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Abstract

A controlled branching process (CBP) is a modification of the standard Bienaymé-
Galton-Watson process in which the number of progenitors in each generation is deter-
mined by a random mechanism. We consider a CBP starting from a random number of
initial individuals. The main aim of this paper is to provide a Feller diffusion approxima-
tion for critical CBPs. A similar result by considering a fixed number of initial individuals
by using operator semigroup convergence theorems has been previously proved in [16]. An
alternative proof is now provided making use of limit theorems for random step processes.

Keywords: Controlled branching processes; Weak convergence theorem; Martingale differ-
ences; Diffusion processes; Stochastic differential equation; Random step processes.

1 Introduction

Let {Xn,j : n = 0, 1, . . . ; j = 1, 2, . . .} be a sequence of independent and identically distributed
(i.i.d.), non-negative and integer-valued random variables defined on a probability space (Ω,F ,P).
Let also {ϕn(k) : k = 0, 1, . . .}, for n = 0, 1, . . ., be a sequence of stochastic processes which con-
sist of independent non-negative integer-valued random variables on (Ω,F , P ) with the same
one-dimensional distributions. Therefore, these random variables are identically distributed
for each fixed k. Furthermore, let us assume that {Xn,j : n = 0, 1, . . . ; j = 1, 2, . . .} and
{ϕn(k) : n = 0, 1, . . . ; k = 0, 1, . . .} are independent.
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A controlled branching process (CBP) is defined recursively as

Zn =

ϕn−1(Zn−1)∑
j=1

Xn−1,j, n = 1, 2, . . . , (1)

where
∑0

j=1 is defined as 0 and Z0 is a non-negative, integer-valued, square-integrable random
variable which is independent of {Xn,j : n = 0, 1, . . . ; j = 1, 2, . . .} and {ϕn(k) : n = 0, 1, . . . ; k =
0, 1, . . .}.

Here, Zn denotes the size of the n-th generation of a population and Xn−1,j is the offspring
size of the j-th individual in the (n − 1)-th generation. We will assume that the mean m =
E[X0,1] and variance σ2 = V ar[X0,1] are both finite.

The class of CBPs is a very general family of stochastic processes that collect as particular
cases the simplest branching model, namely the standard Bienaymé–Galton–Watson (BGW)
process, a branching processes with immigration or Galton-Watson processes with migration,
among others (details will be given in Section 3). The monograph [7] provides an extensive
description of its probabilistic theory.

The research of functional weak limit theorems for branching processes has attracted a lot
of interest for many years ago. It was firstly formulated for a BGW process by [3] and proved by
[11] and [13]. These results have been extended to another classes of branching processes. For
instance, a wide literature exists around weak convergence results for branching processes with
-nonhomogeneous-immigration (BPI) since the pioneer work by [17], see also [1] and references
therein, and for the case of time homogeneous immigration, see [15] and references therein. In
this paper we focus our attention on a weak convergence theorem for a critical CBP with a
random initial number of individuals and assuming finite second order moment on this initial
value. A similar result was already established for a single CBP in [16], and for an array of
CBPs in [6], by assuming fixed initial numbers of progenitors using infinitesimal generators
results for their proofs. Inspired in the paper [1] on BPI we will use limit theorems for random
step processes towards a diffusion process provided in [9] to obtain an alternative proof. The
scheme of it follows similar steps to the ones in [1]. An important feature of a CBP is that the
value of Zn conditioned on the knowledge of the previous generation, Zn−1 = k, is a random
sum of random variables, namely

∑ϕn(k)
j=1 Xn−1,j, instead of a non-random sum as in the case

of a BPI. This leads to handle the proofs of each steps using conditioning arguments different
from those used in [1].

Apart from this introduction, the paper is organized as follows. In Section 2 we provide the
notation and some auxiliary results about the behaviour of the first and second moments of the
process. Section 3 gathers the main theorem. The proof of the result is presented in Section 4.
For the ease of reading the paper, additional results are presented in the Appendix.

2 Notation and auxiliary results

For all n = 0, 1, . . ., we denote

ε(k) = E[ϕn(k)],

2



ν2(k) = V ar[ϕn(k)],

for each k = 0, 1, . . . , and assume all finite. It is easy to obtain that for n = 1, 2, . . .,

E[Zn|Fn−1] = mε(Zn−1), (2)

V ar[Zn|Fn−1] = σ2ε(Zn−1) +m2ν2(Zn−1), (3)

where Fn is the σ−algebra generated by the random variables Z0, Z1, . . . , Zn, n ≥ 1 (see
Proposition 3.5 in [7]).

We introduce the quantities

τm(k) = E[Zn+1Z
−1
n |Zn = k] = mε(k)k−1, k ≥ 1. (4)

The quantity τm(k) represents a mean growth rate. Intuitively, it can be interpreted as an
average offspring per individual for a generation of size k.

Assuming that limk→∞ τm(k) = τm exists, the process can be classified as:

τm < 1 subcritical; τm = 1 critical; τm > 1 supercritical.

We are interested in critical CBPs that satisfy the following hypotheses:

A1) τm(k) = 1 + k−1α + o(k−1), k > 0, α > 0,

A2) ν2(k) = o(k), as k → ∞.

It was studied in [5] the behavior of critical CBPs with P (ϕ0(0) = 0) = 1, i.e. 0 is an
absorbing state, and satisfying that P (X0,1 = 0) > 0 or P (ϕ0(k) = 0) > 0, k = 1, 2, . . . In
particular, it was established that under A1) and A2), if α > σ2/(2m) and an assumption on
conditional moments holds, then P (Zn → ∞) > 0. In the present paper we will consider critical
CBPs, {Zn}n≥0, satisfying the above conditions, but with a reflecting barrier at zero, namely,
P (ϕn(0) > 0) > 0. Thus {Zn}n≥0 will have a finite number of returns to the state zero till the
explosion to infinity, i.e. P (Zn → ∞) = 1.

Notice that under A1), ε(k) = (k+α)m−1+ o(1), k ≥ 1, and, for simplicity in the posterior
calculations, we will also assume throughout the paper that ε(0) = αm−1.

Remark 2.1. The controlled branching process we are considering is such that migration may
take place in the next generation no matter the size of the current generation (when there are no
individuals in the populations only immigration is possible). BGW processes with immigration
at 0 were considered firstly in [4] and [14].

In next result we calculate the first and second moments of a CBP which verifies A1) and
A2).

Proposition 2.1. Let {Zn}n≥0 be a CBP with E[Z2
0 ] < ∞ and satisfying hypotheses A1) and

A2). It is verified as k → ∞ that

E[Zk] = O(k) and E[Z2
k ] = O(k2).
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Proof. From A1) it follows that there exists C1 > 0 such that |mε(k) − k − α| ≤ C1 for all
k > 0, so that |Hk−1| ≤ C1 a.s. where Hk−1 = mε(Zk−1) − Zk−1 − α. Then, applying (2), we
deduce

E[Zk] = E[mε(Zk−1)] ≤ E[Zk−1] + E[|Hk−1|] + α ≤ E[Z0] + k(C1 + α), k ≥ 1. (5)

Using (3) we have

E[V ar[Zk | Fk−1]] ≤ m−1σ2(E[Z0] + k(C1 + α)) +m2E[ν2(Zk−1)].

Now, from A2), we have that there exists C2 > 0 such that ν2(k) ≤ C2k for all k > 0,
so that E[ν2(Zk−1)] ≤ C2E[Zk−1] + ν2(0). Consequently, letting C3 = 3max{m−1σ2E[Z0],
m2C2E[Z0], m2ν2(0)} and C4 = 2max{m−1σ2(C1 + α), m2C2(C1 + α)}, we have

E[V ar[Zk | Fk−1]] ≤ C3 + C4k. (6)

Let C5 = 2max{C2
1 , 4C1E[Z0]} and C6 = 4C1(C1 + α), it follows that

V ar[E[Zk | Fk−1]] = V ar[Zk−1] + V ar[Hk−1] + 2Cov[Zk−1, Hk−1]

≤ V ar[Zk−1] + E[|Hk−1|2] + 2E[|Hk−1|Zk−1] + 2E[|Hk−1|]E[Zk−1]

≤ V ar[Zk−1] + C5 + C6k.

Hence,

V ar[Zk] = E[V ar[Zk | Fk−1]] + V ar[E[Zk | Fk−1]]

≤ (C3 + C5)k + 2−1(C4 + C6)k(k + 1) + V ar[Z0].

The latter inequality proves that E[Z2
k ] = O(k2).

The following lemma, which can be easily verified, will be useful to establish certain rela-
tionships among the random variables {Xn,j : n = 0, 1, . . . ; j = 1, 2, . . .}.

Lemma 2.1. Let {Yn : n = 1, 2, . . .} be a sequence of i.i.d. random variables with zero mean
and finite variance, denoted by σ2. Let denote Sl =

∑l
j=1 Yj, l = 1, 2, . . . and for j = 1, . . . , l

S̃j(l) =
∑l

j′ ̸=j Yj′, and M > 0, M ∈ R. It is verified that

E

[
l∑

j=1

Y 2
j I{|S̃j(l)|>M}

]
≤ l2σ4

M2

and

E

( l∑
j,j′,j ̸=j′

YjYj′

)2
 = 2l(l − 1)σ4.
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3 Main result

We introduce for each n ∈ N, a stochastic process Wn(t) = n−1Z⌊nt⌋, for t ≥ 0, t ∈ R, ⌊·⌋
denoting the integer part. It is easy to see that {Wn}n≥1 is a sequence of random functions
that take values in D[0,∞)[0,∞), which is the space of non-negative functions on [0,∞) that
are right continuous and have left limits. We also denote by C∞

c [0,∞) the space of infinitely

differentiable functions on [0,∞) which have a compact support. Throughout the paper “
D→”

denotes the convergence of random functions in the Skorokhod topology.

Theorem 3.1. Let {Zn}n≥0 be a CBP with E[Z2
0 ] < ∞, satisfying hypotheses A1) and A2).

Then, Wn
D→ W , as n → ∞, being W a non-negative diffusion process, with generator Tf(x) =

αf ′(x) + 1
2
xσ2m−1f ′′(x), for f ∈ C∞

c [0,∞). The process W is the pathwise unique solution of
the stochastic differential equation

dW (t) = αdt+
√

σ2m−1(W (t))+dW(t), t ≥ 0, (7)

with initial value W (0) = 0, denoting x+ = max{x, 0}, x ∈ R, and where W is a standard
Wiener process.

Remark 3.1. Taking into account Theorem A2 in Appendix, the stochastic differential equation
(SDE) (7) has a pathwise unique solution {X(t)(x)}t≥0 for all initial values X(0)(x) = x ∈ R.
Moreover if x ≥ 0, then X(t)(x) ≥ 0 almost surely for all t ≥ 0.

Remark 3.2. Notice that the result in Theorem 3.1 is also valid as α = 0.

As was mentioned in the Introduction, particular subclasses of branching models can be
recovered from a CBP by introducing specific control variables. Consequently, Theorem 3.1
leads us to already known and not yet established diffusion approximation results for different
kind of branching models.

1) BGW process. A BGW process is a CBP by considering ϕn(k) = k a.s. for each k.
Taking into account Remark 3.2, in the case α = 0 and m = E[X0,1] = 1 the result provides
an alternative proof of the weak convergence result for the BGW process (see [2], p. 388) for a
non-array version.

2) BPI. A BPI can be written as a special case of a CBP, by setting ϕn(k) = k + In,
where {In}n≥0 are non–negative integer–valued i.i.d. random variables and independent of
the the offspring variables (writing in this way the immigrants give rise to offspring at the
same generation as their arrival and with the same probability law as X0,1). For this case, by
considering m = E[X0,1] = 1 (ε(k) = k + E[I0] and ν2(k) = V ar[I0]), we obtain an analogous
result to that in [1].

3) The Galton–Watson process with migration (GWMP). Let the random variables {Xn,i :
n = 0, 1, . . . , i = 1, 2, . . .} be the offspring variables as defined previously and {In}n≥0 be non–
negative integer–valued i.i.d. (immigration) random variables, independent from the offspring
variables. The discrete time homogeneous Markov chain {Zn}n≥0 is called a Galton–Watson
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process with migration (GWMP) if for n = 0, 1, . . .

Zn+1 =
Zn∑
i=1

Xn,i +Mn+1, (8)

with Z0 being a non-negative integer-valued random variable independent of the offspring and
immigration variables, and where for p+ q + r = 1

Mn+1 =


−Xn,1I{Zn>0} with probability p, (emigration)
0 with probability q, (no migration)
In+1 with probability r, (immigration)

(9)

is the migration component. In each generation there are three possible scenarios: (i) the
offspring of one individual is removed (emigration) with probability p; (ii) there is no migration
with probability q; or (iii) In individuals join the population (immigration) with probability r.
This model was introduced in [18]. It can be seen as a CBP with ϕn(k) = (k + Mn)

+ where
{Mn}n≥0 is a sequence of i.i.d. random variables, such that

P (Mn = −1) = p, P (Mn = 0) = q+rP (In = 0), and P (Mn = η) = rP (In = η), η = 1, 2, . . . ,

where p + q + r = 1 for p, q, r ∈ (0, 1). Let denote a = E[I0] and b = E[I2n], both assumed
finite. Consequently, the next theorem establishes for the first time a diffusion limit process for
a GWMP.

Theorem 3.2. Let {Zn}n≥0 be a GWMP (written as a CBP) with E[Z2
0 ] < ∞. Then, if

ra−p > 0, Wn
D→ W , as n → ∞, being Wn = n−1Z⌊nt⌋ and W a non-negative diffusion process

with generator Tf(x) = (ra− p)f ′(x) + 1
2
xσ2m−1f ′′(x), for f ∈ C∞

c [0,∞).

The proof follows from Theorem 3.1 due to the fact that it can be checked that ε(k) =
k+(ra− p) and ν2(k) = p+ rb− (ra− p)2, and therefore A1) and A2) in such a theorem hold.

4 Proof of the main result

In order to prove Theorem 3.1, we will establish previously the weak convergence of random
step processes defined from a martingale difference created from the CBP. For simplicity in the
presentation of the calculations we will assume that τm(k) = 1 + k−1α, as k > 0.

We introduce the following sequence of martingale differences {Mk}k≥1 with respect the
filtration {Fk}k≥0 as:

Mk = Zk − E[Zk | Fk−1] = Zk − Zk−1 − α, k ≥ 1.

Consider the random step processes:

Mn(t) =
1

n

Z0 +

⌊nt⌋∑
k=1

Mk

 =
1

n
Z⌊nt⌋ −

⌊nt⌋
n

α, t ≥ 0, n ∈ N. (10)
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Theorem 4.1. Let {Zn}n≥0 be a CBP with E[Z2
0 ] < ∞, satisfying hypotheses A1) and A2). It

is verified that

Mn
D−→ M, as n → ∞,

where the limit process M is the pathwise unique solution of

dM(t) =
√

m−1σ2(M(t) + αt)+dW(t), t ≥ 0, with initial value M(0) = 0. (11)

Proof As was done in [1], we prove the result by applying Theorem A1 in Appendix with
U = M, Un(k) = n−1Mk, k ∈ N, Un(0) = n−1Z0, Fn(k) = Fk, k ≥ 0, where n ∈ N (yielding
Un = Mn, n ∈ N, as well), and with coefficient functions β : [0,∞)×R → R and γ : [0,∞)×R →
R given by

β(t, x) = 0, γ(t, x) =

√
m−1σ2 (x+ αt)+, t ≥ 0, x ∈ R.

Firstly, we check that the SDE (11) has a pathwise unique strong solution
{
M(t)(x)

}
t≥0

for all initial values M(0)(x) = x ∈ R. In fact, notice that if
{
M(t)(x)

}
t≥0

is a strong solution

of the SDE (11) with initial value M(0)(x) = x ∈ R, then, by Itô’s formula, the process
P(t) = M(t)(x) + αt, t ≥ 0, is a solution of the SDE

dP(t) = αdt+
√
m−1σ2P(t)+dW(t), t ≥ 0, with initial value P(0) = x. (12)

Conversely, if {P(t)(x)}t≥0 is a strong solution of the SDE (12) with initial value P(x)(0) =
x ∈ R, then, by Itô’s formula, the process M(t) = P(t)(x) − αt, t ≥ 0, is a strong solution
of the SDE (11) with initial value M(0) = x. Notice that SDE (12) is the same as SDE (7),
consequently the SDE (12) and therefore the SDE (11) as well admit a pathwise unique strong
solution with arbitrary initial value, and

{M(t) + αt}t≥0
D
= {W (t)}t≥0. (13)

Let us see that E
[
(Un(k))

2] < ∞ for all n = 1, 2 . . . and k = 0, 1, 2, . . .. Indeed, taking into
account (6) in Proposition 2.1,

E
[
(Un(k))

2] = n−2E
[
M2

k

]
= E[V ar[Zk | Fk−1]] ≤

M1 +M2k

n2
< ∞ (14)

and, by the assumption in the statement of the theorem, E
[
(Un(0))

2] = n−2E [Z2
0 ] < ∞, for

n = 1, 2, . . . Moreover, Un(0) = n−1Z0
a.s.−→ 0 as n → ∞, especially Un(0)

D−→ 0 as n → ∞.
For conditions (i), (ii) and (iii) of Theorem A1 in Appendix, we have to check that for each

T > 0, T ∈ R, as n → ∞:

a) supt∈[0,T ]

∣∣∣ 1n∑⌊nt⌋
k=1 E [Mk | Fk−1]− 0

∣∣∣ P−→ 0.

b) supt∈[0,T ]

∣∣∣ 1
n2

∑⌊nt⌋
k=1 E [M2

k | Fk−1]−
∫ t

0
σ2

m
(Mn(s) + αs)+ ds

∣∣∣ P−→ 0.

c) For all θ > 0, 1
n2

∑⌊nT ⌋
k=1 E

[
M2

k I{|Mk|>nθ} | Fk−1

] P−→ 0.
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Since E [Mk | Fk−1] = 0, n ∈ N, k ∈ N, a) holds.
Let us check b).

For each s > 0, s ∈ R and n ∈ N, we have:

Mn(s) + αs =
1

n
Z⌊ns⌋ +

ns− ⌊ns⌋
n

α,

thus (Mn(s) + αs)+ = Mn(s) + αs. Now, we have, for all t > 0 and n ∈ N,∫ t

0

(Mn(s) + αs)+ ds =

⌊nt⌋−1∑
k=0

∫ (k+1)/n

k/n

(
1

n
Zk +

ns− k

n
α

)
ds

+

∫ t

⌊nt⌋/n

(
1

n
Z⌊nt⌋ +

ns− ⌊nt⌋
n

α

)
ds

=
1

n2

⌊nt⌋−1∑
k=0

Zk +
nt− ⌊nt⌋

n2
Z⌊nt⌋ +

α

2n2
⌊nt⌋

+
α

n

(
n

2

(
t2 − ⌊nt⌋2

n2

)
− ⌊nt⌋

(
t− ⌊nt⌋

n

))
=

1

n2

⌊nt⌋−1∑
k=0

Zk +
nt− ⌊nt⌋

n2
Z⌊nt⌋ +

⌊nt⌋+ (nt− ⌊nt⌋)2

2n2
α.

It is verified that, for t > 0 and n ∈ N,

1

n2

⌊nt⌋∑
k=1

E
[
M2

k | Fk−1

]
=

1

n2

⌊nt⌋∑
k=1

V ar[Zk | Fk−1]

=
1

n2

⌊nt⌋∑
k=1

(
m2ν2(Zk−1) +

σ2

m
(Zk−1 + α)

)

=
m2

n2

⌊nt⌋∑
k=1

ν2(Zk−1) +
⌊nt⌋ασ2

n2m
+

σ2

n2m

⌊nt⌋∑
k=1

Zk−1.

Consequently,

1

n2

⌊nt⌋∑
k=1

E
[
M2

k | Fk−1

]
−

∫ t

0

σ2

m
(Mn(s) + αs)+ ds =

m2

n2

⌊nt⌋∑
k=1

ν2(Zk−1) +
⌊nt⌋ασ2

n2m

−σ2(nt− ⌊nt⌋)
mn2

Z⌊nt⌋ −
σ2

m

⌊nt⌋+ (nt− ⌊nt⌋)2

2n2
α.

Since for each T > 0, T ∈ R,

supt∈[0,T ]
⌊nt⌋
n2 ⩽ T

n
→ 0, as n → ∞

supt∈[0,T ]
⌊nt⌋+(nt−⌊nt⌋)2

2n2 ⩽ T
2n

+ 1
2n2 → 0, as n → ∞,
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in order to show b), it suffices to prove that for each T > 0, T ∈ R,

1

n2
sup

t∈[0,T ]

(
(nt− ⌊nt⌋)Z⌊nt⌋

)
≤ 1

n2
sup

t∈[0,T ]

Z⌊nt⌋
P−→ 0 as n → ∞. (15)

and

m2

n2
sup

t∈[0,T ]

⌊nt⌋∑
k=1

ν2(Zk−1)
P−→ 0 as n → ∞. (16)

First we check (15). For each k ∈ N, we have Zk = Zk−1 +Mk + α, thus

Zk = Z0 +
k∑

j=1

Mj + kα,

and hence, for each t > 0, t ∈ R and n ∈ N, we get

Z⌊nt] =
∣∣Z⌊nt⌋

∣∣ ⩽ Z0 +

⌊nt⌋∑
j=1

|Mj|+ ⌊nt⌋α.

Consequently, in order to prove (15), it suffices to show

1

n2
sup

t∈[0,T ]

⌊nt⌋∑
j=1

|Mj| ⩽
1

n2

⌊nT ⌋∑
j=1

|Mj|
P−→ 0, as n → ∞.

By (14), E[M2
k ] = O(k), as k → ∞, and therefore by Jensen’s inequality, E[|Mk|] = O(k1/2),

as k → ∞, and hence

E

 1

n2

⌊nT ⌋∑
j=1

|Mj|

 =
1

n2

⌊nT ⌋∑
j=1

O
(
j1/2
)
= O

(
n−1/2

)
→ 0, as n → ∞.

Thus we obtain n−2
∑⌊nT ⌋

j=1 |Mj|
P−→ 0 as n → ∞ implying (15).

Now, taking into account hypothesis A2), for each fixed ϵ > 0 there exists K(ϵ) ∈ N such
that ν2(k) ≤ ϵk, for all k ≥ K(ϵ). Consequently, as E[Zk] = O(k) by Proposition 2,

E

 1

n2

⌊nT ⌋∑
k=1

ν2(Zk−1)

 = E

 1

n2

⌊nT ⌋∑
k=1

ν2(Zk−1)(I{Zk−1<K(ϵ)} + I{Zk−1≥K(ϵ)})


≤ ⌊nT ⌋

n2
max{E[ν2(j)], j = 0, 1, . . . , K(ϵ)− 1} (17)

+ϵE

 1

n2

⌊nT ⌋∑
k=1

Zk−1

 (18)
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= o(1) + ϵO(1), (19)

and taking ϵ → 0, we have (16).
Let us check c).
We follow the separation argument of the proof of Theorem 2.2 in [10]. We write

Mk =

ϕk−1(Zk−1)∑
j=1

(Xk−1,j −m) +m(ϕk−1(Zk−1)− ε(Zk−1)).

Let denote Nk =
∑ϕk−1(Zk−1)

j=1 (Xk−1,j − m). It is verified for each n, k ∈ N, and θ > 0, θ ∈ R
that

M2
k ≤ 2

(
N2

k +m2(ϕk−1(Zk−1)− ε(Zk−1))
2
)
,

and
I{|Mk|>nθ} ≤ I{|Nk|>nθ/2} + I{|ϕk−1(Zk−1)−ε(Zk−1)|>nθ/2m}.

Hence

M2
k I{|Mk|>nθ} ≤ 2N2

k I{|Nk|>nθ/2} +2N2
k I{|ϕk−1(Zk−1)−ε(Zk−1)|>nθ/2m} +2m2(ϕk−1(Zk−1)− ε(Zk−1))

2.

In consequence, to check c) we will prove, as n → ∞,

c.1) 1
n2

∑⌊nT ⌋
k=1 E

[
N2

k I{|Nk|>nθ} | Fk−1

] P−→ 0 for all θ > 0, θ ∈ R.

c.2) 1
n2

∑⌊nT ⌋
k=1 E

[
N2

k I{|ϕk−1(Zk−1)−ε(Zk−1)|>nθ} | Fk−1

] P−→ 0 for all θ > 0, θ ∈ R.

c.3) 1
n2

∑⌊nT ⌋
k=1 E [(ϕk−1(Zk−1)− ε(Zk−1))

2 | Fk−1]
P−→ 0.

In what follows let θ > 0, θ ∈ R be fixed.
Let us see c.3). It is verified that

1

n2

⌊nT ⌋∑
k=1

E
[
(ϕk−1(Zk−1)− ε(Zk−1))

2 | Fk−1

]
=

1

n2

⌊nT ⌋∑
k=1

V ar [ϕk−1(Zk−1) | Fk−1]

=
1

n2

⌊nT ⌋∑
k=1

ν2(Zk−1)
P−→ 0, as n → ∞.

This latter was proved by considering (19).
Now, we check c.1). By the properties of conditional expectation with respect to a σ -

algebra, we get for all n, k ∈ N,

E
[
N2

k I{|Nk|>nθ} | Fk−1

]
= Fn,k (Zk−1) ,

where on {Zk−1 = z}, with z = 0, 1, . . .

Fn,k(z) = E
[
Sk(z)

2I{|Sk(z)|>nθ}
]
, where Sk(z) =

ϕk−1(z)∑
j=1

(Xk−1,j −m) .

10



Consider the decomposition Fn,k(z) = An,k(z) +Bn,k(z) with

An,k(z) = E

ϕk−1(z)∑
j=1

(Xk−1,j −m)2I{|Sk(z)|>nθ}

 ,

Bn,k(z) = E

ϕk−1(z)∑
j,j′,j ̸=j′

(Xk−1,j −m)(Xk−1,j′ −m)I{|Sk(z)|>nθ}

 .

Again, this technique is original from [10], see proof of Theorem 2.2. Now, let denote
Sk,l =

∑l
j=1(Xk−1,j−m), k = 1, 2, . . ., l = 0, 1, . . .. It is verified the inequality, for j ∈ {1, . . . , l}

|Sk,l| ≤ |Xk−1,j −m|+ |S̃j
k(l)|, with S̃j

k(l) =
l∑

j′ ̸=j

(Xk−1,j′ −m).

We have, using Lemma 2.1,

An,k(z) = E

E
ϕk−1(z)∑

j=1

(Xk−1,j −m)2I{|Sk(z)|>nθ}

∣∣∣∣∣∣ϕk−1(z)


=

∞∑
l=0

E

[
l∑

j=1

(Xk−1,j −m)2I{|Sk,l|>nθ}

]
P (ϕk−1(z) = l)

≤
∞∑
l=0

l∑
j=1

(
E
[
(Xk−1,j −m)2I{|Xk−1,j−m|>nθ/2}

]
+ E[(Xk−1,j −m)2I{|S̃j

k(l)|>nθ/2}]
)
P (ϕk−1(z) = l)

≤
∞∑
l=0

(
lE
[
(X0,1 −m)2I{|X0,1−m|>nθ/2}

]
+

4l2σ4

n2θ2

)
P (ϕk−1(z) = l)

= ε(z)E
[
(X0,1 −m)2I{|X0,1−m|>nθ/2}

]
+

4σ4

n2θ2
E[(ϕ0(z))

2]

Therefore
An,k(z) ≤ A

(1)
n,k(z) + A

(2)
n,k(z),

with

A
(1)
n,k(z) = ε(z)E

[
(X0,1 −m)2I{|X0,1−m|>nθ/2}

]
,

A
(2)
n,k(z) = (ν2(z) + (ε(z))2)

4σ4

n2θ2
.

Using (5) in Proposition 2.1, it is verified that for n ∈ N

E

 1

n2

⌊nT ⌋∑
k=1

A
(1)
n,k(Zk−1)

 =
1

n2

⌊nT ⌋∑
k=1

E[ε(Zk)]E
[
(X0,1 −m)2I{|X0,1−m|>nθ/2}

]

11



=
1

n2

⌊nT ⌋∑
k=1

O(k)

E
[
(X0,1 −m)2I{|X0,1−m|>nθ/2}

]
= O(1)E

[
(X0,1 −m)2I{|X0,1−m|>nθ/2}

]
.

By applying the dominated convergence theorem we have

E

 1

n2

⌊nT ⌋∑
k=1

A
(1)
n,k(Zk−1)

→ 0, as n → ∞. (20)

It is also verified by using again (5) in Proposition 2.1 and A2) that

E

 1

n2

⌊nT ⌋∑
k=1

A
(2)
n,k(Zk−1)

 =
1

n2

⌊nT ⌋∑
k=1

E

[(
ν2(Zk−1) + (ε(Zk−1))

2
) 4σ4

n2θ2

]

=
4σ4

n4θ2

⌊nT ⌋∑
k=1

O(k2) = O(n−1) → 0, as n → ∞. (21)

Taking into account (20) and (21) we have that, as n → ∞,

1

n2

⌊nT ⌋∑
k=1

An,k(Zk−1)
P−→ 0.

Let us now deal with Bn,k(z). It is verified that, using Cauchy-Schwarz’s inequality:

Bn,k(z) =
∞∑
l=0

E

[
l∑

j,j′,j ̸=j′

(Xk−1,j −m)(Xk−1,j′ −m)I{|Sk,l|>nθ}

]
P (ϕk−1(z) = l)

≤
∞∑
l=0

√√√√√E

( l∑
j,j′,j ̸=j′

(Xk−1,j −m)(Xk−1,j′ −m)

)2
E[I{|Sk,l|>nθ}]P (ϕk−1(z) = l).

Now, using Markov’s inequality

E[I{|Sk,l|>nθ}] ≤
V ar[Sk,l]

n2θ2
=

lσ2

n2θ2
,

and using Lemma 2.1, we have

Bn,k(z) ≤
∞∑
l=0

√
2l2σ4n−2θ−2lσ2P (ϕk−1(z) = l) =

√
2σ3

θn
E[(ϕ0(z))

3/2].
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By Lyapunov’s inequality, E[(ϕk−1(z))
3/2]2/3 ≤ E[(ϕk−1(z))

2]1/2 = (ν2(z)+(ε(z))2)1/2. Con-
sequently, in order to prove, as n → ∞,

1

n2

⌊nT ⌋∑
k=1

Bn,k(Zk−1)
P−→ 0,

is enough to check that

1

n3

⌊nT ⌋∑
k=1

(ν2(Zk−1) + (ε(Zk−1))
2)3/4

P−→ 0.

In fact, using hypotheses A1) and A2) and Proposition 2.1, we have

E

 1

n3

⌊nT ⌋∑
k=1

(ν2(Zk−1) + (ε(Zk−1))
2)3/4

 = n−3

⌊nT ⌋∑
k=1

O(k3/2) = O(n−1/2).

Finally, we check c.2). We have that

E
[
N2

k I{|ϕk−1(Zk−1)−ε(Zk−1)|>nθ} | Fk−1

]
= Gn,k(Zk−1),

where on {Zk−1 = z}, with z = 0, 1, . . .,

Gn,k(z) = E[Sk(z)
2I{|ϕk−1(z)−ε(z)|>nθ}].

Now, again by Cauchy-Schwarz’s inequality and Markov’s inequality

Gn,k(z) =
∞∑
l=0

I{|l−ε(z)|>nθ}E[S2
k,l]P (ϕk−1(z) = l) = σ2E[ϕk−1(z)I{|ϕk−1(z)−ε(z)|>nθ}]

≤ σ2
√
E[ϕ2

k−1(z)]P (|ϕk−1(z)− ε(z)| > nθ) ≤ σ2E[(ϕ0(z))
2]1/2

(
ν2(z)

n2θ2

)1/2

.

In consequence from

E

 σ2

θn3

⌊nT ⌋∑
k=1

(
ν2(Zk−1) + (ε(Zk−1))

2
)1/2

(ν2(Zk−1))
1/2

 = O(n−1/2),

c.2) follows.

Finally, using the weak convergence of {Mn}n≥1, we will obtain weak convergence of
{Wn}n≥1.

Proof of Theorem 3.1. A version of the continuous mapping theorem is applied (see Lemma
1 in Appendix). Let DR[0,∞) be the space of the real functions on [0,∞) that are right
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continuous and have left limits. For each n ∈ N, by (10), {Wn(t)}t≥0 = Ψ(n) (Mn), where the
mapping Ψ(n) : DR[0,∞) → DR[0,∞) is given by

(
Ψ(n)(f)

)
(t) = f

(
⌊nt⌋
n

)
+

⌊nt⌋
n

α,

for f ∈ DR[0,∞) and t ∈ [0,∞). Indeed, for each n ∈ N and t ≥ 0:

(
Ψ(n)(Mn)

)
(t) = Mn

(
⌊nt⌋
n

)
+

⌊nt⌋
n

α =
1

n
Z⌊nt⌋ = Wn(t).

Further, taking into account (13), W
D
= Ψ(M), where the mapping Ψ : DR[0,∞) →

DR[0,∞) is given by

(Ψ(f))(t) = f(t) + αt, f ∈ DR[0,∞), t ∈ [0,∞).

The measurability of Ψ(n), n ∈ N and Ψ likewise the conditions for applying Lemma 1 are
proved in [1].

Remark 4.1. As was pointed out in the Introduction, the proof of the main result follows
similar steps as those given in [1]. One can check that similar formulas often appear being the
roles of the immigration mean and the offspring variance in the BPI case played in the CBP
by α and m−1σ2, respectively. However, new approaches by considering conditioning arguments
are needed to dealt with b)- c) in Theorem 3.1, as a consequence that random sums of i.i.d.
random variables arise in the proofs, see for instance the definition of An,k(z) and Bn,k(z), in
p.12. An extra work is required to calculate the mathematical expectation of these quantities.

Acknowledgements: The authors thank Professor M. Barczy for his constructive suggestions
which have improved this paper. The authors would like to thank the Reviewers for providing
comments and suggestions which have improved this paper. This work is part of the R&D&I
project PID2019-108211GB-I00, funded by MCIN/AEI/10.13039/501100011033/. P. Mart́ın-
Chávez is grateful to the Spanish Ministerio de Universidades for support from a predoctoral
fellowship Grant No. FPU20/06588.

Appendix

Theorem A1. Let β : [0,∞) × R → R and γ : [0,∞) × R → R be continuous functions.
Assume that uniqueness in the sense of probability law holds for the SDE

dU(t) = β (t,U(t)) dt+ γ (t,U(t)) dW(t), t ≥ 0, (22)

with initial value U(0) = u(0) for all u(0) ∈ R, where W = {W(t)}t≥0 is an one-dimensional
standard Wiener process. Let U = {U(t)}t≥0 be a solution of (22) with initial value U(0) = 0.
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For each n ∈ N, let {Un(k) : k = 0, 1, 2, . . .} be a sequence of real-valued random variables
adapted to a filtration {Fn(k) : k = 0, 1, 2, . . .}, that is, Un(k) is Fn(k)- measurable. Let

Un(t) :=

⌊nt⌋∑
k=0

Un(k), t ≥ 0, n ∈ N.

Suppose that E
[
(Un(k))

2] < ∞ for all n, k ∈ N, and Un(0)
D−→ 0 as n → ∞. Suppose that for

each T > 0

(i) supt∈[0,T ]

∣∣∣∑⌊nt⌋
k=1 E [Un(k) | Fn(k − 1)]−

∫ t

0
β (s,Un(s)) ds

∣∣∣ P−→ 0 as n → ∞,

(ii) supt∈[0,T ]

∣∣∣∑⌊nt⌋
k=1 Var [Un(k) | Fn(k − 1)]−

∫ t

0
(γ (s,Un(s)))

2 ds
∣∣∣ P−→ 0 as n → ∞,

(iii)
∑⌊nT ⌋

k=1 E
[
(Un(k))

2 I{|Un(k)|>θ} | Fn(k − 1)
] P−→ 0 as n → ∞ for all θ > 0.

Then Un
D−→ U as n → ∞.

The proof can be seen in Corollary 2.2. in [9].

Theorem A2. Let a, b, c real constants such that a > 0. Consider the stochastic differential
equation

dX(t) = (bX(t) + c)dt+
√

2aX(t)+dWt, t ≥ 0. (23)

There exists a pathwise unique strong solution {X(t)(x)}t≥0 for all initial values X(0)(x) = x ∈
R. Moreover if x ≥ 0, then X(t)(x) ≥ 0 almost surely for all t ≥ 0. In the case c ≥ 0, the
solution of (23) defines diffusion process with generator

Tf(x) = (bx+ c)f ′(x) + axf ′′(x), f ∈ C∞
c [0,∞),

where C∞
c [0,∞) is the space of infinitely differentiable functions on [0,∞) which have a compact

support.

The proof can be seen in [8] p. 235.

Lemma A1. Let S and T be two metric spaces, and X,X1, X2, · · · be random functions with

values in S with Xn
D→ X. Consider some measurable mappings h, h1, h2, · · · : S → T and

a measurable set C ⊂ S with X ∈ C a.s. such that hn(sn) → h(s) as sn → s ∈ C. Then

hn(Xn)
d→ h(X).

The previous version of the continuous mapping theorem can be found in Theorem 3.27 in
[12].
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[10] Ispány, M., Pap, G. and Van Zuijlen, M. C. A. Fluctuation Limit of Branching Processes
with Immigration and Estimation of the Means. Advances in Applied Probability, 37(2):
523–538, 2005.

[11] Jirina, M. Stochastic Branching Processes with Continuous State Space. Czechoslovak
Mathematical Journal, 8: 292–313, 1958.

[12] Kallenberg, O. Foundations of Modern Probability. Springer, 1997

[13] Lindvall, T. Convergence of critical Galton-Watson processes. Journal of Applied Proba-
bility, 9: 445-450, 1972.

[14] Pakes, A.G. On the critical Galton-Watson process with immigration. Journal of the Aus-
tralian Mathematical Society, 12: 476-482, 1971.

[15] Rahimov, I. Approximation of Fluctuations in a Sequence of Nearly Critical Branching
Processes.Stochastic Models, 25: 348-373.

16
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