Thrombin induces endogenous generation of H2O2, which

stimulates cytochrome c release, caspase-3 and -9 activation

and phosphatidylserine exposure [5]. Apoptosis in platelets

induces the release of microparticles, which might play a role in

the development of cardiovascular diseases [8]. A recent study

has provided evidence supporting the role of apoptosis, and

especially the antagonistic balance between Bcl-xL and Bak, in

the determination of platelet life span [9].

Platelets express several components of the apoptotic

machinery, including the proapoptotic proteins Bid and Bax

[4,10]. Bid is a member of the �BH3 domain only� subgroup of

the Bcl-2 family proposed to connect surface death receptors

with Bcl-2 or Bax [11]. In hepatocytes Bid is important for

cytochrome c release, dysfunction of mitochondria and even

cell death following Fas activation in vivo; however, other cell

types do not require Bid for cytochrome c release [12]. Active

Bax translocates to mitochondria where it inserts as an

apparent homo-oligomerized integral membrane protein [13].

Bax and Bid have been suggested to induce permeabilization of

the outer mitochondrial membrane, releasing multiple inter-

membrane space proteins [14]. Translocation of Bax to the

mitochondria has been reported in response to oxidative stress

[15,16]. Human platelets produce and release reactive oxygen

species (ROS), including hydrogen peroxide (H2O2), under

physiological stimulation [17–19] and in pathological situa-

tions, such as diabetes and ischemia/reperfusion [20,21].

Therefore, we have investigated the effect of physiological

agonists onmitochondrial association of Bid, Bax and Bak and

the involvement of endogenous H2O2 generation in human

platelets.

Material and methods

Materials

Jasplakinolide (JP), Alexa Fluor 568-conjugated secondary

antibody andMitoTrackerRedwere from Invitrogen (Madrid,

Spain). Apyrase (grade VII), aspirin, thrombin, hydrogen
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peroxide, catalase, rotenone, fluorescein isothiocyanate

(FITC)-conjugated phalloidin, monoclonal anti-Bax antibody

(clone 6A7), anti-G-actin antibody and BSA were from Sigma

(Madrid, Spain). Cytochalasin D (CytD) and latrunculin A

were from Calbiochem (Nottingham, UK). Horseradish per-

oxidase-conjugated rabbit anti-sheep IgG antibody was from

Santa Cruz (Santa Cruz, CA, USA). Protein A-agarose and

anti-Bak antibody were from Upstate Biotechnology Inc.

(Madrid, Spain). Anti-Bid antibody was from Cell Signaling

(Barcelona, Spain). Horseradish peroxidase-conjugated ovine

anti-mouse IgG antibody (NA931) and Hyperfilm ECL were

from Amersham (Arlington Heights, IL, USA). Anti-CoxIV

antibody was from BD Transduction Laboratories (Madrid,

Spain). Hirudin was from RayBiotech, Inc (Norcross, GA,

USA). Enhanced chemiluminiscence detection reagents and

mitochondria isolation kit were from Pierce (Cheshire, UK).

All other reagents were of analytical grade.

Platelet preparation

Platelet suspensions were prepared as previously described [22],

as approved by local ethical committees and in accordance with

the Declaration of Helsinki. Briefly, blood was obtained from

healthy drug-free volunteers and mixed with acid/citrate

dextrose anticoagulant containing (in mM): 85 sodium citrate,

78 citric acid and 111 D-glucose. Platelet-rich plasma (PRP)

was prepared by centrifugation for 5 min at 700 · g and

aspirin (100 lM) and apyrase (40 lg mL)1) were added. Cells

were collected by centrifugation at 350 · g for 20 min and

resuspended in HEPES-buffered saline (HBS), pH 7.45,

containing (in mM): 145 NaCl, 10 HEPES, 10 D-glucose, 5

KCl, 1 MgSO4 and supplemented with 0.1% BSA and

40 lg mL)1 apyrase. Final platelet concentration was

2 · 108 cells mL)1 unless otherwise stated.

Subcellular fractionation

Subcellular fractionation was performed using a commercial

Mitochondria Isolation Kit (Pierce Biotechnology, Inc., Pierce,

Rockford, IL, USA). Briefly, platelets were resuspended in the

Mitochondria Isolation Reagent A and lysed with Mitochon-

dria Isolation Reagent B at 4 �C. Samples were further mixed

with Mitochondria Isolation Reagent C and then centrifuged

at 700 · g for 10 min at 4 �C. The supernatant was further

subjected to centrifugation at 12 000 · g for 15 min to yield the

mitochondrial pellet and the mitochondria-free cytosolic frac-

tion (supernatant).

Inmunoprecipitation and Western blotting

Inmunoprecitation and Western blotting were performed as

described previously [23]. Bax activation and Bax and Bid

detection in mitochondria-free cytosolic fraction were detected

by inmunoprecipitation. Briefly, 500 lL aliquots of platelet

suspension and mitochondria-free cytosolic fraction were lysed

and immunoprecipitated by incubation with 2 lg of anti-Bax

antibody clone 6A7 or anti-Bid antibody and 25 lL of protein

A-agarose overnight at 4 �C on a rocking platform. Proteins

were separated by 15% SDS-PAGE and electrophoretically

transferred, for 2 h at 0.8 mA cm)2, in a semi-dry blotter

(Hoefer Scientific, Newcastle, UK) onto nitrocellulose for

subsequent probing. Blots were incubated overnight with 10%

(w/v) BSA in Tris-buffered saline with 0.1% Tween 20 (TBST)

to block residual protein binding sites. Membranes were

incubatedwith the anti-Bax antibody diluted 1:500 in TBST for

2 h or with the anti-Bid antibody diluited 1:500 overnight. To

detect the primary antibody, blots were incubated with the

appropriate horseradish peroxidase-conjugated secondary anti-

body diluted 1:10 000 in TBST and exposed to enhanced

chemiluminescence reagents for 5 min. Blots were exposed to

photographic films and the optical density was estimated using

scanning densitometry. For protein loading control, mem-

branes containing whole cell lysates were reprobed with the

anti-G-actin or the anti-CoxIV antibody. For samples that

require immunoprecipitation, cell lysates were split and one set

of samples was used for immunoprecipitation while the other

was used for the detection of G-actin or CoxIV by Western

blotting.

Confocal microscopy

Cells were fixed using 3% paraformaldehyde (in PBS) for

10 min, and then permeabilized in PBS containing 0.025%

(v/v) Nonidet P-40 detergent for 10 min at 4 �C. Samples

were incubated with anti-Bax antibody, diluted 1:500 in

TBST for 2 h, followed by incubation with Alexa Fluor

568-conjugated secondary antibody diluted 1:10 000 in

TBST for 1 h, 500 nM MitoTracker Red for 20 min and

1 lM FITC-phalloidin for 30 min. Samples were examined

using a Zeiss LSM 510 confocal microscope with excitation

wavelength of 488 nm and emission at 568, 600 and

515 nm, respectively.

Determination of mitochondrial membrane potential

Changes in the mitochondrial membrane potential were

registered using JC-1. Platelets were loaded with JC-1 by

incubating the PRPwith 10 lg mL)1 JC-1 at 37 �C for 10 min.

Platelets were then centrifuged and resuspended in HBS. JC-1-

loaded cells were excited at 488 nm, and emission was detected

at 585 nm (JC-1 aggregates) and 516 nm (JC-1 monomers)

using a spectrofluorimeter. Data are presented as emission

ratios (585/516) [24]. Thrombin-induced changes in mitochon-

drial membrane potential were quantified as the integral of the

decrease in JC-1 fluorescence ratio for 1 min after the addition

of thrombin and presented as percentage of the effect evoked

by 10 lM rotenone.

Statistical analysis

Data are presented as means ± SEM of all the experiments

performed in each experimental protocol. Analysis of statistical

Thrombin activates Bid and Bax in platelets 1781

� 2008 International Society on Thrombosis and Haemostasis



significance was performed using Student�s t-test. P < 0.05

was considered to be significant for a difference.

Results

Time course and concentration dependent activation of Bid

and Bax by thrombin

Bid activation was analyzed byWestern blotting using a rabbit

anti-Bid antibody, which detects both the cleaved (active) and

native forms of Bid [25]. Active Bax was detected by

immunoprecipitation with the anti-Bax antibody (clone 6A7),

which reacts only with Bax in its conformationally active state,

followed by Western blotting with the same antibody as

described previously [26]. Thrombin (1 U mL)1) caused rapid

activation of Bid and Bax (Figs 1A and 2A), which was

detectable and significant 1 min after stimulation, reaching

120% ± 5% and 114% ± 4% of control, respectively, which

was maintained for at least 60 min, with an increase of

219% ± 9% and 200% ± 6% of control, respectively

(Figs 1A and 2A). The level of active Bid or Bax relative to

total was 0.32, 0.38, 0.49, 0.61 and 0.71 for Bid and 0.26, 0.37,

0.51, 0.59 and 0.72 for Bax after stimulation with thrombin for

1, 10, 30 and 60 min, respectively.

The effect of thrombin on Bid and Bax activation was

also concentration-dependent. After treatment for 1 h with

thrombin a detectable increase in Bid and Bax activity was
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with 1 U mL)1 thrombin for various periods of time (A) or for 1 h with

various concentrations of thrombin (0.01–1 U mL)1; B) and then lysed.

Samples were analyzed by Western blotting with the anti-Bid antibody

followed by reprobing with the anti-G-actin antibody. P < 0.05
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observed at 0.01 U mL)1; the effect was half maximal at

0.52 U mL)1, and maximal at 1 U mL)1 (Figs 1B and 2B).

The level of active Bid or Bax relative to total was 0.35, 0.46,

0.63, 0.69 and 0.73 for Bid and 0.21, 0.41, 0.53, 0.62 and 0.73

for Bax after stimulation with thrombin at 0.01, 0.1, 0.5 and

1 U mL)1, respectively. Reprobing of the membranes with

anti-G-actin antibody reported a similar amount of protein in

all lanes (Figs 1 and 2).

Thrombin evokes translocation of active Bid and Bax to the

mitochondria

Thrombin (1 U mL)1) increases the mitochondrial associa-

tion of active Bid and Bax, as detected by Western blotting

with the anti-Bid antibody or by immunoprecipitation and

subsequent Western blotting of samples of the mitochon-

drial fraction with anti-Bax antibody. Thrombin enhanced

the amount of active Bid and Bax in the mitochondria by

212% ± 25% and 200% ± 22% of control, respectively

(Fig. 3A and C). These results were confirmed by detection

of labelled Bax and mitochondria by confocal microscopy

(Fig. 3D). As a consequence, detection of Bid and Bax in

the cytosol was significantly reduced (58% ± 11% and

76% ± 1% of control, respectively; Fig. 3A and C). The

effect of thrombin was abolished by previous incubation

with 3 antithrombin units (ATU) mL)1 hirudin for 10 min

(Fig. 3B and E). SFLLRN (10 lM) and ADP (10 lM) also

induced translocation of Bid and Bax to the mitochondria

(Fig. 4A–D). In contrast, stimulation with the thromboxane

A2 analogue, U46619, was unable to stimulate mitochon-

drial association of Bid or Bax (Fig. 4E and F). Detection

of CoxIV (for the mitochondrial fraction) and G-actin (for

the cytosolic fraction) revealed a similar amount of proteins

in all lanes (Fig. 4).

The amount of Bid and Bax in the mitochondria stimulated

by thrombin was reduced by treatment with CytD, an inhibitor

of actin polymerization, to 131% ± 9%and 115% ± 11%of

control, respectively (Fig. 5A and B). As a consequence,

detection of Bid and Bax in the cytosol was significantly

enhanced in the presence of CytD (185% ± 31% and

172% ± 18% of control; Fig. 5A and B). Similarly, treatment

with 3 lM latrunculin A, a structurally unrelated actin poly-

merization inhibitor, attenuated thrombin-induced transloca-

tion of Bax to the mitochondria to 108.9% ± 8% of control

(Fig. 5C).We have further investigatedwhether stabilization of

the actin network impairs translocation of Bax to the mito-

chondria using JP, which induces actin filament polymerization

and stabilization into a layer beneath the plasma membrane in
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platelets [27]. As shown in Fig. 5D, treatment for 30 min with

JP reduced thrombin-evoked mitochondrial association of Bax

to 107% ± 10% of control.

Thrombin evokes translocation of Bak to the mitochondria

Furthermore, thrombin increases the mitochondrial associa-

tion of Bak as detected by Western blotting in samples of the

mitochondrial and cytosolic fractions with anti-Bak antibody.

As shown in Fig. 6, thrombin enhanced the amount of Bak in

the mitochondria by 201% ± 4% of control. As a conse-

quence, detection of Bak in the cytosol was significantly

reduced (61% ± 1%).

H2O2 induces activation and translocation of Bid and Bax to

the mitochondria

Platelet stimulation with thrombin results in endogenous H2O2

production that is involved in a number of physiological

processes [19,28]. Treatment with 10 lM H2O2 for 1 h

enhanced the activity of both Bid and Bax by 165% ± 10%

and 176% ± 11% of control, respectively (Fig. 7A and B). In

addition, treatment with H2O2 significantly increased the

mitochondrial association of active Bid and Bax

(187% ± 29% and 192% ± 6% of control, respectively;

Fig. 7C and D). As a consequence, detection of active Bid and

Bax in the cytosol was significantly reduced (52% ± 7% and

69% ± 14% of control).

Thrombin-evoked mitochondrial depolarization is attenuated

by catalase

In a medium containing 1 mM Ca2+, thrombin (1 U mL)1)

induced mitochondrial membrane depolarization as detected

by the decrease in JC-1 fluorescence ratio (585/516)

(Fig. 8A). Rotenone (10 lM), which dissipates the membrane

potential, induced maximal decrease in JC-1 fluorescence

(Fig. 8A). Pretreatment for 30 min with 300 U mL)1 catalase

[19] reduced thrombin-induced decrease in JC-1 fluorescence

by 70% (Fig. 8B). Platelet stimulation with 10 lM H2O2

alone or in combination with thrombin resulted in a change

in mitochondrial membrane potential similar to that induced

by thrombin alone (Fig. 8B). These findings suggest that

H2O2 might mediate thrombin-evoked mitochondrial depo-

larization.

Because CytD attenuated thrombin-evoked translocation of

Bax to the mitochondria, we tested its effect on mitochondrial

depolarization. Treatment with CytD did not impair thrombin-

evokedmitochondrial depolarization (Fig. 8C), suggesting that

Bax is not essential for this process.
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Discussion

Cytochrome c release plays an essential role in apoptosis. One

of the cellular mechanisms that mediate cytochrome c release

involves mitochondrial swelling, either by opening of the

permeability transition pore [29] or due to mitochondrial

hyperpolarization [30]. However, apoptotic cells frequently

contain unswollen mitochondria [31], and pro-apoptotic pro-

teins, such as Bid or Bax, have been reported to release

cytochrome c in the absence of detectable mitochondrial

swelling [32,33]. In addition, the pro-apoptotic protein Bak has

been reported to play a relevant role in platelet life span by the

activation of programmed cell death [9]. Increased expression

of proapoptotic Bax in platelets has been shown in response to

serotonin [34], thrombin [35] and the Ca2+ ionophore iono-

mycin [36], as well as in aged platelets [37].

Here we describe for the first time activation and translo-

cation of active Bid and Bax to the mitochondria upon platelet

stimulation with the physiological agonists thrombin and

ADP, but not with the thromboxane A2 analogue U46619,

which induces �apoptotic-like events� in platelets in the absence

of phosphatidylserine externalization [38]. Upon thrombin

stimulation the active forms of Bid and Bax are mostly located

in the mitochondrial fraction, while the amount of the active

proteins is reduced in the cytosol, thus confirming that the

increase in the amount of active Bid and Bax in the

mitochondrial fraction by thrombin is not due to activation

of mitochondria-associated Bid and Bax. The effects of

thrombin were mimicked by the PAR agonist SFLLRN and

prevented by hirudin, which sugggests that this response was

associated with the activation of thrombin receptors.

Platelets possess a dynamic actin cytoskeleton required for

a number of cellular processes [39,40]. We have found that

newly polymerized actin filaments are required for thrombin-

induced translocation of active Bid and Bax to the

mitochondria. This observation is in agreement with studies

in HeLa cells [41] reporting that apoptosis triggers F-actin

reorganization with an increase in the association with

mitochondria. These findings suggest that the actin cytoskel-

eton might contribute to the initiation of apoptosis by

enabling cytosolic proapoptotic proteins to be transported to

mitochondria. Mitochondria are dynamic organelles in cells

and the cytoskeleton has been reported to be important for

the recruitment of mitochondria to enhance local Ca2+

buffering and energy supply [42]. In human platelets, where

the treadmilling is very slow and treatment with CytD only

prevents thrombin-induced actin polymerization without

altering basal actin filament network [43], our results indicate
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that newly polymerized actin filaments are required for

mitochondrial association of Bid and Bax upon platelet

stimulation with thrombin, either for the movement of Bid

and Bax to the mitochondria or for the dynamics of the

mitochondrial network.

We have found that thrombin induces translocation of Bak

to the mitochondria, which, as for Bid and Bax, is a process

associated with Bak activation, thus suggesting that Bak is

involved in thrombin-induced apoptotic events in human

platelets, which might limit platelet life span in a number of

cells during blood coagulation processes, when platelets are

exposed to high concentrations of thrombin [7,9].

We have previously reported that thrombin is able to

induce endogenous generation of H2O2 [19], which exerts

different effects in human platelets, including Ca2+ mobiliza-

tion, reduction of the activity of Ca2+-ATPases, IP3 receptor

sensitization and inhibition of thrombin-induced aggregation

[19,22,44]. Concerning apoptotic events in platelets, we have

previously reported that exogenous H2O2 evokes cytochrome

c release, caspase-3 and -9 activation and PS exposure [5].

Here we show that 10 lM H2O2, which is in the range of

thrombin-evoked H2O2 generation in platelets [19], induces

activation and mitochondrial translocation of Bid and Bax

and mitochondrial depolymerization. In addition, catalase

reduces thrombin-evoked mitochondrial depolymerization,

thus suggesting that thrombin-evoked responses might be

mediated by endogenous ROS generation as previously
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demonstrated for cytochrome c release [5]. In conclusion, our

results provide evidence for the activation and mitochondrial

translocation of Bid, Bax and Bak stimulated by thrombin in

human platelets.
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